

GOVERN TO SERVICE OF THE PARTY OF THE PARTY

Fundamental Data Structures

5 October 2022

Sebastian Wild

Learning Outcomes

- 1. Understand and demonstrate the difference between *abstract data type* (*ADT*) and its *implementation*
- **2.** Be able to define the ADTs *stack*, *queue*, *priority queue* and *dictionary / symbol table*
- **3.** Understand *array*-based implementations of stack and queue
- **4.** Understand *linked lists* and the corresponding implementations of stack and queue
- **5.** Know *binary heaps* and their performance characteristics
- **6.** Understand *binary search trees* and their performance characteristics

Unit 2: Fundamental Data Structures

Outline

2 Fundamental Data Structures

- 2.1 Stacks & Queues
- 2.2 Resizable Arrays
- 2.3 Priority Queues & Binary Heaps
- 2.4 Operations on Binary Heaps
- 2.5 Symbol Tables
- 2.6 Binary Search Trees
- 2.7 Ordered Symbol Tables
- 2.8 Balanced BSTs

Recap: The Random Access Machine

- ▶ Data structures make heavy use of pointers and dynamically allocated memory.
- ► Recall: Our RAM model supports
 - ▶ basic pseudocode (≈ simple Python code)
 - creating arrays of a fixed/known size.
 - creating instances (objects) for a known class.

Python abstracts this away!

no predefined capacity!

There are no arrays in Python, only its built-in lists.

Indeed Python implementations create lists using fixed-size arrays (stay tuned!)

Python \neq RAM: Not every built-in Python instruction runs in O(1) time.

2.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- **not:** how to do it
- ▶ **not:** how to store data

VS.

abstract base classes

≈ Java interface, Python ABCs (with comments)

data structures

- specify exactly how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java/Python class (non abstract)

Why separate?

- ► Can swap out implementations ~ "drop-in replacements")
- → reusable code!
- ► (Often) better abstractions
- ► Prove generic lower bounds (→ Unit 3)

Stacks

Stack ADT

- top()Return the topmost item on the stackDoes not modify the stack.
- ▶ push(x)Add x onto the top of the stack.
- pop() Remove the topmost item from the stack (and return it).
- ► isEmpty()
 Returns true iff stack is empty.
- create()Create and return an new empty stack.

Linked-list implementation for Stack

Invariants:

- maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked stacks:

- require $\Theta(n)$ space when n elements on stack
- ▶ All operations take O(1) time

Array-based implementation for Stack

Can we avoid extra space for pointers?

→ array-based implementation

Invariants:

- ▶ maintain array S of elements, from bottommost to topmost
- ▶ maintain index top of position of topmost element in S.

What to do if stack is full upon push?

Array stacks:

- ► require *fixed capacity C* (decided at creation time)!
- require $\Theta(C)$ space for a capacity of C elements
- ightharpoonup all operations take O(1) time

2.2 Resizable Arrays

Digression - Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- reate (n) Java: A = new int[n]; Python: A = [0] * n Create a new array with n cells, with positions 0, 1, ..., n-1; we write A[0..n) = A[0..n-1]
- ► get(i) Java/Python: A[i] Return the content of cell i
- ▶ set (i, x) Java/Python: A[i] = x; Set the content of cell i to x.
- → Arrays have fixed size (supplied at creation). (≠ lists in Python)

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: *Implementation usually fixed* to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- maintain array S of elements, from bottommost to topmost
- ► maintain index top of position of topmost element in S
- ▶ maintain capacity C = S.length so that $\frac{1}{4}C \le n \le C$
- → can always push more elements!

How to maintain the last invariant?

- before push If n = C, allocate new array of size 2n, copy all elements.
- ▶ after pop If $n < \frac{1}{4}C$, allocate new array of size 2n, copy all elements.

Amortized Analysis

- Any individual operation push / pop can be expensive! $\Theta(n)$ time to copy all elements to new array.
- ▶ **But:** An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!

distance to boundary $\sin c n \le C \le 4n$ **Formally:** consider "credits/potential" $\Phi = \min\{n - \frac{1}{4}C, C - n\} \in [0, 0.6n]$

- ▶ amortized cost of an operation = actual cost (array accesses) $-4 \cdot$ change in Φ
 - ▶ cheap push/pop: actual cost 1 array access, consumes \leq 1 credits \rightsquigarrow amortized cost \leq 5
 - ▶ copying push: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n + 1$ credits \rightarrow amortized cost ≤ 5
 - ▶ copying pop: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n 1$ credits \rightarrow amortized cost 5
- \rightarrow sequence of m operations: total actual cost ≤ total amortized cost + final credits here: ≤ $5m + 4 \cdot 0.6n = \Theta(m+n)$

Queues

Operations:

- enqueue(x)Add x at the end of the queue.
- dequeue()Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

They are special cases of a **Bag!**

Operations:

- ▶ insert(x) Add x to the items in the bag.
- delAny()Remove any one item from the bag and return it.(Not specified which; any choice is fine.)
- ▶ roughly similar to Java's java.util.Collection Python's collections.abc.Collection

Sometimes it is useful to state that order is irrelevant → Bag Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues & Binary Heaps

Priority Queue ADT – min-oriented version

Now: elements in the bag have different priorities.

(Max-oriented) Priority Queue (MaxPQ):

- construct(*A*)Construct from from elements in array *A*.
- ▶ insert (x,p) Insert item x with priority p into PQ.
- max()
 Return item with largest priority. (Does not modify the PQ.)
- delMax()Remove the item with largest priority and return it.
- changeKey(x,p')
 Update x's priority to p'.
 Sometimes restricted to *increasing* priority.
- ▶ isEmpty()

Fundamental building block in many applications.

PQ implementations

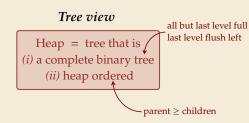
Elementary implementations

- ▶ unordered list \rightsquigarrow $\Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list \longrightarrow $\Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Heap = array A with $\forall i \in [n] : A[\lfloor i/2 \rfloor] \ge A[i]$



Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- complete binary trees have minimal height among all binary trees
- ▶ simple formulas for moving from a node to parent or children:

For a node at index k in A

- ightharpoonup parent at $\lfloor k/2 \rfloor$
- ightharpoonup left child at 2k
- right child at 2k + 1

Why heap ordered?

- ► Maximum must be at root! → max() is trivial!
- ▶ But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

how? ... stay tuned

2.4 Operations on Binary Heaps

Insert

- 1. Add new element at only possible place: bottom-most level, next free spot.
- **2.** Let element *swim* up to repair heap order.

Delete Max

- 1. Remove max (must be in root).
- **2.** Move last element (bottom-most, rightmost) into root.
- **3.** Let root key *sink* in heap to repair heap order.

Heap construction

- ▶ $n \text{ times insert} \rightsquigarrow \Theta(n \log n)$
- ▶ instead:
 - 1. Start with singleton heaps (one element)
 - 2. Repeatedly merge two heaps of height k with new element into heap of height k+1

Analysis

Height of binary heaps:

- height of a tree: #edges on longest root-to-leaf path
- ► depth/level of a node: #edges from root → root has depth 0
- ► How many nodes on first *k* full levels? $\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} 1$
- \rightsquigarrow Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis:

- ▶ insert: new element "swims" up \rightsquigarrow ≤ h steps (h cmps)
- ▶ delMax: last element "sinks" down \rightsquigarrow ≤ h steps (2h cmps)
- construct from *n* elements:

cost = cost of letting each node in heap sink!

$$\leq 1 \cdot h + 2 \cdot (h-1) + 4 \cdot (h-2) + \dots + 2^{\ell} \cdot (h-\ell) + \dots + 2^{h-1} \cdot 1 + 2^{h} \cdot 0$$

 $= \sum_{\ell=0}^{h} 2^{\ell} (h-\ell) = \sum_{i=0}^{h} \frac{2^{h}}{2^{i}} i = 2^{h} \sum_{i=0}^{h} \frac{i}{2^{i}} \leq 2 \cdot 2^{h} \leq 4n$

Binary heap summary

Operation	Running Time
construct(A[1n])	O(n)
max()	O(1)
insert(x,p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey (x, p')	$O(\log n)$
isEmpty()	O(1)
size()	O(1)

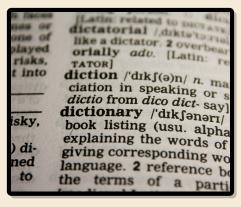
2.5 Symbol Tables

Symbol table ADT

Java: java.util.Map<K,V>

Symbol table / Dictionary / Map / Associative array / key-value store:

Python dict {k:v}



- ▶ put(k,v) Python dict: d[k] = vPut key-value pair (k,v) into table
- ▶ get(k) Python dict: d[k] Return value associated with key k
- ▶ delete(k) Python dict: del d[k] Remove key k (any associated value) form table
- ► contains(*k*) Python dict: *k* in d
 Returns whether the table has a value for key *k*
- ▶ isEmpty(), size()
- ► create()

Most fundamental building block in computer science.

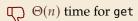
(Every programming library has a symbol table implementation.)

Symbol tables vs. mathematical functions

- similar interface
- but: mathematical functions are static/immutable (never change their mapping)
 (Different mapping is a different function)
- symbol table = *dynamic* mappingFunction may change over time

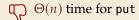
Elementary implementations

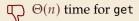
Unordered (linked) list:



→ Too slow to be useful

Sorted linked list:





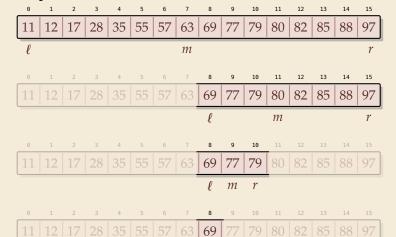
→ Too slow to be useful

→ Sorted order does not help us at all?!

Binary search

It does help . . . if we have a sorted array!

Example: search for 69



Binary search:

- halve remaining list in each step
- \rightarrow $\leq \lfloor \lg n \rfloor + 1$ cmps in the worst case

needs random access!

2.6 Binary Search Trees

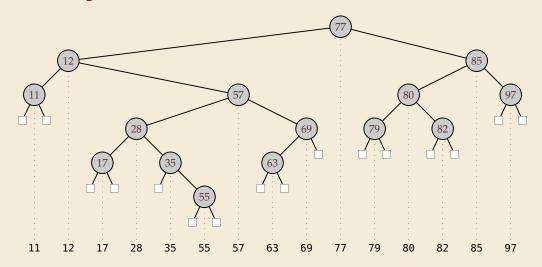
Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- binary tree
 - ► Each node has left and right child
 - ► Either can be empty (null)
- ► Keys satisfy *search-tree property*

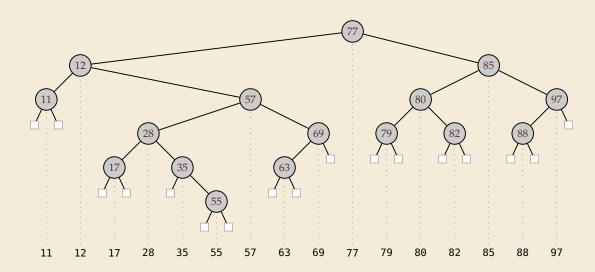
all keys in left subtree \leq root key \leq all keys in right subtree

BST example & find



BST insert

Example: Insert 88

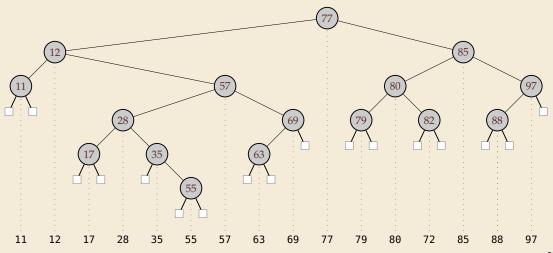


BST delete

► Easy case: remove leaf, e.g., 11 → replace by null

► Medium case: remove unary, e.g., 69 ~ replace by unique child

► Hard case: remove binary, e. g., 85 → swap with predecessor, recurse



Analysis

► Search:

- ► Insert:
- **▶** Delete:

BST summary

Operation	Running Time
construct(A[1n])	O(nh)
put(k,v)	O(h)
get(k)	O(h)
delete(k)	O(h)
contains(k)	O(h)
isEmpty()	O(1)
size()	O(1)

What is the height of a BST?

Worst Case:

$$h = n - 1 = \Theta(n)$$

Average Case:

 Assumption: insertions come in random order no deletions

$$h = \Theta(\log n)$$
 in expectation

↑

even "with high probability":

 $\forall d \exists c : \Pr[h \ge c \lg(n)] \le n^{-d}$

2.7 Ordered Symbol Tables

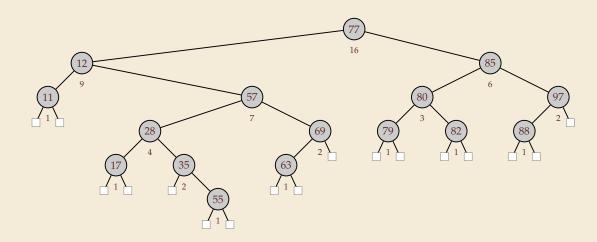
Ordered symbol tables

- min(), max()
 Return the smallest resp. largest key in the ST
- ► floor(x), $[x] = \mathbb{Z}.floor(x)$ Return largest key k in ST with $k \le x$.
- ceiling(x)
 Return smallest key k in ST with $k \ge x$.
- rank(x)
 Return the number of keys k in ST k < x.
- ► select(i)
 Return the ith smallest key in ST (zero-based, i. e., $i \in [0..n)$)

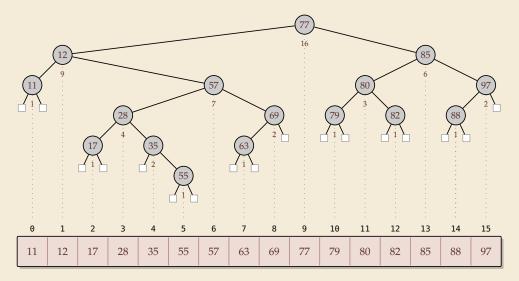
With select, we can simulate access as in a truly dynamic array!.

(Might not need any keys at all then!)

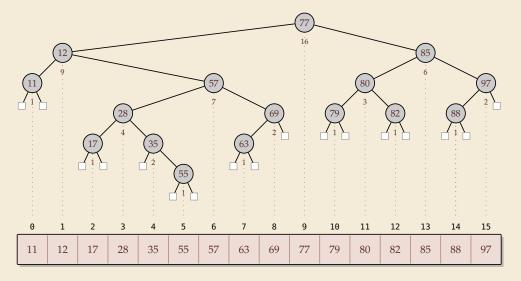
Augmented BSTs



Rank

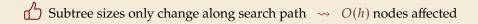


Select



Why store subtree sizes?

- ▶ Note that in an augmented BST, each node store the size of its subtree.
- ... why not directly store the rank? Would make rank/select much simpler!
- ▶ Problem: Single insertion/deletion can change *all* node ranks!
- → Cannot efficiently maintain node ranks.



2.8 Balanced BSTs

Balanced BSTs

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees $O(\log n)$ height
- adds rules to restore invariant after updates
- many examples known
 - ► AVL trees (height-balanced trees)
 - red-black trees
 - *weight-balanced trees* (BB[α] trees)
 - **▶** ...

Other options:

I'd love to talk more about all of these . . . (Maybe another time)

- **amortization:** splay trees, scapegoat trees
- ► randomization: randomized BSTs, treaps, skip lists

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(k)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	O(1)
size()	O(1)
min() / max()	$O(\log n) \rightsquigarrow O(1)$
floor(x)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
select(<i>i</i>)	$O(\log n)$

Binary heaps Strict Fibonacci heaps

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n)$ $O(1)$
delMax()	$O(\log n)$
changeKey(x, p')	$O(\log n)$ $O(1)$
max()	O(1)
isEmpty()	O(1)
size()	O(1)

- apart from faster construct,BSTs always as good as binary heaps
- ► MaxPQ abstraction still helpful
- and faster heaps exist!