
CCCG 2021, Halifax, Canada, August 10–12, 2021

Succinct Euler-Tour Trees

Travis Gagie∗ Sebastian Wild†

Abstract

We show how a collection of Euler-tour trees for a forest
on n vertices can be stored in 2n + o(n) bits such that
simple queries take constant time, more complex queries
take logarithmic time and updates take polylogarithmic
amortized time.

1 Introduction

Tarjan and Vishkin [7] showed how we can efficiently
solve several problems in algorithmic graph theory by
representing planar embeddings of trees as Euler tours
of corresponding directed graphs. To obtain the graph
corresponding to a tree, we replace each undirected edge
(u, v) in the tree by the directed edges (u, v) and (v, u),
so the resulting Eulerian tour of the graph is like a
depth-first traversal of the tree without the need for of a
distinguished root. Henzinger and King [2] then showed
how to implement such Euler tours for trees as dynamic
balanced binary search trees, such that we can quickly
support navigation queries and updates such as inserting
an edge joining two trees and deleting an edge from a
tree. These implementations are called Euler-tour trees
(ETTs).

As far as we know, all current ETTs of a tree on n
vertices take Ω(n) words of space. In contrast, we can
store a rooted planar embedding of a tree (that is, an
ordinal tree) on n vertices in only 2n+o(n) bits of space
while still quickly supporting navigation queries and
some updates, and such representations of ordinal trees
are central to the field of compact data structures; see [4]
and references therein. For example, Ferres et al. [1]
showed how to represent an embedding of a connected
planar graph G with m edges in 4m + o(m) bits by
rooting and storing compactly a spanning tree of G
and an interdigitating spanning tree of the dual of G.
(The observation that any connected planar graph has
such a pair of spanning trees appeared in Von Staudt’s
book Geometrie de Lage [6] in 1847.) Figure 1 shows
the example from Ferres et al.’s paper, with the primal
spanning tree shown in red and the dual spanning tree
shown in blue.

∗Faculty of Computer Science, Dalhousie University,
travis.gagie @ dal.ca

†Department of Computer Science, University of Liverpool,
sebastian.wild @ liv.ac.uk

Ferres et al.’s data structure can be made to support
quickly insertions of vertices and edges, but it does not
adequately support deletions. To see why, consider a
graph on n vertices with three arms of equal length, as
shown on the left in Figure 2 (with the dotted edge (c, e)
not present initially). The primal spanning tree must
be the whole graph and, wherever we root it, two whole
arms are branches. Without loss of generality, suppose
we root the spanning tree at r, so the paths from b to
c and from d to e are branches in the spanning tree, as
shown on the right. If we delete the edge (a, b) from the
graph and insert the dotted edge (c, e), then we have
no choice but to reverse the directions in the spanning
tree of all the edges either in the path from b to c or in
the path from r to e. With the balanced-parentheses
representation Ferres et al. used for their spanning trees,
this takes Ω(n) time. If we then delete (c, e) and reinsert
(a, b), undoing the updates again takes Ω(n) time.

If the spanning tree in Figure 2 were represented
by an ETT rather than with balanced paretheses, on
the other hand, then deleting (a, b) and inserting (c, e)
would be easy. Indeed, we conjecture that it is possible
to implement Ferres et al.’s data structure with ETTs
such that all queries and updates take polylogarithmic
time – but doing so would not currently be interesting
because the entire data structure would no longer be
compact. Therefore, in this paper we start to investigate
whether ETTs can be made compact while still quickly
supporting a reasonable selection of queries and updates.

In Section 2 we describe a representation of ETTs that
we call macro-trees, which slightly extend previous rep-
resentations to allow weighted corners, where a corner
is the “gap between consecutive edges incident to some
vertex” [3]. For a forest G on n vertices, this represen-
tation takes O(n) words of space and supports simple
queries in constant time and more complex queries and
updates in logarithmic time.

In Section 3 we describe how if G consists of a single
tree with maximum degree d ≥ 2 and n is sufficiently
large then, given a positive constant ε, we can cluster
the vertices such that each cluster contains between
lg1+ε(n) and d lg1+ε(n) + 1 vertices. We represent each
cluster with a succinct micro-tree, such that all the
clusters take a total of 2n+o(n) bits, and then represent
the O(n/ log1+ε n) inter-cluster edges with an o(n)-bit
macro-tree. The weight of each corner between two inter-
cluster edges is the number of steps (all taken within
the cluster) between those edges in the Euler tour of G.



33rd Canadian Conference on Computational Geometry, 2021

1

4

5

67

8

A

B

C

D

E

F

2

3

G

H

H G C B

E D

F

A

3 4 6

2 5

1

7

8

Figure 1: Ferres et al.’s example of a planar graph (left), with the primal spanning tree (top right) shown in red
and the dual spanning tree (bottom right) shown in blue.

ar b c

d

e

r

a

b d

c e

Figure 2: A hard case for Ferres et al.’s data structure: however we choose to root the spanning tree of the graph
(left), deleting one edge and inserting another – for example, if the root r is in the left arm, then deleting (a, b) and
inserting (c, e) – forces us to reverse at least about n/3 edges in the spanning tree (right).

If G consists of multiple trees, we cluster their vertices
independently – with the bounds on the cluster sizes still
depending on the maximum degree d of the whole graph
and the number n of vertices it contains. This gives us
our first result: we can store a collection of Euler-tour
trees for a forest on n vertices with maximum degree d
in 2n + o(n) bits and support simple queries in constant
time, more complex queries in O(log n) time and updates
in O(d log1+ε n) amortized time. Since submitting this
paper, we have realized how to remove the dependence
on d from the update time, as we describe in Section 4.

Unless specified otherwise, all trees in this paper are
taken to be planar embeddings of an unrooted tree (a. k. a.
unrooted plane trees). We assume throughout that n is

the total number of vertices in the maintained forest and
we are working in the word-RAM model with Θ(log n)-
bit words.

2 Macro-Trees

Suppose we are given a planar embedding of a forest
G with weighted corners, where each weight fits in a
constant number of machine words; Figure 3 shows an
example at the top left, consisting of a single tree. For
each tree T in G, we store T ’s edges in a circular, doubly-
linked list, in the order they are crossed in the Euler
tour of T . We also store a bidirectional pointer between
each directed edge (u, v) in T and its reverse, (v, u).



CCCG 2021, Halifax, Canada, August 10–12, 2021

2

3

1

2
3

2

2

1
3

2

1
2

2

0

1

2
2

2

3

2

4

3

4

5

1

2

1

2

0

2

2
3

1
2

1

2

2

32
4

2

1 3

1

3

2

2

2

1

0

1

3

4 2 1 3

21322122

2

0

2

2

3

1

2

1

1 2 3 2

2

1

4

2

3

2

2

45

2

3

1

2

3

1

2
3

2

2

1
3

2

1
2

2

0

3

4

5

1

2

1

2

0

2

2
3

1
2

1

2

2

3

2

3

2

4

2

1 3

1

2

4

5
2

0

2

2

3

1

2

1

4

2

3

2 5

1

0

1

3

1 2 3 5

2

4
2

2

1
31 4

2

3
2

122

2

3

2

1

3

2
2

Figure 3: An example of a macro-tree (top left) and its representation (top right), and then the forest of two
macro-trees obtained by deleting an edge (bottom left), and their representations (bottom right).



33rd Canadian Conference on Computational Geometry, 2021

This allows us to move forward and backward in the
Euler tour for T one edge at a time, and to enumerate
the edges incident to a given vertex u in constant time
per edge. To see why, notice that if (u, v) precedes (u,w)
in the counter-clockwise order of the edges incident to
u, then (v, u) precedes (u,w) in the Euler tour.

Finally, we store an AVL tree whose leaves are the
nodes in the list for T , and augment it such that given a
directed edge e and an integer t, in logarithmic time we
can return the edge e′ such that the distance from e to
e′ in the list is t, or the total weight of the corners from
e and e′ is as close to t as possible without being greater
(or optionally less), or the sum of the distance and the
total weight of the corners from e to e′ is as close to t
as possible without being greater (or optionally less).

With the same AVL tree, in logarithmic time we can
find the distance, or the total weight of the corners, in
the list between two given edges of T . This means, e. g.,
that we can quickly determine the size and total weight
of the subtrees on either side of a given edge.

Figure 3 includes an illustration of our representation
at the top right, with the circular, doubly-linked list of
directed edges shown as a square of arrows (with the
pointer from each edge to its predecessor and successor
in the list omitted for the sake of legibility); bidirectional
pointers between directed edges (u, v) and (v, u) shown
as arcs outside the square; and the AVL tree shown in
grey inside the square, with the topmost nodes shown
as circles with arrows from parents to children and then
lower subtrees shown as triangles.

To advance from the red edge to the green edge, we
follow the pointer to the reverse of the red edge, then
move one position forward in the list; to advance from
the green edge to the blue edge, we do the same thing.
To find the size of the subtree we traverse between the
red edge and its reverse, we use the AVL tree to count the
6 directed edges between them in the list in logarithmic
time, divide by 2 to get the number 3 of undirected edges
in the tree, and add 1 to get the number 4 of vertices.
Similarly, we can sum the weights of the corners between
the red edge and its reverse in the list.

We can change the weight of a corner in logarithmic
time or, by splitting and joining doubly-linked lists and
AVL trees, delete an edge in a tree represented by a
macro-tree or insert an edge between vertices in two
trees represented by macro-trees. In our example, if we
delete the undirected edge corresponding to the green
edge and its reverse and assign the new corners weights
5 and 4, then we obtain two macro-trees shown at the
bottom left of Figure 3, whose representations are shown
at the bottom right. Notice that now the blue edge
follows the reverse of the red edge in the list.

Lemma 1 Given a planar embedding of a forest G on n
vertices with weighted corners, we can store macro-trees
for the trees in G in a total of O(n) words of space

such that operations (i) and (ii) take constant time and
operations (iii) – (xii) take O(log n) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given a directed edge e and an integer t, return the
edge e′ such that the total weight of the corners from
e to e′ in the Euler tour of the tree containing e is
as close to t as possible without being greater (or
optionally less);

(v) given a directed edge e and an integer t, return
the edge e′ such that the sum of the distance and
the total weight of the corners from e to e′ in the
Euler tour of the tree containing e is as close to t as
possible without being greater (or optionally less);

(vi) given two directed edges e and e′ in the same tree, re-
turn the distance and the total weight of the corners
from e to e′ in the Euler tour of that tree;

(vii) given an edge e, return the number of vertices and
total weight of the corners in the subtrees on either
side of e;

(viii) given a directed edge e and a weight w, set to w the
weight of the corner after e in the Euler tour of the
tree containing e;

(ix) given an edge e and weights w and w′, delete e
from the tree containing it and set the new corners’
weights to w and w′;

(x) given corners in two different trees T and T ′ and
four weights, insert an edge between T and T ′ bisect-
ing those corners and assign the four new corners
the given weights;

(xi) given an edge e, contract e, thus fusing its endpoints
and removing e and its reverse edge from the Euler
tour, adding up fused corner weights;

(xii) given two corners of the same vertex v, split v into
two nodes v1 and v2, connected by a new edge e, so
that the neighborhoods of v1 and v2 result from the
neighborhood of v by splitting it at the given corners
and inserting the new edge e there.



CCCG 2021, Halifax, Canada, August 10–12, 2021

3 Micro-Trees

For now, suppose G consists of a single tree with maxi-
mum degree d ≥ 2 and n is sufficiently large. Given a
planar embedding of G and a positive constant ε, we
can use essentially a centroid decomposition to parti-
tion G recursively into clusters each containing between
lg1+ε(n) and B = d lg1+ε(n) + 1 vertices.

Suppose at some step of the recursion we are con-
sidering a subtree S of G on nS vertices such that
nS > lg1+ε(n). If nS ≤ B = d lg1+ε(n) + 1, then we
can stop recursing. Otherwise, we find a vertex or edge
whose removal from S leaves a forest in which each tree
has size at most nS/2.

If we find such an edge e, then the two trees in the
forest left by e’s removal from S each have size

nS

2
≥ B

2
> lg1+ε(n)

and so are large enough (and maybe too large) to be
clusters; we recurse on them. If instead we find such a
vertex v then, since v has degree at most d, at least one
of the trees S′ in the forest left by v’s removal from S
has size

nS − 1

d
> lg1+ε(n)

and so is large enough (and maybe too large) to be a
cluster. Since S′ contains at most nS/2 vertices, the rest
of S (including v) is a tree at least as big as S′, so it too
is large enough (and maybe too large) to be a cluster.
We recurse on S′ and the rest of S.

Once we have partitioned G into clusters, we consider
that partition as a tree P on O(n/ log1+ε n) vertices,
with clusters in G as vertices in P and edges between
clusters in G as edges in P . We store a macro-tree for P ,
which takes O(n/ log1+ε n) words or O(n/ logε n) ⊂ o(n)
bits, with the weight at a corner between e and e′ in P
the number of steps between e and e′ in the Euler tour
of G. We note that P can have maximum degree more
than d, but this does not affect Lemma 1.

Figure 4 shows an example of clusters embedded in
vertices of the macro-tree from Figure 3, before and after
an edge is deleted, with triangles representing subtrees.
The expanded view of one of the clusters shows why the
corners incident to that cluster have weights 3, 2, 2 and
5: if we enter the cluster along the reverse of the blue
edge, then we take 3 steps of the Euler tour inside the
cluster before leaving the cluster again; when we re-enter
for the first time, we take 2 steps inside before leaving
again; when we re-enter for the second time, we also take
2 steps inside before leaving again; and finally, when we
re-enter for the last time, we take 5 steps inside before
leaving again, along the blue edge. We note that the
steps in the Euler tour to enter and leave the cluster do
not count toward the weights of the corners.

We represent each cluster C with a micro-tree: we
temporarily ignore inter-cluster edges, root the remaining
tree arbitrarily, and represent it succinctly as an ordinal
tree using 2nC + o(nC) bits, where nC is the number of
vertices in C. This takes a total of 2n + o(n) bits over
all the clusters. Therefore, including the o(n) bits for
the macro-tree for P , thus far we are still representing
G using 2n + o(n) bits. However, we need to provide
an interface between the inter-cluster edges and the
micro-trees.

For a micro-tree on nC vertices, we store a “ports
bitvector” with 2nC copies of 0 corresponding to the
steps in a depth-first traversal of the micro-tree, with
copies of 1 marking where inter-cluster edges are incident
to vertices in the cluster (the cluster’s “ports” to other
clusters). The total length of these bitvectors is 2n +
O(n/ log1+ε n) but only O(n/ log1+ε n) of the bits are
1s, so compressed representations takes a total of o(n)
bits including support for rank and select [5]. We store a
mapping from the inter-cluster edges ending in a cluster
to the ranks of the 1s in that cluster’s ports bitvector,
marking when in the depth-first traversal those inter-
cluster edges touch vertices. We also store a mapping
back from these 1s to the inter-cluster edges in the macro-
tree. This takes O(log n · n/ log1+ε n) ⊂ o(n) bits, so we
are still using 2n + o(n) bits overall.

For example, if we root the cluster shown in the ex-
panded view in Figure 4 at the vertex reached by the
green directed edge, on the right by the 5, then the
bitvector is 0010001001001000. This means that if we
start at our chosen root and walk counter-clockwise
around the cluster, we take 2 steps before passing the
first inter-cluster edge (pointing up and to the right),
then 3 steps before passing our second (pointing up and
left), then 2 before passing our third (pointing down
and left), then 2 before passing our fourth (pointing
down and right), and finally three more before reaching
the root again. Of course, if we view the bitvector as
cyclic – corresponding to an Euler tour of the cluster
rather than a depth-first traversal of the micro-tree –
then the lengths of the runs of 0s are the weights of the
corners around that cluster in P .

If G consists of multiple trees, we cluster them inde-
pendently – with the bounds on the cluster sizes still
depending on the maximum degree d of the whole graph
and the number n of vertices in G. If G contains trees
with less than lg(n) nodes, we store these all as a single
dynamic string of balanced parentheses. To be able to
update the representations of the individual small trees,
we keep the string divided into blocks of size roughly
lg1+ε(n) and completely replace any block we want to
edit – much like the clusters. The representation still
takes 2n + o(n) bits overall; since queries on those tiny
trees trivially take O(log n) time, we obtain the same
overall efficiency.



33rd Canadian Conference on Computational Geometry, 2021

3

2

1

2

2
2

4

3

2

2

2

52

3
5

4

Figure 4: An example of clusters, before the orange edge is deleted (above) and after (below). Deleting the orange
undirected edge (adjacent to the green edge in the “before” example) means the green directed edge and its reverse
retract into the other cluster (in the “after” example), as shown in the expanded view of that cluster (bottom right).

3.1 Queries

Suppose we know that the ith 0 in a cluster u’s bitvector
indicates the step across a directed edge e in the Euler
tour of u, and the jth 0 in a cluster v’s bitvector indicates
the step across a directed edge e′ in the Euler tour of v,
and we want to compute the number of steps between e
and e′ in the Euler tour of G. To do this, we first use
rank and select queries on u’s and v’s bitvector to find
the first 1 after the ith 0 in u’s bitvector and the last 1
before the jth 0 in v’s bitvector, the ranks of those 1s
and their distances from the ith and jth 0s. This tells us
how many steps in the Euler tour we take after crossing
e before we leave u for the first time on an inter-cluster
edge, and how many steps we take before crossing e′ after
we enter v for the last time on an inter-cluster edge. We
then map those 1s to directed inter-cluster edges (u,w)
and (x, v) and use Lemma 1 to compute the distance and
total weight of the corners between them in the Euler
tour of the tree containing those edges. The distance
tells us the number of steps we take across inter-cluster

edges between crossing e and e′ in the Euler tour, and
the total weight of the corners tells us the number of
steps we take across intra-cluster edges between crossing
(u,w) and (x, v). Since we already know how many edges
we cross between e and (u,w) and between (x, v) and e′,
we can compute the distance from e to e′ in the Euler
tour of the tree containing them. This all takes O(log n)
time, dominated by the time to query the AVL tree in
the macro-tree representation to find out the distance
and total weight of the corners between (u,w) and (x, v).

For example, suppose e is the violet directed edge
shown in the expanded view of the cluster in Figure 4,
and e′ is the green edge in the same cluster (so u = v
in this case). We cross 2 intra-cluster edges after e
before we leave the cluster across the inter-cluster edge
pointing up and left, and cross 2 intra-cluster edges
after re-entering the cluster across the inter-cluster edge
arriving from down and right (the reverse of the red
directed edge) before reaching e′. The AVL tree at the
bottom of Figure 3 tells us there are 26 steps in the Euler



CCCG 2021, Halifax, Canada, August 10–12, 2021

tour of P between when we leave the cluster heading up
and left and when we re-enter it from down and right
(including crossing those two inter-cluster edges), and
the total weight of the corners between those directed
inter-cluster edges is

2 + 1 + 3 + 2 + 2 + 1 + 2 + 2 + 4 +

3 + 1 + 2 + 0 + 2 + 2 + 3 + 1 + 2 +

1 + 2 + 2 + 5 + 1 + 2 + 3

= 51 ,

so the number of steps between e and e′ in the Euler
tour is

2 + 2 + 26 + 51 = 81 ,

not including crossing e and e′ themselves.
Similarly, if we know the 0 in the bitvector of a cluster

indicating a step across a directed edge e and we are
given an integer t, we can find the cluster containing the
directed edge e′ that is t steps after e in the Euler tour
of the tree containing e, and find the 0 in that cluster’s
bitvector indicting the step across e′, all in O(log n)
time. Using queries in the micro-trees and macro-tree
we can also move forward or backward one step in any
Euler tour in constant time, and enumerate the edges
incident to a given vertex in constant time per edge. Of
course we cannot store identifiers of all the vertices in
only 2n + o(n) bits, so in general we need intra-cluster
directed edges to be specified by which clusters they are
in and the ranks of the 0s indicating them, and vertices
to be specified by specifying a directed edge leaving them.
We can afford to store mobile fingers to O(n/ log1+ε n)
edges and vertices, however, without affecting our space
bound.

Lemma 2 Given a planar embedding of a forest G on n
vertices, we can partition G into clusters, store the parti-
tion as macro-trees and store each cluster as a micro-tree
in a total of 2n + o(n) bits, such that operations (i) and
(ii) take constant time and (iii) – (v) take O(log n) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given two directed edges e and e′, return the distance
from e to e′ in the Euler tour of the tree containing
them;

(v) given an edge e, return the number of vertices in
the subtrees on either side of e.

Notice that we do not mention G’s maximum degree
d in Lemma 2. This is because d appears only in the
upper bound B on clusters’ sizes, which does not affect
query times but only updates, which we discuss next.

3.2 Updates

Recall that B = d lg1+ε(n)+1 here. To insert an edge be-
tween two trees or delete an edge in a tree, we completely
rebuild the micro-trees, bitvectors and mappings for the
affected clusters, in O(B) time – possibly choosing new
roots for the new micro-trees – and update the macro-
tree or macro-trees in O(log n) time. We may need to
split or join a constant number of clusters to maintain
the invariant that they all have between lg1+ε(n) and B
vertices, but this can still be handled in O(B) time using
standard techniques. A more drastic problem occurs
when so many vertices are added or deleted that the
bounds for our cluster sizes change and we must rebuild
many clusters, but this cost can be amortized over the
insertions and deletions.

To delete the orange edge in Figure 4, we move the
shared endpoint of the orange and green edges into the
same cluster as the other endpoint of the green edge,
then completely rebuild the micro-trees, bitvectors and
mappings for the clusters shown inside the vertices of
the macro-tree. We update the macro-tree by deleting
the green edge and its reverse from the macro-tree (since
they are now intra-cluster edges), and weighting the
new corners by the number of steps in the Euler tours
of the clusters between the preceding and succeeding
edges: the cluster that contained the orange edge now
has 3 vertices, 2 (undirected) intra-cluster edges and 1
(undirected) inter-cluster edge, so the number of steps
in the Euler tour of T between entering it and leaving
it is 4, so that is the weight of its new single corner;
the cluster that now contains the green edge now has
7 vertices, 6 (undirected) intra-cluster undirected edges
and 4 (undirected) inter-cluster edges, and the number
of steps in the Euler tour between entering it across the
last inter-cluster edge before the green edge and leaving
it across the first inter-cluster edge after the green edge
is 5, so that is the weight of its new corner.

Lemma 3 After deleting a given edge from a tree in a
forest on a total of n vertices with maximum degree d,
we can update our representation of that tree in O(B)
amortized time and obtain the representations of the
two resulting trees. Similarly, after inserting an edge
bisecting given corners in two trees of a forest on a total
of n vertices with maximum degree d, we can update
our representations of those trees in O(B) amortized
time and obtain a representation of the single resulting
tree. We can add or delete an isolated vertex in O(B)
amortized time.



33rd Canadian Conference on Computational Geometry, 2021

Combining Lemmas 2 and 3, we obtain our first theo-
rem:

Theorem 4 Given a planar embedding of a forest G
on n vertices with maximum degree d, we can store G
in 2n + o(n) bits such that operations (i) and (ii) take
constant time, operations (iii) – (v) take O(log n) time
and (vi) and (vii) take O(d log1+ε(n)) time:

(i) given a directed edge e, return its predecessor and
successor in the Euler tour of the tree containing e;

(ii) given a directed edge (u, v), return its predecessor
and successor in the counter-clockwise enumeration
of edges incident to u;

(iii) given a directed edge e and an integer t, return the
directed edge e′ such that the distance from e to e′

is t in the Euler tour of the tree containing e;

(iv) given two directed edges e and e′ in the same tree,
return the distance from e to e′ in the Euler tour of
that tree;

(v) given an edge e, return the number of vertices in
the subtrees on either side of e;

(vi) given an edge e, delete e from the tree containing it
and return the representations of the two resulting
trees;

(vii) given corners in two different trees T and T ′, insert
an edge between T and T ′ bisecting those corners
and return the representation of the resulting tree.

4 Trees of Arbitrary Degree

The above scheme for bounded-degree forests can be
generalized to arbitrary forests by splitting high-degree
vertices. In the following, we describe the necessary
changes to the data structure.

4.1 Macro-Trees

We modify the macro-tree by allowing (inter-cluster)
edges to be either “true” or “false”. A true edge is as
before, whereas a false edge does not actually correspond
to any edge in G, but rather connects two clones of the
same graph vertex in different clusters. In the imple-
mentation, we can identify each edge and its preceding
corner into a single entity with a weight, a “macro-edge”;
a false edge adds weight 0 and a true edge adds weight
1 to the macro-edge. Conceptually, edges in the macro-
tree are (potentially empty) sequences of (consecutive)
true edges in the Euler tour, plus optionally one false
edge at the end of such a sequence.

As before, macro-edges are kept in a linked list, with
pointers to their reverse traversals. We also add pointers

to the immediate true successors and predecessors of
each macro-edge. Any balanced BST that supports
splitting and merging, augmented with subtree weights,
can be used to implement efficient access to macro-edges.
Operations stay the same, except that false edges have
to be counted with weight 0.

4.2 Micro-Trees

Our decomposition for unbounded degrees follows a sim-
ilar approach as above, but caters for large degrees by
splitting vertices. Given a total size n and a constant
ε > 0, we now set B = 3 lg1+ε(n). We decompose a
tree T on nT vertices as follows: If nT ≤ B, it forms a
cluster of its own. Else, we find a centroid, i.e., a node
or edge, so that after its removal, all remaining subtrees
have size at most 1

2nT . If we find a centroid edge in T ,
we recurse as before. Otherwise we find a node v that
splits T into subtrees S1, . . . , Sd, for d = deg(v), of sizes
nS1

, . . . , nSd
≤ 1

2nT . If any of these subtrees has size
nSi
≥ 1

3B, we recursively decompose Si and the rest of
the tree. Otherwise, if nS1 , . . . , nSd

< 1
3B, let j be the

index that minimizes∣∣(nS1
+ · · ·+ nSj

)− (nSj+1
+ · · ·+ nSd

)
∣∣ < 1

3B.

We split v into two “clones”, v1 and v2, and give
v1 the neighbors S1, . . . , Sj , v2 and v2 the neighbors
v1, Sj+1, . . . , Sd. The edge {v1, v2} is marked as a “false”
edge and separates T into two components, which are
recursively decomposed.

If we start with a tree T with nT ≥ B, then all
clusters have between 1

3B = lg1+ε(n) and B nodes, and
the number of clusters is Θ(n/B). Note that intra-cluster
edges are always true edges, hence the representation of
clusters using micro-trees remains unaffected.

We thus obtain the same result as in Theorem 4 for
general forests:

Theorem 5 Given a planar embedding of a forest G on
n vertices, we can store G in 2n + o(n) bits such that
operations (i) and (ii) from Theorem 4 take constant
time, operations (iii) – (v) take O(log n) time and (vi)
and (vii) take O(log1+ε(n)) time.

5 Acknowledgments

The first author was funded by NSERC Discovery Grant
RGPIN-07185-2020.

References

[1] L. Ferres, J. Fuentes-Sepúlveda, T. Gagie, M. He, and
G. Navarro. Fast and compact planar embeddings. CGTA,
89:101630, 2020.

[2] M. Rauch Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic time per
operation. J. ACM, 46(4):502–516, 1999.



CCCG 2021, Halifax, Canada, August 10–12, 2021

[3] J. Holm and E. Rotenberg. Dynamic planar embeddings
of dynamic graphs. Theory Comp. Sys., 61(4):1054–1083,
2017.

[4] G. Navarro. Compact Data Structures: A Practical Ap-
proach. Cambridge University Press, 2016.

[5] R. Raman, V. Raman, and S. Rao Satti. Succinct index-
able dictionaries with applications to encoding k-ary trees,
prefix sums and multisets. ACM Trans. Alg., 3(4):43–es,
2007.

[6] K. G. C. von Staudt. Geometrie de Lage. Bauer und
Raspe, Nürnberg, 1847.

[7] R. E. Tarjan and U. Vishkin. An efficient parallel bi-
connectivity algorithm. SIAM J. Comp., 14(4):862–874,
1985.


	Introduction
	Macro-Trees
	Micro-Trees
	Queries
	Updates

	Trees of Arbitrary Degree
	Macro-Trees
	Micro-Trees

	Acknowledgments

