
An Earley-style Parser for
Solving the RNA-RNA Interaction Problem

Bachelor Thesis

Supervisor: Prof. Dr. Markus E. Nebel,

head of “AG Algorithmen und Komplexität”

Technische Universität Kaiserslautern

Sebastian Wild

(Bachelorstudiengang Informatik)

February 4, 2011

Sebastian Wild

Abstract: It has been observed that for understanding the biological function of certain
RNA molecules, one has to study joint secondary structures of interacting pairs of RNA.

In this thesis, a new approach for predicting the joint structure is proposed and im-
plemented. For this, we introduce the class of m-dimensional context-free grammars — an
extension of stochastic context-free grammars to multiple dimensions — and present an
Earley-style semiring parser for this class. Additionally, we develop and thoroughly
discuss an implementation variant of Earley parsers tailored to efficiently handle dense
grammars, which embraces the grammars used for structure prediction.

A currently proposed partitioning scheme for joint secondary structures is transferred
into a two-dimensional context-free grammar, which in turn is used as a stochastic model
for RNA-RNA interaction. This model is trained on actual data and then used for predict-
ing most likely joint structures for given RNA molecules. While this technique has been
widely used for secondary structure prediction of single molecules, RNA-RNA interaction
was hardly approached this way in the past.

Although our parser has O(n3m3) time complexity and O(n2m2) space complexity
for two RNA molecules of sizes n and m, it remains practically applicable for typical
sizes if enough memory is available. Experiments show that our parser is much more
efficient for this application than classical Earley parsers. Moreover the predictions of
joint structures are comparable in quality to current energy minimization approaches.

Zusammenfassung: Es ist bekannt, dass die biologische Funktion bestimmter RNA-
Moleküle von der Struktur abhängt, die das Molekül gemeinsam mit einem anderen RNA-
Molekül formt, der sogenannten joint secondary structure.

Wir stellen in dieser Arbeit einen neuen Ansatz zu deren Vorhersage vor. Dazu führen
wir die Klasse der m-dimensionalen kontextfreien Grammatiken ein — einer Erweiterung
stochastischer kontextfreier Grammatiken auf mehrere Dimensionen — und stellen einen
Semiring-Earley-Parser für diese Klasse vor. Außerdem entwickeln wir eine Implemen-
tierungsvariante für Earley-Parser, die speziell dichte Grammatiken effizient verarbeitet.
Dazu zählen insbesondere die Grammatiken, die zur Strukturvorhersage verwendet wer-
den.

Wir übersetzen ein aktuelles Partitionierungsschema für joint secondary structures in
eine zwei-dimensionale kontextfreie Grammatik, die ein stochastisches Modell für ge-
meinsame Sekundarstrukturen impliziert. Dieses Modell trainieren wir anhand bekann-
ter RNA-RNA-Interaktionen und sagen dann wahrscheinlichste Strukturen vorher. Diese
Idee wurde bereits erfolgreich auf einzelne RNA-Moleküle angewandt, kaum jedoch auf
interagierende RNA-Paare.

Obwohl unser Parser Laufzeit in O(n3m3) und Speicherplatz in O(n2m2) für zwei
RNAs der Länge n und m benötigt, sind typische Eingabegrößen mit vertretbarem Auf-
wand vorhersagbar, sofern genug Arbeitsspeicher zu Verfügung steht. Experimente zeigen,
dass unsere Earley-Implementierung für diese Anwendung deutlich effizienter arbeitet
als klassische Earley-Parser. Des Weiteren ist die Qualität der Vorhersagen vergleichbar
mit der aktueller Energie-Minimierungsansätze.

3

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Bachelorarbeit mit dem Thema “An Earley-
style Parser for Solving the RNA-RNA Interaction Problem” selbstständig verfasst habe
und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen, die an-
deren Werken dem Wortlaut oder dem Sinne nach entnommen wurden, habe ich durch
die Angabe der Quelle, auch der benutzten Sekundärliteratur, als Entlehnung kenntlich
gemacht.

(Ort, Datum) (Unterschrift)

Contents

1. Introduction 9

2. Basics 11
2.1. Context-free grammars . 11

2.2. Earley-Parsing . 12

2.3. RNA . 17

2.4. Stochastic context-free grammars . 18

2.5. SCFGs for secondary structure prediction . 18

2.6. Semiring Parsing . 20

2.7. RNA-RNA Interaction . 22

2.8. Multiple context-free grammars . 24

2.9. Stochastic multiple context-free grammars . 26

2.10. Parsing of multiple context-free grammars . 28

3. Approach 29
3.1. m-dimensional context-free grammars . 29

3.1.1. Derivations and language . 30

3.1.2. Effective dimension . 30

3.1.3. Subgrammars . 31

3.1.4. Rule Templates . 32

3.1.5. Rule Templates in the Context of Secondary Structure Prediction . . . 33

3.1.6. Inside and Outside Probabilities . 34

3.2. A Grammar for RIP . 35

3.2.1. Handling two molecules . 35

3.2.2. GRIP . 36

3.3. Secondary Structure Subgrammars . 38

3.3.1. GSecStr — secondary structures in r . 38

3.3.2. GSecStr — secondary structures in s . 40

3.4. Earley-Parser for 2D-CFGs . 45

3.4.1. Item-related definitions . 47

3.5. One-dimensional preprocessing featuring an SCFG Earley parser 48

3.5.1. Outside probabilities in split grammars 50

3.6. Utilizing item values . 50

3.6.1. Inside and outside probabilities . 51

3.6.2. Rule probability estimates . 52

3.6.3. Viterbi parses . 53

3.7. Training with known structures . 54

5

Contents Sebastian Wild

4. Implementation Design 55
4.1. Motivating observations . 55

4.2. Item order . 55

4.2.1. Choice of rule indices . 56

4.2.2. Definition of ≺ . 56

4.2.3. Correctness of ≺ . 59

4.3. Item representation . 60

4.4. Optimistic Prediction . 60

4.5. Completion . 61

4.6. Immediate Scanning . 61

4.6.1. Getting rid of pre-scan items . 62

4.6.2. Jumping over terminals . 62

4.7. Late item value computation . 63

4.8. Keeping probabilities in range — the 4-times-trick 65

4.8.1. Prediction . 66

4.8.2. Scanning . 66

4.8.3. Completion . 66

4.8.4. Finalization . 67

4.9. Reverse parsing . 67

4.9.1. Item order . 67

4.9.2. Item representation . 67

4.9.3. Computation of reverse values . 68

4.9.4. Scanning . 69

4.9.5. Completion — first type . 69

4.9.6. Completion — second type . 69

4.9.7. 4-times-trick . 70

5. Results 71
5.1. jackRIP — our C++ implementation of a 2D-CFG parser 71

5.2. Target Machine . 71

5.3. Runtime efficiency tests . 71

5.3.1. RNA-RNA-interaction . 71

5.3.2. Comparison with classical Earley parsing 73

5.4. Prediction quality tests . 73

5.4.1. Test Data . 73

5.4.2. Prediction method . 73

5.4.3. Quality measures . 74

5.5. Prediction results . 74

5.5.1. Data from [KAS09] . 74

5.5.2. Data from [AZC05] . 75

5.5.3. Summary . 76

6. Conclusion 79
6.1. Future Work . 80

6.1.1. Statistical Sampling based on trained models 80

6.1.2. Length-Dependency . 80

6

Sebastian Wild Contents

Appendices 85

A. Pseudocode 85
A.1. Collected definitions . 85

A.2. Invariants . 86

A.3. 1D-Earley-Forward . 87

A.4. 1D-Earley-Reverse . 89

A.5. 2D-Earley-Forward . 91

A.6. 2D-Earley-Reverse . 94

Bibliography 97

7

1. Introduction

Ribonucleic acid (RNA) is a class of biomolecules that play a central role in protein synthe-
sis. Many functions fulfilled by RNA molecules depend on the three-dimensional shape
of the molecule. Each RNA is a single strand of nucleotides and different RNA molecules
only differ in the used bases in these nucleotides. The three-dimensional shape is caused
by attraction between different nucleotides, forcing the linear backbone to twist and fold in
space.

Biological studies have revealed that for the function of some types of RNA in living
beings, the three-dimensional form of RNA is very important. However, it is rather expen-
sive and time-consuming to determine three-dimensional foldings in laboratory, whereas
sequencing, i. e. determining the sequence of bases forming the backbone of an RNA, has
become cheap and fast due to automation.

Consequently, computational approaches have been developed for predicting the spa-
cial structure of RNA from the sequence. Typically, the model of secondary structures is
used to simplify prediction: Each base in the primary structure, i. e. the sequence, can ei-
ther be paired with exactly one other base or remains unpaired. Paired bases will be located
near each other in space. Secondary structure does not fully represent all details of three-
dimensional folding, but is able to model most important aspects thereof. So, predicting
correct secondary structures is considered a valuable goal — chapter 10 of [DEKM98] pro-
vides an overview of approaches to it.

It has been observed that for understanding the biological function of certain RNA
molecules, it is not enough to look at a single RNA and its secondary structure in isolation.
One important aspect overlooked that way is the interaction of two RNA molecules. Dur-
ing protein biosynthesis such interactions can hinder mRNA leaving the nucleus, thereby
controlling gene expression. Since RNA-RNA interaction complexes are hard to analyse in
laboratory, some research was done, trying to computationally predict the joint secondary
structure of such an interacting RNA complex from the primary structures.

Most of the proposed approaches (e. g. [AKN+
06], [AZC05], [SBS09]) are generaliza-

tions of Zuker’s algorithm for computing the secondary structure with minimal free en-
ergy. One problem is that energy contributions for more complicated types of loops — as
the new ones possible when considering two RNAs — are not known.

In the recent past, there has been an approach to RIP using stochastic multiple context-
free grammars — a generalization of stochastic context-free grammars — in [KAS09]. How-
ever, the grammar used by Kato et al. is rather simple and does for instance not offer the
possibility to assign different probabilities to different types of substructures.

Therefore, we propose a new approach in the following, using a grammar from a
similar class which provides a much more detailed model. For efficiently working with
this grammar, we develop a suitable parser for our class of grammars, as well.

9

1. Introduction Sebastian Wild

The rest of this work is organized as follows: Chapter 2 reviews concepts and definitions
needed for our approach. Chapter 3 describes our new contributions for RNA-RNA in-
teraction prediction. It introduces the grammar class of m-dimensional context-free gram-
mars and gives a high-level view of our parser for those. Our implementation of this parser
needs a few restrictions and features some interesting optimizations — which is discussed
in detail in chapter 4. In chapter 5 we present jackRIP, our C++ implementation according
to chapter 4, and evaluate our approach in an experiment with actual data. Finally, we
summarize our work in chapter 6 and propose two promising extensions based on recent
work in the field.

10

2. Basics

For the presentation of our approach, we need some terms, facts and background knowl-
edge to build on. As typical for computational biology — and structure prediction in par-
ticular — mainly two fields are combined: The theory of formal grammars on the one hand
and knowledge from molecular biology on the other hand.

A quick review of the essential formal models is given here, in order to create a com-
mon basis of notation. For further information, [HU79] provides a comprehensive discus-
sion of formal language theory. For the biological background needed here, any textbook
on molecular biology will suffice.

2.1. Context-free grammars

Any textbook on theoretical computer science contains a definition similiar to the follow-
ing. We adhere in the main to [HU79], but use different names for the components of a
grammar:

Definition: A context-free grammar (CFG) is a tuple G = (N,Σ,R,S). The elements are

I N, a finite set of non-terminals,

I Σ, a finite set of terminals, also called the alphabet,

I R ⊆ N× (N∪ Σ)?, a finite set of rules/productions and

I the start symbol S ∈ N.

We require N and Σ to be disjoint. A rule (A,γ) ∈ R is written as A→ γ. For convenience,
we write RA :=

{
A → γ ∈ R

}
for a non-terminal A ∈ N, i. e. RA is the set of rules whose

left hand side is A.

A word over N ∪ Σ is called sentential form. We define the derivation relation ⇒
G
⊆

(N∪ Σ)? × (N∪ Σ)? on sentential forms by

αAβ⇒
G
αγβ iff A→ γ ∈ R .

If the grammar is clear from the context, we will dispose of the G. The reflexive and
transitive closure of⇒ is written⇒∗, the transitive — but not reflexive — closure is denoted
by ⇒+. The language L(G) generated by G is the set of all terminal words derivable in G,
i. e. L(G) :=

{
w ∈ Σ? : S ⇒

G

∗ w
}

. A sequence of derivation steps α1 ⇒ α2 ⇒ · · · ⇒ αk

is called a derivation. A derivation is a leftmost derivation if in every step the replaced
non-terminal is the leftmost non-terminal present. In the following we will only consider
leftmost derivations.

11

2. Basics Sebastian Wild

Derivations can also be represented as ordered trees, where each node represents a
non-terminal, a terminal or the empty string ε. Inner nodes always correspond to non-
terminals and the labels of the children of a node in left-to-right order have to form the
right hand side of a rule for the parent. There exists a bijection between leftmost deriva-
tions and derivation trees.

We call a CFG G loop-free if there is no derivation of the form A⇒
G

+A for any A ∈ N.
If there does not even exist a non-terminal A such that A⇒

G

+ Aα, we call G free of left-
recursion.

The decision problem for context-free grammars ‘w
?
∈ L(G)’ is the task “Given a terminal

string w, determine whether w can be generated in G or not”. Several efficient algorithms
are known solving w

?
∈ L(G) in time O(|w|3), e. g. the Cocke-Younger-Kasami algorithm

(CYK) or Earley’s algorithm.
The parsing problem for context-free grammars ‘S ?⇒ w’ is the task “Given w, decide

whether w ∈ L(G) and if so determine a derivation (tree) for w”. Simple additions to the
mentioned algorithms allow to solve the parsing problem with negligible additional cost.

Two CFGs G1 and G2 are called equivalent, iff L(G1) = L(G2). If for every word w ∈
L(G) exactly one leftmost derivation exists, the CFG G is called umambiguous, otherwise
ambiguous.

2.2. Earley-Parsing

In [Ear70], Earley presented a new algorithm for efficiently solving the decision problem
for context-free-grammars G. Although a zoo of different parsing strategies has been
developed — see e. g. [GJ08] for a quite exhaustive collection — Earley’s algorithm has
some remarkable qualities:

I It can handle arbitrary CFGs — no normal form is required.

I Worst case complexity is O(|w|2) memory and O(|w|3) runtime, however for un-
ambiguous grammars runtime is O(|w|2) and for some large subclasses even linear
(see [GJ08, section 7.2.1.3]).

I Earley parsers efficiently handle left-recursion (see [GJ08, section 7.2.5]).

Especially the first property is valuable, even more for stochastic grammars, where trans-
formations to normal forms need to retain the stochastic model implied by the grammar.

We will give a very high-level description of Earley’s parser, viewing recognition of an
input word w as a deductive process in a properly chosen calculus. This makes it rather
easy to show correctness, but lacks details of efficient implementation. Since the gram-
mars we will use are quite different from typically studied ones for Earley parsing, usual
implementations are not suitable. We discuss our design in detail in chapter 4.

The calculus of an Earley parser consists of items, which are tuples of position indices
and dotted rules. A dotted rule is a rule of the grammar with dot-symbol • inserted
somewhere in the right hand side of this rule — dots at the very left and right end are
explicitly allowed. The dotted rules for A→ bA are A→ •bA, A→ b•A and A→ bA•.

12

Sebastian Wild 2.2. Earley-Parsing

Assume we are parsing the input word w ∈ Σn in a CFG G =
(
N,Σ,R,S ′

)
, with exactly

one rule for S ′, namely S ′ → S, where S is an arbitrary non-terminal S ∈ N, S ′ 6= S.1 We
will write items in the form(

i j , A→ α •β
)

for A→ αβ ∈ R ∧ 1 6 i 6 j 6 n+ 1 .

Every derivation in the calculus begins with the start item Istart :=
(
1 1 , S ′ → •S

)
and

may be continued using the following three inference rules:

I Predictor

(
i j , C→ η •Aµ

)
Rule

[
A→ β

](
j j , A→ •β

)
I Scanner

(
i j− 1 , A→ α •wj−1β

)(
i j , A→ αwj−1 •β

)
I Completer

(
i r , A→ α •Bβ

) (
r j , B→ η •

)(
i j , A→ αB •β

)

Theorem 1 (Correctness of EARLEY’s algorithm):
For CFG G and terminal word w ∈ Σn as above, an arbitrary grammar rule A → αβ and
indices 1 6 i 6 j 6 n+ 1, the following invariant holds:

(
i j , A→ α •β

)
is derived iff ∃γ ∈ (Σ∪N)?

S ′ ⇒
G

∗ w1,i−1 A γ

⇒
G

w1,i−1 α β γ

⇒
G

∗ w1,i−1wi,j−1 β γ

. (2.1)

For a word w, ws,s−1 denotes the empty string ε. Before we prove the theorem, let us
harvest: For Istart, the right side of (2.1) is trivially true as only S ′ ⇒ S remains. So
beginning with the start item is legitimate. If we now assume, that S ′ does not occur in
any right hand side — easily achieved by replacing it by S— we find that

Igoal :=
(
1 n+ 1 , S ′ → S •

)
is derived if and only if w ∈ L(G), as w1,0 = ε and γ can only be ε, as well. So, if we
seed the deduction with Istart, theorem 1 states that w ∈ L(G) iff Igoal is derivable, thereby
transferring the decision problem w

?
∈ L(G) into our calculus and proving the correctness

of Earley’s algorithm.
We are discussing the proof of theorem 1 in much detail in the following, since then,

the correctness proof for our parser in section 3.4 will only require slight extensions to this
proof. A few terms are handy, as they give an intuition about how Earley-parsing works.

1Obviously all CFGs can easily be converted into this form by adding a new axiom and the given rule.
Being picky, this is a kind of “Earley normal form” — but we chose Earley because of no need for normal
forms! Actually Earley parsing works for arbitrary grammars; requiring trivial additional steps before
and after deduction process. The restriction only makes our presentation more compact, so we will stick
to it. Furthermore, adding a new axiom with a single rule never changes implied stochastic models of a
SCFGs, which is typically not the case for classical grammar transformations.

13

2. Basics Sebastian Wild

Definition: For T = (V ,E) an arbitrary partial parse tree, we define the outline of T

O ∈ (V × V)? as the sequence of edges traversed in a tree traversal of T :
We start at the root, then visit all its children in left-to-right order. To ‘visit’ a node

here means to append the edge from the root to the child, then treat the child recursively
as the root of a subtree — possibly adding more edges — and finally add the edge from the
child back to its parent, the root. This way we walk along the ‘rim’ of the tree.

O is obviously a closed path, so every pair of nodes v and u, where u is (direct) child
of v, shows up exactly twice in O, once for descent as (v,u), once for ascent as (u, v).

Now, let E be a prefix of O, stopping with an occurrence of edge e. We call E an Earley-
walk, if all leaves visited along E— except for u if e = (v,u) and u is a leaf — are labelled
with a terminal or ε. The concatenation of all these terminals in the order they are visited
is called the word of E, word(E) ∈ Σ?. This simply means that no non-terminal lying in E

was left unexpanded.
For an Earley-walk E, we call

(
i j , A→ α •β

)
the item of the Earley-walk, denoted by

item(E), if all of the following holds:

I The last edge in E is e and e ∈
{
(vA,u), (u, vA)

}
where A is the label of vA and

w. l. o. g. is vA (direct) parent of u.

I word(E) = w1,j−1.

I The number of terminals visited by E, which are not located in the subtree rooted by
vA is i− 1.2

I If e = (vA,u), i. e. we are descending from vA to u:
α is the concatenation of labels of children of vA left of u exclusively,
and β holds the labels of the remaining children starting with u.

I If e = (u, vA), i. e. we are ascending from u to vA:
α is the concatenation of labels of children of vA left of u inclusively,
and β holds the labels of the remaining children starting behind u.

Lemma 2: A partial derivation tree for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1αβγ ⇒∗ w1,j−1βγ with
an Earley-walk E fulfilling item(E) =

(
i j , A → α •β

)
exists for some γ ∈ (Σ ∪N)?, if and

only if
(
i j , A→ α •β

)
is derivable in the above calculus.

Proof: We show the implication ‘⇒’ by induction on the length of Earley-walks: Let T
be a (partial) derivation tree for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1αβγ ⇒∗ w1,j−1βγ for some
1 6 i 6 j 6 n + 1 and γ ∈ (Σ ∪N)? with Earley-walk E of length |E| = l such that
item(E) =

(
i j , A→ α •β

)
=: I.

For l = 1, the derivation can only be S ′ ⇒ S, so I = Istart, which is trivially derivable.
So, the basis of induction is established.

For l > 1, we call e := E|E| ∈
{
(vA,u), (u, vA)

}
the last edge in E and assume vA is

parent of u. Further be E ′ := E1,|E|−1 the Earley-walk resulting from E by deleting the last
edge e and call e ′ the last edge in E ′. Now we distinguish cases:

2This leaves j − i terminals for the part of the subtree rooted by vA that is visited by E; excluding u if
e = (vA,u).

14

Sebastian Wild 2.2. Earley-Parsing

I e = (vA,u) and u is not the leftmost child of vA:
Call u ′ the left sibling of u. By definition of outline, the last edge in E ′ must be
e ′ = (u ′, vA). This in turn implies item(E ′) = item(E) by definition of item because
ascending edges include the child, whereas descending edges exclude it. As |E ′| < l,
applying induction hypothesis yields that item(E ′) = I is derivable.

I e = (vA,u) and u is the leftmost child of vA:
As no leaves in subtree vA are visited by E— and u is explicitly excluded — we get
i = j and α = ε, so I =

(
j j , A→ •β

)
. The last edge in E ′ is e ′ = (vC, vA) for vC the

parent of vA. Let C ∈ N be the label of vC. As T is a derivation tree, the labels of all
children of vC form the right hand side of a rule C→ ηAµ ∈ R.

Now, we remove in T all children of vA and call the result T ′. Obviously, T ′ is a partial
derivation tree for S ′ ⇒∗ w1,r−1Cδ ⇒ w1,r−1ηAµδ ⇒∗ w1,j−1Aµδ = w1,j−1Aγ for
some 1 6 r 6 j. The last edge in E, e, was the first edge to enter subtree vA, so up
to e, all edges remain valid in T ′, as well. Consequently, E ′ is an Earley-walk in T ′,
so I ′ = item(E ′) =

(
r j , C → η •Aµ

)
is derivable by induction hypothesis. Finally,

I ′ Rule[C→ηAµ]
I is an instance of prediction rule, so I is derivable, as well.

I e = (u, vA) and u is a leaf:
By definition, the label of u is not a non-terminal. If it is ε, we have item(E ′) = item(E),
so I = item(E) is derivable by induction hypothesis. If the label is a terminal, it
must be wj−1 = α|α| by definition of T . But then, T is a partial derivation tree for
S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1α1,|α|−1α|α|βγ ⇒∗ w1,j−2 α|α|βγ, as well. As e ′ = (vA,u),
we have I ′ := item(E ′) =

(
i j − 1 , A → α1,|α|−1 •wj−1β

)
, which is derivable by

induction hypothesis. Finally, I
′

I is an instance of scanning, deriving I.

I e = (u, vA) and u is an inner node:
The label of u must be a non-terminal, call it B. As T is a derivation tree, the children
of u form a rule, say B → η. e ′ = (u ′,u), for u ′ the rightmost child of u. T may be
seen as derivation tree for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1α1,|α|−1Bβγ ⇒∗ w1,r−1Bβγ ⇒∗

w1,j−1βγ for some i 6 r 6 j. Put together, this means that I ′ := item(E ′) =
(
r j , B→

η •
)

and I ′ is derivable by induction hypothesis.

Now be T ′ the tree resulting from removal of all children of u in T . T ′ obviously is
a derivation tree for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1α1,|α|−1Bβγ ⇒∗ w1,r−1 Bβγ. Let E ′′

be the prefix of E up to the first occurrence of u in an edge, i. e. the last edge in E ′′

is (vA,u). Again, E ′′ is an Earley-walk in T ′ as no edges in the subtree u show up in
E ′′. By induction hypothesis we get that I ′′ := item(E ′′) =

(
i r , A → α1,|α|−1 •Bβ

)
is derivable.

Last, but not least, I
′′ I ′

I is an instance of the completion rule, completing the deriva-
tion of I.

For the other direction, we assume item I =
(
i j , A → α •β

)
is derivable in the calculus

by at most l inference rule applications and show the claim by induction on l.
l = 0 implies I = Istart, and the derivation S ′ ⇒ S together with the one-edge Earley-

walk suffices, acting as basis of induction. For l > 0, there are three mutually exclusive
cases, how item I was derived:

15

2. Basics Sebastian Wild

I α = ε:
This implies i = j, i. e. I =

(
j j , A → •β

)
. So, I must have been derived from

some item I1 =
(
r j , C → η •Aµ

)
by prediction. Applying induction hypothesis

to I1, a derivation tree T ′ for S ′ ⇒∗ w1,r−1Cδ ⇒ w1,r−1ηAµδ ⇒∗ w1,j−1Aµδ =

w1,j−1Aγ with Earley-walk E ′ exists such that item(E ′) = I1. By definition, E ′ ends
with (vC, vA), where C is the label of vC and vA is child of vC.3 Appending child
nodes for rule A → β at vA in T ′ gives T , a derivation tree for S ′ ⇒∗ w1,r−1Cδ ⇒
w1,r−1ηAµδ ⇒∗ w1,j−1Aµδ ⇒ w1,j−1βµδ = w1,j−1βγ. Now, we can give an Earley-
walk E := E ′ · (vA,u) in T for u the leftmost new child satisfying item(E) = I.

I α 6= ε ∧ α|α| = wj−1 ∈ Σ:
This implies that I was derived from I1 =

(
i j− 1 , A → α1,|α|−1 •wj−1β

)
by scan-

ning. By induction hypothesis, T for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1α1,|α|−1wj−1βγ ⇒∗

w1,j−2wj−1βγ = w1,j−1βγ exists with Earley-walk E ′ fulfilling item(E ′) = I1. (vA,u)
is the last edge in E ′ for u the |α|th child of vA.4 Thus, E := E ′ · (u, vA) is Earley-walk
in T and item(E) = I.

I α 6= ε ∧ α|α| = B ∈ N:
This implies that I was derived by completion from I1 =

(
i r , A → α1,|α|−1 •Bβ

)
and I2 =

(
r j , B→ η •

)
for i 6 r 6 j and rule B→ η. Applying induction hypothesis

to I2 yields existence of parse tree T for S ′ ⇒∗ w1,i−1Aγ ⇒ w1,i−1α1,|α|−1Bβγ ⇒∗

w1,r−1Bβγ ⇒∗ w1,j−1βγ exists with Earley-walk E ′ fulfilling item(E ′) = I2. (u, vB)
is the last edge in E ′, for u the rightmost child of vB. For vA the parent of vB, we
define E := E ′ · (vB, vA) and find that E is Earley-walk in T and item(E) = I.

Proof of Theorem 1: Using Lemma 2, only one little step remains to be shown: If a partial
derivation tree T for S ′ ⇒∗ w1,i−1Aγ⇒ w1,i−1αβγ⇒∗ w1,j−1βγ exists, so does an Earley-
walk E in T with item(E) =

(
i j , A→ α •β

)
.

However, this is trivial: On our way following the outline of T , we cannot meet leaves
with non-terminals, since those would have to appear in the derivation above. The termi-
nals, we find must exactly be w1,j−1, for the same reason. So, finally we hit vA, the node
corresponding to the A in the above derivation, and find its |α|th child. Here, we stop and
have found a suitable Earley-walk.

Efficiency of Earley parsers is heavily influenced by chosen item representations. Classical
approaches use linear lists combining items with identical end index j into so-called item
sets. Our approach will use a huge array storing values for all possible items, see chapter 4.

So far, we only addresses the decision problem. However, the items computed by
Earley’s algorithm enable a simple and efficient traceback to solve the parsing problem
S

?⇒ w for CFGs as well.

CFGs are heavily used in RNA secondary structure prediction, so we next introduce the
formal model for RNA.

3Strictly speaking, E ′ could also end with (u ′, vC) if u ′ is the left sibling of vA. In this case, we simply
append (vC, vA) to E ′.

4Again, E ′ might end with (u ′, vA) for u ′ the left sibling of u, in which case we append (vA,u).

16

Sebastian Wild 2.3. RNA

2.3. RNA

Ribonucleic acid (RNA) consists of a chain of nucleotides. This backbone of the RNA is
quite stable and — once built — remains unchangedly chained in nature. Different types of
nucleotides exist, depending on the nitrogenous base used. Typically, only the following
four bases occur: adenine (a), cytosine (c), guanine (g) and uracil (u).

Because of interaction between different nucleotides, RNA molecules tend to fold three-
dimensionally. We consider hydrogen bonds as possible between the base pairs {a,u}, {c,g}
and {g,u}.

We model the ‘backbone’, the primary structure of an RNA molecule, as a word r ∈ Σ?

over the alphabet Σ = {a, c,g,u}, written in 5 ′ – 3 ′ direction. We will use lower case letters
to denote primary structures.

We abstract from the actual three-dimensional folding of an RNA r ∈ Σn by only
looking at its secondary structure R ⊂ {1, . . . ,n}2, which is a set of pairs of indices satisfying

I ∀ (i, j) ∈ R j− i > 4

I ∀ (i, j) , (k, l) ∈ R (i = k ∨ j = l)→ (i, j) = (k, l)

I /∃ (i, j) , (k, l) ∈ R i < k < j < l

I The bases of all pairs (i, j) ∈ R are either {a,u}, {c,g} or {g,u}.

Informally speaking, that means: The pairs in R are sorted with a minimum distance of
four (smaller hairpins do not form). Every base can take part in at most one pair (not
in several). All pairs are correctly nested; non-nested base pairings are said to form a
pseudoknot and will be excluded from secondary structures in this thesis.5

The first and last requirements are sometimes loosened, as hairpins of smaller size and
non-canonical base pairs sometimes show up in structure databases. Two adjacent pairs
(i, j) and (i+ 1, j− 1) are called stacked, several adjacent stacked pairs form a stem. Sec-
ondary structures containing many and long stems are typically considered most stable.

RNA secondary structures without pseudoknots are isomorphic to dot-bracket words, i. e.
words over the alphabet {(,), |} that are correctly parenthesized.6 We use a vertical bar ‘|’
instead of a dot for better legibility.

Dot-bracket words can be generated by CFGs. Therefore CFGs provide a model for
secondary structures. But since we are not interested in all possible secondary structures —
there are much too many of them — we extend our model: Stochastic context free grammars
include a notion of “what kind of structures are more probable than others”, which in turn
can be used to compute a most likely secondary structure.

5It is known that their prediction causes problems; Lyngsø et al. show in [LP00] that prediction of such
structures is NP-complete if using an energy-minimization approach.

6Strict equivalence requires to exclude dot-bracket words containing any of the the words {(), (|), (||)} as
substring. Those subwords implied a hairpin of length < 3.

17

2. Basics Sebastian Wild

2.4. Stochastic context-free grammars

A stochastic context-free grammar (SCFG) G is a tuple G = (N,Σ,R,S,P), such that

I (N,Σ,R,S) is a CFG and

I P is a function from R to [0, 1] satisfying

∀A ∈ N
∑

(A→α)∈R

P(A→ α) = 1 .

Stated differently, for every non-terminal A ∈ N, P represents a probability distribution
for RA. A rule A→ α with P(A→ α) = p will be written shortly as A→ p : α.

P is used to give words w ∈ L(G) a weight p(w): The weight of w is defined as the
sum of the weights of all derivation trees for w, where the weight of a derivation tree is
the product of the weights for all occurrences of rules.

We would like these weights to form a probability distribution over L(G), but unfortu-
nately this is not the case in general: Consider the grammar G =

(
{S} , {a} ,R,S,P

)
with

rules S → 2
3 : SS and S → 1

3 : a. At any point in a derivation, choosing the first rule
is more probable, elongating the ‘to-be-expanded’-list by two new occurrences of S, while
finishing only one old occurrence. So it is — at any point — more probable for the list to
grow than to shrink resulting in non-zero probability for infinite derivations (only using
the first rule).7 Consequently, this probability is lost for the finite derivations that actually
generate words:

∑
w∈L(G) p(w) < 1.

8 So p is not a probability distribution in this case.
A grammar where the p(w) actually sum up to 1 is called a consistent SCFG. Fortu-

nately, a nice result from [CG98] allows us to (almost) forget about inconsistency: If P is
determined using maximum likelihood estimates from finite parses, the resulting SCFG is
guaranteed to be consistent. And this is exactly, what we will do (see section 3.6 and 3.7).

2.5. SCFGs for secondary structure prediction

For secondary structure prediction, we need an ambiguous SCFG G with the following
properties:

I The language of G is the set of primary structures, i. e. Σ = {a, c,g,u} and L(G) = Σ+.

I Every leftmost derivation of a word r ∈ L(G) encodes a secondary structure R for r.

I For primary structure r and secondary structure R for r, there is exactly one derivation
tree for r in G that encodes R.

So, G must ambiguously produce primary structures, but yield every possible secondary
structure as exactly one possible derivation.

7The derivation process can be thought of as an asymmetric random walk of the number of non-terminals
currently present. This number increases by one with probability 2

3 and decreases by one with probability
1
3 . Reaching zero means finishing the derivation. But since this walk has a positive drift, it will not almost
sure return to zero.

8See [LN10] for a formal proof of inconsistency for this grammar.

18

Sebastian Wild 2.5. SCFGs for secondary structure prediction

We train the rule probabilities P with actual data — making G a SCFG, a probabilistic
model of secondary structures. Before we will see, how the training works in detail,
let’s have a look at prediction. If we are given a new/unknown primary structure r,
we know that there are numerous derivations for r in G. Each of those encodes one
possible secondary structure and is assigned a probability. So, by looking for one with
maximal probability, we find the most likely secondary structure — given our model G.
This derivation tree is called Viterbi parse.

To compute Viterbi parses, one can use adapted versions of CYK or Earley-parsers.
But since the idea of semiring parsing provides a beautifully unified view on that, we leave
that for the next section.

For the training of P there are always two distinct cases with respect to available data:

(1) For all primary structures, trusted secondary structures are known.
In this case, we construct the derivation tree corresponding to a secondary struc-
ture R— there is exactly one such tree — and count the number of occurrences for
each rule. The counters are summed up for all secondary structures. Taking relative
frequencies for all rules expanding one non-terminal yields a maximum likelihood
estimate for P:

Because of context-freeness, every step in a derivation is stochastically independent
of all other steps. Since the set of grammar rules is finite, the expansion of a non-
terminal A is a discrete random experiment. For those it is known, that relative
frequencies are a maximum likelihood estimate.9

(2) Only primary structures are available.
Even without a single secondary structure, training is possible using an evolutionary
expectation maximization algorithm (see e. g. [DEKM98, chapter 9]). The idea is to
start with a random/arbitrary P and iteratively improve it. In every iteration, we
compute expected numbers of occurrences for all rules. Relative frequencies of those
are then used as the next P.

For efficiently determining the expected number of occurrences of a rule, inside and
outside probabilities are used:

inside probability: α(A, i, j) := Pr
[
A⇒∗ wi,j−1

]
outside probability: β(A, i, j) := Pr

[
S⇒∗ w1,i−1Awj,n

]
All computations needed are slight variations of the property∑

16i6j6|w|+1

1 ·α(A, i, j) ·β(A, i, j) = E [#occurrences of A in derivation for w] ,

i. e. multiplying together corresponding inside and outside probabilities and sum-
ming over the possible positions.

The inside and outside probabilities themselves can be computed using adapted CFG
parsers — a similar situation as for Viterbi parses. As mentioned above, semiring
parsing provides a framework that embraces all of these adaptions.

9A more formal argumentation can be found in [CG98, section 2].

19

2. Basics Sebastian Wild

2.6. Semiring Parsing

In [Goo98, Goo99], Goodman describes parsing as a deductive process. The parser is spec-
ified as calculus / formal system over items: The parser determines the type of items
used, a set of axioms — items to start with — and inference rules — rules for creating new
items from existing ones. Actually, the notion of formal systems’ inference rules has to be
extended a little: Rules here may have side conditions, written as

A1, . . . ,Ak
B

C1, . . . ,Cl .

The Ai are the ‘real premises’, Ci are side conditions, B is the conclusion. For the moment,
you can think of the Ci as additional premises, i. e. for deriving B, items A1, . . . ,Ak and
C1, . . . ,Cl must be present. (Different treatment of Ai and Ci is vital for item values,
though. We’ll come to that.) Additionally, there is a goal item that can be derived iff the
parsing succeeds (w ∈ L(G)).

Derivable items are assigned a value in a semiring (U,⊕,⊗, 0, 1), which is a set U

together with additive and multiplicative operations⊕ and⊗, respectively. 0 is the identity
element of ⊕, 1 is the one10 of ⊗, both operations are associative, and ⊗ distributes over ⊕.
The additive operation is always commutative, ⊗ need not be.

The value v(I) of an item I is determined by the deduction process: Its value is the
sum over all possible rule applications with conclusion I, where each rule application con-
tributes with the product of the premises’ values, but not the values of the side conditions
(see below). Important: Two rule applications differing only in the ‘used’ side conditions
are counted as one rule application; but two applications of the same rule with different real
premises are summed up.

Of course, all above mentioned calculations are done in the semiring. Since ⊗ is not
necessarily commutative, the order of premises in a rule matters.

Goodman further describes a generic method how to ‘execute’ such a description of a
(suitable11) parser to determine the values needed for using SCFGs as probabilistic models
(see last subsection). We will only describe the relevant part of it here; in particular we
will exclude grammars with loops.12

First, a total order ≺ on all (derivable) items is determined, such that in all possible
rule applications with premises A1, . . . ,Ak, side conditions C1, . . . ,Cl and conclusion B
A1, . . . ,Ak,C1, . . . ,Cl ≺ B holds.

Then, the items are processed in order ≺ and for every item B, its value is computed:

v(B) =
⊕

A1, . . . ,Ak :
A1,...,Ak

B C1,...,Cl

v(A1)⊗ · · · ⊗ v(Ak) .

10no pun intended
11Not every set of deduction rules forms a correct parser capable of computing semiring values. Since the

Earley-style parser we will use is essentially the one Goodman proposes in [Goo98], we will ignore this
‘subtlety’.

12Such grammars immediately allow an infinite number of derivation trees for one word. This does never
make sense in the structure-prediction context since the number of possible structures for one object is
always finite. The delightful consequence is that we will never have looping buckets, so we do not even
need the concept of buckets: It will always be possible to strictly sort the items.

20

Sebastian Wild 2.6. Semiring Parsing

All items A which v(B) might depend on have A ≺ B, hence their values have already
been computed.13 If the goal item is reached that way, the parse was successful.

In this setting, Viterbi parses and inside values only require to use the correct semir-
ing, namely:

I The Viterbi-semiring
(
[0, 1], max, ·, 0, 1

)
computes the probability of the most likely

derivation tree for the given input.14

I The inside-semiring
(
R>0 ∪ {∞},+, ·, 0, 1

)
is the most ‘natural’ instantiation of the

semiring because ⊕ ≡ + and ⊗ ≡ · on non-negative real numbers. Including the real
numbers > 1 and ∞ is due to ‘mathematical technicalities’: Formally, the semirings
have to be closed under infinite summation. The kind of calculations actually per-
formed in our parser are (a) always finite (no loops!) and (b) guaranteed to never
exceed 1. So, no problem with that.

Outside probabilities are a bit more problematic, but Goodman offers a solution to that,
as well: For commutative semirings, reverse values — a generalization of the connection
between outside and inside probabilities — can be computed by iterating over the items in
‘reverse ≺ order’ (i. e. �) and using a slightly different formula, namely: The reverse value
z(A) of item A is 1, if A is the goal item and otherwise determined by

z(A) =
⊕

A1, . . . ,Ak, j,B :
A1,...,Ak

B C1,...,Cl ∧ Aj=A

z(B) ⊗ v(A1)⊗ · · · ⊗ v(Aj−1)⊗ v(Aj+1)⊗ · · · ⊗ v(Ak) .

Notice that for computing the reverse values, the forward values must already be known.
Reversing the direction of iteration ensures, that the reverse value z(B) in the formula
above is known, when computing z(A).

Finally, the reverse values in the inside-semiring correspond to outside probabilities.
This is all we need to train a probabilistic model based on SCFGs and to use it for predic-
tion. In fact, inside and outside probabilities turned out to have uses beyond expectation
maximization; see section 6.1 on page 80.

The idea of semiring parsing allows us to concentrate on the actual parsing technique
by automating some of the gory details of probabilistic parsers. As our actual goal is to
go beyond context-free grammars — where parsing itself gets more complex — this help is
very welcome. But before we introduce the new grammar types, let’s look at the things we
will want to predict.

13A ≺ B has the meaning of A � B, i. e. an item B’s value will never depend on its own value. This awkward
situation may happen in grammars with loops, which we excluded from our discussion (see footnote 12).

14We actually need more! For structure prediction we need to have the whole Viterbi parse, i. e. the derivation
tree. Goodman also presents a special semiring that directly keeps track of the tree while parsing; but
this semiring is not commutative, which causes some complications we prefer to avoid. Therefore we
will simply compute all item values in the Viterbi-semiring and do a backtrace step afterwards that re-
constructs the actual parse tree.

21

2. Basics Sebastian Wild

2.7. RNA-RNA Interaction

It has been observed that for understanding the biological function of RNA molecules,
it is not sufficient to look at the molecule and its secondary structure in isolation. One
important aspect overlooked that way is the interaction of RNA molecules. During protein
biosynthesis such interactions can hinder mRNA leaving the nucleus, thereby controlling
gene expression.

We will model these effects by looking at two RNA molecules with primary structures
r ∈ Σn of length n and s ∈ Σm of length m, respectively; as before Σ = {a, c,g,u}. Both r
and s are given in 5 ′ – 3 ′ direction.

As with single RNAs, we abstract from the three-dimensional folding and rather look
at the joint (secondary) structure R

S
, which is a set of pairs of indices in r and s. Regarding

the indices, we will think of the concatenation r · s, i. e. the indices in s start at n+ 1 and
end at n +m. Then we can formally define the joint structure as R

S
⊂ {1, . . . ,n +m}×

{1, . . . ,n+m} satisfying some conditions — those conditions are easier to state using the
following subsets of R

S
:

R :=
{
(i, j) ∈ R

S
: i 6 n ∧ j 6 n

}
,

S :=
{
(i, j) ∈ R

S
: i > n ∧ j > n

}
,

:= R
S
\ (R∪ S) .

Those subsets are called the sets of internal base pairs for r and s and the set of external
base pairs, respectively. Now we can give the conditions R

S
must fulfill as a valid joint

structure:

I No hairpins shorter than 4:
∀ (i, j) ∈ R j− i > 4 and
∀ (i, j) ∈ S j− i > 4.

I Only disjoint pairs:
∀ (i, j) , (k, l) ∈ R

S
(i = k ∨ j = l)→ (i, j) = (k, l).

We excluded pseudoknots from secondary structures, since their prediction is much more
difficult. The infeasibility results directly carry over to joint structures, so we will want
to forbid pseudoknots here, as well. But since we now have different kinds of pairings —
namely internal and external base pairs — we also have different types of pseudoknots.

Two of them are straight-forward; the typical characterization of pseudoknots applied
to our subsets of R

S
: We call a joint structure R

S

I free of internal pseudoknots, if
/∃ (i, j) , (k, l) ∈ R i < k < j < l and
/∃ (i, j) , (k, l) ∈ S i < k < j < l.

I free of external pseudoknots, if
/∃ (i, j) , (k, l) ∈ i < k < j < l.

Digging a little deeper into what makes conventional (one RNA) pseudoknots hard to
predict, we find that efficient methods require disjoint partitioning of the primary structure.

22

Sebastian Wild 2.7. RNA-RNA Interaction

In case of pseudoknot-free structures, so-called k-loops provide such partitioning (e. g.
see [ZS84]). This does not work with pseudoknots, as they can — in a sense — grow beyond
any bounds with ‘increasing complexity’:15

()[]()[]()[]()[]()[]

Of course, this pseudoknot can be extended arbitrarily; trivial attempts to partition it —
e. g. vertical slicing — do not yield disjoint substructures. This makes it hard to predict. A
similar situation can occur in joint structures, even if we do not allow the above mentioned
pseudoknots — due to the similarity you might call it a ‘mixed pseudoknot’:

So, one expects these kinds of joint structures to cause problems, too, and indeed they do.
In [AKN+

06], Alkan et al. show that even the simple task of maximizing the number of
base pairs is NP-complete for joint structures, if such mixed pseudoknots are allowed.

Since our approach will be based on a disjoint partitioning scheme, as well — namely
the one proposed in [HQRS10] — we have to set up another constraint, which forbids
situations as in the picture above: A joint structure R

S
is called

I free of zig-zags/mixed pseudoknots, if
for all (i, j) ∈ R and (k, l) ∈ S one of the following is fulfilled

. /∃ (p,q) ∈ i < p < j ∧ k < q < l or

. ∀ (p,q) ∈ i < p < j → k < q < l or

. ∀ (p,q) ∈ i < p < j ← k < q < l.

This means, either there are no external bonds ‘connecting’ the internal bonds (i, j) and
(k, l)— or — one of the internal pairs has to ‘subsume’ the other.

In the following, we will restrict ourselves to joint structures without pseudoknots and zig-
zags: The problem “given r and s, determine such R

S
”, is called the RNA-RNA interaction

problem (RIP).
Context-free grammars are not suited for modelling joint structures as the two kinds of

pairs — internal and external bonds — are allowed to cross in a non-nested fashion. There
is, however, a nice generalization concept that will result in a grammar class powerful
enough to handle joint structures: multiple context-free grammars.

15Admittedly, this argumentation is wishy-washy. The unsatisfied reader may regard it as a mere motivation
for the definition of zig-zags, that will immediately follow the paragraph with the attractive pictures.

23

2. Basics Sebastian Wild

2.8. Multiple context-free grammars

Applications in computational biology — especially RIP and pseudoknots prediction —
need more expressiveness than CFGs can offer. On the other hand, efficient parsing must
be maintained for practical applicability. Therefore, advances in the field have yielded
a zoo of formal grammar classes fulfilling these requirements, commonly referred to as
weakly context-sensitive grammars. Many of those turned out to be special cases of so-
called multiple context-free grammars (see [Kat07] for example), so it seems worth having
a look at these.

Our definition of multiple context-free languages differs a little from typical introduc-
tions. This is a try to overcome some notational monstrosities, that arise from defining
MCFGs as special case of the even more general class of general context-free grammars. For
a thoroughly formal introduction and a collection of interesting properties, see [SMFK91].

A multiple context-free grammar (MCFG) is a tuple G = (N,d,Σ,R,S) comprised of

I N, a finite set of non-terminals,

I d, a function from N to N, assigning a dimension d(A) to each A ∈ N,

I Σ, a finite set of terminals,

I R, a finite set of rules and

I the start symbol S ∈ N with d(S) = 1.

In MCFGs, non-terminalsA ∈ N, may produce tuples or vectors of words whose dimension
is given by d(A). For a non-terminal A ∈ N and an index i ∈ {1, . . . ,d(A)}, we write Ai for
the ith component of A. Restricting d(A) = 1 for all non-terminals A yields a plain CFG
(which explains the name MCFG).

The most interesting part of the definition of MCFGs is still missing yet: How do
multi-dimensional rules look like? The general form is again quite similar to CFGs, just
that it is in terms of ‘vectors’ instead of ‘scalars’:

short vector form: A→ α ,
(or more explicitly: ~A→ ~α)

fully expanded form:

 A1
...

Ad(A)

→
 α1

...
αd(A)

 .

The αi are words over Σ∪ C, where C :=
{
Ai : A ∈ N ∧ i ∈ {1, . . . ,d(A)}

}
, the set of non-

terminal components. In every rule, each non-terminal component may be used at most once
in the αi in total, i. e. it may appear at most once in the word α1α2 · · ·αd(A).16 Although
the definition is quite simple, stressing some aspects might improve understanding.

16Using this approach forbids usage of one non-terminal several times in a right hand side, as in A → BB.
However, typical definitions of MCFGs allow such rules. By simply introducing a new non-terminal C
and replacing A → BB by A → BC and C → B, a strictly equivalent grammar fulfilling the restriction can
be created. Alternatively, one might change our definition to include a notation for multiple usage of one
non-terminal.

24

Sebastian Wild 2.8. Multiple context-free grammars

I We do not restrict the order of the non-terminal components in the αi. So B2 might
jump in front of B1. Actually, this is a vital feature of MCFGs.

I The αi may contain arbitrary terminal strings, surrounding and separating the non-
terminal components. If no non-terminal components appear at all, such an A → α

is called a terminating rule.

I The definition allows one component of a non-terminal to be used, even if no / not
all other components (of that very same non-terminal) appear.

These kinds of deletions are often not wanted — as they complicate parsing — and are
in fact not necessary (see Lemma 2.2 of [SMFK91]). Therefore, we will in the following
assume that each non-terminal appears in the right hand side of a rule either

. completely and once — i. e. each component exactly once — or

. not at all.

In order to define derivations in a MCFG, we need the term of non-terminal incarnations:
For A ∈ N and s ∈ N we call A〈s〉 the sth incarnation of A. We will also write A〈s〉i for the
ith component of A〈s〉 and call I :=

{
A
〈s〉
i : A ∈ N ∧ s ∈ N ∧ i ∈ {1, . . . ,d(A)}

}
the set of

all non-terminal incarnation components. For convenient usage, we extend this notation
to arbitrary words γ ∈ (Σ∪ C)? of terminals and non-terminal components: γ〈s〉 ∈ (Σ∪ I)?

is the word resulting from γ, when all components Ai are replaced by incarnations A〈s〉i .
We will use this ‘incarnation marker’ s to able to tell which non-terminal components

belong together — only those can be expanded by rules. We define the left-most derivation
relation⇒

G
⊆ (Σ∪ I)? × (Σ∪ I)? by

x A
〈s〉
i1
β1 A

〈s〉
i2
β2 · · · A

〈s〉
id(A)

βd(A) ⇒
G

x α
〈t〉
i1
β1 α

〈t〉
i2
β2 · · · α

〈t〉
id(A)

βd(A)

iff x ∈ Σ?

∧ A→ α ∈ R
∧ {i1, . . . , id(A)} = {1, . . . ,d(A)}

∧ s ∈N

∧ t > any incarnation number in β1β2 · · ·βd(A) .

So, left-most derivation in MCFGs means expanding the non-terminal whom the leftmost
component belongs to. Since components may appear shuffled on the left, we have to
re-index them. Again we define ⇒∗ to be the reflexive and transitive closure of ⇒ and
are — finally — able to define the language of a MCFG G:

L(G) :=
{
w ∈ Σ? : S〈0〉⇒

G

∗ w
}

.

25

2. Basics Sebastian Wild

Two things are left to discuss about⇒
G

:

(1) The condition for t might seem problematic; how to choose it?
Fortunately, for complete derivations — i. e. ones starting at S〈0〉 and producing a
terminal word — setting t to the number of performed rule applications suffices.17

(2) What about (partial) derivations of multi-dimensional non-terminals?
Indeed, our definition of ⇒

G
can only handle ‘flat’ strings, but this is no serious

problem18. Let $ be a symbol not appearing in N ∪̇ Σ . Then we have a one-to-
one mapping between the vectors (γ1,γ2, . . . ,γd) of strings γi ∈ (Σ ∪ I)? for all
i ∈ {1, . . . ,d} and the ‘flattened’ strings γ1$γ2$ · · · $γd. Now we can safely let ⇒

G

operate on the flattened string, because it will treat $ as a terminal, i. e. it will simply
ignore it. Afterwards we transform the new flat string back to the tuple.19

2.9. Stochastic multiple context-free grammars

For serving as probabilistic model, we have to extend MCFGs with rule probabilities —
knowing how to do that with CFGs, this is easy:

A stochastic multiple context-free grammar (SMCFG)20 G is a tuple G = (N,d,Σ,R,S,P),
such that

I (N,d,Σ,R,S) is a MCFG and

I P is a function from R to [0, 1] satisfying ∀A ∈ N
∑

(A→α)∈R
P(A→ α) = 1.

As we did for SCFGs, we will set the weight of a derivation to the product of the rule prob-
abilities and the weight of a terminal word to the sum of its derivations. The consistency
results for SCFGs carry over, as well: Both in SCFGs and in SMCFGs, the choice of a rule to
expand some non-terminal A works exactly the same way: It is a discrete random exper-
iment and all expansions of A are independantly and identically distributed. Therefore,
the proof in [CG98] works for SMCFGs as well. Consequently, we will refer to the weights
as probabilities.

For the training of P with unknown structures, we need generalized inside and outside
probabilities. As stressed in the definition, rules of MCFGs can produce the components
of a multi-dimensional non-terminal A in any order. Of course, the order matters for
continuing the derivation. This fact makes the definition of inside and outside probabilities
more complicated than in the SCFG-case. We need to include information about the order
of the non-terminal-components: Let {i1, . . . , id(A)} = {1, . . . ,d(A)} be a permutation of the
components. Furthermore, we have ordered indices in w

1 6 l1 6 r1 6 · · · 6 ld(A) 6 rd(A) 6 |w|+ 1 .

17Formalizing this further, one can include this number of rule applications in the elements ⇒
G

is defined on,
making the definition more ‘self-contained’. For the sake of clarity and brevity, we will not do that.

18 . . . seriously!
19Alternatively, one can again fiddle with the definition of ⇒

G
to directly work on tuples. That would — at

least — introduce another index and complicate the term left-most. I know which version I prefer.
20We will not go beyond five-letter acronyms . . . I promise!

26

Sebastian Wild 2.9. Stochastic multiple context-free grammars

We define

α(A ; i1, . . . id(A) ; l1, r1, . . . , ld(A), rd(A)) :=

Pr

 A1

...
Ad(A)

⇒∗

wli1 ,ri1−1
...

wlid(A)
,rid(A)

−1

 ,

β(A ; i1, . . . id(A) ; l1, r1, . . . , ld(A), rd(A)) :=

Pr
[
S⇒∗ w1,l1−1 Ai1 wr1,l2−1 Ai2 wr2,l3−1 · · · wrd(A)−1,ld(A)−1Aid(A)

wrd(A),|w|

]
.

Of course, for most grammars, many of those probabilities will be zero, e. g. because
a given permutation of non-terminal components cannot be derived at all — but this is
perfectly OK from a theoretical point of view.

correcting sloppiness

Strictly speaking, the above probabilities are not well-defined: Our derivation
relation ⇒ only works on non-terminal incarnations. Yet, repair to the defini-
tions is possible: For the inside probabilities, we simply replace Ai by A〈s〉i for
an arbitrary s ∈N. This suffices because⇒ is defined to operate on any incar-
nation number and there are infinitely many natural numbers greater than any
s ∈N. So the inside probability does not depend on s.

In the definition of the outside probabilities, we first replace S by S〈0〉. For
the Ai, we run into a little problem: Any incarnation number s for the Ai
might restrict the number of derivation steps allowed from S〈0〉! But there
may very well be infinitely many derivations of growing length, all contributing
essentially to the outside probability. This means, any finite bound on the
number of allowed derivation steps leads to truncation.

Note that this does neither mean that we have to deal with infinitely long
derivations, nor with non-terminal incarnations ‘A〈∞〉’: In the end, we are only
interested in terminating derivations, i. e. derivations producing a (finite) termi-
nal string. Those derivations are always finite themselves as there must be a
last derivation step that eliminates the last non-terminal left. We actually do
allow infinitely many derivations to contribute to both inside and outside prob-
abilities; therefore we could not give any fixed bound on s in the definition
of outside probability. Yet, all those derivations have finite length — infinite
derivations must have probability zero in a consistent grammar.

So we have to take the limit of the stated probability as s goes to infinity:

β(A ; i1, . . . id(A) ; l1, r1, . . . , ld(A), rd(A)) :=

lim
s→∞Pr

[
S〈0〉 ⇒∗ w1,l1−1 A

〈s〉
i1
· · · wrd(A)−1,ld(A)−1A

〈s〉
id(A)

wrd(A)+1,|w|

]
.

This limit has to exist as the underlying sequence is monotonically increasing
and bounded above by 1.

27

2. Basics Sebastian Wild

2.10. Parsing of multiple context-free grammars

Using SMCFGs as fully training-enabled models for joint structures, we need a semiring
parser for SMCFGs.

In [SMFK91] it is shown that the decision problem ‘w
?
∈ L(G)’ for general MCFG G =

(N,d,Σ,R,S,P) can be solved in O(|w|e), where e is the degree of G:

e = max
A→α ∈ R

{
d(A) +

∑
non-terminal B in α

d(B)
}

.

Remember that according to our definition of MCFGs, a non-terminal B is not allowed to
occur several times in the right hand side of a rule. In the expanded rule form, e is simply
the overall number of non-terminal components — including the ones left of ‘→’!

As an example, we consider the grammar GRIP we will use later — see Grammar 1 on
page 39. The rule E → KFD is actually an abbreviation for

(
E1
E2

)
→
(
K1F1D1
K2F2D2

)
— you may

think of E, K, F andD as 2D-vectors. This rule therefore has eight non-terminal components
in total. No other rule has more than eight such components, hence we have e = 8 for
GRIP. So we know we can decide L(GRIP) in O(|w|8).

The algorithm of Seki et al. is conceptionally similar to a CFG chart parser, so using
it as semiring parser is possible in principle. There have also been approaches to explicitly
state a general MCFG Earley-parser in [Alb02], more directly implementable as semiring
parser, but with worse running time complexity.

The general parsing algorithm in [SMFK91] — and the same holds for all general MCFG
parsers known to the author — is quite complex and hence hard to implement. Moreover
it has

I large constant factors hidden in the O-notation for runtime and

I restrictively high memory consumption — at least without further non-trivial opti-
mizations.

But fortunately, for tackling the RNA-RNA interaction problem, full expressive power of
MCFGs is not needed and more efficient parsing is possible.

28

3. Approach

3.1. m-dimensional context-free grammars

The grammar we will use does, by far, not exhibit all the features and complications that
general MCFGs may have. So, we will confine our parser to a subclass of (S)MCFGs
containing our grammar that allows much easier parsing.21

A (stochastic) m-dimensional context-free grammar (mD-CFG22) is a tuple G =

(N,Σ,R,S,P) such that

I G :=
(
N ∪̇ {S ′} , d , Σ , R ∪̇ {S ′ → S1S2 · · ·Sm} , S ′ , P ′

)
with

d(A) :=

{
1 if A = S ′

m otherwise
and P ′(r) :=

{
1 if r = S ′ → S1S2 · · ·Sm
P(r) otherwise

is a SMCFG.

I For all rules A→ γ ∈ R holds for some (rule-dependent) L ∈N0γ1...
γm

 = γ = x(1) B(1) x(2) B(2) · · · x(L) B(L) =

x
(1)
1 B

(1)
1 · · · x(L)1 B

(L)
1

...
x
(1)
m B

(1)
m · · · x(L)m B

(L)
m

 ,

where x(i) ∈ (Σ?)m and B(i) ∈ N for all 1 6 i 6 L.

The first condition implies in particular, that all non-terminals have dimension m, but this
is rather formal convenience, as section 3.1.2 on the following page will show.

However, the second requirement is the one implementing really influential restric-
tions: It forces all non-terminal components to

(a) stick with their dimension — a component Ai will only appear in dimension i— and

(b) forbids crossings of components from several non-terminals — e. g. we are not allowed
to have a rule A →

(
B1C1
C2B2

)
. Especially these crossings make parsing of MCFGs

complicated — we will see that with the additional restrictions of mD-CFGs, parsing
can be generalized from plain old CFGs rather easily.

21Strictly speaking, mD-CFGs are not a subclass of SMCFGs — only the extended version G of an mD-CFG G

is a SMCFG. We will stick to this inaccuracy for ease of writing. The more formally inclined reader may
imagine the class of grammars G, such that G is an mD-CFG — a proper subclass of SMCFGs which all
important results directly carry over to.

22Better may be mD-SCFG — but I keep my promises and obey the NMTFLA rule: No more-than-five-letter-
acronyms. Actually, we will never need mD-CFGs that are not stochastic, so it is OK to have no name for
those.

29

3. Approach Sebastian Wild

Two further implications of the rule restriction shall be mentioned explicitly to be taken
note of:

I ε-rules are allowed, as L = 0 is just fine.

I Since G is a SMCFG, the B(i) on the right hand side of one rule have to be distinct.
However, forbidding crossings renders this restriction redundant: We are able to tell
which non-terminal components belong together at any time — by counting the num-
ber of non-terminal components left to it (in the same dimension). The components
where these counts agree belong together.

So, we will re-allow repeated use of a non-terminal in the following.23

3.1.1. Derivations and language

As G is a SMCFG, we inherit a lot of concepts from SMCFGs for mD-CFG G. However,
most of them are overly complicated given the restrictions of mD-CFGs. Therefore, we
utilize our additional knowledge for some simplifications.

Given that crossings of non-terminal components are not allowed, every derivable
sentential form has a unique leftmost non-terminal — whose components are the leftmost
ones of their kind in every component of the sentential form. This means, that we always
know which non-terminal components belong together. So, there is no need for the concept
of incarnations — we simply define the leftmost derivation relation ⇒

G
⊆
(
N ∪ (Σ?)m

)? ×(
N∪ (Σ?)m

)? in terms of m-tuples by

xAα⇒
G
xγα iff A→ γ ∈ R ,

for x ∈ (Σ?)m. Closures of⇒
G

are defined as always. Now the language of an mD-CFG is

L(G) :=
{
w ∈ (Σ?)m : S⇒

G

∗ w
}
⊆ (Σ?)m ,

consisting of terminal m-tuples rather than flat strings.

3.1.2. Effective dimension

Requiring all non-terminals to have dimension m keeps the components of derived tuples
‘in sync’, i. e. the rules applied always concern every dimension. However, this is no
limitation. If we need parts of our tuples to be derived ‘non-coupled’, i. e. the derivation
in one dimension is independent from the derivation of another, we simply model this by
two non-terminals — each solely operating in some dimensions.

We formalize this idea a little bit. For a non-terminal A ∈ N, we call

D6=ε(A) :=
{
i : ∃x ∈ (Σ?)m A⇒∗ x ∧ xi 6= ε

}
⊆ {1, . . . ,m} and

d 6=ε(A) :=
∣∣D6=ε(A)∣∣

the effective indices and effective dimension, respectively.

23To stay conform with our definition, we eliminate double uses of one non-terminal by introducing new
non-terminals when constructing G. See also footnote 16 on page 24.

30

Sebastian Wild 3.1. m-dimensional context-free grammars

The effective indices are all dimensions, where the non-terminal can derive a terminal
string other than the empty string.

Two non-terminals A,B ∈ N with D6=ε(A) ∩D6=ε(B) = ∅ can be concatenated to start
two independent derivation parts for the components D6=ε(A) and D6=ε(B). If D6=ε(A) =

{1, . . . ,k} and D6=ε(B) = {k+ 1, . . . ,m}, we will write AB instead of AB for convenience.24

3.1.3. Subgrammars

As parsing complexity depends on the dimension of the grammar, the number of non-
terminals and rules, we can improve efficiency by splitting off parts with less (effective)
dimension than the whole grammar. We give some formal definitions here providing a
theoretical basis to this optimization.

For the rest of this section, G = (N,Σ,R,S,P) is an mD-CFG. First, we define the directed
reachability graph N(G) of non-terminals by

N(G) :=
(
N ,
{
(A,B) : A→ αBβ ∈ R

})
.

We immediately obtain: B is reachable from A in N(G), iff A ⇒+ αBβ. Next, we observe a
nice property of D6=ε:

A⇒∗ αBβ implies D6=ε(B) ⊆ D6=ε(A) . (3.1)

If that were not the case, i. e. if B had a dimension j ∈ D6=ε(B) \D6=ε(A), where it can derive
a terminal tuple x with xj 6= ε, then we immediately have A⇒∗ αxβ =: x ′ with x ′j 6= ε.

We can interpret (3.1) with respect to N(G): Assume we partition N into equivalence
classes according to D6=ε. Then, the graph on these equivalence classes is acyclic. Stated
differently, all cycles in N(G) stay within one equivalence class.

Now, we define GA, the subgrammar of G induced by A, for non-terminal A ∈ N by

GA :=
(
NA , Σ ,

⋃
B∈NARB , A , P

)
,

with NA :=
{
A
}
∪
{
B : B reachable from A in N(G)

}
.

(Remember: RB is the set of all rules expanding B.) GA is a d 6=ε(A)-dimensional context-
free grammar because of property (3.1).25

Let us call Nm :=
{
M ∈ N : d 6=ε(M) = m

}
, the set of all non-terminals of ‘full’ dimension.

For a given mD-CFG G, we can now identify the set A of all non-terminals A satisfying
both of the following:

24You might wonder “why not simply allow non-terminals of dimension < m right from the start?” Assume
we did that and consider a 4D-CFG containing the 2-dimensional non-terminal A. If we do not restrict the
dimensions A may appear in, we might get the sentential form (A1,A1,A2,A2) . . . now which compo-
nents belong together? To disallow such situations, you may restrict A’s dimensions . . . which is actually
equivalent to our approach! So, we had better stick to it.
“But wait a second, we just allowed to write AB , can’t the same problem occur there, as well, if A = B!?”
Fortunately, no. We only allowed to write AB ifD6=ε(A)∩D6=ε(B) = ∅, so unless d 6=ε(A) = d 6=ε(B) = 0— in
which case we simply delete A and B, as they can only derive εm— we must have A 6= B. And then, of
course, A1 belongs to A2 and B1 to B2.

25Formally, all non-terminals still have dimension m, as do the rules. Property (3.1), however, tells us that all
dimensions j /∈ D6=ε(A) have to derive ε, so we can simply ignore those.

31

3. Approach Sebastian Wild

I d 6=ε(A) < m

I There is a rule M→ αAβ for an M ∈ Nm.

For all those non-terminals A ∈ A, we create their subgrammars GA and ‘delete’ them from
G— leaving a purely m-dimensional grammar G−A

G−A :=
(
Nm ∪A , Σ ,

⋃
M∈NmRM , S , P

)
.

Note that G−A is not a sensible grammar in isolation, as non-terminals in A remain unex-
panded. Instead G−A has to be used in conjunction with the GA: We start derivations in
G−A and whenever we reach an A ∈ A in a derivation, we switch to GA and continue the
derivation there.

For semiring parsing of a terminal tuple w ∈ Σn1 × · · · × Σnm ⊂ (Σ?)m we will do the
inverse thing: First, for each A ∈ A we parse all substrings of the appropriate dimensions
of w according to GA, i. e. if D6=ε(A) = {i1, . . . , id} with 1 6 i1 < · · · < id 6 m, we parse(wi1)l1,r1

...
(wid)ld,rd

 for all

1 6 l1 6 r1 6 ni1
...

1 6 ld 6 rd 6 nid

and store the result of the parse in v(A; l1, r1, . . . , ld, rd)— the forward value of an item
deriving the given terminal tuple from A. These values can then be used by a parser for
G−A to directly step over non-terminals in A. Details on this strategy for parsing will be
discussed in section 3.5 for our Earley-style parser.

3.1.4. Rule Templates

Let A → γ(1),A → γ(2), . . . ,A → γ(c) be rules of an mD-CFG G = (N,Σ,R,S,P) with the
same left hand side A. Further assume, the right hand sides satisfy f(γ(1)) = f(γ(2)) =

· · · = f(γ(c)) for homomorphism f defined by

f(x) =

{
x if x is a non-terminal component

t if x is a terminal
,

for a placeholder symbol t /∈ N∪ Σ i. e. the γ(i) are equal except for terminals. Note that for
such rules, the right hand sides have the same total length and contain the same number
of terminals, say e.

Let γ be the word that results from f(γ(1)) if the t’s are replaced by the distinct
placeholders t1, . . . , te /∈ N ∪ Σ. So γ is a word (-tuple) containing non-terminal com-
ponents and the ti-placeholders. We call A → γ a rule template of order e for the rules
A → γ(1), . . . ,A → γ(c) with transition probability26 P(A → γ) :=

∑c
i=1 P(A → γ(i)). The

transition probability P(A → γ) therefore is the probability that — given an occurrence of
non-terminal A— the rule template A → γ is selected from the set of all rule templates
expanding A. The rules A→ γ(i) are called instances of the template.

26The terminology stems from hidden Markov models, where the transition into a state and the emission of a
terminal symbol are considered two separate steps.

32

Sebastian Wild 3.1. m-dimensional context-free grammars

Now, let γ(a1, . . . ,ae) for a1, . . . ,ae ∈ Σ be the word resulting form γ, if we replace t1
by a1, t2 by a2, . . . up to te by ae. We define the emission probabilities

P(a1, . . . ,ae | A→ γ) :=

P(A→γ(j))
P(A→γ) if γ(a1, . . . ,ae) = γ(j)

0 otherwise
.

So, the emission probability P(a1, . . . ,ae | A→ γ) is the probability that — given an occur-
rence of rule tempate A→ γ— the instance of the template corresponding to the terminals
a1, . . . ,ae is selected; which is 0 if no such instance exists. Conceptually, this divides the
process of rule selection into two subsequent parts: first a rule template is selected and
then an instance of this template.

This division does not change the stochastic model compared to not using rule tem-
plates: P(a1, . . . ,ae | A → γ) is the conditional probability for terminals a1, . . . ,ae given
rule template A → γ. This means, we may have different emission probabilities for every
rule template and the product of transition and emission probability is again the original
probability of the instance rules: P(a1, . . . ,ae | A → γ) · P(A → γ) = P(A → γ(j)) iff
γ(a1, . . . ,ae) = γ(j).

In the implementation of our parser, we will not use the splitting into transition and
emission probabilities, therefore we will write

P(A→ γ ∧ a1, . . . ,ae) := P(A→ γ) · P(a1, . . . ,ae | A→ γ)

=

{
P(A→ γ(j)) if γ(a1, . . . ,ae) = γ(j)

0 otherwise

for the joint probability of rule template A → γ and terminals a1, . . . ,ae. Note that this
probability is defined for all choices of terminals, even if according rules do not exist — in
which case it is 0.

If it is convenient for the discussion, we will regard a single rule as a rule template on
its own, comprised of just one instance. In rule templates of order 0— i. e. rules without
terminal symbols — rule template and rule instance coincide, always yielding an emission
probability of one.

3.1.5. Rule Templates in the Context of Secondary Structure Prediction

Grammars for secondary structure prediction use derivations of primary structure to en-
code secondary structure. Although in general no restrictions on this encoding are im-
posed other than non-ambiguity, most approaches use a simple encoding that nicely fits
the concept of rule templates:

Instead of the generic terminal placeholder t from the last section, one uses the sym-
bols from the bar-bracket-representation of (joint) secondary structure — with the same
meaning: | represents unpaired bases, matching () and [] stand for internal and exter-
nal bonds, respectively. For a given leftmost derivation of a primary structure, one can
easily determine the symbol in the primary structure each placeholder was substituted
with. The (joint) secondary structure encoded by that derivation is simply the set of index
pairs matching parentheses correspond to. This way, we do not need additional informa-
tion about the encoding of secondary structures.

33

3. Approach Sebastian Wild

The notion of ‘transition’ and ‘emission’ probabilities introduced in the last section did
not change the stochastic model, as we had distinct emission probabilities for every rule
template.

For our implementation of probability training, we will drop this dependency on the
rule template. Rather, we will use one probability for every group of terminal placeholders
and possible combination of terminals for those placeholders, i. e. we will have four proba-
bilities Pr[|→ x] for x ∈ {a, c,g,u} and sixteen probabilities Pr[()→ xy] and Pr[[]→ xy]

for x,y ∈ {a, c,g,u}. Of course, this does change our stochastic model, but not every
change is bad:

I Especially for RNA-RNA joint secondary structures, quite few structures are known
that can be used to train our model; a reduction in the degrees of freedom will help
compensate for this lack of information.

I There is no convincing reason, why the different positions the placeholders occur
in our grammars should behave ‘very’ different.27 Differentiating between subtleties
might even introduce over-fitting effects, thereby making predictions worse.

3.1.6. Inside and Outside Probabilities

Again, we could use inside and outside probabilities as defined for SMCFGs, but sim-
plification is at hand — namely since non-terminal components always stay within ‘their’
dimensions. For w ∈ Σn1 × · · · × Σnm ⊂ (Σ?)m, A ∈ N and indices

1 6 l1 6 r1 6 n1 + 1

...

1 6 lm 6 rm 6 nm + 1

we define

α(A ; l1, r1, . . . , lm, rm) := Pr

A⇒∗
 (w1)l1,r1−1

...
(wm)lm,rm−1

 and

β(A ; l1, r1, . . . , lm, rm) := Pr

S⇒∗
 (w1)1,l1−1

...
(wm)1,lm−1

 ·A ·
 (w1)r1,n1

...
(wm)rm,nm

 .

27Actually there is some knowledge, that could make use of rule-dependent emission probabilities. For
example, a cg-pair is slightly more stable than other pairs, since it can form three hydrogen bonds, whereas
au- and gu-pairs only have two bonds. This increased stability seems to have a greater effect at the start or
end of a stem than in the middle of it. So, it might be expected to find cg with slightly bigger probability at
the rims of a stem. However, our currently used grammars could only treat the start of a stem differently
from the rest; they are not able to tell whether a created pair is the end of a stem or not. So if we made the
emission probabilities rule-dependent, our model became asymmetric and would need quite some more
parameters to be trained.

34

Sebastian Wild 3.2. A Grammar for RIP

3.2. A Grammar for RIP

3.2.1. Handling two molecules

The classical approach to RIP uses a single word ‘r $ s’, with primary structure r followed
by a separator $ and the primary structure s, both in 5 ′– 3 ′ direction.

This concatenation approach allows for a bijection from joint structures without inter-
nal and external pseudoknots to a subclass of correctly parenthesized dot-bracket-words
with two types of brackets, ‘()’ and ‘[]’28 and a dollar symbol somewhere in between.
We consider round parentheses to correspond to internal pairs and square brackets to
represent external base pairs. The subclass adds the following two constraints:

I ‘[’ is only allowed to the left of $ and ‘]’ only to the right.

I Two corresponding ‘(’ and ‘)’ may not enclose $ and have distance at least 4.

The grammar we will use produces 2-tuples, i. e. pairs of words — it will be a 2-dimensional
context-free grammar. Since RIP actually addresses two distinct sequences, this approach is
in a way more natural than separating the two sequences by the artificial marker $.

Our order of arrangement of the two primary structures r and s might seem counter-
intuitive at first: We produce the first molecule r in typical 5 ′– 3 ′ order; the second
molecule s is generated in 3 ′– 5 ′ direction, i. e. mirrored. However, this ‘reversal’ of s
is what actually happens in nature29 and is equivalent to above mentioned concatenation
approach — if viewed from the right perspective: Flipping r downwards around $ gives
exactly the tuple generated by our grammar.

5 ′ r 3 ′ $ 5 ′ s 3 ′5 ′ s
3 ′

5 ′
s

3 ′

5 ′

s

3 ′

5 ′

s

3 ′

;
5 ′ r 3 ′

3 ′ s 5 ′

Therefore, we can stick to the bar-bracket representation as given above, but the output of
our grammar needs to be flipped back: The first element of the pair gets concatenated with
the reverse of the second one. Of course, this leads to internal pairs in r being created as
‘)(’ (see the rules for J in Grammar 1), which is admittedly awkward to look at . . . sorry
for that, but we will stick to it, nevertheless. That way, we can simply output the reverse
of the second part without rearranging parentheses.

28More formally: The shuffle-product of correctly parenthesized dot-bracket words, where one is only using
round parentheses and the other only square brackets.

29All known RNA-RNA interactions contain rather long regions of stacked external pairs and known results for
secondary structures of single RNA molecules also suggest the outstanding stabilizing effect of stems. Each
side of the stem winds into a helix and helices of facing stem sides fit into each other, like a natural screw
thread. However, only helices ‘starting’ at opposite sides in the primary structure seem to fit. Looking
at plain secondary structures all non-knotted stems are actually of this kind; hairpins in between being
needed changes of direction. So, after some mental twists, our intuition turn out screwed up: reversing s
is not quirky, but natural!

35

3. Approach Sebastian Wild

3.2.2. GRIP

The idea for the grammar we use is due to [HQRS10, HQRS09], wherein the authors pro-
pose a partitioning scheme, that allows unique decomposition of zig-zag- and pseudoknot-
free joint structures. The scheme is best explained graphically, so see figure 3.1 on the
facing page.

While the recursive decomposition is essentially comprised of context-free rules and hence
directly transferable into a 2D-CFG, there is one property of the decomposition inexpress-
ible in the world of context-free grammars: Hybrids and secondary structure segments
are required to be maximal, i. e. not extensible in the context of their usage . . . obviously
contradicting context-freeness if not further precautions are taken.

However, simply ignoring this requirement is not viable: Since the secondary structure
segments may be empty, the following leftmost derivations are legal (using in advance the
notation for 2D-CFG and the letters from the bottom of figure 3.1)

E⇒ K⇒
(
L1M[
L2M]

)
⇒
(
L1[
L2]

)
⇒
(
[[
]]

)
E⇒ KD⇒

(
[D1
]D2

)
⇒
(
[AE1
]BE2

)
⇒
(
[E1
]E2

)
⇒
(
[K1
]K2

)
⇒
(
[[
]]

)
.

(Note that the second derivation violates the maximality of K.)
As this little example shows, the grammar resulting from naïve translation is ambiguous on
secondary structures and therefore not suited for our application:

We compute the most likely derivation and would like to conclude that the structure
represented by this derivation is consequently the most likely (joint) secondary structure.
This does not hold, if there may be several different derivations for a single secondary
structure, since the sum of several derivations might outweigh a single most likely deriva-
tion. Apart from the cold shiver a theorist feels running down his spine faced with a
formally inapplicable heuristic, Dowell and Eddy observe in [DE04] that such ambiguity
in prediction grammars does cause problems in practical applications, as well, and should
not be ignored.

To avoid ambiguity in GRIP, we deviate from the decomposition shown in figure 3.1 by
defining for this thesis:

Hybrids are maximal regions of stacked external pairs, without any unpaired bases.

. . . but wait; didn’t all the trouble start with exactly this kind of maximality constraint —
which is still used in our definition? Indeed, disallowing interruptions of hybrids by totally
unpaired regions is not quite enough. But if every K is surrounded by structures, that are
neither empty nor another hybrid, then K will for sure represent a maximal region, as
required by our new definition of hybrids.

36

Sebastian Wild 3.2. A Grammar for RIP

or

or

or

or

Procedure (b)

Procedure (a)

or or

A B C D E F G H J K

1 N

M1

1 N

M1
M

or

or

L

or

or

or

Figure 3.1.: The partitioning scheme ‘rip2’ proposed by HUANG et al. in [HQRS10, figure 4].
The start symbol is found in the left upper corner. Blue, pink and green† bars (A,
B and M) represent regions of arbitrary length without external bonds. Blue and
pink may contain internal pairs in r and s, respectively; green regions are totally
unpaired. All three may stand for empty regions, as well. HUANG et al. introduce
the following names for substructures:

D: right tight, E: double tight, F, G, H, J: tight, K: hybrid.

An important note given by the authors is that the secondary structures and
hybrids are maximal, i. e. cannot be elongated to the left or right.

The graphically represented partitioning steps bear an apparent resemblance
to context-free grammar rules. Since this scheme operates on pairs of primary
structures and creates internal and external bonds in inter-meshed fashions, it
cannot be represented as plain CFG — however, 2D-CFGs are ideally suited for
that purpose (see Grammar 1 on page 39).

†For those of us who only got a lousy black and white copy of figure 3.1: The green bars appear only

in rules for hybrids, i. e. in the third row. In all other rules, bars in the upper dimension are blue, those

in lower dimension are pink.

37

3. Approach Sebastian Wild

Assuming that is guaranteed, above definition is the only deviation from substructures
of [HQRS10]. But we still have to ensure in our grammar, that KK is never derivable.30 To
achieve this, we use the following non-terminals. For ease of understanding, we give
explicative ‘semantics’ for them:

in r in s in
(
r
s

)
non-empty secondary structure A B C

possibly empty secondary structure XA XB X

We use X in all places rip2 had A
B — except for rule E → KCE: Since E ⇒ K, we need

a non-empty ‘separator’ structure to avoid derivation of KK. As that changed rule also
produced structures other than KABK, some more rules for E are needed to re-allow these
combinations without secondary structure in between. Furthermore, we reverse the right
hand sides of the rules for K and L to avoid left-recursion.31 Apart from that, translation
from rip2 to GRIP is straight-forward and we finally arrive at Grammar 1 on the next page,
a secondary-structure-unambiguous 2D-CFG for joint secondary structure prediction.

The unambiguity of GRIP for joint secondary structures now follows from the proofs
given by Huang et al. and our discussion above.

3.3. Secondary Structure Subgrammars

In the last section we proposed GRIP, a 2D-CFG for two interacting RNA molecules. GRIP

contains two non-terminals with effective dimension one, namely A and B. These denote
secondary structure regions in r and s, respectively, without external pairs.

We give the expansions for A and B as one-dimensional subgrammars. Let the one
for A be called GSecStr and the one for B GSecStr. GSecStr and GSecStr will be almost identical,
such that we can train GSecStr in isolation and use the computed probabilities for GSecStr, as
well. This makes sense as long as the considered RNAs r and s are of similar type, which
is assumed here for simplicity. If a specific class of interacting RNAs requires different
training for r and s, we additionally train GSecStr in isolation and use those probabilities.

3.3.1. GSecStr — secondary structures in r

Research in the field of secondary structure prediction via SCFGs has lead to a whole zoo
of grammars usable for structure prediction. For instance, some rather small examples
can be found in [DE04]. However, to the knowledge of the author there are no studies
available that compare efficiency of grammars in the context of RIP, namely predicting the
parts without external bonds occurring inside an interaction complex. GSecStr therefore was
chosen according to the following reasoning:

30The second derivation from the example above would have had sentential form KK if we postponed the
expansion of the first K to the very end.

31For these simply rules it is rather easy to see that this does not change the stochastic model implied by GRIP.
Lemma 3, discussed in detail in section 3.3.2, provides a formal argument.

38

Sebastian Wild 3.3. Secondary Structure Subgrammars

Grammar 1 The 2D-CFG GRIP used for modelling RNA-RNA joint secondary structures.

GRIP =
(
{S,D,E, F,K,L,G,H, J,C,X,XA,XB,A,B}, {a, c,g,u}, R, S, P

)
S → C S → DX

D→ XE D→ XF

E → FD E → KFD E → KCE

E → KXF E → K

F → G F → J F → H

K →
(
[
]

)
K →

(
[L1
]L2

)
L →

(
[
]

)
L →

(
[L1
]L2

)
G→

(
(XAG1XA)

G2

)
G→

(
(XAJ1XA)

J2

)
H→

(
(XAH1XA)

H2

)
H→

(
(XAE1XA)

E2

)
J →

(
J1

)XBJ2XB(

)
J →

(
E1

)XBE2XB(

)
X →

(
ε
ε

)
X → C

XA→
(
ε
ε

)
XA→

(
A
ε

)
XB→

(
ε
ε

)
XB→

(
ε
B

)
C →

(
A
ε

)
C →

(
ε
B

)
C →

(
A
B

)

+ subgrammars for A and B,
namely GSecStr and GSecStr (see section 3.3)

We use the 2-dimensional context-free grammar GRIP that creates pairs of words, resembling
the ‘stacking’

(
r
s

)
, i. e. we will generate r in the first component of a 2-tuple and s in the

second one. The first molecule, r, is produced in (typical) 5’ – 3 ′ order, the second molecule,
s, is generated in 3’ – 5’ order (reversed).
All non-terminals except for A, B, XA and XB have effective dimension two, therefore oper-
ating on the joint structure, D6=ε(A) = d 6=ε(XA) = {1} and D6=ε(B) = d 6=ε(XB) = {2}. The
rules are given in a mixed form of vector and expanded form, whichever is more convenient.
Every occurrence of a non-terminal C may be replaced by the expanded vector

(
C1
C2

)
. Re-

member as well (or see section 3.1.2), that the expression
(
A
B

)
is just a shorthand for AB— or

equivalently
(
A1B1
A2B2

)
— since we know that A2 and B1 can derive nothing else than ε.

The alphabet of GRIP contains a, c, g and u, although none of these appear in the rules.
Instead, the bracket symbols ‘(’, ‘)’ and ‘[’, ‘]’ are used as placeholders for these terminals:
A matching pair of these brackets stands for a base pair, that forms an internal or external
bond, respectively. Unpaired bases are only produced via GSecStr or GSecStr.

39

3. Approach Sebastian Wild

I A typical trade-off concerning the size of the grammar — measured in number of
non-terminals, rules or overall length of right hand sides — states: Larger grammars
are slower and need more training data, but provide more details hence have poten-
tial for better predictions.

We use GSecStr as preprocessing for parsing in GRIP (see section 3.5 on page 48) on
the same input — so, overall runtime and memory consumption are dominated by
the two-dimensional parts. Additionally, plenty training data for plain RNA sec-
ondary structure is available. Consequently, if we have the slightest reason to believe
of a larger grammar to improve upon prediction results, we should use the large
grammar.

I Having further applications in mind — namely predicting by statistical sampling in-
stead of most likely derivations (see section 6.1.1) — we choose a grammar suitable
for these future applications.

For those reasons, we chose the rather huge grammar shown in Grammar 2 proposed by
Nebel and Scheid in [NS10]. This grammar has proven to appropriately model RNA sec-
ondary structures, provided enough training data. It follows the decomposition realized
by McCaskill for the partition function in [McC90].

3.3.2. GSecStr — secondary structures in s

Now that we have a suitable grammar for secondary structures, we need a grammar for
the second RNA molecule s— remember that s is produced in reverse! So simply setting
GSecStr := G

SecStr does not work.
Our parser will deal with the one-dimensional subgrammars as preprocessing, so we

could simply do this preprocessing for the reversed s. However this requires index trans-
formations in the 2D-parser that would be specific to this application. Fortunately, there
is a much more elegant solution: GSecStr := (GSecStr)R, meaning all right hand sides of rules
in GSecStr are reversed.

This is OK from the theoretical point of view, but introduces left-recursion in GSecStr,
which our implementation of the parser cannot handle — motivations of this limitation are
discussed in chapter 4. However GSecStr has a very handy property, allowing us to remove
the left-recursion without ‘affecting’ the implied stochastic model. Before we do that, let
us formalize this needed equivalence of GSecStr and (GSecStr)R.

Definition: Two SCFGs G and G ′ are called stochastically equivalent, if a bijection b from
complete32 parse trees in G to complete parse trees in G ′ exists, such that for all complete
parse trees T in G holds:

(1) The frontier of T is equal to the frontier of b(T).

(2) Pr[T] = Pr[b(T)]

Stochastic equivalence obviously implies ordinary equivalence. Using this notation, we are
looking for modifications of (GSecStr)R to remove left-recursion while retaining stochastic
equivalence. The following lemma provides the basis for that.

32Complete parse trees are parse trees whose frontier contains only terminals.

40

Sebastian Wild 3.3. Secondary Structure Subgrammars

Grammar 2 The SCFG GSecStr used for modelling single RNA secondary structures.

GSecStr =
(
{S, T ,C,A,P,L, F,H,G,B,M,O,N,U,Z}, {a, c,g,u}, R, S, P

)
S → T

T → C T → A T → CA T → AT T → CAT

C → ZC C → Z

A→ (m L)m

P → (L)

L → F L → P L → G L →M

F → Zk−1H

H→ ZH H→ Z

G→ BA G→ AB G→ BAB

B → ZB B → Z

M→ UAO

O→ UAN

N→ UAN N→ U

U→ ZU U→ ε

Z → |

This grammar was proposed by NEBEL and SCHEID in [NS10, definition 2.3], and was originally
designed for statistical sampling. Two parameters m ∈N>1 and k ∈N>1 are given to adapt
the grammar:

m : minimal stem length k : minimal hairpin size

Typical values are m = 1 and k = 3. Note that m and k are constants in any application of
this grammar.

41

3. Approach Sebastian Wild

Lemma 3: Given a SCFG G =
(
N,Σ,R,S,P

)
let us define SCFG GA :=

(
{A},NA,RA,A,P

)
for a non-terminalA ∈ N, where RA is the set of all rules with left hand sideA andNA ⊂ N∪Σ
is the set of all symbols occurring in those right hand sides, but without A itself. Now let
G ′A =

(
{A},NA,R ′A,A,P ′A

)
be an arbitrary grammar equivalent to GA, i. e. L(GA) = L(G ′A).

Then, grammar G ′, defined by

G ′ :=
(
N,Σ, (R\RA) ∪̇ R ′A,S,P ′

)
with P ′(r) :=

{
P(r) if r ∈ R\RA
P ′A(r) if r ∈ R ′A

,

is equivalent to G, i. e. fulfills L(G) = L(G ′). Moreover, if GA and G ′A are unambiguous and
stochastically equivalent, then G and G ′ are stochastically equivalent, as well.

Proof: Given a complete derivation tree T for S⇒
G

∗ w. If no A appears in T , this derivation
is identically usable in G ′ and we are done.

So, assume there is an A in the tree and let TA be the subtree rooted by a topmost
occurrence of A, i. e. on the path from that A to root S, no other As are located. Now
remove in TA the child trees of all nodes not labeled A. The remaining tree T̂A is a partial
derivation A⇒

G

+α for some α ∈
(
(N∪ Σ)\{A}

)? that uses only rules with left hand side A.
Therefore, we have α ∈ L(GA) = L(G ′A), which implies the existence of a partial derivation
tree T̂ ′A for A ⇒+ α in G ′A. Replacing T̂A by T̂ ′A in T and iterating this procedure until all
occurrences of A are expanded using rules from G ′A yields a parse tree T ′ for S ⇒∗ w in
G ′, so we have L(G) ⊆ L(G ′). Since the above procedure works symmetrically, we get
L(G) ⊇ L(G ′) by the same arguments, hence L(G) = L(G ′).

For the second claim, let bA be the bijection from complete parse trees in GA to the ones
in G ′A given by stochastic equivalence. Again, we use the same procedure as above, but
notice:

(1) T̂A is the one and only derivation for A⇒ α in GA, since GA is unambiguous.

(2) Setting T̂ ′A := bA(T̂A) uniquely determines the replacement tree T̂ ′A and both trees
have the same probability.

Therefore, we get for each complete parse tree T in G a uniquely determined parse tree T ′

in G ′ with identical frontier and probability. So, our procedure serves as bijection between
parse trees in G and G ′, proving their stochastic equivalence.

For secondary structure prediction, stochastic equivalence is only a necessary condition:
We also need parse trees declared equivalent by b to encode the same (partial) secondary
structure. As our encoding only depends on rules containing (and), for most choices
for A from the lemma, stochastic equivalence is actually sufficient — namely, when no
parentheses show up in L(GA). This leaves us with A and P, which will be dealt with
separately.

To apply our lemma to (GSecStr)R, we start by determining the languages L(GA) for
GSecStr, see table 3.1. Then, we need to find grammars for those languages that are unam-
biguous and stochastically equivalent to the rules in (GSecStr)R.

42

Sebastian Wild 3.3. Secondary Structure Subgrammars

A L(GA) A L(GA) A L(GA)

S T L F+ P+G+M M UAO

T C+
(
C?A

)+
C? F ZkZ∗ O UAN

C Z+ H Z+ N
(
UA
)+
U

A (m L)m G BA+AB+BAB U Z∗

P (L) B Z+ Z |

Table 3.1.: The languages L(GA) from Lemma 3 for grammar GSecStr, given as extended regu-
lar expressions. Note explicitly, that the language for A consists of only one word,
asm is a constant. Large parentheses

()
are used for grouping regular expressions,

whereas the small ones () are literals. x+ means at least one copy of x and x?

stands for one or zero occurrences of x. Notice that non-terminals are used as
literals in these regular expression.

Noticeably, all those languages are regular.33 Additionally, we observe that most languages
are palindromes, i. e. they are indifferent to reversal. The only exceptions are:

I (m L)m and (L) resulting from A and P.
These become)m L (m and)L(on reversal. However, the parentheses are only
terminal placeholders, indicating internal bonds (see section 3.1.5)! So if we exchange
the emission probabilities of corresponding base pairs — emission probability of au
need not be equal to the one of ua— we are done.

Reversing (m L)m and (L) does not crucially affect encoded secondary structure: As
we encode secondary structure as a set of pairs, reversing the order inside one such
pair does only formally change the structure. However, we produce s in reverse order
anyway, so it actually makes sense to produce the secondary structure in reverse, as
well.

I UAO and UAN resulting from M and O.
Considering the four rules creating a multiloop M → UAO, O → UAN, N → UAN

and N→ U in a single grammar

GMNO :=
(
{M,N,O}, {U,A}, {M→ UAO,O→ UAN,N→ UAN,N→ U},M

)
,

we get L(GMNO) = UA (UA)+U, which is a palindrome language.

Every form of repetition involved in the languages of table 3.1 is created in GSecStr un-
ambiguously by plain right-recursion — comprised of two types of rules: (a) right-recursive
rules, i. e. rules of form A → αA with A /∈ α ∧ α 6= ε and (b) rules terminating this
repetition, i. e. A→ β with A /∈ β.

As |RM| = |RO| = 1, the probability for M → UAO and O → UAN must be 1, leaving
us with one rule for extension and one rule for stopping in the case of GMNO, as well.

33Of course, this is not the case for arbitrary CFGs: In G1 =
(
{S}, {a,b}, {S→ aSb,S→ ε},S

)
, L(GS) = L(G1) =

{anbn : n > 0}, which is known to be not regular. However, every grammar can easily be converted into
such a grammar, by replacing all uses of non-terminal A in rules expanding A by a new non-terminal A ′

with a single rule A ′ → A. The new grammar is obviously equivalent to the old one. This provides a nice
proof that removability of left-recursion in regular grammars carries over to context-free grammars.

43

3. Approach Sebastian Wild

The probability of a word created that way only depends on the number each type of
repetitive rule is used and the type of stop case, because of commutativity of multiplication.

In (GSecStr)R, the right hand sides of rules are reversed, thereby giving unambiguous
left-recursive generation. But since the languages are palindromes and the probability only
depends on the number of repetitions, not the exact order of creation, we can indeed use
exactly the rules of GSecStr for GSecStr — avoiding left-recursion by reversing the right hand
sides of rules in (GSecStr)R once again.

the devil is in the details . . .

Simply setting GSecStr := G
SecStr still does not work, two things need to be done

when creating GSecStr from GSecStr:

(1) The emission probabilities for pairs have to be swapped: If xy for x,y ∈ Σ
is created with probability p in GSecStr, yx is created with probability p in
GSecStr.

(2) The probabilities for rules G → BA and G → AB— representing left and
right bulges respectively — have to be swapped.

Yet, this is easily done and still avoids separate training of GSecStr and GSecStr.

44

Sebastian Wild 3.4. Earley-Parser for 2D-CFGs

3.4. Earley-Parser for 2D-CFGs

We adopt the item and inference rule based approach of describing parsers from [Goo98,
Goo99] to present our Earley-style parser for 2-dimensional context-free grammars (see
Algorithm 3.1 on the next page). We will in the following assume that

(1) we are parsing the terminal tuple
(
u
v

)
with u ∈ Σn and v ∈ Σm

(2) in the stochastic 2D-CFG G = (N,Σ,R,S ′,P).

(3) There is only one rule for S ′, namely S ′ → S, for a non-terminal S ∈ N.
S ′ does not show up in any right hand side in R.

(4) G does not contain non-terminals of effective dimension zero.
(Such non-terminals can simply be deleted.)

(5) Terminals do not occur in the middle of a rule,
i. e. for every rule A→ γ ∈ R holds γ1,γ2 ∈ Σ?C?Σ?.

(6) G is free of left-recursion, i. e. /∃A ∈ N A⇒
G

+Aα

The last requirement implies loop-freeness and therefore ensures that all semiring buckets
are non-looping. GRIP trivially fulfills all requirements if we add a new non-terminal S ′

and S ′ → S.

Of course, in general, Earley parsing can cope with grammars containing left-recursion.
In fact, one well known advantage of Earley’s parser is its efficient handling of left-
recursion. There are two reasons why we decided not to allow left-recursion, anyhow.
First, left-recursion complicates the bucketing/ordering of items — see subsection 4.2.2 for
details. Second, our optimistic prediction levels out the formerly superior performance of
left-recursion for dense grammars.

Disallowing left-recursion is not a grave restriction — the grammars we intend to use
do not have left-recursion and it is avoidable in general — e. g. in Greibach normal form.34

Our parser can handle ε-rules without doing inefficient completer-predictor-loops.
This deserves explicit emphasis, since efficiently dealing with ε-rules is non-trivial for
Earley parsing (see e. g. [AH02], [GJ08]).

Theorem 4: The invariant of our parser is(
i
k
j
l , A→ α1

α2

•
•
β1
β2

)
is derived iff

(
A1
A2

)
⇒
(
α1β1
α2β2

)
⇒∗
(
ui,j−1
vk,l−1

β1
β2

)
. (3.2)

Proof sketch: We did the correctness proof of classical Earley parsing in much detail
(proof of theorem 1 on page 13 in section 2.2). We used the term of Earley-walks, a
sequence of edges in parse trees mimicking the item derivation in the calculus of Earley’s
algorithm.

34Moreover, the transformation of a left-recursive SCFG G into a SCFG G ′ without left-recursion hinted at
in footnote 33 on page 43 can easily be worked out to retain stochastic equivalence, if the grammar is
loop-free, and can easily be generalized to mD-CFGs.

45

3. Approach Sebastian Wild

Algorithm 3.1 2D-Earley: an Earley-style parser for 2D-CFGs

I Item Form:

. normal items:(
i
k
j
l , A→ α1

α2

•
•
β1
β2

)
. rule existence items:

Rule
[
A→ αβ

]

satisfying
. 1 6 i 6 j 6 n + 1

. 1 6 k 6 l 6 m+ 1

. α1, α2, β1 and β2 are possibly empty
strings of terminals and non-terminals

. A→
(
α1β1
α2β2

)
is a rule of the grammar

The items of shape Rule
[
A→ αβ

]
are so-called rule-existence items. They exist right

from the start and have as value the probability of their rule P(A→ αβ).

I Goal Item:
(
1
1
n+1
m+1 , S ′ → S1

S2

•
•

)
I Inference Rules:

. Start item: (
1
1
1
1 , S ′ → •

•
S1
S2

)

. Prediction (optimistic):
Rule

[
B→

(
β1
β2

)]
(
j
l
j
l , B→ •

•
β1
β2

)
. Scanning:

� in first component

(
i
k
j−1
l , A→ α1

α2

•
•
uj−1β1

β2

)
(
i
k

j
l , A→ α1uj−1

α2

•
•
β1
β2

)

� in second component

(
i
k

j
l−1 , A→ α1

α2

•
•

β1
vl−1β2

)
(
i
k

j
l , A→ α1

α2vl−1

•
•
β1
β2

)
. Completion: (

i
k
r
s , A→ α1

α2

•
•
B1γ1
B2γ2

) (
r
s
j
l , B→ β1

β2

•
•

)
(
i
k
j
l , A→ α1B1

α2B2

•
•
γ1
γ2

)

46

Sebastian Wild 3.4. Earley-Parser for 2D-CFGs

The very same approach works here, as well; only two things change: First, all nodes
now get two-dimensional labels: Either a non-terminal or a terminal expression

(
x
y

)
, where

x,y ∈ {ε} ∪ Σ and |xy| 6 1, i. e. at most one is a terminal.35 This requires more cases to be
distinguished, but otherwise causes no problems.

The second change stems from the simplified prediction rule: We do not require an
item

(
i
k
j
l , C→ η1

η2

•
•
B1µ1
B2µ2

)
as premise in the prediction rule, here: We use optimistic pre-

diction. This means, we are always dealing with parse trees, where the root corresponds to
the left hand side of the current rule. That makes the proof actually easier: The claim (3.2)
is trivially fulfilled for α =

(
ε
ε

)
and for the other cases, the argumentation of the proof of

theorem 1 remains valid.

Application of theorem 4 to the goal item
(
1
1
n+1
m+1 , S→ S1

S2

•
•
)

proves the correctness of
algorithm 3.1: The goal item is derived if and only if

(
u
v

)
∈ L(G).

3.4.1. Item-related definitions

In order to work with the items, some terms and definitions turn out handy:

I First, we assign a unique rule index ind(r) ∈ {1, . . . , |R|} to every rule r ∈ R. For the
moment, we will only use the rule index to shortly write rules; later we use them to
induce an order on the rules.

I We define the dot-index q of a dotted rule A →
(
α1
α2

•
•
β1
β2

)
by q =

(
q1
q2

)
:=
(
|α1|
|α2|

)
. So

q gives the position of the dot in a dotted rule by counting the number of characters
left to the dot — ranging from zero to |α1β1| and |α2β2| respectively. Using these dot
indices q and the grammar dependent rule index p = ind(A→ αβ), we can write an
arbitrary item equivalently as(

i
k
j
l , p, q1q2

)
=
(
i
k
j
l , ind(A→ αβ), |α1|

|α2|

)
≡

(
i
k
j
l , A→ α1

α2

•
•
β1
β2

)
.

I We call an operation producing an item I— an application of an inference rule, i. e.
prediction, scanning or completion — finalization, if the conclusion item I has the dot
at the very right end. Such an item I will be referred to as a finalized item.

I Given a sequence of items I1, . . . , It, such that

Is =
(
i
k
js
ls

, p ,q(s)
)

1 6 s 6 t ,

with j1 = i, l1 = k, q(1) =
(
0
0

)
, q(t) = length of right hand side,

i. e. they only differ in the end and dot indices, starting at a predicted item I1 and
ending with a finalized item It. Assume further that Is+1 was derived from Is by
using one inference rule application (1 6 s < t). Then we will sloppily talk about
the whole sequence as ‘one item’, that is first being predicted, and then (repeatedly)
scanned and/or completed and finally finalized.

35That is the portion of input our parser can handle in one scanning step.

47

3. Approach Sebastian Wild

3.5. One-dimensional preprocessing featuring an SCFG Earley parser

Subsection 3.1.3 on page 31 introduces the concept of subgrammars. In our case of 2D-
CFGs the non-terminals not having ‘full’ dimension are one-dimensional. Therefore we
will partition the non-terminals N = N2 ∪̇N1 into the set N2 of two-dimensional non-
terminals and the set N1 of one-dimensional ones.

The set A mentioned in subsection 3.1.3 hence contains only one-dimensional non-
terminals, i. e. A ⊆ N1. So, the subgrammars GA induced by A ∈ A are plain SCFGs!

This means, for the preprocessing of the subgrammars, we need a semiring parser for
SCFGs. We will use an Earley-style parser very similar to the two-dimensional one; see
Algorithm 3.2 on the next page. For this parser, we will assume that

(1) we are parsing the terminal word w ∈ Σn

(2) in the SCFG G = (N,Σ,R,S ′,P).

(3) There is only one rule for S ′, namely S ′ → S, S ∈ N.
S ′ does not show up in any right hand side in R.

(4) Terminals do not occur in the middle of a rule,
i. e. for every rule A→ γ ∈ R holds γ ∈ Σ?N?Σ?.

(5) G is free of left-recursion, i. e. /∃A ∈ N A⇒
G

+Aα

Theorem 5: For the rules from algorithm 3.2 on the facing page the following invariant holds:(
i j , A→ α •β

)
is derived iff A⇒ αβ⇒∗ wi,j−1β .

The proof is analogous to the one of theorem 4 on page 45, if you simply ignore the
remark on two-dimensional node labels.

Correctness of algorithm 3.2 again follows from applying theorem 5 to the goal item.

What remains, is the ‘interface’ between the two-dimensional parser 2D-Earley and this
one — 1D-Earley. The only thing needed by 2D-Earley are finalized items — ones with
the dot at the very right. Such items are needed in the completion rule to step over one-
dimensional non-terminals. So we can simply add the following “interface rules” for the
inclusion of non-terminal A ∈ A:

Condition Inference Rule

D6=ε(A) = {1} and w = u

(
r j , A→ γ •

)(
r
l
j
l , A→ γ•

•

)
D6=ε(A) = {2} and w = v

(
s l , A→ γ •

)(
j
s
j
l , A→ γ

•
•

)

48

Sebastian Wild 3.5. One-dimensional preprocessing featuring an SCFG Earley parser

Algorithm 3.2 1D-Earley: an Earley-style parser for stochastic context-free grammars

I Item Form:

. normal items:(
i j , A→ α •β

)
. rule existence items:

Rule
[
A→ αβ

]
satisfying

. 1 6 i 6 j 6 n+ 1

. α and β are possibly empty strings
of terminals and non-terminals

. A→ αβ is a rule of the grammar

The items of shape Rule
[
A→ αβ

]
are so-called rule-existence items. They exist right

from the start and have as value the probability of their rule P(A→ αβ).

I Goal Item:
(
1 n+ 1 , S ′ → S •

)
I Inference Rules:

. Start item: (
1 1 , S ′ → •S

)
. Prediction (optimistic):

Rule
[
B→ β

](
j j , B→ •β

)
. Scanning:

(
i j− 1 , A→ α •wj−1β

)(
i j , A→ αwj−1 •β

)
. Completion:

(
i r , A→ α •Bγ

) (
r j , B→ β •

)(
i j , A→ αB •γ

)

49

3. Approach Sebastian Wild

Remember, that we need probabilities for every substring of u and v, respectively, if we
parse

(
u
v

)
by 2D-Earley. But since we use optimistic prediction again, we predict items(

i i , S ′ → •S
)

for every start position i and will complete all of those for every end
position j where such a completion is possible.

This means, we need only one run of 1D-Earley per subgrammar, and can extract all
needed information from it — we do not have to parse every substring separately. The items
corresponding to those substrings will be derived in the course of parsing the whole word,
anyway. So, only with optimistic prediction is efficient preprocessing possible.

3.5.1. Outside probabilities in split grammars

Let us consider a simple case, where we have one 2D-CFG G2 and a split-off 1D-CFG G1,
with start symbols S2 and S1, respectively. With inside probabilities, there is no discussion
possible: We always have to fully expand everything to terminals — even if that means
that a non-terminal from G2 has to ‘switch’ into G1 to complete its derivation. Otherwise,
we cannot determine the indices in the terminal word produced.

However, splitting has consequences for the notion of outside probabilities: Shall the
‘border’ between the grammar be resembled in those values or do we like it to be trans-
parent?

For outside probabilities of non-terminals in G1, the question is: Start at S2 or at S1?
Both choices are sensible — it depends on what we use those reverse values for. We will
let them start at S1, i. e. we define for a non-terminal A in G1

β(A, i, j) := Pr
[
S1 ⇒∗ w1,i−1 Awj,|w|

]
,

because we introduced outside probabilities to estimate rule probabilities — and we will
do this separately for the two-dimensional grammar and its one-dimensional subgrammars.
Therefore we need the outside probabilities only ‘inside’ of one grammar. Additionally,
this allows us to use 1D-Earley as a ‘standalone’-SCFG parser, e. g. for RNA secondary
structure prediction.

3.6. Utilizing item values

So far, we have given an item-based parser description for parsing 2D-CFGs on one hand
and on the other hand defined some things we are interested in — namely inside and
outside probabilities, mainly for estimating rule probabilities — and Viterbi parses for
prediction. We already mentioned that semiring parsing “does the trick” by assigning
items of our parser forward and reverse values in a given semiring (see section 2.6). But
we kind of weaseled out of unraveling how exactly those mysterious forward and reverse
values are used — up to now.

The following fact is used in subsequent sections, so we state it here once and for all: In
[Goo98, Goo99], Goodman chooses the reverse values in a way that for all items I the
following holds

v(I)⊗ z(I) =
⊕

D derivation :
I appears in D

v(D) , (3.3)

50

Sebastian Wild 3.6. Utilizing item values

where the value of a derivation v(D) is simply the⊗-product of rule probabilities of all rule
applications in the derivation D. The original definition takes the possibility into account,
that one item may appear several times in one derivation. However, with non-looping
buckets, this cannot happen, so we exclude this from our discussion.

3.6.1. Inside and outside probabilities

In this subsection, we will always assume the inside semiring
(
R>0 ∪ {∞},+, ·, 0, 1

)
. The

following equality is the core of the relation of inside probabilities and item values:

Theorem 6: For the (forward) values in the inside semiring holds for all 1 6 i 6 j 6 n+ 1

(and all 1 6 k 6 l 6 m+ 1 for the second claim)

v
(
i j , A→ γ •

)
= Pr

[
A⇒ γ⇒∗ wi,j−1

]
and

v
(
i
k
j
l , A→ γ1

γ2

•
•

)
= Pr

[
A⇒ γ⇒∗

(
ui,j−1
vk,l−1

)]
,

(3.4)

where v(I) := 0 if item I is not derivable at all.

Proof: We only prove the first claim; the second is shown analogously. The proof is done
by induction on the maximal height36 of a derivation tree for A⇒ γ⇒∗ wi,j−1.

The basis is height 1, which implies γ ∈ Σ?. Then the right side is obviously P(A→ γ)

if γ = wi,j−1, and 0 otherwise. If A 6⇒∗ wi,j−1, then I :=
(
i j , A→ γ •

)
is not derivable by

theorem 5. So, v(I) = 0 by definition. If γ = wi,j−1, I is derivable — again by theorem 5.
As γ only contains terminals, I can only be derived by scanning, which simply copies the
premises item value to the conclusion, until we reach

(
i i , A → •γ

)
. This item is only

derivable by prediction from Rule
[
A→ γ

]
and therefore inherits its value, P(A→ γ).

Now assume we have shown the assertion for all items such that the maximal height
of a derivation tree for them is h and let I :=

(
i j , A → γ •

)
be an item whose maximal

derivation height is h + 1. Let B1, . . . ,Bk be the non-terminals occurring in γ. If one
of the terminals does not match the corresponding input symbol, A 6⇒∗ wi,j−1, I is not
derivable by theorem 5 and hence v(I) = 0 = Pr

[
A⇒ γ⇒∗ wi,j−1

]
. So, we only have to

look at derivations, where the terminal parts fit. Let’s call those derivations D1, . . . ,Dd.
According to the invariant of our parser, for every Dp and all 1 6 q 6 k, there is an item
Ip,q for the expansion of Bq ⇒ β(p,q) ⇒∗ wlp,q,rp,q used in Dp. The sub-derivations for
Ip,1, . . . , Ip,k have height 6 h, so the induction hypothesis applies:

Pr
[
A⇒ γ⇒∗ wi,j−1

]
= P(A→ γ)

d∑
p=1

k∏
q=1

Pr
[
Bq ⇒ β(p,q) ⇒∗ wlp,q,rp,q

]

= P(A→ γ)

d∑
p=1

k∏
q=1

v(Ip,q) .

But this is exactly the value of our item I: We started by predicting item
(
i i , A → •γ

)
with value P(A → γ). By assumption, we have d ways to complete this item — assuming
successful scanning. Each of those d ways contributes with the product of all items that
were used for completion.

36An item may have several distinct derivations. Therefore we use the maximum.

51

3. Approach Sebastian Wild

Now, we can express the inside and outside probabilities as defined in sections 2.5 and 3.1.6
in terms of forward and reverse values in the inside semiring. We first have a look at the
simpler case of a SCFG and input word w ∈ Σn. Simply expanding the probabilities gives

α(A, i, j) = Pr
[
A⇒∗ wi,j−1

]
=

∑
A→γ∈RA

Pr
[
A⇒ γ⇒∗ wi,j−1

]
=

(3.4)

∑
A→γ∈RA

v
(
i j , A→ γ •

)
.

When we multiply corresponding forward and reverse values we get

v
(
i j , A→ γ •

)
· z
(
i j , A→ γ •

)
=

(3.3)

∑
D derivation :

(i j ,A→γ•) appears in D

v(D)

= Pr
[
S⇒∗ w1,i−1Awj,n ⇒ w1,i−1 γwj,n ⇒∗ w

]
= Pr

[
S⇒∗ w1,i−1Awj,n

]
· Pr

[
A⇒ γ⇒∗ wi,j−1

]
=

(3.4)
β(A, i, j) · v

(
i j , A→ γ •

)
.

This provides us with the following formula for outside probabilities:

β(A, i, j) = z
(
i j , A→ γ •

)
if v
(
i j , A→ γ •

)
6= 0 .

Since every application of forward and backward probabilities known to the author only
considers the product of corresponding inside and outside probabilities, we content our-
selves with this derivation.

Notice, that we do not have to sum over all rules expanding A for the outside prob-
ability, because the outer tree of an item I :=

(
i j , A → γ •

)
— as defined in [Goo98] —

excludes everything derived from A at this position, so the outer value z(I) cannot depend
on the rule A→ γ present in I.

For 2D-CFGs, all arguments directly carry over, so we simply state

α(A; i, j,k, l) =
∑

A→γ∈RA

v
(
i
k
j
l , A→ γ1

γ2

•
•

)
and

β(A; i, j,k, l) = z
(
i
k
j
l , A→ γ1

γ2

•
•

)
if v

(
i
k
j
l , A→ γ1

γ2

•
•

)
6= 0 .

3.6.2. Rule probability estimates

In section 2.5 on page 18, we mentioned the expectation maximization algorithm for train-
ing rule probabilities, when only primary structures are available as training data. In
essence, one replaces the counted numbers of rule applications by expected numbers. As
the latters depend on the current set of probabilities, an evolutionary algorithm results.

In [DEKM98, chapter 9], formulæ for these expected numbers are given in terms of
inside and outside probabilities. However, it turns out that the kind of items we are
dealing with offer a more direct way to compute those.

52

Sebastian Wild 3.6. Utilizing item values

Let’s again first look at a SCFG and input word w ∈ Σn. For a rule A → γ ∈ R we
define c(A→ γ) by

c(A→ γ) := E
[
#rule applications A→ γ

]
=

∑
D derivation

v(D) · (#rule applications A→ γ in D)

=
∑

16i6j6n+1

∑
D derivation :

(i j ,A→γ•) appears in D

v(D)

=
(3.3)

∑
16i6j6n+1

v
(
i j , A→ γ •

)
· z
(
i j , A→ γ •

)
.

Analogously we define for 2D-CFGs and input tuple
(
u
v

)
∈ Σn × Σm

c(A→ γ) := E
[
#rule applications A→ γ

]
=

∑
16i6j6n+1
16k6l6m+1

v
(
i
k
j
l , A→ γ1

γ2

•
•

)
· z
(
i
k
j
l , A→ γ1

γ2

•
•

)
.

Then we can take
c(A→ γ)∑
r∈RA c(r)

as an estimate for the rule probability P(A→ γ) that can be computed using only forward
and reverse values of our items in the inside semiring.

3.6.3. Viterbi parses

Using the Viterbi semiring
(
[0, 1], max, ·, 0, 1

)
in a forward parser run yields a value for

the goal item. This value is the probability of the most likely derivation of the input.
To get the whole derivation tree, we do a backtracing step. The most likely derivation
includes exactly the items that contributed the maximum37 to the derived item value.
Such a maximization step is only performed at a completion rule — only there do we have
several item combinations to choose from.

We will not store pointers to items contributing maxima in the parser run — which is
most time-efficient, but needs more memory. Instead, we start at the goal item and re-
do the computations that determined its value. The pair of items yielding the maximal
contribution are pushed on a stack and are then recursively handled the same way.

This backtrace step runs in O(r · n) for SCFGs and O(r · n ·m) for 2D-CFGs, where r
is the number of rules in the most-likely derivation. As we do not allow left-recursion in
the grammars, every derivation can use every rule at most once, before producing a new
terminal at the left. So, r is at most |R| ·n and |R|(n+m) respectively.

37It may happen that there are several maximal contributions. In this case, we choose one at random.

53

3. Approach Sebastian Wild

3.7. Training with known structures

Although expectation maximization allows to train rule probabilities with primary struc-
tures only, better models result from training with known structures. Therefore, we pro-
vide our tool with means to include known secondary structures.

Conceptually, the case of known structures is much simpler than training with un-
known structures: By assumption, there is exactly one (leftmost) derivation representing
the (joint) secondary structure in question and the terminal word produced by this deriva-
tion is the according primary structure. Training of rule probabilities then simply means
counting the number of rule applications for every rule and taking relative frequencies as
the maximum likelihood estimate of rule probabilities.

However, known (joint) secondary structures are not given as a derivation tree —
which is grammar-dependent and therefore not a suitable exchange format. Typically,
an encoded form is used, somehow equivalent to the bar-bracket-notations introduced in
sections 2.3 and 3.2, respectively.

With classical implementations of Earley parsers, simply using an unambiguous train-
ing grammar — which leaves the terminal placeholders |, (,), [and] unexpanded — is
quite efficient as significantly less items are derivable for that grammar. Our implemen-
tation, however, is optimized for dense grammars, sacrificing efficiency for unambiguous
grammars: Our parser needs cubic time for any grammar.

The ideal solution clearly is to write a second, classical implementation of our parsers
and use those for training with known secondary structures. Yet currently, only very
few trusted RNA joint secondary structures are available in the literature. Therefore, it
is feasible to simply use the same parser with an unambiguous training version of our
grammars and compute the ‘most likely’ derivation — which of course is the only possible
derivation in an unambiguous grammar. Then we will count rule occurrences in this
derivation.

54

4. Implementation Design

In this chapter, we present the design of our implementation of the 2D-CFG Earley-style
parser. As mentioned in section 3.5, we will use an ordinary SCFG Earley parser as a
subroutine for performance improvements.

This leads to a doubling in the description of many aspects — everything exists in one-
and two-dimensional versions. To remedy this redundancy, our discussion will always
consider the 2D-CFG case. Only if simple deletion of indices for the second dimension or
similarly simple modifications do not suffice, we will explicitly address SCFGs.

4.1. Motivating observations

As we have a specific application in mind for our parser — namely the prediction of joint
secondary structures — we will tailor it to gain advantage of some properties of this task.
So, before we discuss our design decisions, here are the observations underlying our de-
sign.

When looking at grammars for (joint) secondary structures, one notices that most sub-
structures are possible in most locations of the primary structure — when totally ignoring
bases, only the minimum size of hairpins is restrictive. This directly implies, that most
grammar rules can be completed in almost all starting positions. We call such grammars
dense grammars.

For our parser, this means that the vast majority of items is indeed derivable for any
input word pair. Stated the other way round, we can exclude hardly any items up front.38

This effect is amplified further by the use of rule templates (see section 3.1.5).

4.2. Item order

An item A depends on item B if the calculation of the (forward) value of A, v(A), needs
v(B). The grammars our parser can handle will never yield loops in the item dependence
relation. Therefore we can find a total order ≺ on the items, which implies that we can
compute all item values in a dynamic programming scheme (see section 4.3).

Fortunately, it turns out that ≺ does not depend on the input words
(
u
v

)
and can

therefore be determined once and for all!39 Actually, once and for all for each grammar —
we need to order the rules — but the process is quite simple and although we will do it
manually here, it may be automated easily.

38In GRIP, only the rules for G, H and J allow for ‘up-front exclusion’: They all produce an internal bond,
hence, the endpoints of those must have distance of at least 4.

39As indicated in [Goo98, Goo99], this need not be true for every semiring parser and grammar.

55

4. Implementation Design Sebastian Wild

4.2.1. Choice of rule indices ind(r)

For an mD-CFG G = (N,Σ,R,S,P)— or a plain SCFG, as the definition works for those as
well — we define the left-corner relation ∠⇒

G
⊆ N×N by

A
∠⇒
G
B iff A⇒

G

+Bγ .

The name ‘left-corner relation’ is motivated from derivation trees: A ∠⇒ B means that there
is a partial derivation tree rooted at A, whose lower left corner is B. Our definition hides
the different situations leading to A ∠⇒ B: The obvious case is a rule A → Bβ. But there
may also be rules A→ EBβ and E→ ε, leading to A ∠⇒ B, as well. And of course, we may
need to chain several rules of both kinds to reach B.

Now we can define the rule indices implicitly — we require for rules A→ α, B→ β ∈ R

A
∠⇒ B implies ind(A→ α) > ind(B→ β) . (4.1)

In general (mD-)CFGs, this may be unsatisfiable, namely, when there are A,B ∈ N with
both A

∠⇒ B and B
∠⇒ A. But this implied (indirect) left-recursion in the grammar —

A ⇒∗ Bγ ⇒∗ Aδγ— and we excluded such grammars explicitly by requirement (6) in
section 3.4. Therefore it is always possible — by topological sorting — to define rule indices
ind(r) for every r ∈ R fulfilling equation (4.1).

A sloppy interpretation of equation (4.1) might help motivating it: Given ‘suitable’
items40 I1 := A→ •Bα and I2 := B→ β•, we can conclude I3 := A→ B•α by completion;
so I3 depends on I1 and I2. Since I2 and I3 have identical indices, we have to put I2 in
front of I3 by means of the rule index, and equation (4.1) does just that.

4.2.2. Definition of ≺

Now that we have the rule indices, we are ready to define ≺.
In section 4.6 on page 61, we will see that it suffices to consider items, where the dot

sits in front of a non-terminal or at the right end. For those positions, the first and second
dimension of q will always agree. Therefore we will later only have a one-dimensional dot
index and we define the item order already for this optimization.

For an item I :=
(
i
k
j
l , p ,q

)
we define the index vector

o(I) :=

j

l

−i

−k

p

q

 (4.2)

and can now state ≺ as a total order by

I ≺ I ′ iff o(I) <
lex
o(I ′) ,

where <
lex

represents the lexicographical order on vectors.

40Actually, these are only dotted rules. To explain the idea, indices are not necessary — given they match.

56

Sebastian Wild 4.2. Item order

This means ≺ sorts the items

1. by j, ascending order
2. by l, ascending order
3. by i, descending order
4. by k, descending order
5. by p, ascending order
6. by q, ascending order

We did not discuss the rule existence items Rule
[
A→ γ

]
so far. These items always have

the value v
(
Rule

[
A→ γ

])
= P(A→ γ)41, therefore we simply put those in front of all ‘real’

items.42

In the following insertions, we will discuss what implications would be caused, if we allowed
some variation to our parsing scenario. The complications arising there may make it
plausible why we decided against these scenarios. To make perfectly clear that these are
excursions into what we will not do, we present them ‘bracketed out’.

How about ‘real’ Earley prediction?

Had we wanted to implement ‘real prediction’, i. e. only predict items according
to the modified inference rule

Rule
[
B→

(
β1
β2

)]
(
j
l
j
l , B→ •

•
β1
β2

) (i
k
j
l , A→ α1

α2

•
•
B1γ1
B2γ2

)
,

we would have had more trouble finding ≺.

Consider two rules rA = A → Bα and rB = B → β, we have A ∠⇒ B and
therefore — according to equation (4.1) —p := ind(rA) > ind(rB) =: p ′.

Now consider some items using those rules:

I :=
(
j
l
j
l , A→ •

•
B1α1
B2α2

)
and

I ′ :=
(
j
l
j
l , B→ •

•
β1
β2

)
.

Obviously, we would like to predict I ′ from I, i. e. use I as side condition in the
modified prediction inference rule to derive I ′. In o(I) and o(I ′) the first four
components are equal, so the rule index decides about the order: p > p ′ gives
I � I ′. Oops! That is just the wrong relation — we need I ≺ I ′.

In fact, concerning rule indices, completion and prediction are opposites:

Completion Prediction

Premise B→ β• A→ •Bα
Conclusion A→ B •α B→ •β

needed order rB ≺ rA rA ≺ rB

41The rule probability is the item value of rule existence items in the inside semiring and the Viterbi semiring.
For other semirings, other definitions might be needed.

42To be correct, we should also define an order among the rule existence items. It really does not matter, so
let us simply take Rule

[
A→ α

]
≺ Rule

[
B→ β

]
iff ind(A→ α) < ind(B→ β).

57

4. Implementation Design Sebastian Wild

The solution to this is to reverse the rule order for prediction. A clever definition
of ≺ can do that . . . but fortunately, we do not need that, so
Praise optimistic prediction!

How about left-recursion?

If we allowed left-recursion in the grammar, our definition of ≺ cannot work
for any choice of rule indices: Consider the CFG

S→ A

A→ AaaB A→ AaB A→ ε

B→ a B→ aa

We parse aaa by showing relevant items.

(
1 1 , A→ •A

)(
1 1 , A→ •AaB

)
=: I1

(
1 1 , A→ •AaaB

)
=: I2

(
1 1 , A→ • ε

)(
1 1 , A→ ε •

)(
1 1 , A→ A •aB

) (
1 1 , A→ A •aaB

)(
1 2 , A→ Aa •B

) (
1 3 , A→ Aaa •B

)(
2 2 , B→ •aa

) (
3 3 , B→ •a

)(
2 4 , B→ aa •

) (
3 4 , B→ a •

)(
1 4 , A→ AaB •

)
=: I3

(
1 4 , A→ AaaB •

)
=: I4

In this situation, we can find two completion instances, namely for I1, I4 and
for I2, I3, yielding

(1 1 ,A→ •AaB) (1 4 ,A→AaaB•)
(1 4 ,A→A•aB) and (1 1 ,A→ •AaaB) (1 4 ,A→AaB•)

(1 4 ,A→A•aaB) .

Here, the conclusion items and I3 and I4 respectively have the same position
indices, so according to ≺, the rule index decides.

Let’s call r1 := A → AaB and r2 := A → AaaB. But then the first pair needs
ind(r2) < ind(r1) and the second one ind(r1) < ind(r2). Hence those items can
only be ordered by taking the dot position into account as well, which is not
possible in our lexicographical order.

The simple kind of order we use allows us to implement the iteration over all
items via nested for-loops, which definitely contributes to the efficiency of our
implementation.

58

Sebastian Wild 4.2. Item order

4.2.3. Correctness of ≺

Now, we will argue that computing (forward) item values in order ≺ is possible. Semiring
parsing tells us that item values are computed according to inference rules. So we simply
have to look through all inference rules

A1, . . . ,Ak
B

,

whether for each B, all possible combinations of premises A1, . . . ,Ak are smaller than
B— in ≺, of course. So here it goes:

Scanning Scanning rules always increase the end index in one dimension, so the conclu-
sion is greater than the premise in ≺.

Completion

(
i
k
r
s , A→ α1

α2

•
•
B1γ1
B2γ2

) (
r
s
j
l , B→ β1

β2

•
•

)
(
i
k
j
l , A→ α1B1

α2B2

•
•
γ1
γ2

) =:
I1 I2
I

.

Let us first consider items I1 and I. We discriminate two cases

(1) r < j ∨ s < l

This immediately implies I1 ≺ I as we sort ascending in the first two
components of o(I1) and o(I).

(2) r = j ∧ s = l

In this case, the first five components of o(I1) and o(I) are equal, but the
last component of o(I1)— namely the dot index — is less by one, giving
us I1 ≺ I.

The remaining items I2 and I have identical end indices, for the start indices
we again distinguish the two cases:

(1) i < r ∨ k < s

Then I2 ≺ I, as sorting by i and k is done descending.

(2) i = r ∧ k = s

This case implies α ⇒∗
(
ε
ε

)
by theorem 4 applied to I1 and consequently

A ⇒ αBγ ⇒∗ Bγ because of I. This means A ∠⇒ B, so by definition, we
have ind(A→ αBγ) > ind(B→ β), and we have I2 ≺ I, as claimed.

Prediction
Rule

[
B→

(
β1
β2

)]
(
j
l
j
l , B→ •

•
β1
β2

) =:
I1
I

.

The special rule existence items Rule
[
B→ β

]
exist from the beginning and al-

ways have the constant value P(B → β), i. e. the rule probability. By definition
of ≺, we have I1 ≺ I, so we are done.

59

4. Implementation Design Sebastian Wild

4.3. Item representation

Since we have to perform quite a lot of computations on the item values, we need fast
random access on them. Given the ‘item density’ reasoned about in the motivating section,
it makes sense to save the item values in a large multi-dimensional array V that saves a value
for all legal items. The array will be initialized with 0— the semiring zero. 0 will be used
to indicate the absence of an item. All computations done with item values of 0 behave
exactly as if that item had not been derived.

As we will see in section 4.6, we only need to consider dot positions in front of non-
terminals — or at the very right. Since all non-terminals have full dimension — (remember:
A
B is simply a shorthand for AB) — the dots in the first and second components always stay
in sync, hence we only need to save one dot position q.

The array V will have six (!) indices, namely i, j, k and l— the position indices of the
item — and p and q— the rule index and dot position. The order of the indices resembles
the item order ≺:

V
[
j , l , i , k , p , q

]
corresponds to v

(
i
k
j
l , p ,q

)
.

Please pay attention to the order of the position indices — j, l, i, k— it differs from the
intuitive one given in the items.

Analogously, we have an array Z that saves the reverse item values for applications
that need a reverse parser run.

Z
[
j , l , i , k , p , q

]
corresponds to z

(
i
k
j
l , p ,q

)
.

Only i, j, k and l depend on the input words
(
u
v

)
, so the arrays have size in Θ(m2n2)—

regarding the grammar as a constant. Considering the grammar as input, an additional
factor dr shows up, for dr the number of dotted rules in the grammar.

We will use additional arrays for the preprocessing of one-dimensional subgrammars GA
for all non-terminals A ∈ A:

VoneA
[
j, i,p,q

]
corresponds to v

(
i j , p ,q

)
in GA ,

ZoneA
[
j, i,p,q

]
corresponds to z

(
i j , p ,q

)
in GA .

4.4. Optimistic Prediction

The prediction rule is
Rule

[
B→

(
β1
β2

)]
(
j
l
j
l , B→ •

•
β1
β2

) .

Since we expect all rules to be possible at almost every position, we simply omit the check
whether an item exists that will use the newly predicted item later. Notice: The only thing
this might cause is some unnecessary calculations — in no case does optimistic prediction
harm correctness.

60

Sebastian Wild 4.5. Completion

We will also profit from optimistic prediction in 1D-Earley. As already mentioned in
section 3.5, we predict items

(
i i , A→ •γ

)
for every start position i and will complete all

of those for every end position j— if such a completion is possible. This means, we need
only one run of 1D-Earley per subgrammar, and can extract all needed information from
it — we do not have to parse every substring separately.

4.5. Completion

Given the item order ≺, one simply has to iterate over all items in this order and compute
their values as given in section 2.6 about semiring parsing. In fact, defining the item
order ≺ as lexicographical order <

lex
on index vectors lets us implement the iteration via

simple nested for-loops (see Algorithm A.1 on page 87 and A.7 on page 91).
In the completion rule — here it is again —(

i
k
r
s , A→ α1

α2

•
•
B1γ1
B2γ2

) (
r
s
j
l , B→ β1

β2

•
•

)
(
i
k
j
l , A→ α1B1

α2B2

•
•
γ1
γ2

) =:
I1 I2
I

.

Fixing the conclusion item I, we know

I I1’s rule is the same as I’s; the dot index is smaller by one.

I The start indices of I1 are i and k.

I I2’s rule expands B and has the dots at the very right.

I The end indices of I2 are j and l.

This leaves open

I the ‘inner/split’ indices r and s and

I the choice of a rule in RB, the set of all rules expanding B.

So, we iterate over all r and s with i 6 r 6 j and k 6 s 6 l and over all rules B→ β ∈ RB.
For each such combination, we add its contribution to the value of the conclusion.

4.6. Immediate Scanning

The standard way of item value computation uses the inference rules bottom-up: The cur-
rent item is plugged in as conclusion — if possible — and then we sum the contributions
of all possible sets of premises. It is called bottom-up, since we know the bottom line, and
look for a way up.

Scanning differs from completion in that there is always at most one premise item that
can contribute to the conclusion’s value. And the other way round: An item suitable
for scanning — i. e. one with a terminal behind a dot — cannot be used in any other rule.
Therefore, scanning may also be applied top-down: Once an item is produced43, we can
check whether it qualifies for scanning and if it does, immediately apply scanning.

43The first time the value of an item is increased, it leaves the state of non-existence (value 0).

61

4. Implementation Design Sebastian Wild

As nobody will ever use the pre-scan item, we can — and will — go a step further: We
will not even store a value for an item, that can be scanned. Instead, we immediately do the
scan — and as scanning simply assigns the value of the premise to the conclusion — this
means simply jumping over terminals in rules. By this trick, we can save 30 % of precious
memory44 for all those pre-scan item values we do not have to store now — at the price of
making things a little more complex.

4.6.1. Getting rid of pre-scan items

We simply change the range of dot indices, such that dot positions with a terminal to the
right totally vanish. We define the homomorphism delT by

delT(x) :=

{
x if x is a non-terminal component

ε otherwise
,

that simply deletes all terminals and set #NT(w) :=
∣∣delT(w)

∣∣. Obviously, #NT simply
counts the non-terminal components in w. Now, let A → α • β be a dotted rule. We call
qNT := #NT(α1) the non-terminal dot index or NT dot index of that item.

Notice that qNT is well defined for SCFGs and 2D-CFGs: For SCFGs, we have α =

α1. As all non-terminals in 2D-CFGs have full dimension, the number of non-terminal
components in α1 and α2 is equal in every dotted rule. Therefore, we will sloppily write
#NT(α) instead of #NT(α1) even for two-dimensional α.

Using NT dot indices makes it unnecessary to store two dot indices in two-dimensional
items — we just argued that the NT dot index is equal for both components. Therefore we
will have items (

i
k
j
l , p ,qNT

)
instead of

(
i
k
j
l , p, q1q2

)
.

We will have to iterate over all possible NT dot indices, so it is worth having a notation for
their maximal value: For a rule index p = ind(A→ γ) we define

`(p) := #NT(γ) .

Then, we always have 0 6 qNT 6 `(p). Intuitively, an NT dot index qNT means, the dot is
sitting in front the (qNT + 1)st non-terminal, or at the right end in case qNT = `(p).

4.6.2. Jumping over terminals

By using the NT dot indices instead of normal dot indices, we are sure never to stop in front
of a terminal. Now the only thing left, is ‘jumping’ over terminals — remember: It is not
enough to advance the dot indices, we also need to advance to position indices. In the times
of normal dot indices, adding one to dot indices meant adding one to position indices.
With NT dot indices, this does not hold any longer. Given a rule index p = ind(A → γ)

and NT dot index qNT we define

44In GRIP, roughly 30 % of all possible dot positions have a terminal right of the dot.

62

Sebastian Wild 4.7. Late item value computation

jump(p,qNT) :=

(
h(γ1,qNT) − h(γ1,qNT − 1) − 1

h(γ2,qNT) − h(γ2,qNT − 1) − 1

)
,

with h(w,q) :=

{
max
{
i : #NT(w1,i) = q

}
if q > 0

1 if q < 0
.

The helper function h converts NT dot indices to normal dot indices, the difference be-
tween two adjacent values gives the number of terminals in between.

Finally, whenever we ‘create’ a new item I :=
(
i
k
j
l , p ,qNT

)
— via prediction or com-

pletion — we have to add the jump offset to the end indices. So we store the value for I—
the one we have just computed — at V [j ′, l ′, i,k,p,qNT] instead of V [j, l, i,k,p,qNT] with
j ′ = j+ jump1(p,qNT) and l ′ = l+ jump2(p,qNT).

However, we know that terminals occur only at the left and right end of right hand
sides. Therefore jump(p,q) is zero for all 0 < q < `(p). So will use the convenience
notation

jumpLeft(p) := jump
(
p, 0
)

and

jumpRight(p) := jump
(
p, `(p)

)
instead of jump.

Now that we happily observed that we can skip scanning, a reminder might be adequate:
We still need to check for matching terminals somewhere; and even more: As we use rule
templates for rules differing only in the terminals produced, we need to know the termi-
nals to assign the correct rule probability! Fortunately, all these issues are solved by late
item value computation:

4.7. Late item value computation

Classical Earley semiring parsing uses the rule probability in the prediction step. This
does not allow the use of rule templates whose probability depends on terminals found in
later scanning steps, as the value of the predicted item is fixed long before the terminals
at the right are known.

Therefore, we postpone taking rule probabilities into account until finalization — i. e.
until the dot arrives at the very right. This may happen directly after prediction — if the
item is a terminating rule — or otherwise after the the last completion. For terminating
rules, their probability is known at time of prediction — we know the part of the input to
match with the rule’s terminals. So we give those items the appropriate value. For non-
terminating rules, the value of a newly predicted item is simply set to 1. Then we have to
check in every completion, whether the conclusion’s dot has reached the right end — if it
has, we multiply its new value by the then known rule probability.

It is important to note, that items with the dot not at the very right — i. e. exactly those
items, where the rule probability is still missing — are only used in completions deriving
an item with the same rule. If the shifted dot is still not at the right end, not including
the rule probability is the correct thing to do. And if the dot has reached the right end,
we explicitly include the probability now, thereby maintaining our invariant. The right

63

4. Implementation Design Sebastian Wild

premise in the completion rule always is a finalized item, by induction containing the rule
probability for ‘its’ rule. So, everything fits nicely.45

Late item value computation is only correct for commutative semirings. All we change
is the order of some multiplications, the factors remain the same — but changing the order
can already change the result in non-commutative semirings. Fortunately, we will only
need the two semirings given in section 2.6, namely the Viterbi-semiring and the inside-
semiring, both of which are commutative.

The nice consequence of late item value computation is, that it allows us to use our concept
of rule templates.46 At the time of completion of an item I :=

(
i
k
j
l , B→ β1

β2

•
•
)
, we know

exactly the subword it produces, namely
(
ui,j−1
vk,l−1

)
. As we assumed in requirement (5) of

section 3.4, terminals are only allowed at the left or right end of a rule; thereby, it suffices to
have i, j, k and l to know the absolute indices — i. e. the indices in u and v, respectively —
of all terminals in β. So we can simply multiply the current value of I— which does not
consider the rule probability so far — by the appropriate rule instance probability.

Requirement (5) allows us to nail down our notation of joint probabilities. When we
discussed it in section 3.1.4 for general grammars, we wrote P(A → γ ∧ a1, . . . ,ad) for
the probability of rule P

(
A → γ(a1, . . . ,ad)

)
, i. e. the rule instance of A → γ that results

from inserting a1, . . . ,ad as terminals in γ. Now, we now that in our grammars, rules
will have terminals only at the left and right end of the upper and lower component. For
p = ind(A→ γ), we write

P
(
p ∧ ui,j−1

vk,l−1

)
for the joint probability of rule template p and the rule instance that matches with the
derivation A⇒ γ⇒∗

(
ui,j−1
vk,l−1

)
.47

This new notation allows us to compactly give the factor, we have to include when
completing item I :=

(
i
k
j
l , B→ β1

β2

•
•
)

in a finalization step:

P
(

ind(B→ β) ∧ ui,j−1
vk,l−1

)
.

Finally, we are able to formally define the semantics of V— when introducing it, we
vaguely said V

[
j , l , i , k , p , q

]
“corresponds to” v

(
i
k
j
l , p ,q

)
, now we know the reason

for this and state

V
[
j , l , i , k , p , q

]
⊗ P
(
p ∧ ui,j−1

vk,l−1

)
:= v

(
i
k
j
l , p ,q

)
if q < `(p)

V
[
j , l , i , k , p , q

]
:= v

(
i
k
j
l , p ,q

)
if q = `(p)

(4.3)

Note that this weird definition does not make any statement about the value of V in the
first case if P

(
p∧ ui,j−1

vk,l−1

)
= 0. As output, we will only use item values, where q = `(p),

in which case every thing is fine. For backward parsing, however, we should keep this in
mind.

45Actually, this is not true for backward parsing. The problems arising there are resolved in section 4.9.
46It is also necessary for length-dependent SCFGs, as outlined in chapter 6.1.2.
47There is at most one instance that matches, as all instances have terminals at exactly the same positions. If

no instance matches, that probability is 0.

64

Sebastian Wild 4.8. Keeping probabilities in range — the 4-times-trick

4.8. Keeping probabilities in range — the 4-times-trick

Probabilities for Viterbi parses typically get very small, as they are a product of rule
probabilities. Inside and outside probabilities are a little bit better — they also sum up
some values — but still soon get very small. Symbolic calculation of the item values is
prohibitively slow, so we need to work with floating point arithmetic. Some of the com-
putations we perform are not prone to typical numerical errors, for instance, all of the
following do not introduce errors at all:48

I repeated multiplication by 1.0

I repeated addition of 0.0

I multiplication by 0.0 (yields exactly 0.0 again)

I check for equality with 0.0 is exact

So, our main woe are so-called underflows, i. e. numbers too close to zero to be distinguish-
able from 0.0 in our number representation. The “standard solution” to this is taking
logarithms of the probabilities. This keeps numbers in range, even for awfully small abso-
lute values. We even get free candy: Multiplication is replaced by cheap addition . . . but as
typical for free candy, there is also a downside. Addition is not directly possible — simply
taking exponentials then summing and taking logarithms again yields underflows. There
are ways to avoid that, e. g. the formula

a = b+ c ⇐⇒ a = b ·
(
1+

c

b

)
⇐⇒ loga = logb+ log

(
1+ exp

(
log c− logb

))
.

If b and c are roughly the same size, not much precision is lost, but we need one expo-
nentiation, one logarithm and three additions/subtractions. As the Viterbi semiring only
needs multiplication and maximum, we will compute the Viterbi values in logarithmic
scale.

Since we will have a lot of additions during the computation in the inside semiring, we
will use another approach, making use of application knowledge: (Consistent) stochastic
grammars induce a probability distribution on their language, i. e.

∑
w∈L(G) p(w) = 1.

Non-trivial grammars generate words of arbitrary length — otherwise, the language would
be finite. Rewriting the above sum gives a convergent series

1 =
∑
n>0

∑
w∈L(G):
|w|=n

p(w)

︸ ︷︷ ︸
=:Wn

=
∑
n>0

Wn .

We know that the language of a structure prediction grammar is Σ+. For RNA, |Σ| = 4, so
we have exactly 4n words of length n. Let’s assume, that all those 4n words appear with
the same probability pn, then we have∑

n>0

4npn = 1 which implies pn = o(4−n) .

48This is true for floating point numbers conforming to the IEEE 754 standard. Other specifications/imple-
mentations may differ, but since the formers are so widely used, we only looked at those.

65

4. Implementation Design Sebastian Wild

Of course, we will not really have the same probability for all primary structure of the same
length, but still this shows that the there is a contribution of 4−n to the probability of a
word w ∈ Σn, that only compensates for the exponential growth in the number of possible
primary structures. This contribution makes the probabilities decrease exponentially in the
structure size causing us so much trouble with precision.

The logarithm-approach changes this exponential decrease in a linear decrease we can
cope with. Our approach simply factors out the exponential contribution of 4−n, so for
every probability p dealing with terminal words of size n, we will actually save 4n · p
instead of p.

I1 :=
(
i j , p ,q

)
; VoneA

[
j, i,p,q

]
includes factor 4j−i ,

I2 :=
(
i
k
j
l , p ,q

)
; V

[
j, l, i,k,p,q

]
includes factor 4j−i · 4l−k .

(4.4)

This keeps numbers in reasonable range and allows normal arithmetic. In the rest of this
section, we discuss how to achieve this in our computations — providing a proof of (4.4)
by induction on the fly.

However, a warning should be issued, because we are actually giving up semiring
independence here. As the ‘4-times-trick’ is so handy for us, we will accept this deficiency
and silence our conscience by shouting out:

! The 4-times-trick only works for semirings, where ⊗ is the ordinary multipli-
cation on reals / integers. !

Of course, this is fulfilled for all semirings we intend to use, namely the Viterbi-
semiring and the inside semiring (as defined on page 21).

4.8.1. Prediction

Predicted items deal with no terminal strings, so we do not have to change anything.

4.8.2. Scanning

Since we use immediate scanning, we jump over terminals. However, scanning increases
the length of the terminal word in question. So we multiply the value to be written at the
position shifted by jump by 4jump. For the 2D-case, we multiply by 4jump1+jump2 .

4.8.3. Completion

Although you might already know this one by heart, here is the completion rule again:(
i
k
r
s , A→ α1

α2

•
•
B1γ1
B2γ2

) (
r
s
j
l , B→ β1

β2

•
•

)
(
i
k
j
l , A→ α1B1

α2B2

•
•
γ1
γ2

) =:
I1 I2
I

.

66

Sebastian Wild 4.9. Reverse parsing

Given the saved values for I1 and I2 fulfill (4.4), we get:

contribution added to v(I) = 4r−i · 4s−k · v(I1) ⊗ 4j−r · 4l−s · v(I2)
= 4r−i · 4s−k · v(I1) · 4j−r · 4l−s · v(I2)

= 4j−i · 4l−k ·
(
v(I1) · v(I2)

)
= 4j−i · 4l−k ·

(
v(I1) ⊗ v(I2)

)
.

So we get 4j−i · 4l−k in every contribution, giving us the correct value for I.

4.8.4. Finalization

Finalization does not change the length of terminal strings involved. The current value —
by induction — includes the correct amount of fours, finalization simply multiplies this by
the rule probability.

4.9. Reverse parsing

Goodman describes in [Goo98, Goo99] how reverse semiring parsing generally looks like.
From an abstract view, two things change: First, we need to reverse the item order — for
our lexicographical order this means reversing the ordering of every component. Second,
the formula for item value computations is a different one.

Not only is the reverse formula more complicated, it also reverses the typical inference
rule application direction. In forward parsing it was bottom-up — the ‘to-be-computed’
item was the conclusion of a rule. Now it is top-down — the ‘to-be-computed’ item is one
of the premises of a rule application.

We will essentially go through all topics of this chapter 4 and discuss what has to be done
in reverse parsing.

4.9.1. Item order

The item order is the first thing to look at. We simply reverse the order defined in sec-
tion 4.2, i. e. we order the items according to � instead of ≺.

4.9.2. Item representation

As already indicated in section 4.3, we use a second array Z, that saves the reverse values,
where

Z
[
j , l , i , k , p , q

]
corresponds to z

(
i
k
j
l , p ,q

)
.

Array Z is initialized to 0, except for the goal item:

Z
[
n+ 1,m+ 1, 1, 1, ind(S ′ → S), 1

]
:= 1 .

Again, the above “corresponds to”-phrase needs to be formalized. As we will see, for
efficient computation we need to include the rule probability for the ‘current’ rule in Z,

67

4. Implementation Design Sebastian Wild

although this probability is not part of the item value z as defined by Goodman in [Goo98].
The cause is late item value computation in the forward run. So we have

Z
[
j , l , i , k , p , q

]
:= z

(
i
k
j
l , p ,q

)
⊗ P

(
p ∧ ui,j−1

vk,l−1

)
. (4.5)

Note, that for the backward values, we do not have a distinction of cases q </= `(p), so no
weaseling out this time by “we only need finalized item values”. Indeed, if P

(
p∧ ui,j−1

vk,l−1

)
=

0, so is Z
[
j, l, i,k,p, `(p)

]
and there is no chance for removing P

(
p∧ ui,j−1

vk,l−1

)
by dividing by

it — so what to do for outside probability β
(
A; i, j,k, l

)
for A := source(p)?

Actually, there are two cases: If the corresponding inside probability α
(
A; i, j,k, l

)
is

non-zero, there must be a rule p ′ in RA with P
(
ind(p ′)∧ ui,j−1

vk,l−1

)
> 0. Then we can take the

backward value z
(
i
k
j
l , p ′ , `(p ′)

)
and divide it by P

(
ind(p ′)∧ ui,j−1

vk,l−1

)
.

For the other case, α
(
A; i, j,k, l

)
= 0, there is no way to efficiently recover the correct

outside probability. But since all applications of inside and outside probabilities known
to the author somehow multiply corresponding inside and outside probabilities, we simply
set β

(
A; i, j,k, l

)
:= 0 in such cases: Multiplying by corresponding inside probability will

yield 0 anyway.

For the one-dimensional case, we use the arrays ZoneA with analogous semantics.

4.9.3. Computation of reverse values

A reverse parse will consist of a main loop over all legal items in reverse order. For each
item, we compute its reverse value according to Goodman’s formula:

z(A) =
⊕

A1, . . . ,Ak, j,B :
A1,...,Ak

B ∧ Aj=A

z(B) ⊗ v(A1)⊗ · · · ⊗ v(Aj−1)⊗ v(Aj+1)⊗ · · · ⊗ v(Ak) .

Note that we need the forward values in arrays V, Voneu and Vonev, to compute reverse
values.

Assume the current item is
I :=

(
i
k
j
l , A→ α1

α2

•
•
β1
β2

)
.

There are several mutually exclusive cases for I and those cases determine how its reverse
value has to be computed:

I The dot sits left of a non-terminal.
Such items only occur as the first premise in the completion rule. We call value
computations for such items completion of first type.

I The dot is at the very right — i. e. left of nothing.
This means, I is a finalized item. Such items only occur as second premise in the
completion rule. This case is handled in completion of second type.

I The dot is left of a terminal.
Such items only occur as premise in scanning rules.

68

Sebastian Wild 4.9. Reverse parsing

What about prediction?

The premise of prediction is a special rule existence item. We will not compute
reverse values for those, as they do not have a meaningful application. So, no
predictions in reverse parsing.

Such ‘reverse predictions’ would be somewhat like predicting the past and who would be interested in that?!

Section 3.6 on page 50 tells us that we only need one kind of reverse item values, namely
those of items with the dot at the very right. This means:

There is no need to compute reverse values for items where
I the dot is not at the very right and
I there are no non-terminals left of the dot left.

4.9.4. Scanning

The box above leaves us with terminals at the right end of the rule. When we newly create
a finalized item — i. e. one with the dot at the right end — we cannot immediately scan it
like we did in the forward parse: We need the reverse value of the not-scanned item at the
indices including terminals, because those correspond to the outside probabilities (for the
inside semiring).

So, we have to make sure to jump over these terminals, whenever we use these reverse
values later for further computations.

4.9.5. Completion — first type

Here is the completion rule — again — but with indices renamed to match I with the first
premise: (

i
k
j
l , A→ α1

α2

•
•
B1γ1
B2γ2

) (
j
l
r
s , B→ β1

β2

•
•

)
(
i
k
r
s , A→ α1B1

α2B2

•
•
γ1
γ2

) =:
I I1
I2

.

We compute the reverse value of I by iterating over all possible choices for I1 and I2—
namely j 6 r 6 n + 1, l 6 s 6 m + 1 and all rules B → β ∈ RB— and sum their
contributions:

Z(I)⊕= Z(I2)⊗ V(I1) .

Iterating in order � makes sure that Z(I2) has already been computed.

4.9.6. Completion — second type

The renamed completion rule says:(
r
s
i
k , A→ α1

α2

•
•
B1γ1
B2γ2

) (
i
k
j
l , B→ β1

β2

•
•

)
(
r
s
j
l , A→ α1B1

α2B2

•
•
γ1
γ2

) =:
I1 I

I2
.

69

4. Implementation Design Sebastian Wild

We compute the value by executing

Z(I)⊕= Z(I2)⊗ V(I1)

for each 1 6 r 6 i, 1 6 s 6 k and each dotted rule A → α•Bβ. To conveniently do
that, we use function dottedRules : N → N2 that tells us for every non-terminal B, which
combinations of rule and dot index produce a dotted rule A→ α•Bβ:

dottedRules(B) :=
{
(p,qNT) : p = ind(A→ αBβ) ∧ qNT = #NT(α)

}
.

Additionally, the definition for Z in (4.5) tells us, that the backward value of the newly
created finalized item I has to include the joint probability of P

(
ind(B→ β)∧ ui,j−1

vk,l−1

)
, so we

multiply Z(I) by that.
This has an additional advantage: Equation (4.3) did not properly define entries

V
[
j, l, i,k,p,q

]
for q < `(p) and P

(
p∧ ui,j−1

vk,l−1

)
= 0. In reverse parsing, we only use such

entries in completion of second type, namely as V(I1). But for Z(I), we always multi-
ply V(I1) by Z(I2) = Z

[
r, s, j, l,p,q+ 1

]
, by definition including P

(
p∧ ui,j−1

vk,l−1

)
= 0. So, the

undefined value of V
[
j, l, i,k,p,q

]
is always ‘zeroed’ out when used.

4.9.7. 4-times-trick

In section 4.8, we argued that it makes sense not to directly save item values, but 4n times
that value — where n is the length of ‘involved’ terminal words. In subsection 3.6.1, we
show that reverse item values in the inside semiring directly correspond to outside proba-
bilities. So, looking at the terminal strings involved in outside probability

β(A, i, j) = Pr
[
S⇒∗ w1,i−1Awj,n

]
tells us to multiply the reverse value of

(
i j , A→ γ •

)
by 4i−1 · 4n−j+1 = 4n−(j−i). Now,

we can complete our table:

I1 :=
(
i j , p ,q

)
;

VoneA
[
j, i,p,q

]
includes factor 4j−i ,

ZoneA
[
j, i,p,q

]
includes factor 4n−(j−i) ,

I2 :=
(
i
k
j
l , p ,q

)
;

V
[
j, l, i,k,p,q includes factor 4j−i · 4l−k ,

Z
[
j, l, i,k,p,q

]
includes factor 4n−(j−i) · 4m−(l−k) .

Simply inserting these for the reverse item value formulæ shows: We need to multiply by
4s if we reverse-scan s terminal symbols. Then, both completion rules do the correct thing.

Note, that identity (3.3) including the correction factors becomes

4j−i · v(I) · 4n−(j−i) · z(I) =
⊕

D derivation :
I appears in D

4n · v(D)

for item I =
(
i j , p ,q

)
— which is good as v(D) addresses the whole input w ∈ Σn, so 4n

is the correction factor we would like to see there and — even more important — 4n does
not depend on I.

70

5. Results

5.1. jackRIP — our C++ implementation of a 2D-CFG parser

Appendix A on page 85 contains pseudocode for the parser procedures described in the
previous chapters. We also proudly present jackRIP, our implementation of these pro-
cedures in C++, providing a full-fledged command line interface for comfortable use of
jackRIP.

Special emphasis was put on runtime efficiency. Apart from the measures taken in
chapter 4, some technical optimizations have been incorporated. The most important is
excessive use of precomputed look-up tables for functions listed in appendix A.1. Sec-
ondly, many functions were inlined, avoiding costs for subroutine calls. Last not least,
the flyweight pattern was applied to create an object oriented design for terminals, non-
terminals and rules with zero overhead compared to directly using integers as encoding.

5.2. Target Machine

Due to the high-dimensional arrays used in the parser, our main concern was to ensure that
the whole array fits into main memory. We used a recent version (4.6) of the GNU C++-
Compiler to cross-compile our parser for Windows 7. The target machine is comprised
of four six-core AMD Opteron Processors, sharing 128 GB of main memory in a NUMA49

architecture, running the 64-bit version of Windows 7.

5.3. Runtime efficiency tests

5.3.1. RNA-RNA-interaction

To the knowledge of the author, there is no software freely available which is close enough
to our approach to do sensible runtime comparisons.

Of all approaches to the RNA-RNA interaction problem, the one by Kato et al.
in [KAS09] is the most similar one, as it also uses a subclass of SMCFGs. Additionally,
[KAS09, table 3] does not only show prediction accuracy measures, but also the CPU time
used for computing the prediction. As the implementation was not available to the author,
comparable values for the same machine could not be determined. It has also to be taken
into account that the grammar used be Kato et al. is much smaller than GRIP. Nevertheless
does table 5.1 show the measures in comparison.

49Non-Uniform Memory Architecture; this architecture distributes main memory to CPUs, but allows pro-
cesses to access memory segments dedicated to a CPU other than the one they are currently running on.
In the extreme this allows one CPU to use the whole main memory, providing us with the needed size for
our parser.

71

5. Results Sebastian Wild

RNA pair n m runtime memory runtime from [KAS09]

DIS-DIS 35 35 180 s 290 MB 381 s
CopA-CopT 56 57 3,608 s 2.2 GB 1,206 s
ompA-MicA 137 72 51.7 h 17.7 GB —

U2 and U6 snRNAs in yeast 21 144 95 147.6 h 33.7 GB —

Table 5.1.: Comparison of runtime of jackRIP and the SRIG-parser from [KAS09]. Runtime
and memory consumption for jackRIP were measured on above mentioned target
machine (section 5.2). Note that the runtime shown in the last column refers to
a different execution platform. The last two lines show the longest RNA pairs
successfully predicted using jackRIP so far. The reference joint structures were
taken from (top-down) [PSE+96], [WF02], [UDV+05] and [AZC05, id 22]

For these pairs n ≈ m, so as both algorithms are known to have runtime in Θ(n3m3), we
should expect rate of growth n6. For jackRIP, the first two measures given show growth
of n6.4, which is within reasonable bounds of the expected growth. Taking into account
the two large pairs, we see in the right plot of figure 5.1, that approximation a · n6 holds
for larger inputs, as well.

However, taking the five values given in [KAS09, table 3] (left plot), we find that the
polynomial rate of growth is definitely smaller than 6.

As mentioned below when discussing prediction quality, Kato et al. adapt their algo-
rithm to the five input pairs used: They “set the probabilities of the rules of the type W at
0, that is, the algorithm does not calculate the recursion for this type of rule since we need
not deal with bifurcation for the above test set“ ([KAS09, section 6]). Completely remov-
ing the corresponding recursion in their algorithm would imply runtime in Θ(n2m2), still
not fully explaining the runtime measures. So, further optimizations not discussed in the
paper might have been applied to the SRIG-parser of Kato et al.

æ æ

æ

æ
æ

10 20 30 40 50 60 70
n0

500

1000

1500

2000

Runtime in s

æ æ

æ

æ

20 40 60 80 100 120
n0

100 000

200 000

300 000

400 000

500 000

600 000

Runtime in s

SRIG-parser from [KAS09] jackRIP

Figure 5.1.: “Rate of growth” analysis for the two parsers. The dots are the runtime measures,
where the x-axis shows 6

√
n3m3, which is n for n = m and the y-axis indicates

the runtime in seconds. The plotted functions were determined by least-square
fitting of the first three data points on function f(n) = a · nc for c = 6 (fat line),
c = 3 (dotted line) and c = 2 (dashed line). The last two respectively one measure
point(s) therefore allow to judge adequacy of the growth function.

72

Sebastian Wild 5.4. Prediction quality tests

Runtime and especially memory consumption of jackRIP get infeasible for RNA pairs with
n+m > 250 on current machines — the same bound is given for the partition function
approach based on rip2 in [HQRS10]. Table 5.1 gives the largest RNA pairs successfully
predicted using jackRIP so far and might give an impression of what ‘infeasible’ means.

5.3.2. Comparison with classical Earley parsing

As no meaningful runtime comparison was possible for joint structure prediction, we
looked at single RNAs: jackRIP is readily able to predict most likely secondary structures
for single RNA molecules. An semiring implementation of the classical Earley-parser,
using dynamically allocated lists as item sets, was compared to jackRIP’s one-dimensional
component.

For an RNA molecule of approximately 1000 bases, jackRIP needed 1 GB of mem-
ory and 35 minutes of time, whereas the classical Earley-parser had to be aborted after
20 hours, as it had eaten up over 50 GB of memory and was not making progress any more.
This drastically shows the adequacy of using a full-storage array for all items in case of
dense grammars.

5.4. Prediction quality tests

5.4.1. Test Data

Unfortunately, at the time of this writing only a few dozens of interacting RNAs are
known, where the full joint secondary could be determined. Given that our approach
needs to train a stochastic model — namely our grammar GRIP — this poses quite a prob-
lem. Nevertheless did we set up two compilations of test data:

(1) A set of five interacting RNA pairs — all forming the same kind of kissing hairpin
structure — compiled by Kato et al. in [KAS09].

(2) A set of 22 interacting RNAs used in [AZC05], which was kindly provided to us
by Mirela Andronescu. Two pairs (namely the ones with ids 18 and 19) were ex-
cluded from the test set, since their known joint secondary structure contains internal
pseudoknots.

Both sets were considered separately from each other and were divided into a training set
and a prediction set.

5.4.2. Prediction method

The known structures from the training set were then used to give estimates of the rule
probabilities by simply taking relative frequencies of rule counters. We started counting at
one instead of zero to avoid completely ignored rules.

Then, a Viterbi parse was computed using the estimated probabilities for GRIP and
probabilities for GSecStr determined from a training set of single RNAs containing a mixture
of various types of RNA; namely the ‘mixedRNAs’ set used in [DE04], using parameters
m = 1 and k = 3 for GSecStr. The secondary structure encoded by this most likely parse
tree was then output as prediction.

73

5. Results Sebastian Wild

5.4.3. Quality measures

For evaluating the quality of predictions, we applied three simple measures typically used
in secondary structure prediction:

Let P be the number of bonds in the predicted structure and R be the number of bonds
in the trusted reference structure. Moreover, let M be the number of exact matches, i. e.
the number of pairs identically occurring in predicted and reference structure. Then the
following measures are defined

I Sensitivity M
R

I Specificity M
P

I F-measure 2M
R+P

All measures are in range [0, 1], larger values of course implying better prediction. Note:
The f-measure is typically defined as 2sensitivity·specificity

sensitivity+specificity , the well-known formula for the
harmonic mean of sensitivity and specificity. This is equivalent to our definition:

2MR ·
M
P

M
R + M

P

=
2MR ·

M
P

M · P+RR·P
=

2M

P+ R
.

The reason, why the right form is preferred is simple: Sensitivity and specificity are not
defined if R respectively P is 0. The formula typically given does not properly define the
f-measure if either sensitivity or specificity is not defined, whereas ours still does.

In the case of joint secondary structures, ‘bonds’ is somewhat ambiguous. For compa-
rability with other approaches that only predict interaction sites, we computed all three
measures for

I the set of internal and external pairs, ignoring this difference and

I the set containing only the external bonds.

For the following tests, we always use the first variant.

5.5. Prediction results

5.5.1. Data from [KAS09]

jackRIP [KAS09], energy based model

Structure sensitivity specificity f-measure sensitivity specificity f-measure

DIS-DIS 0.46 0.41 0.43 0.79 0.79 0.79

CopA-CopT 0.43 0.34 0.38 0.91 0.80 0.85

Table 5.2.: Comparison of prediction results for jackRIP and the energy based model from
[KAS09].

74

Sebastian Wild 5.5. Prediction results

Of the five joint secondary structures predicted in [KAS09], we used three structures
to train GRIP, namely Tar-Tar*, R1inv-R2inv and IncRNA54-RepZ. The other two ones were
predicted using those probabilities. Table 5.2 on the preceding page shows the quality
measures. In comparison, jackRIP performs rather poor, but several things need to be
taken into consideration:

I The energy-based-approach used by Kato et al. does not suffer from little training
data, since base pair stacking energies were used to determine rule probabilities,
whereas jackRIP certainly does.50

To make things worse, our grammar GRIP is rather large in comparison, needing
many rule probabilities to be trained from quite little data.

I In section 6 of [KAS09], the authors state that they “set the probabilities of the rules
of the type W at 0, that is, the algorithm does not calculate the recursion for this type
of rule since we need not deal with bifurcation for the above test set“.

Of course, this kind of manually tweaking gravely simplifies the task of prediction.
The probabilities for jackRIP were not edited in any way, in order to measure perfor-
mance for the more realistic setting of not knowing such details about the structure.
Note that training GRIP on a sufficiently large set of structures all forming this very
same kind of kissing hairpins would automatically increase the probability of form-
ing such structure for new RNAs.

5.5.2. Data from [AZC05]

Lack of training data is considered a main cause for mis-predictions in the first test above.
Therefore, we added two more structures to the training set, see table 5.3 on the following
page. GRIP trained at this set, yielded the predictions shown in table 5.4 on page 77 for
the rest of the test data. This table also lists the measures for predictions of pairFold, the
implementation of the algorithms presented in [AZC05]. Looking at the results, several
points are noteworthy:

I In the overall picture, jackRIP’s predictions are slightly inferior to pairFold, but defi-
nitely comparable.

I One RNA pair drastically breaks the pattern: Tar-Tar*. This pair is the only pair (of
which prediction data by both jackRIP and pairFold is available), where the concate-
nation of secondary structure as dot-bracket-word yields a pseudoknotted structure.
More precisely, Tar-Tar* is known to form a kissing hairpin complex, correctly pre-
dicted by jackRIP. Since pairFold cannot predict such structures, it will have to ap-
proximate it by a well-nested structures — explaining its inferior prediction results.

I DIS-DIS was considered again, but this time using the new training data. The results
significantly improve from the ones given in table 5.2, although the new training data

50Just to get an impression: For training, we count how often rules were applied in all training structures in
total. For the three ones used here, the maximal count for a single rule was 43. Typical values of counters
used for plain secondary structure prediction are hundreds or even thousands of applications.

75

5. Results Sebastian Wild

contains a mixture of different RNA-RNA interacting pairs, whereas the result from
table 5.2 used known structures very similar to the one of DIS-DIS.

This provides strong evidence that indeed too little training data was causing poor
results in the first test, and on the other hand suggests the possibility of further
improving predictions by choosing a larger set of pairs forming kissing loops.

Finally, note that our training set still consisted of only 12 RNA pairs, quite little data com-
pared to studies for plain secondary structure prediction. Therefore, further improvements
could be achievable by increasing training sets.

RNA pair n m Origin

Hammerhead ribozyme R32 and substrate 11 32 [AZC05], id 01

Hammerhead ribozyme and no-tail gene target mRNA in zebrafish 17 38 [AZC05], id 03

αYRz60 hammerhead ribozyme and HIV-1 target sequence 70 100 [AZC05], id 05

Conventional hairpin ribozyme, seq. variation HP-WTSV1 and substrate 14 55 [AZC05], id 07

Hairpin ribozyme and substrate 21 92 [AZC05], id 09

Hairpin ribozyme RzG101 and substrate 50 14 [AZC05], id 11

X-motif ribozyme model 43X and S21 substrate RNA 21 43 [AZC05], id 13

ATP-sensitive allosteric ribozyme construct IV-up and substrate 14 59 [AZC05], id 15

5’CYbUT RNA crosslinked to gCYb-558 28 59 [AZC05], id 17

U2 and U6 snRNAs in yeast 21 72 40 [AZC05], id 21

fhlA-OxyS 113 109 [AA00, fig 7]

sodB-ryhB 87 90 [GT04, fig 7]

Table 5.3.: The RNA pairs whose known joint secondary structure is used for training GRIP.

5.5.3. Summary

Both tests show the applicability of our method, although on average, previously pub-
lished approaches could not be outperformed. On the other hand, those approaches did
not rely on thoroughly training a stochastic model. Therefore a larger training set for
jackRIP is very likely to improve upon prediction results.

76

Sebastian Wild 5.5. Prediction results

ja
ck

R
IP

[A
Z

C
0
5
]

R
N

A
pa

ir
O

ri
gi

n
se

ns
.

sp
ec

.
f-

m
ea

s.
se

ns
.

sp
ec

.
f-

m
ea

s.

A
U

G
-c

le
av

in
g

ha
m

m
er

he
ad

-l
ik

e
ri

bo
zy

m
e

an
d

su
bs

tr
at

e
[A

Z
C

0
5
],

id
0
2

0
.7

9
0

.9
4

0
.8

6
0
.9

5
0

.9
0

0
.9

2

R
z1

2
×

1
2

ha
m

m
er

he
ad

ri
bo

zy
m

e
an

d
H

IV
-1

ta
rg

et
se

qu
en

ce
[A

Z
C

0
5
],

id
0
4

0
.8

8
0

.9
7

0
.9

2
0
.8

8
1

.0
0

0
.9

4

R
ev

er
se

-jo
in

ed
ha

ir
pi

n
ri

bo
zy

m
e

H
P-

R
JT

L
an

d
su

bs
tr

at
e

[A
Z

C
0
5
],

id
0
6

0
.2

6
1

.0
0

0
.4

2
1
.0

0
0

.7
6

0
.8

6

H
ai

rp
in

-d
er

iv
ed

tw
in

ri
bo

zy
m

e
H

P-
D

S1
an

d
su

bs
tr

at
e

[A
Z

C
0
5
],

id
0
8

0
.6

3
0

.8
7

0
.7

3
0
.9

3
0

.7
8

0
.8

5

M
od

ifi
ed

ha
ir

pi
n

ri
bo

zy
m

e
an

d
su

bs
tr

at
e

[A
Z

C
0
5
],

id
1
0

0
.6

7
0

.9
7

0
.7

9
0
.8

4
0

.7
5

0
.7

9

M
in

im
al

tw
o-

w
ay

he
lic

al
ju

nc
ti

on
2

W
J-

SV
5

ha
ir

pi
n

ri
bo

zy
m

e–
su

bs
tr

at
e

co
m

pl
ex

[A
Z

C
0
5
],

id
1
2

0
.5

0
1

.0
0

0
.6

7
0
.9

2
0

.8
1

0
.8

6

M
R

8
-1

ri
bo

zy
m

e
(d

er
iv

ed
fr

om
X

-m
ot

if
ri

bo
zy

m
e)

an
d

S2
1

su
bs

tr
at

e
R

N
A

[A
Z

C
0
5
],

id
1
4

0
.2

9
0

.4
5

0
.3

6
0
.7

1
0

.4
8

0
.5

7

A
TP

-i
ns

en
si

ti
ve

ri
bo

zy
m

e
co

ns
tr

uc
t

IV
-d

ow
n

an
d

su
bs

tr
at

e
[A

Z
C

0
5
],

id
1
6

0
.8

3
0

.9
5

0
.8

8
0
.8

3
0

.7
0

0
.7

6

Ta
r-T

ar
*

(K
is

si
ng

ha
ir

pi
n

lo
op

co
m

pl
ex

)
[A

Z
C

0
5
],

id
2
0

1
.0

0
0

.8
8

0
.9

3
0
.3

6
0

.5
6

0
.4

4

U
4

an
d

U
6

sn
R

N
A

s
in

ye
as

t
[A

Z
C

0
5
],

id
2
2

0
.6

5
0

.7
1

0
.6

8
0
.9

4
0

.6
8

0
.7

9

om
pA

-M
ic

A
[U

D
V
+

0
5
,fi

g
7
]

0
.4

8
0

.6
6

0
.5

6
—

—
—

D
IS

-D
IS

[P
SE

+
9
6
,fi

g
1

]
0

.5
0

0
.6

4
0

.5
6

—
—

—

Ta
bl

e
5.

4.
:P

re
di

ct
io

n
qu

al
ity

m
ea

su
re

s
fo

r
th

e
pr

ed
ic

tio
ns

of
ja

ck
R

IP
an

d
pa

ir
Fo

ld
as

gi
ve

n
in

[A
Z

C
05

].

77

6. Conclusion

In the previous chapters, we introduced the class of m-dimensional context-free grammars
(mD-CFGs) and showed that many concepts of ordinary CFGs can easily be generalized.
For m = 2, i. e. for the 2D-CFGs, we presented an Earley-style parser with worst case
run time in Θ(n3m3) and memory consumption in Θ(n2m2) for a terminal 2-tuple

(
u
v

)
of

size |u| = n and |v| = m. The parser is given in an item-based form suitable for semiring
parsing — i. e. it allows probabilistic parsing. Note that no normal form for grammars is
needed in Earley parsing.

We translated a partitioning scheme for RNA-RNA joint secondary structures into the
2D-CFG GRIP, which can be used in generalizations of the known algorithms for RNA
secondary structure prediction based on trained stochastic context-free grammars (i. e.
inside and outside algorithm and computation of Viterbi parses). It should be noted, that
internal and external pseudoknots, as well as so-called zig-zags are excluded from the
allowed joint structures; however, kissing hairpin complexes are predictable.

For efficient implementation, we discussed some optimizations of Earley parsing for
dense grammars, i. e. grammars, where every non-terminal can derive almost every possible
substring of a terminal word. This is typically the case for structure prediction grammars,
as the terminal strings are the primary structures. The optimizations do not change the
O-class of runtime or memory consumption, but conceptually convert Earley parsing into
a dynamic programming algorithm of very regular shape. This allows modern CPUs to
make heavy use of caching and pipelining. jackRIP, our implementation of the probabilistic
parser for 2D-CFGs shows a significant speedup in practice compared to classical Earley

parsing.
Finally, we compared the prediction results of jackRIP to other recent approaches

for determining RNA-RNA interactions, showing that currently, prediction accuracy is
slightly inferior. However, those approaches are based on energy-minimization, whereas
jackRIP requires training of a stochstic model from known joint structures. At the time of
this writing, only a very few trusted joint structures were known and experiments with
varying amounts of training data provided strong evidence that lack of training data is a
main reason for poor predictions. So, we hope for improving our results, as more joint
structures become available.

79

6. Conclusion Sebastian Wild

6.1. Future Work

Although this work is quite self-contained, the algorithm and its implementation jackRIP,
as well, have carefully been designed with some extensions in mind. In this section, we
will briefly introduce those, including the changes needed for implementing them. Both
concepts have not been applied to RNA-RNA interaction prediction so far.

6.1.1. Statistical Sampling based on trained models

Predicting a single most likely secondary structure is an intrinsically limited approach.
It is well accepted in the community that perfectly reliable structure predictions are out
of reach. Too many aspects involved in RNA folding in nature are overlooked even by
the most accurate models known and stochastically trained models will always remain an
approximation.

Therefore the idea evolved to compute, e. g. base pairing probabilities or even probabil-
ities for the occurrence of a given loop type at a given position, thereby allowing to give
‘classes’ of probable structures instead of a single static prediction. All of this can be done
using the partition functions introduced by McCaskill in [McC90]. Statistical sampling
via partition functions has been generalized to RIP in [HQRS09].

Recent approaches in [NS10] show, how to compute the same information from care-
fully chosen SCFGs, which is very useful as trained SCFG-models are not suffering from
deficiencies of energy models. All that is needed as input to this new sampling method
is the set of inside and outside probabilities for the primary structure in question, which
jackRIP can efficiently compute.

However, there is one pitfall we created by our decision in subsection 3.5.1: The outside
probabilities in the subgrammars are defined to ‘start’ at the start symbol of the subgram-
mar — instead of the one of the main grammar. For sampling, this is the wrong probability!
To repair this, we have to change the one-dimensional reverse parser, such that it does not
start by setting the reverse value of the subgrammar’s goal item to 1 and all others to 0,
but by using “start values” computed by the two-dimensional reverse parser.

To fill in these start values, 2D-Earley-Backward needs a new subroutine 2D-
Complete-Second-Type-1D-NT which computes the backward value of finalized 1D-items
for the start rules of all one-dimensional subgrammars. These values would then be given
as initialization of Zone to 1D-Earley-Backward.

6.1.2. Length-Dependency

Recently, an new extension to the formalism of SCFGs was proposed: Nebel and Wein-
berg introduce in [WN10] the class of length-dependent SCFGs, which differs from SCFGs
in allowing a second parameter for determining the probability of a rule application: the
length of the subword finally derived from this rule.

From the point of view of bioinformatics, this class is interesting, as it allows to assign
probabilities for a specific loop structure, which depends on the size of this loop. Plain
SCFGs can model such dependency to a certain extent, but are somewhat limited in the
kind of functions in the length they realize:

80

Sebastian Wild 6.1. Future Work

Consider for example a non-terminal C and rules C → p : |C and C → 1 − p : |.
Generating |n from C has probability pn−1(1 − p), which is of course a function in n;
however if we need to have a function other than this geometric distribution, we need to
cleverly modify our grammar, and most distributions will not be compactly representable.
The new concept of length-dependency embraces all possible distributions.

For implementing an Earley parser for length-dependent grammars, one needs to post-
pone inclusion of rule probabilities to the completion step — only then is the length of the
produced subword known. ‘Luckily’, this is exactly the way we do it in our [2D-/S]CFG
parser. Hence, the only change needed to implement length-dependency concerns the
computation of joint rule probabilities — ‘joint’ now embraces the rule template, produced
terminals and produced length.

These new length-dependent grammars have not been applied to RIP yet. However,
increasing the number of parameters to train needs more training data . . . lack of which
we already had for plain grammars.

81

Appendix

83

A. Pseudocode

In this section, we will give pseudocode for the parsers implementing the design given in
chapter 4. Assumptions made are:

I G = (N,Σ,R,S ′,P) is a 2D-CFG, where one-dimensional subgrammars have been
removed: N = N2 ∪̇Nu ∪̇Nv, where the (effectively) two-dimensional non-terminals
belong to N2 and (effectively) one-dimensional ones to Nu and Nv— non-terminals
with effective indices {1} and {2}, respectively. In R, there are only rules expanding
non-terminals in N2.

For every A ∈ Nu ∪̇Nv we have the subgrammar GA = (NA,Σ,RA,A,PA) as defined
in subsection 3.1.3. GA is a SCFG.

I We are parsing
(
u
v

)
with u ∈ Σn and v ∈ Σm in G.

I There is only one rule for S ′, namely S ′ → S, S ∈ N and
for each GA there is only one rule A→ C for some C ∈ NA.
S ′ and C do not show up in right hand sides in R and RA, respectively.

I G does not contain non-terminals of effective dimension zero.
(Such non-terminals can simply be deleted.)

I Terminals do not occur in the middle of a rule.

I No left-recursion, i. e. /∃A A⇒+ Aα.

I We use a semiring where ⊗ is the multiplication on reals/integers.
(Otherwise, the 4-times-trick does not work. In those cases you have to delete all
multiplications with powers of four from the following code.)

The correctness of the algorithms follows from the proofs in [Goo98] and our discussions
in chapters 3 and 4.

A.1. Collected definitions

During our refinement, we defined several functions that depend on the grammar, but not
on the input

(
u
v

)
. As those values are used very often, we will precompute them and use

table-lookup functions. In the following, we list them again for reference:

I ind(r) for r ∈ R:
The rules of the grammar have to be sorted — by assigning them consecutive indices,
such that A ∠⇒+ B implies ind(A→ α) > ind(B→ β).

I ind’s(B) for B ∈ N:
The set of all rule indices whose left hand side is B, i. e. ind’s(B) :=

{
ind(r) : r ∈ RB

}

85

A. Pseudocode Sebastian Wild

I source(p) = B :⇔ p ∈ ind’s(B), the left hand side of a rule.

I #NT(γ), the number of non-terminal (components) in γ.
Formally, define #NT(γ) :=

∣∣delT(γ)
∣∣,

for homomorphism delT given by delT(x) :=
{
x
ε

if x is a non-terminal (component)
otherwise .

I `(p) for rule index p = ind(A→ α), the number of non-terminals in α,
i. e. `(p) := #NT(α),

I qNT, the NT dot index, satisfies 0 6 qNT 6 `(p), meaning
the dot is sitting directly left of the (qNT + 1)st non-terminal for 0 6 qNT < `(p) or
at the very right end in case qNT = `(p)

I dottedRules(B) :=
{
(p,qNT) : p = ind(A→ αBβ) ∧ qNT = #NT(α)

}
,

the indices of all dotted rules, where B is the next non-terminal.
For subgrammar GA, we write

dottedRulesA(B) :=
{
(p,qNT) : C ∈ NA ∧ p = ind(C→ αBβ) ∧ qNT = #NT(α)

}
,

to restrict the allowed rules to those expanding non-terminals in GA.

I nextNT
(
p,qNT

)
for rule index p and NT dot index qNT < `(p):

The (qNT + 1)st non-terminal in right hand side of rule with index p,
equivalently: B = nextNT(p,q) ⇐⇒ (p,q) ∈ dottedRules(B)

I jumpLeft(p) and jumpRight(p) for rule index p:
The number of terminals at the left and right end of rule p, respectively.

I P(p ∧ w) the joint probability for rule template p and terminals w:
Let p = ind(A→ txγ ty) for t the terminal placeholder, x,y ∈N0 and γ ∈ N?.
Then we have

P(p ∧ w) := Pr
[
A→ w1,x γ w|w|−y+1,|w|

]
if x+ y 6 |w| .

Generalization to two-dimensional w are straight-forward.

A.2. Invariants

The following invariants give the relation between the item values v(I) and z(I) defined by
Goodman and the values we store in the arrays V, Vone, Z and Zone:

Vone
[
j , i , p , q

]
⊗ P
(
p ∧ wi,j−1

)
= 4j−i · v

(
i j , p ,q

)
if q < `(p) ,

Vone
[
j , i , p , q

]
= 4j−i · v

(
i j , p ,q

)
if q = `(p) ,

V
[
j , l , i , k , p , q

]
⊗ P
(
p ∧ ui,j−1

vk,l−1

)
= 4j−i · 4l−k · v

(
i
k
j
l , p ,q

)
if q < `(p) ,

V
[
j , l , i , k , p , q

]
= 4j−i · 4l−k · v

(
i
k
j
l , p ,q

)
if q = `(p) ,

Z
[
j , i , p , q

]
= 4n−(j−i) · z

(
i j , p ,q

)
⊗ P

(
p ∧ wi,j−1

)
,

Z
[
j , l , i , k , p , q

]
= 4n−(j−i) · 4m−(l−k)·

z
(
i
k
j
l , p ,q

)
⊗ P

(
p ∧ ui,j−1

vk,l−1

)
.

86

Sebastian Wild A.3. 1D-Earley-Forward

A.3. 1D-Earley-Forward

The main procedure simply loops over all item positions in ≺ order. For the current item
I :=

(
i j , p ,q

)
, two cases are distinguished directly in the main procedure: If i = j the

item is a prediction item, and 1D-Predict-Forward is called. Notice, that predict items
always have dot index q = 0. Therefore we do not need a loop for q there. Otherwise, the
item is a completion item and it is 1D-Complete-Forward’s turn.

Strictly speaking, there are further cases checked for in those sub-procedures, namely
whether the current item is a finalize item (q = `(p)). If that is the case, we have to include
the rule probability.

The 4-times-trick is implemented as well: During prediction or for finalized items in
completion, appropriate powers of 4 are included in the item values.

Algorithm A.1 The main loop over all items in ≺ order.

1D-Earley-Forward(A,w)

// A is the start symbol of the subgrammar GA to use.

// w ∈ {u, v} is the terminal word to parse in grammar GA.

// Item values are stored in array VoneA.

1 n := |w|

2 Init array VoneA to 0 // semiring zero

3 for j := 1 to n+ 1

4 for p := 1 to |RA| // iterate over rules

5 1D-Predict-Forward(j,p)
6 end for
7 for i := j downto 1

// for each dotted rule, do complete

8 for p := 1 to |RA| // for all rules

9 for q := 1 to `(p) // Start at 1: omit leftmost dot pos.

10 1D-Complete-Forward

(
i j , p ,q

)
11 end for q
12 end for p
13 end for i
14 end for j

87

A. Pseudocode Sebastian Wild

Algorithm A.2 Handling of prediction items.

1D-Predict-Forward(j,p)

// Predict item
(
j j , p , 0

)
.

1 jump := jumpLeft(p) // immediate scan

2 if `(p) == 0 // p is a terminating rule

3 prob := P
(
p ∧ wj,j+jump−1

)
// determine rule probability

4 VoneA
[
j+ jump, j,p, 0

]
:= prob · 4 jump // Set value including 4s for skipped terminals

5 else
6 VoneA

[
j+ jump, j,p, 0

]
:= 1 · 4 jump

7 end if

Algorithm A.3 Handling of completion items.

1D-Complete-Forward

(
i j , p ,q

)
// Asserts 1 6 q 6 `(p), i. e. q may not be 0.

// Asserts that all needed item values are computed.

1 B := nextNT(p,q− 1) // Get the non-terminal that was completed

2 if q == `(p) // finalization

// We have to scan the terminals at right end of rule

3 jump := jumpRight(p) // The offset for writing

4 prob := P
(
p ∧ wi,j+jump−1

)
// rule probability

5 else // no finalization

6 jump := 0

7 prob := 1

8 end if
9 for r := i to j
10 for each pB ∈ ind’s(B) // rules with left hand side B in GA
11 VoneA [j+ jump, i,p,q] ⊕= VoneA

[
r, i,p,q− 1

]
⊗ VoneA

[
j, r,pB, `(pB)

]
12 end for B-rule
13 end for r

// Value complete, include rule probability now

14 VoneA
[
j+ jump, i,p,q

]
⊗= prob · 4 jump

88

Sebastian Wild A.4. 1D-Earley-Reverse

A.4. 1D-Earley-Reverse

The main reverse procedure loops over all items in reverse ≺ order. For a current item
I :=

(
i j , p ,q

)
, only the cases of first type and second type completion remain (see

section 4.9). As indicated in the framed box on page 69, we can stop reverse parsing if the
dot is not at the right end and no non-terminals are located left of the dot.

For fulfilling the invariants, we have to include the rule probability for the current rule
in 1D-Complete-Second-Type.

Algorithm A.4 Main loop in reverse parse, over items in � order.

1D-Earley-Backward(A,w)

// A is the start symbol of the subgrammar GA to use.

// A→ C is the only rule expanding A.

// w ∈ {u, v} is the input word to parse in grammar GA.

// Computed values are stored in ZoneA.

// Assumes VoneA is filled with forward values.

// Computes reverse values inside of subgrammar GA. See section 3.5.1 for details.

1 n := |w|

2 Init array ZoneA to 0

3 ZoneA
[
n+ 1, 1, ind(A→ C), 1

]
:= 1

4 for j := n+ 1 downto 1
5 for i := 1 to j
6 for p := |R| downto 1
7 1D-Complete-Second-Type

(
i, j,p

)
8 for q := `(p) − 1 downto 1 // ; if `(p) 6 1, skip loop

9 1D-Complete-First-Type

(
i j , p ,q

)
10 end for q
11 end for p
12 end for i
13 end for j

89

A. Pseudocode Sebastian Wild

Algorithm A.5 Handling of completion, second type.

1D-Complete-Second-Type

(
i, j,pB

)
// Creates item

(
i j , pB , `(pB)

)
.

1 B := source(pB) // B is left side of rule with index pB. By assumption, B ∈ NA.

2 prob := P
(
pB ∧ wi,j−1

)
// Include the probability for rule pB

3 for r := 1 to i
4 for each (p,q) ∈ dottedRulesA(B) // the (q+ 1)st non-terminal in rule p is B

// maybe we have to skip terminals at right end

5 if q == `(p) − 1

6 jump := jumpRight(p)
7 else
8 jump := 0

9 end if
10 c := 4 jump

// Looking at items I1 =
(
r i , p ,q

)
and I2 =

(
r j+ jump , p ,q+ 1

)
.

11 ZoneA
[
j, i,pB, `(pB)

]
⊕=

c · ZoneA
[
j+ jump, r,p,q+ 1

]
⊗ VoneA

[
i, r,p,q

]
⊗ prob

12 end for (p,q)
13 end for r

Algorithm A.6 Handling of completion, first type.

1D-Complete-First-Type

(
i j , p ,q

)
// Creates item

(
i j , p ,q

)
.

// Assumes, 0 < q < `(p).

1 B := nextNT(p,q) // B is (effectively) one-dimensional for sure

2 if q == `(p) − 1 // maybe we have to skip terminals at right end of p

3 jump := jumpRight(p)
4 else
5 jump := 0

6 end if
7 c := 4 jump

8 for r := j to n+ 1

// Fixing I2 =
(
i r+ jump , p ,q+ 1

)
.

9 for each pB ∈ ind’s(B) // rules with left hand side B in GB
// Fixing I1 =

(
j r , pB , `(pB)

)
.

10 ZoneA
[
j, i,p,q

]
⊕=

c · ZoneA
[
r+ jump, i,p,q+ 1

]
⊗ VoneA

[
r, j,pB, `(pB)

]
11 end for pB
12 end for r

90

Sebastian Wild A.5. 2D-Earley-Forward

A.5. 2D-Earley-Forward

Compared to the one-dimensional case, we have to make changes in two places: First, we
call 1D-Earley-Forward for all subgrammars. This assures, that the forward values for
one-dimensional items are precomputed in the arrays VoneA. Second, in 2D-Complete-
Forward we have to discriminate between possible cases for the effective indices of the
currently completed non-terminal B.

The rest of the implementation is a straight-forward generalization of the 1D-case.

Algorithm A.7 The main loop over all items in ≺ order.

2D-Earley-Forward(u, v)

// u and v are the two components of the input pair.

1 n := |u| , m := |v|

2 Init array V to 0 // semiring zero

// One-dimensional preprocessing:

3 for each A ∈ Nu 1D-Earley-Forward(A,u)
4 for each A ∈ Nv 1D-Earley-Forward(A, v)
5 for j := 1 to n+ 1

6 for l := 1 to m+ 1

7 for p := 1 to |R| // iterate over rules

8 2D-Predict-Forward(j, l,p)
9 end for
10 for i := j downto 1
11 for k := l downto 1
12 for p := 1 to |R| // for all rules

13 for q := 1 to `(p) // Start at 1: omit leftmost dot pos.

14 2D-Complete-Forward

(
i
k
j
l , p ,q

)
15 end for q
16 end for p
17 end for k
18 end for i
19 end for l
20 end for j

91

A. Pseudocode Sebastian Wild

Algorithm A.8 Handling of prediction items.

2D-Predict-Forward(j, l,p)

// Predict item
(
j
l
j
l , p , 0

)
.

1 jump := jumpLeft(p) // immediate scan

2 if `(p) == 0 // p is a terminating rule

3 prob := P
(
p ∧ uj,j+jump1−1

vl,l+jump2−1

)
// determine rule probability

// Set value including 4s for skipped terminals

4 V
[
j+ jump1, l+ jump2, j, l,p, 0

]
:= prob · 4 jump1+ jump2

5 else
6 V

[
j+ jump1, l+ jump2, j, l,p, 0

]
:= 1 · 4 jump1+ jump2

7 end if

92

Sebastian Wild A.5. 2D-Earley-Forward

Algorithm A.9 Handling of completion items.

2D-Complete-Forward

(
i
k
j
l , p ,q

)
// Asserts 1 6 q 6 `(p), i. e. q may not be 0.

// Asserts that all needed item values are computed.

1 B := nextNT(p,q− 1) // Get the non-terminal that was completed

2 if q == `(p) // finalization

// We have to scan the terminals at right end of rule

3 jump := jumpRight(p) // The offset for writing

4 prob := P
(
p ∧ ui,j+jump1−1

vk,l+jump2−1

)
// rule probability

5 else // no finalization

6 jump :=
(
0
0

)
7 prob := 1

8 end if
// Handle one-dimensional non-terminals . . .

9 if D6=ε(B) == {1}

10 for r := i to j
11 for each pB ∈ ind’s(B) // rules with left hand side B in GB
12 V

[
j+ jump1, l+ jump2, i,k,p,q

]
⊕=

V
[
r, l, i,k,p,q− 1

]
⊗ VoneB

[
j, r,pB, `(pB)

]
13 end for B-rule
14 end for r
15 elseif D6=ε(B) == {2}

16 for s := k to l
17 for each pB ∈ ind’s(B) // rules with left hand side B in GB
18 V

[
j+ jump1, l+ jump2, i,k,p,q

]
⊕=

V
[
j, s, i,k,p,q− 1

]
⊗ VoneB

[
l, s,pB, `(pB)

]
19 end for B-rule
20 end for r

// . . . and two-dimensional non-terminals

21 else // ; D6=ε(B) == {1, 2}
22 for r := i to j
23 for s := k to l
24 for each pB ∈ ind’s(B) // rules with left hand side B in G

25 V
[
j+ jump1, l+ jump2, i,k,p,q

]
⊕=

V
[
r, s, i,k,p,q− 1

]
⊗ V

[
j, l, r, s,pB, `(pB)

]
26 end for B-rule
27 end for s
28 end for r
29 end if

// Value complete, include rule probability now

30 V
[
j+ jump1, l+ jump2, i,k,p,q

]
⊗= prob · 4 jump1+ jump2

93

A. Pseudocode Sebastian Wild

A.6. 2D-Earley-Reverse

Algorithm A.10 Main loop in reverse parse, over items in � order.

2D-Earley-Backward(u, v)

// S ′ is the start symbol of the grammar G to use.

// S ′ → S the only rule expanding S.

// u and v are the two components of the input pair.

// Assumes V, Vone are filled with forward values.

1 n := |u| , m := |v|

2 Init array Z to 0

3 Z
[
n+ 1,m+ 1, 1, 1, ind(S ′ → S), 1

]
:= 1

4 for j := n+ 1 downto 1
5 for l := m+ 1 downto 1
6 for i := 1 to j
7 for k := 1 to l
8 for p := |R| downto 1

9 2D-Complete-Second-Type

(
i
k
j
l , p

)
10 for q := `(p) − 1 downto 1 // ; if `(p) == 0, skip loop

11 2D-Complete-First-Type

(
i
k
j
l , p ,q

)
12 end for q
13 end for p
14 end for k
15 end for i
16 end for l
17 end for j

94

Sebastian Wild A.6. 2D-Earley-Reverse

Algorithm A.11 Handling of completion, second type.

2D-Complete-Second-Type

(
i
k
j
l , pB

)
// Creates item

(
i
k
j
l , pB , `(pB)

)
.

1 B := source(pB) // B is left side of rule with index pB. By assumption, B ∈ N2.

2 prob := P
(
pB ∧ ui,j−1

vk,l−1

)
// Include the probability for rule pB

3 for r := 1 to i
4 for s := 1 to k
5 for each (p,q) ∈ dottedRules(B) // the (q+ 1)st non-terminal in rule p is B

// maybe we have to skip terminals at right end

6 if q == `(p) − 1

7 jump := jumpRight(p)
8 else
9 jump :=

(
0
0

)
10 end if
11 c := 4 jump1+ jump2

// Looking at items I1 =
(
r
s
i
k , p ,q

)
and I2 =

(
r
s
j+jump1
l+jump2

, p ,q+ 1
)

.

12 Z
[
j, l, i,k,pB, `(pB)

]
⊕=

c · Z
[
j+ jump1, l+ jump2, r, s,p,q+ 1

]
⊗ V

[
i,k, r, s,p,q

]
⊗ prob

13 end for dotted rule (p,q)
14 end for s
15 end for r

95

A. Pseudocode Sebastian Wild

Algorithm A.12 Handling of completion, first type.

2D-Complete-First-Type

(
i
k
j
l , p ,q

)
// Creates item

(
i
k
j
l , p ,q

)
.

// Assumes, 0 < q < `(p).

1 B := nextNT(p,q)
2 if q == `(p) − 1 jump := jumpRight(p)
3 else jump :=

(
0
0

)
4 c := 4 jump1+ jump2

5 if D6=ε(B) == {1}

6 for r := j to n+ 1

// Fixing I2 =
(
i
k
r+jump1
l+jump2

, p ,q+ 1
)

.

7 for each pB ∈ ind’s(B) // rules with left hand side B in GB
// Fixing I1 =

(
j r , pB , `(pB)

)
.

8 Z
[
j, l, i,k,p,q

]
⊕=

c · Z
[
r+ jump1, l+ jump2, i,k,p,q+ 1

]
⊗ VoneB

[
r, j,pB, `(pB)

]
9 end for pB
10 end for r
11 elseif D6=ε(B) == {2}

12 for s := l to m+ 1

// Fixing I2 =
(
i
k
j+jump1
s+jump2

, p ,q+ 1
)

.

13 for each pB ∈ ind’s(B) // rules with left hand side B in GB
// Fixing I1 =

(
l s , pB , `(pB)

)
.

14 Z
[
j, l, i,k,p,q

]
⊕=

c · Z
[
j+ jump1, s+ jump2, i,k,p,q+ 1

]
⊗ VoneB

[
s, l,pB, `(pB)

]
15 end for pB
16 end for r
17 else // ; D6=ε(B) == {1, 2}
18 for r := j to n+ 1

19 for s := l to m+ 1

// Fixing I2 =
(
i
k
r+jump1
s+jump2

, p ,q+ 1
)

.

20 for each pB ∈ ind’s(B) // rules with left hand side B in G

// Fixing I1 =
(
j
l
r
s , pB , `(pB)

)
.

21 Z
[
j, l, i,k,p,q

]
⊕=

c · Z
[
r+ jump1, s+ jump2, i,k,p,q+ 1

]
⊗ V
[
r, s, j, l,pB, `(pB)

]
22 end for pB
23 end for s
24 end for r
25 end if

96

Bibliography

[AA00] L. Argaman and S. Altuvia, 2000. fhlA repression by OxyS RNA: kissing
complex formation at two sites results in a stable antisense-target RNA complex.
Journal of Molecular Biology, 300(5):1101 – 1112. ISSN 0022-2836. doi:
DOI:10.1006/jmbi.2000.3942. URL http://www.sciencedirect.com/science/
article/B6WK7-45F518G-9F/2/6f453b6ef1eb60f8fc416a1dbd8c04e8.
(Cited on page 76.)

[AH02] J. Aycock and R. N. Horspool, 2002. Practical earley parsing. The Computer
Journal, 45(6):620–630. URL http://www3.oup.co.uk/computer_journal/hdb/
Volume_45/Issue_06/450620.sgm.abs.html.
(Cited on page 45.)

[AKN+
06] C. Alkan, E. Karakoc, J. H. Nadeau, S. C. Sahinalp and K. Zhang, 2006.

RNA-RNA interaction prediction and antisense RNA target search. Journal of Com-
putational Biology, 13(2):267–282.
(Cited on pages 9 and 23.)

[Alb02] D. M. Albro, 2002. An Earley-style parser for multiple context-free grammars. URL
http://www.humnet.ucla.edu/people/albro/papers.html.
(Cited on page 28.)

[AZC05] M. Andronescu, Z. Zhang and A. Condon, 2005. Secondary structure predic-
tion of interacting RNA molecules. Journal of molecular biology, 345(5):987–1001.
(Cited on pages 6, 9, 72, 73, 75, 76 and 77.)

[CG98] Z. Chi and S. Geman, 1998. Estimation of probabilistic context-free grammars.
Computational Linguistics, 24(2):299–305. ISSN 0891-2017.
(Cited on pages 18, 19 and 26.)

[DE04] R. D. Dowell and S. R. Eddy, 2004. Evaluation of several lightweight stochastic
context-free grammars for RNA secondary structure prediction. ISSN 1471-2105.
URL http://www.biomedcentral.com/1471-2105/5/71.
(Cited on pages 36, 38 and 73.)

[DEKM98] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, 1998. Biological sequence
analysis — Probabilistic models of proteins and nucleic acids. Cambridge University
Press, Cambridge.
(Cited on pages 9, 19 and 52.)

[Ear70] J. Earley, 1970. An efficient context-free parsing algorithm. Communications of
the ACM (CACM), 13(2).
(Cited on page 12.)

97

http://www.sciencedirect.com/science/article/B6WK7-45F518G-9F/2/6f453b6ef1eb60f8fc416a1dbd8c04e8
http://www.sciencedirect.com/science/article/B6WK7-45F518G-9F/2/6f453b6ef1eb60f8fc416a1dbd8c04e8
http://www3.oup.co.uk/computer_journal/hdb/Volume_45/Issue_06/450620.sgm.abs.html
http://www3.oup.co.uk/computer_journal/hdb/Volume_45/Issue_06/450620.sgm.abs.html
http://www. humnet. ucla. edu/people/albro/papers. html
http://www.biomedcentral.com/1471-2105/5/71

Bibliography Sebastian Wild

[GJ08] D. Grune and C. J. H. Jacobs, 2008. Parsing Techniques — A Practical Guide.
Springer, 2nd edition. ISBN 038720248X. URL http://www.cs.vu.nl/~dick/
PT2Ed.html.
(Cited on pages 12 and 45.)

[Goo98] J. Goodman, 1998. Parsing inside-out. Ph.D. thesis. URL http://arxiv.org/
abs/cmp-lg/9805007.
(Cited on pages 20, 45, 50, 52, 55, 67, 68 and 85.)

[Goo99] J. Goodman, 1999. Semiring parsing. Computational Linguistics, 25(4):573–605.
(Cited on pages 20, 45, 50, 55 and 67.)

[GT04] T. Geissmann and D. Touati, 2004. Hfq, a new chaperoning role: binding to
messenger RNA determines access for small RNA regulator. The EMBO Journal,
23(2):396.
(Cited on page 76.)

[HQRS09] F. W. D. Huang, J. Qin, C. M. Reidys and P. F. Stadler, 2009. Partition function
and base pairing probabilities for RNA-RNA interaction prediction. Bioinformatics,
25(20):2646.
(Cited on pages 36 and 80.)

[HQRS10] F. W. D. Huang, J. Qin, C. M. Reidys and P. F. Stadler, 2010. Target predic-
tion and a statistical sampling algorithm for RNA-RNA interaction. Bioinformatics,
26(2):175–181. URL http://dx.doi.org/10.1093/bioinformatics/btp635.
(Cited on pages 23, 36, 37, 38 and 73.)

[HU79] J. E. Hopcroft and J. D. Ullman, 1979. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley Reading, MA.
(Cited on page 11.)

[KAS09] Y. Kato, T. Akutsu and H. Seki, 2009. A grammatical approach to RNA-RNA
interaction prediction. Pattern Recognition, 42(4):531–538.
(Cited on pages 6, 9, 71, 72, 73, 74 and 75.)

[Kat07] Y. Kato, 2007. Formal grammars for describing RNA pseudoknotted structure and
their application to structure analysis. Ph.D. thesis.
(Cited on page 24.)

[LN10] U. Laube and M. E. Nebel, 2010. Maximum likelihood analysis of algorithms and
data structures. Theoretical Computer Science, 411(1):188–212.
(Cited on page 18.)

[LP00] R. B. Lyngsø and C. N. S. Pedersen, 2000. RNA pseudoknot prediction in energy-
based models. Journal of Computational Biology, 7(3-4):409–427.
(Cited on page 17.)

[McC90] J. S. McCaskill, 1990. The equilibrium partition function and base pair binding
probabilities for RNA secondary structure. Biopolymers, 29(6-7):1105–1119.
(Cited on pages 40 and 80.)

98

http://www.cs.vu.nl/~dick/PT2Ed.html
http://www.cs.vu.nl/~dick/PT2Ed.html
http://arxiv.org/abs/cmp-lg/9805007
http://arxiv.org/abs/cmp-lg/9805007
http://dx.doi.org/10.1093/bioinformatics/btp635

Sebastian Wild Bibliography

[NS10] M. E. Nebel and A. Scheid, 2010. Prediction of RNA Secondary Structure by
Statistical Sampling Using SCFG Models. Submitted.
(Cited on pages 40, 41 and 80.)

[PSE+
96] J. Paillart, E. Skripkin, B. Ehresmann, C. Ehresmann and R. Marquet,

1996. A loop-loop “kissing” complex is the essential part of the dimer linkage of
genomic HIV-1 RNA. Proceedings of the National Academy of Sciences of the
United States of America, 93(11):5572.
(Cited on pages 72 and 77.)

[SBS09] R. Salari, R. Backofen and S. C. Sahinalp, 2009. Fast prediction of RNA-RNA
interaction. In S. Salzberg and T. Warnow, editors, WABI, volume 5724 of
Lecture Notes in Computer Science, pages 261–272. Springer. ISBN 978-3-642-
04240-9. URL http://dx.doi.org/10.1007/978-3-642-04241-6.
(Cited on page 9.)

[SMFK91] H. Seki, T. Matsumura, M. Fujii and T. Kasami, 1991. On multiple context-
free grammars. Theoretical Computer Science, 88(2):229. ISSN 0304-3975. doi:
http://dx.doi.org/10.1016/0304-3975(91)90374-B.
(Cited on pages 24, 25 and 28.)

[UDV+
05] K. Udekwu, F. Darfeuille, J. Vogel, J. Reimegård, E. Holmqvist and E. Wag-

ner, 2005. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense
RNA. Genes & development, 19(19):2355.
(Cited on pages 72 and 77.)

[WF02] E. G. H. Wagner and K. Flärdh, 2002. Antisense RNAs everywhere? TRENDS
in Genetics, 18(5):223–226.
(Cited on page 72.)

[WN10] F. Weinberg and M. E. Nebel, 2010. Extending stochastic context-free grammars
for an application in bioinformatics. In A. H. Dediu, H. Fernau and C. Martín-
Vide, editors, LATA, volume 6031 of Lecture Notes in Computer Science, pages
585–595. Springer. ISBN 978-3-642-13088-5. URL http://dx.doi.org/10.
1007/978-3-642-13089-2.
(Cited on page 80.)

[ZS84] M. Zuker and D. Sankoff, 1984. RNA secondary structures and their prediction.
Bulletin of Mathematical Biology, 46(4):591–621.
(Cited on page 23.)

99

http://dx.doi.org/10.1007/978-3-642-04241-6
http://dx.doi.org/10.1007/978-3-642-13089-2
http://dx.doi.org/10.1007/978-3-642-13089-2

	Introduction
	Basics
	Context-free grammars
	Earley-Parsing
	RNA
	Stochastic context-free grammars
	SCFGs for secondary structure prediction
	Semiring Parsing
	RNA-RNA Interaction
	Multiple context-free grammars
	Stochastic multiple context-free grammars
	Parsing of multiple context-free grammars

	Approach
	m-dimensional context-free grammars
	Derivations and language
	Effective dimension
	Subgrammars
	Rule Templates
	Rule Templates in the Context of Secondary Structure Prediction
	Inside and Outside Probabilities

	A Grammar for RIP
	Handling two molecules
	GRIP

	Secondary Structure Subgrammars
	GSecStr—secondary structures in r
	GSecStr—secondary structures in s

	Earley-Parser for 2D-CFGs
	Item-related definitions

	One-dimensional preprocessing featuring an SCFG Earley parser
	Outside probabilities in split grammars

	Utilizing item values
	Inside and outside probabilities
	Rule probability estimates
	Viterbi parses

	Training with known structures

	Implementation Design
	Motivating observations
	Item order
	Choice of rule indices
	Definition of
	Correctness of

	Item representation
	Optimistic Prediction
	Completion
	Immediate Scanning
	Getting rid of pre-scan items
	Jumping over terminals

	Late item value computation
	Keeping probabilities in range—the 4-times-trick
	Prediction
	Scanning
	Completion
	Finalization

	Reverse parsing
	Item order
	Item representation
	Computation of reverse values
	Scanning
	Completion—first type
	Completion—second type
	4-times-trick

	Results
	jackRIP—our C++ implementation of a 2D-CFG parser
	Target Machine
	Runtime efficiency tests
	RNA-RNA-interaction
	Comparison with classical Earley parsing

	Prediction quality tests
	Test Data
	Prediction method
	Quality measures

	Prediction results
	Data from kato2009grammatical
	Data from andronescu2005secondary
	Summary

	Conclusion
	Future Work
	Statistical Sampling based on trained models
	Length-Dependency

	Appendices
	Pseudocode
	Collected definitions
	Invariants
	1D-Earley-Forward
	1D-Earley-Reverse
	2D-Earley-Forward
	2D-Earley-Reverse

	Bibliography

