
Towards Optimal Grammars for RNA Structures
Evarista Onokpasa∗ Sebastian Wild∗ Prudence W.H. Wong∗

January 29, 2024

Abstract

In past work (Onokpasa, Wild, Wong, DCC 2023), we showed that (a) for joint compression
of RNA sequence and structure, stochastic context-free grammars are the best known
compressors and (b) that grammars which have better compression ability also show better
performance in ab initio structure prediction. Previous grammars were manually curated
by human experts. In this work, we develop a framework for automatic and systematic
search algorithms for stochastic grammars with better compression (and prediction) ability
for RNA. We perform an exhaustive search of small grammars and identify grammars that
surpass the performance of human-expert grammars.

1. Introduction
In this paper, we study the fundamental question of capturing typical folding structures of RNA
molecules. Ribonucleic acid (RNA) is a bio-polymer that serves various roles in the coding,
decoding, expression and regulation of genes in cells. An RNA molecule consists of a chain of
nucleotides each having a base attached to it (either adenine (A), cytosine (C), guanine (G), or
uracil (U)); this string of bases forms the sequence of the molecule. Unlike the related DNA,
RNA is usually single-stranded and forms spatial structures by folding onto itself (similar to
proteins), with complementary bases forming stabilizing hydrogen bonds. The (well-nested) set
of (indices of the) bases that form such pairs is the secondary structure of the molecule; it can
be encoded by the dot-bracket notation, see Figure 1; a formal definition is given in Section 2.

The secondary structure is instrumental for the biological function of non-coding RNA
molecules and of great interest to biologists. Much research has hence been devoted to
computationally predicting the secondary structure from a known RNA sequence (ab initio

∗University of Liverpool, UK, {evarista.onokpasa, sebastian.wild, pwong} @ liverpool.ac.uk

G
C

C
C

U
G

A

U
A

G
C

G

U
A

G
U

U
A

C U A

G

C
G A G U C

U

G
UAUU

C

U

A

A

G

A

A
G

A

U

C

A

C
UG

A

G

G
G

U

UCG
C

G
G

G
G

1

5

10

15

20

25

30

35

40

45

50

55
60

62

ML

IL

B
HL HL

HL

()()()()()()()()() ()()()()() ()()()()• • ••• •• ••• •••• ••• •• ••••• • ••

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G

Figure 1: An example RNA sequence and structure. Left:
schematic drawing of structure. Above: Represen-
tation as dot-bracket sequence when the backbone
is “pulled straight”.

2 Towards Optimal Grammars for RNA Structures

RNA secondary-structure prediction) [2, 5, 14]. In our recent work [12], we showed that
joint compression of RNA sequence and structure data can serve as a robust proxy for the
prediction quality of different stochastic context-free grammar (SCFG) models of RNA secondary
structures, a state-of-the-art formalism for ab initio structure prediction. We also showed
that the RNA-specific SCFG-based compression outperforms by far the best general-purpose
compressors such as paq8l (http://mattmahoney.net/dc/#paq) on RNA data.

In [12], we use SCFGs designed resp. collected by human domain experts [1, 8, 10]. In this
work, we move from these isolated examples towards a framework for systematic and
automated search for optimal grammars. By comparing SCFGs using their achieved
compressed size instead of structure prediction performance, we eradicate intricacies and ongoing
debates of how to measure the distance between predicted and true secondary structures [9];
our work thus paves the way for a well-defined open contest on finding SCFGs that best capture
the essence of stable (minimum-free-energy) RNA structures.

On the technical side, we provide reference implementations of all key components needed
for testing and evaluating SCFGs for RNA compression and prediction and we explore best
practices for improving the efficiency of the search for good grammars.

Moreover, we report results from an initial exploration of the space of grammars. We find
that the vast majority of grammars give rather poor compression, but a very small number
achieve substantial compression. Among those, we could identify several new grammars that
surpass the performance of similar-sized human expert grammars from the literature, indicating
that further improvements are likely to be possible and that the intuitive grasp of RNA
structures even among domain experts has limitations.

The rest of this paper is structured as follows. In Section 2, we introduce basic notation and
summarize how SCFGs can be used to represent RNA. In Section 3, we introduce our new normal
form for SCFGs for RNA compression. Our experimental setup and results are described in
Section 4, and we conclude in Section 5. Datasets and code to produce figures and tables in this
article are available online as supplementary material: https://www.wild-inter.net/publications/onokpasa-
wild-wong-2024 ; the code is available on GitHub: https://github.com/evita35/better-grammars.

2. Preliminaries
We give a few basic definitions on strings and grammars, before we introduce SCFGs as
probabilistic models for RNAs.

We abbreviate [a..b) = {a, a + 1, . . . , b − 1}. For a string S ∈ Σn, we denote by S[i]
for i ∈ [0..n) the ith character of S (with 0-based indexing). S[i..j) denotes the substring
S[i]S[i + 1] . . . S[j − 1].

RNA as strings. An RNA sequence is a string of bases A, C, G, U. Stable hydrogen bonds are
possible between A and U resp. C and G (the Watson-Crick pairs) and to a lesser extent also
between G and U. (Pseudoknot-free) RNA (secondary) structures1 can then be represented by
the dot-bracket notation [6]: a well-nested string over {•, (,)} where a base pair is denoted by
a matching pair of parentheses “()” and an unpaired base by “•”; see Figure 1 for an example.
We use “RNA” as an abbreviation for “a pair of an RNA sequence and its secondary structure”.
Formally, they are strings over pairs of characters (see also [12]), e.g.,

[A
(
]

for base A in the RNA
sequence and (in the (dot-bracket representation of the) secondary structure.

1As is often done in the area, we do not consider structures with “pseudoknots” in this paper, i.e., we assume
that all bonds are well nested.

http://mattmahoney.net/dc/#paq
https://www.wild-inter.net/publications/onokpasa-wild-wong-2024
https://www.wild-inter.net/publications/onokpasa-wild-wong-2024
https://github.com/evita35/better-grammars

2. Preliminaries 3

Context-free Grammars. Dot-bracket strings can be generated by a context-free grammar
(CFG). We use standard terminology for context-free grammars, see, e.g., [7]. All our derivations
are leftmost derivations.

A CFG is a tuple (N, T, R, S) where N and T are finite sets of nonterminals and terminals,
respectively, R ⊆ N × (N ∪ T)∗ is a finite set of production rules, and S ∈ N is the start symbol.
A rule (A, γ) ∈ R is written as A → γ. We will use capital letters to denote nonterminals and
lowercase letters for terminals.

A leftmost application of a rule A → γ in a sentential form α ∈ (N ∪ T)∗, provided A is
the leftmost nonterminal in α, i.e., provided α = xAβ for some x ∈ T ∗ and β ∈ (N ∪ T)∗, is
the sentential form lmdA→γ(xAβ) = xγβ. A leftmost derivation in G is a sequence of rules
r1, . . . , rt when the rules applied in sequence always lead to a well-defined leftmost derivation,
i.e., with α0 = S and αi = lmdri(αi−1). We extend lmd(·) to sequences of rules, so write
lmdr1,...,rt(α0) = αt. All derivations in this work are leftmost derivations, we will therefore
omit “leftmost” for brevity. We are mostly interested in terminal (leftmost) derivations, i.e.,
derivations with αt = w ∈ T ∗. The language of G is the set of all w ∈ T ∗ for which there is a
(leftmost) derivation producing w. We identify a derivation for word w with the sequence of
rules r1, . . . , rt used in the derivation; we write lmdr1,...,rt(S) = w (for S the start symbol) to
indicate that rules r1, . . . , rt, successively applied starting with S, produce w.

2.1. Stochastic Context-free Grammars
A stochastic context-free grammar (SCFG) is a tuple G = (N, T, R, S, P) such that (N, T, R, S)
is a CFG and for every A ∈ N , P : R → [0, 1] induces a probability distribution over the set of
rules with left-hand side A.

SCFG as probabilistic models. The probability of a derivation r1, . . . , rt (a sequence of rules
from R) in the grammar G is the product of the probabilities of all used rules: P[r1, . . . , rt] =∏t

i=1 P (ri). This corresponds to the probability of obtaining this derivation in the random
process, where starting with S, in each time step, we choose a random replacement for the
leftmost nonterminal A in the current sentential form. For that, we sample one of the rules
A → γ with probabilities according to P and, conditionally on having left-hand side A,
independent of the past choices.

We define the probability P[w] of a word w as the sum of the probabilities of its derivations.

P[w] =
∑

r1,...,rt: lmdr1,...,rt (S)=w

P[r1, . . . , rt] .

The sum is understood to range of all leftmost derivations (of arbitrary length). We also define
the Viterbi value V (w) of w, the probability of the most likely derivation of w:

V (w) = max
r1,...,rt: lmdr1,...,rt (S)=w

P[r1, . . . , rt] .

If G is unambiguous, there is only one derivation and we have P[w] = V (w).

Derivations as representations. If G is known (by convention or because it has been stored
explicitly), a leftmost derivation d = (r1, . . . , rt) of a word w = lmdd(S), is an encoding for w:
the original word can always be reconstructed from d by (leftmost) application of the rules
starting with S. This is the basis for our RNA encoding [12]. Note that the grammar is not
required to be unambiguous for that, although it seems plausible that unambiguous grammars
would yield more effective compression.

4 Towards Optimal Grammars for RNA Structures

Probabilistic Parsing. Given a SCFG G = (N, T, R, S) and a word w ∈ T ∗ in the language of
G, a probabilistic parser determines a Viterbi derivation, i.e., a most likely derivation for w:
arg max{P[d] : lmdd(S) = w}.

The theory of such parsers is well established and does not require G to have any specific
normal form [4, 3]. However the resulting general algorithms are rather intricate; for example,
chain rules can require to (symbolically) solve infinite summations for correct stochastic
parsing [3]. But such grammars immediately allow an infinite number of leftmost derivations
for one word; since our compression methods specify a single derivation, such ambiguity is
counterproductive for compression.

A normal form such as Chomsky normal form (CNF) (all rules of type A → c or A → BC)
can simplify parsing dramatically; here even a stochastic parser remains a simple (bottom-up)
dynamic-programming algorithm (stochastic CYK) [4].

Unfortunately, CNF is inconvenient for expressing the complementarity of paired bases in
an RNA. We therefore start by proposing a new normal form for our grammars in Section 3.

2.2. SCFG-based Joint RNA Compression
Our formalism from [12] unifies grammars for encoding an RNA structure, joint RNA (sequence
and structure), and predicting the structure from the sequence. We specify a grammar by
giving the rules, e.g., S → (S) | • | SS; here ‘|’ separates the right-hand sides of rules with the
same nonterminal on the left. This represents 3 different types of grammars: (1) As is, it is a
grammar for deriving/representing just the RNA structure (in dot-bracket notation). We call
these the secondary-structure grammar. (2) We can expand the secondary-structure grammar
to an RNA grammar by replacing all rules with • by 4 rules, where • is replaced by

[A
•
]
,

[C
•
]
,

[G
•
]
,

and
[U

•
]
, respectively, and all rules with a pair of (and) by 6 rules, where (/) is replaced by[A

(
]
/
[U

)
]
,

[C
(
]
/
[G

)
]
,

[G
(
]
/
[C

)
]
,

[G
(
]
/
[U

)
]
,

[U
(
]
/
[A

)
]
, and

[U
(
]
/
[G

)
]
, respectively. (Or, for handling datasets with

non-canonical base pairs, even generate all 4 × 4 combinations of bases instead of just those
6). For brevity, we will use the short notation for the secondary-structure grammar, but we
actually work with the expanded RNA grammar for compression.

(3) The third type, the prediction grammar, has the same structure as the RNA grammar,
but when using it in a parser, we only look at the first entry of each pair. Thereby we can use
it to compute a (most likely) derivation for a given RNA sequence; the pairs matched with the
bases in the sequence automatically give us the RNA structure corresponding to this derivation.
We can thus use a Viterbi parse to obtain the most likely structure for a given sequence using
the prediction grammar.

Rule-probability models. When using an RNA grammar G for compressing an RNA sequence
and structure pair w, we first determine a derivation for w in G. For the encoding of w given
grammar G, we now need to specify probabilities for the rules. As in [12], we focus on two
options here: (a) a static rule-probability model, where we determine probabilities from counting
how often each rule is used on a training dataset, and (b) an adaptive rule-probability model,
where we keep running counts of rule occurrences (starting at 1, i.e., a uniform prior) in the
already encoded prefix of the derivation. For the actual binary encoding, we employ arithmetic
coding [15] to store the next rule. Note that the left-hand side is always known; initially it is
the start symbol and then, inductively, the leftmost nonterminal in the current sentential form.
More details and a worked example are given in [12, §3].

3. Stochastic RNA Normal Form for Grammars 5

3. Stochastic RNA Normal Form for Grammars
We consider SCFGs in a specific normal form, the Stochastic RNA Form (SRF). It takes
inspiration from existing expert SCFG designs used for RNA structure prediction [1, 8, 10].
Our normal form assumes a total order on the nonterminals. To simplify notation in this
section, assume without loss of generality that N = {A1, . . . , Ak}; we define Ai < Aj if and
only if i < j.

A SCFG G = (N, T, R, Ak, P) is in Stochastic RNA Form if each of its rules has one of the
following forms:

(i) Ai → AjAl (ii) Ai → • (iii) Ai → (Aj) (iv) Ai → Aj and j < i

The ordering constraint on type (iv) rules ensures that there is a finite number of derivations
for every word and that we can retain a total order on subproblems in parsing (see below).
Apart from making parsing more efficient, the Stochastic RNA Form makes it trivial to ensure
that grammars produce valid RNA structures. It therefore massively reduces the search space
in our exhaustive search by excluding many invalid grammars.

The Stochastic RNA Form is chosen to be as expressive as possible, fixing only features that
all stable RNA structures share. One tacit assumption we impose on RNA structures is that
they have no empty hairpin loops, i.e., no subword “()”. Such a bond is indeed impossible due
to physical limitations; it does get reported in databases, but rarely so (and likely erroneously).

Given a grammar in SRF, we can adapt the probabilistic CYK parser [4] to our grammars as
follows: For that, we denote by VA(w[i..j)), for A ∈ N and 0 ≤ i < j ≤ n = |w| the probability
of the most likely derivation of w[i..j) when starting with A. We then have V (w) = VS(w[0..n))
for S the start symbol of G and obtain the recursive equations following the allowed rule types:

VA(w[i..i + 1)) =
{

P (A → w[i]) if A → w[i] ∈ R (ii)
0 otherwise

VA(w[i..j)) = max

max
k∈[i+1..j)
A→BC∈R

P (A → BC) VB(w[i..k)) VC(w[k..j)) (i)

max
A→w[i]Bw[j−1]∈R

P (A → w[i] B w[j − 1]) VB(w[i + 1..j − 1)) (iii)

max
A→B∈R

P (A → B) VB(w[i..j)) (iv)

The ordering constraint on type (iv) rules implies that the subproblems VA(w[i..j)) can be
totally ordered by (ℓ, A) for ℓ = j − i the length of the produced subword and A the nonterminal,
allowing for an efficient bottom-up dynamic-programming parser.

4. Methodology and Results
4.1. Exhaustive exploration
We first report on the results of an exhaustive exploration of all small stochastic context-free
grammars in Stochastic RNA Form. The goal is to shed light on the following questions: Does
RNA favor a specific shape of grammars? If so, which? How different is the compression ability
of different grammars of the same size? Are the human-expert chosen grammars best possible
for their size?

For this, we implemented an exhaustive generation algorithm that can iterate over all
possible grammars in Stochastic RNA Form by constructing for a given number of nonterminals

6 Towards Optimal Grammars for RNA Structures

#NTs #rules # SRF grammars #parsing gr. (%) best bits-per-base

1 3 1 1 100% 3.6241

2 1 15 0 0% —
2 2 105 0 0% —
2 3 455 1 0.2% 3.6890
2 4 1365 28 2% 3.1424
2 5 3003 201 7% 2.9969
2 6 5005 783 16% 2.9762
2 7 6435 1831 28% 2.9927
2 8 6435 2801 44% 3.0088
2 9 5005 2953 59% 3.0516
2 10 3003 2198 73% 3.0668
2 11 1365 1158 85% 3.0856
2 12 455 424 93% 3.1229
2 13 105 103 98% 3.3456
2 14 15 15 100% 3.5364
2 15 1 1 100% 3.8076

3 1 42 0 0% —
3 2 861 0 0% —
3 3 11 480 1 0.00001% 3.6891
3 4 111 930 71 0.00001% 3.1424
3 5 850 668 2015 0.002% 2.9866
3 6 5 245 786 33 170 0.006% 2.6620
3 7 26 978 328 377 522 0.013% 2.5495
3 8 118 030 185 3 212 691 0.027% 2.5582

Table 1: Overview of the overall number of grammars of certain sizes and the number of grammars
that are able to parse all RNA in our benchmark dataset. The best bits-per-base gives
an indicative compression performance (adaptive rule-prob model on the 10% sample of
“benchmark”). Note that the number of possible rules for 2 nonterminals is 15 and for 3
nonterminals is 42.

all possible rules in SRF. Then we can iterate over all possible subsets, or all subsets of a given
size to generate all possible SRF grammar with these parameters. Note that for k nonterminals,
the total number of possible SRF rules is k3 type (i) rules, k type (ii) rules, k2 type (iii) rules
and

(k
2
)

type (iv) rules.
The number of grammars is large (> 2k3) even for moderate k; however many grammars do

not even allow to parse all RNA structures (see Table 1) and can be discarded quickly. For
that, we use a tiny dataset “parsable” of short RNA structures; any grammar that fails to parse
this dataset is skipped. For the remaining grammars, we determine the normalized compressed
size, i.e., the number of bits in the compressed representation divided by the number of bases
of the RNA; both using adaptive and static rule-probability models. The dataset we use is the
“benchmark” dataset from Dowell and Eddy [1]. As an efficient first filter we reduce it to a
randomly chosen 10% subsample; we determined in preliminary experiments that this predicts
the bits-per-base value on the entire dataset to within ±1%. We hence determine the best
grammars from this 10% subsample and then evaluate the most successful grammars on the
full benchmark dataset.

4.2. Distribution of compression ability
Using each possible small grammar (all grammars with 2 nonterminals, and all grammars with
3 nonterminals and at most 6 rules) to compress the 10% sample of the benchmark dataset,

4. Methodology and Results 7

Figure 2: Normalized average compressed size (in bits per base) for all grammars of the given size
(#NTs (Nonterminals), #rules) on 10% sample of the “benchmark” dataset from [1].
Each dot is one grammar; the x-coordinate is using the static rule-probability model,
with rule counts on the same dataset; the y-coordinate uses the adaptive rule-probability
model.

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

bits per base adaptive

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

bits per base static

Figure 3: Histogram of the normalized average compressed size (in bits per base) for all grammars
from Figure 2 on the 10% subsample of the benchmark dataset from Dowell and Eddy [1]
using the adaptive (left) resp. static (right) rule-probability model.

G∗
2,6

A0 → •
A0 → A1A0
A0 → A1A1
A1 → A0A1
A1 → (A1)
A1 → A0

G∗
2,5

A0 → •
A1 → A1A1
A1 → A0A1
A1 → (A1)
A1 → •

G∗
3,6

A0 → •
A0 → (A2)
A1 → A0
A2 → (A2)
A2 → A1

G∗
3,7

A0 → •
A0 → (A0)
A0 → A1A2
A1 → •
A1 → A0
A2 → A1
A2 → A1A2

G†
6,10

A0 → (A5)
A1 → •
A1 → A0
A2 → A3A5
A2 → A4A3
A4 → A1
A4 → A4A1

A5 → A0
A5 → A0A2
A5 → A4

Figure 4: Newly identified grammars; G∗
k,r is the best grammar with k NTs (Nonterminals) and r

rules from exhaustive search; G†
k,r is the best grammar we found with random search.

8 Towards Optimal Grammars for RNA Structures

we obtain the normalized compressed size (in bits per base) using the adaptive and static
rule-probability models. Figure 2 shows scatter plots of these results, split by grammar size.
There is a clear correlation of the two measures, meaning that grammars mostly live on a single
scale from better to worse compression approximately reflecting both models.

Moreover, the vast majority of grammars give rather poor compression. This is even more
visible in Figure 3 which shows the distribution of bits-per-base for all grammars up to 3
nonterminals and 6 rules (same data as in Figure 2). We expect the normalized compressed
size to be at least 2 bit per base, since the primary structure of RNA is not known to be
substantially compressible (and thus needs roughly 2 bits per character), and we need some
additional information to encode the structure on top of that. The vast majority of grammars
just realize a compressed size around lg(4 · 3) ≈ 3.58, which corresponds to storing each of the
pairs of terminals (4 bases, 3 structure symbols) independently with uniform likelihood. Note
that this is (approximately) the compression achieved by the trivial grammar with a single
nonterminal and the three rules A → (A) | • | AA. It seems hence indeed the case that most
grammars are not able to pick up the structure of RNA at all, and only a very small number of
grammars achieve substantially better compression than almost all other grammars. Figure 4
shows some of these.

4.3. Random search
Despite an increasing fraction of grammars not parsing all RNA and most grammars only giving
trivial compression, compression quality does increase with (moderate) increase in grammar size
(see Table 1 and Figure 2). It is therefore desirable to be able to search among larger grammars
than accessible via exhaustive exploration. As a simple first step towards that, we implemented
a random grammar explorer that repeatedly generates random grammars (from the grammars
of a given size) and keeps track of the top m grammars ever encountered. Again, to obtain
any meaningful efficiency, we first check grammars for the ability to parse a tiny dataset of
artificial RNA. Among those who parse that correctly, we evaluation their compression ability
on a small dataset of short RNA and those who perform on this at least as good as the worst of
the current top m grammars, we evaluate on the benchmark dataset. The top m grammars are
always chosen based on the benchmark dataset. (We confirmed on the small grammars where
we have exhausted all grammars that this process indeed identified the overall best performing
grammars.) We ran this random exploration for grammars with 3–10 nonterminals and different
numbers of rules, together exploring several billions of grammars. The best grammar found in
that process was G†

6,10, see Figure 4 (right). Note that G†
6,10 contains 2 nonterminals that are

dead ends for any derivation: A3 has no rules, and hence cannot ever be replaced. A2 only has
rules involving A3 and hence can likewise never be resolved to terminals. Removing those rules
(and nonterminals) gives G†

6,10
′.

4.4. Comparison with expert-curated grammars
We compare the results from newly found grammars with the expert-curated RNA grammars
collected in the literature in Table 2; the grammars can be found in Figure 4 resp. the appendix
of [12]. Although by a narrow margin, the best grammar for adaptive rule probabilities known is
our new grammar G†

6,10
′, clearly demonstrating that human-expert grammars are not necessarily

best possible!
Two expert grammars are in the range where exhaustive exploration is still feasible and both

are not the best possible grammar, even in their (flyweight) category: GL′ by Liu et al. [8] is
surpassed by a fair margin (2.95 vs 3.12 bits per base) by other grammars with 2 nonterminals.

5. Conclusion 9

Grammar adaptive static #NTs #rules grammar size

grammar-1NT 3.6241 3.4731 1 3 3

GL′ (Liu et al.) 3.1229 3.0201 2 4 18
G∗

2,5 (new) 2.9699 2.8200 2 5 19
G∗

2,6 (new) 2.9494 2.8011 2 6 20

G5 (Dowell, Eddy) 2.8368 2.7423 3 6 32
G3 (Dowell, Eddy) 2.5804 2.4549 5 11 69
G6 (Dowell, Eddy) 2.4957 2.3687 5 9 61
G4 (Dowell, Eddy) 2.7138 2.5974 6 11 78
G1 (Dowell, Eddy) 3.0779 2.8956 6 13 87
G2 (Dowell, Eddy) 2.9723 2.5525 18 296 1742
G7 (Dowell, Eddy) 2.6343 2.3333 38 321 2883
G8 (Dowell, Eddy) 2.7213 2.4561 39 322 2926

GS (Nebel, Scheid) 2.5045 2.2876 108 244 3396

G∗
3,6 (new) 2.6329 2.3797 3 6 32

G∗
3,7 (new) 2.5287 2.3878 3 7 34

G†
6,10 (new) 2.5091 2.3835 6 10 73

G†
6,10

′ (new) 2.4902 2.3835 4 7 45

Table 2: Normalized compressed size (bits per base) for some newly found small grammars and
the grammars from [1, 8, 10]. All results are for the “benchmark” dataset from [1].
“grammar size” is the #bits needed to encode the grammar using the following scheme:
encode k (#NTs) in Elias gamma code, then r (# rules) in binary and finally the size-r
subset of rules using an enumeration of all size-r subsets.

It is best possible, though if we insist on exactly 4 rules. For G5 from Dowell and Eddy [1], we
find a better grammar of the same size, again with a substantial improvement of compression
ability.

5. Conclusion
We formulated the competition for the best joint RNA compression grammar and gave first
improvements on the best known grammars. Unfortunately, the combinatorial explosion of
possible grammars and the fact that most grammars do not compress RNA meaningfully turns
the problem into the search for a needle in a haystack. Further progress in future work will
likely have to come from heuristics, potentially including learning systems.

The fact that the expert grammars are (in several ways) not best possible indicates that
there are still unexplored patterns in RNA structures to be understood. The contest to find
the best grammar for adaptive rule probabilities in particular has the potential to deepen our
understanding of RNA structures and might lead to interesting compression methods on the
path towards optimal grammars for RNA compression and prediction.

References
[1] R. D. Dowell and S. R. Eddy. Evaluation of several lightweight stochastic context-free grammars

for rna secondary structure prediction. BMC bioinformatics, 5(1):1–14, 2004.

[2] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge university press, 1998.

[3] J. Goodman. Parsing Inside-Out. PhD thesis, 1998.

10 Towards Optimal Grammars for RNA Structures

[4] J. Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.

[5] J. Gorodkin and W. L. Ruzzo, editors. RNA Sequence, Structure, and Function: Computational
and Bioinformatic Methods. Humana Press, 2014.

[6] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, and P. Schuster. Fast folding and
comparison of RNA secondary structures. Chemical monthly, 125:167–168, 1994.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Pearson, 2nd edition, 2001.

[8] Q. Liu, Y. Yang, C. Chen, J. Bu, Y. Zhang, and X. Ye. RNACompress: Grammar-based compression
and informational complexity measurement of RNA secondary structure. BMC bioinformatics,
9(1):1–12, 2008.

[9] D. H. Mathews. How to benchmark rna secondary structure prediction accuracy. Methods, 162:60–67,
2019.

[10] M. E. Nebel and A. Scheid. Evaluation of a sophisticated SCFG design for RNA secondary structure
prediction. Theory in Biosciences, 130(4):313–336, 2011.

[11] J. Oncina. The cocke-younger-kasami algorithm for cyclic strings. Proceedings of 13th International
Conference on Pattern Recognition, 1996.

[12] E. Onokpasa, S. Wild, and P. W. H. Wong. RNA secondary structures: from ab initio prediction to
better compression, and back. In Data Compression Conference (DCC), pages 278–287, 2023.

[13] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, Boston, 2006.

[14] D. H. Turner and D. H. Mathews, editors. RNA Structure Determination. Springer New York,
2016.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression. Communications
of the ACM, 30, 1987.

11

Appendix
A. New Grammars
G∗

2,6

A0 → •
A0 → A1A0
A0 → A1A1
A1 → A0A1
A1 → (A1)
A1 → A0

G∗
2,5

A0 → •
A1 → A1A1
A1 → A0A1
A1 → (A1)
A1 → •

G∗
3,6

A0 → •
A0 → (A2)
A1 → A0
A2 → (A2)
A2 → A1

G∗
3,7

A0 → •
A0 → (A0)
A0 → A1A2
A1 → •
A1 → A0
A2 → A1
A2 → A1A2

G†
6,10

A0 → (A5)
A1 → •
A1 → A0
A2 → A3A5
A2 → A4A3
A4 → A1
A4 → A4A1
A5 → A0

12 Towards Optimal Grammars for RNA Structures

A5 → A0A2
A5 → A4

	1 Introduction
	2 Preliminaries
	2.1 Stochastic Context-free Grammars
	2.2 SCFG-based Joint RNA Compression

	3 Stochastic RNA Normal Form for Grammars
	4 Methodology and Results
	4.1 Exhaustive exploration
	4.2 Distribution of compression ability
	4.3 Random search
	4.4 Comparison with expert-curated grammars

	5 Conclusion
	References
	Appendix
	A New Grammars

