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Abstract

Computing over compressed data combines the space saving of data compression with
efficient support for queries directly on the compressed representation. Such data structures
are widely applied in text indexing and have been successfully generalised to trees. For
graphs, support for computing over compressed data remains patchy; typical results in the
area of succinct data structures are restricted to a specific class of graphs and use the same,
worst-case amount of space for any graph from this class.

In this work, we design a data structure whose space usage automatically improves with
the compressibility of the graph at hand, while efficiently supporting navigational operations
(simulating adjacency-list access). Specifically, we show that the space usage approaches the
instance-optimal space when the graph is drawn according to the classic Barabási-Albert
model of preferential-attachment graphs. Our data-structure techniques also work for
arbitrary graphs, guaranteeing a size asymptotically no larger than an entropy-compressed
edge list. A key technical contribution is the careful analysis of the instance-optimal space
usage.

1. Introduction
In this paper, we design a compressed representation for graphs generated according to the
Barabási-Albert model of preferential attachment approaching the instance-optimal space usage
of lg(1/p) bits, for p the probability of the stored graph, that supports efficient operations
within the same space. (Here and throughout, lg = log2.)

The motivation and techniques of our work span the fields of information theory, compression
algorithms, and succinct data structures. Information theory studies random processes (sources)
for generating combinatorial objects, as a way to quantify the intrinsic information content in
an object x. Compression methods are algorithms to efficiently construct representations of x
that come close to this lower bound for the size of representations. Succinct data structures aim
to support efficient queries for an object x ∈ X using lg |X |(1 + o(1)) bits of space. This space
usage is asymptotically optimal in the worst case over X , but can, in principle, be improved
to lg(1/P[x]) bits of space when the object is drawn randomly from X with probability P[x].
Universal (source) codes, as studied in information theory, approximate that space usage over a
whole class of random sources “automatically”, i.e., without knowing the actual probabilities
P[x]. In some restricted cases (namely strings [FM00] and trees [MNSBW21]), such universal
codes have successfully been augmented with efficient query support. When applied to graphs,
information theory, compression algorithms, and succinct data structures all are, by comparison,
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Figure 1: The Barabási-Albert PA(M ; n) model of iteratively growing graphs with M = 3 for
n = 4 time steps. The probability of the shown choices of M targets are given for
each time step, yielding P[G4] = 5/864 overall. The information content is thus
lg(1/P[G4]) ≈ 7.43 bits; the degree-entropy is Hdeg

0 (G4) ≈ 15.37.

still in their infancy. A short survey of existing work on graphs from these angles is given in
Section 1.2.

A classical notion of compressibility of a text T is its (zeroth-order) empirical entropy H0(t),
(formally defined in Section 2). H0(T ) gives a lower bound for the size of any representation
that independently encodes individual characters of T , such as the well-known Huffman codes.
It is also the entropy rate of the maximum-likelihood memoryless source for T , or the entropy
of the character distribution obtained by Bayesian inference, i.e., starting with a uniform prior
distribution, for each T [i], update our prior (to a Beta distribution) to make T [i] more likely to
appear in the future.

Several competing notions of empirical entropies for trees have been proposed [HLSB20,
HLSB19, KYS09] (see also [SB23, Part II]); for graphs, the grounding in information theory is
weaker still. A simple and intuitive notion of empirical entropy for (directed) graphs G can
be obtained as follows: Concatenate the adjacency lists (the out-neighbours) of all vertices
and consider the empirical entropy H0(A) of the resulting adjacency string A = A(G) over the
alphabet V (G). Observe that each vertex v ∈ V (G) appears exactly din(v) times (for din(v)
the in-degree of v) in A(G); hence we call this quantity Hdeg

0 (G), the degree entropy of G. For
ease of presentation, we focus on graphs where the out-degree of all vertices is the same and a
canonical order of the vertices is given; then it is easy to reconstruct G from A(G). Note that
Hdeg

0 (G) = H0(A(G)) ≤ m lg n, where the latter is the number of bits used by an uncompressed
adjacency list. (Here n = |V (G)| is the number of vertices and m = |E(G)| the number of
edges.)

We will show that despite its simplicity, Hdeg
0 (G) can be a meaningful benchmark for graph

compression. We point out here that this is at least partially surprising since A(G) fixes a
specific ordering (and hence, naming) of vertices and edges. We (almost always) consider the
graph unchanged when (1) the edges are listed in different order, and, in many applications,
(2) when arbitrary renaming of vertices occurs. In the latter case, we only seek to preserve
the structure of a graph (i.e., the unlabelled graph or the equivalence class under relabelling),
e.g., to encode labels separately. In addition, undirected edges are given a direction by listing
them in A(G). So, in general A−1(G) is far from unique and Hdeg

0 (G) is not in general a lower
bound for the description length for G. This complication is indicative of what makes graph
compression harder than text compression.

As a challenging testbed for compressed graph data structures, we hence consider unlabelled,
undirected graphs from a highly non-uniform distribution. Specifically, we assume the Barabási-
Albert model [BA99] of random preferential-attachment graphs. It generates a graph iteratively
as follows (Figure 1). At each time step t, we add one new vertex vt and draw M random
neighbours for vt, where M is a fixed parameter of the model. The M neighbours at,1, . . . , at,M

are chosen, independently and with repetitions allowed, from the existing vertices v0, . . . , vt−1
with probability proportional to the (current) degree of vertex vi, P[ut,j = vi] ∝ dt(vi). This
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rule follows the Matthew principle (rich vertices get richer) and produces graphs where the
degree-distribution follows a power law (asymptotically, the probability of a vertex to collect
total degree k is proportional to k−3). The heavy-tailed power-law degree distribution is widely
observed in application domains with (approximately) scale-free graphs and makes compression
interesting and non-trivial. The Barabási-Albert model is also a natural analogue of Bayesian
inference of character distributions: whenever we see a vertex as the target of an edge, we
consider this target as more likely for future choices.

1.1. Our Results
Suppose G is a graph generated by the Barabási-Albert model, and let P[G] be the probability
for G to arise in this process (where we assume that M is a fixed parameter and we stop
the generation process after the nth vertex). Any encoding for graphs that is simultaneously
optimal for all such graphs must use (close to) lg(1/P[G]) bits of space to encode G. Our first
set of results relate the amount of information in G, lg(1/P[G]), to the empirical degree-entropy
of G, Hdeg

0 (G): despite their seemingly unrelated origins, the two quantities coincide up to an
error term.

Theorem 1.1 (Instance-specific lower bound): Let G be a labelled graph generated by
preferential attachment, G ∼ PA(M ; n), and further assume that apart from a fixed-size seed
graph, the graph G is simple. Then

lg(1/P[G]) = Hdeg
0 (G) ± O(nM lg M). ◁

Note that O(nM lg M) is a lower order term for typical graphs when M is not too big, that
is lg M = o(lg n). The analysis (Section 3) uses Gibbs’ inequality to compare different notions
of empirical entropy, a trick that might be of independent interest.

For unlabelled graphs G, the bound reduces by n lg n bits:

Theorem 1.2 (Unlabelled lower bound): Let G be as in Theorem 1.1 and consider its
structure S = S(G), i.e., a random unlabelled graph generated by preferential attachment.
Then

lg(1/P[S]) ≥ Hdeg
0 (S)− n lg n − O(nM lg M). ◁

(Note that Hdeg
0 (G) = Hdeg

0 (S(G)).) It may seem obvious that the bound would reduce
precisely by the lg(n!) ∼ n lg n bits needed to store n vertex labels since any unlabelled graph
can correspond to at most n! labelled graphs; however, we point out that (1) for general
distributions over labelled graphs, it is not true that these n! labelled graphs are equally likely,
and (2) a strictly higher lower bound is the actual truth for certain S, e.g., graphs with linear
diameter. We obtain a tight bound in Section 3, but its general growth with n is opaque. We
do not know whether the bound in Theorem 1.2 is tight.

The degree entropy thus precisely captures the asymptotic information content of a prefe-
rential-attachment graph. We next show that we can represent G using close to Hdeg

0 (G) bits
of space and support efficient queries on the compressed representation.

Theorem 1.3 (Ultrasuccinct preferential-attachment graphs): Let G be obtained from
PA(M ; n). There are data structures that support operations finding (1) the ith in-neighbour,
(2) the ith out-neighbour, (3) the degree of a vertex, and (4) testing adjacency, all in O(lg n)
time, in the following total space:

(a) Storing the labelled graph G uses Hdeg
0 (G) + o(Mn) bits of space.
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(b) Storing the unlabelled graph S = S(G) uses at most Hdeg
0 (S)(1− 1

M ) + 2n + o(Mn) ≤
(M − 1)n lg n + 2n + o(Mn) bits of space. ◁

By Theorem 1.1, the space for (a) is asymptotically optimal. The space for (b) almost matches
Theorem 1.2; in particular, it does so on average: 1

M Hdeg
0 (S) is close to n lg n unless S is

very compressible. (Note that A(S) has Mn characters, so Hdeg
0 (S) = Mn ·Hpc

0 (A(S)) and
1

M Hdeg
0 (S) = n ·Hpc

0 (A(S)), for Hpc
0 the per-character entropy; Hpc

0 (A(S)) is always between 0
and lg n.)

The labelled graph data structure uses an entropy-compressed wavelet tree to represent the
string A(G). To reduce the space for an unlabelled graph, our data structure uses one outgoing
edge per vertex (except v0) as a parent edge in an ordinal tree. These can be stored using a
succinct tree data structure using only 2 bits per edge if we use the tree indices to identify the
graph vertices. The remaining out-neighbours form string A′, which replaces A and is now n
entries shorter, saving up to lg n bits each. By judiciously choosing which edges to turn into
tree edges, we can moreover retain the compressibility of A′; we show that our choice implies
that the per-character entropy in A′ is never larger than that of A.

The unlabelled-graph data structure assigns new labels to the vertices of the graph, which
have to be used in queries; the relabelling function can be provided during construction, but
cannot be stored as part of the data structure in the stated space. A use case for the unlabelled-
graph data structure is any task where we only need to identify a small subset of vertices; e.g.,
computing network-analysis metrics such as betweenness centrality for a subset of important
vertices. We then store the names of important vertices in addition to the data structure for
S(G).

1.2. Related Work
The closest work to ours is the analysis of PA(M ; n) by Łuczak et al. [LMS19a, LMS19b]. They
compute the entropy of the distribution G ∼ PA(M ; n), E[lg(1/P[G])] = (M−1)n lg n ·(1+o(1))
and (only in the conference version [LMS19b]) describe a compression algorithm achieving
this entropy in expectation up to a redundancy of O(n lg lg n). Our work improves their
compression method to redundancy O(n) (using a succinct tree instead of their backtracking
numbers), provides instance-specific bounds, and supports efficient operations on the compressed
representation. (It is not clear whether their compression algorithm can be turned into an
efficient compressed data structure.)

Many more specialized models of random graphs have been suggested and studied. An
example that also features a compressed data structure is the geometric inhomogeneous random
graph (GIRG) model [BKL19]. The expected compressed space matches the entropy up to
constant factors. It is not clear if instance-optimal space is easily achievable. As stated, the
compression method requires a geometric realization of the graph as input.

Another related area is applied graph compression, where methods are evaluated empirically
on benchmarks from specific domains. As a representative example, we mention the webgraph
framework [BV04], which provides space-efficient data structures tuned to large web graphs.

The idea to use wavelet trees for the edges of a graph is discussed in Navarro’s survey on
wavelet trees [Nav14] (and may be folklore). This approach alone is inherently labelled and thus
cannot escape the lower bound of Theorem 1.1. The closest prior work to our data structure
is the GLOUDS graph representation of Fischer and Peters [FP16]. GLOUDS partitions the
edges into tree edges and non-tree edges using a standard breadth-first search to obtain an
ordinal tree; it uses a custom representation for the tree, as well. GLOUDS does not achieve
optimal space for G ∼ PA(M ; n) with constant M . In its original form it also does not adapt
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to Hdeg
0 (G) (although entropy compressing their array H would move towards the latter).

There are many further works that are related in spirit to our work, but with a dis-
tinctly different angle. For certain specific classes of graphs, succinct data structures have
been designed: interval graphs [ACJRS20, HMN+20], chordal graphs [MW18], permutation
graphs [TWZ23], circle graphs [ACJ+22], bounded clique-width graphs [CJSRS24], series-
parallel graphs [CJSRS23]. For representing any graph from a class of graphs with gn graphs
on vertex set [n], these data structures use lg(gn)(1 + o(1)) bits of space for representing one
such graph; this invariably corresponds to a uniform distribution over the class of graphs under
consideration. Supported operations vary, but always include finding neighbours of a given
vertex.

For trees, data structures beating the worst-case optimal space on compressible inputs
have been considered. Ultrasuccinct trees [JSS12] adapt to the degree entropy of a tree.
Hypersuccinct trees [MNSBW21] have been shown to simultaneously yield optimal space for a
large variety of entropy measures, both empirical (such as degree entropy) and entropy rates of
random tree sources. Here we lift these results to “ultrasuccinct graphs”.

On the information theory of structures (unlabelled graphs), a line of work studied the
entropy of random unlabelled graphs. Apart from the works of Łuczak et al. [LMS19a, LMS19b]
on preferential attachment graphs, small-world graphs [KLPS22], the Erdős-Renyi graphs [CS12],
and a vertex-copying model [TMS20] have been studied.

Lossless compression of graphs is surveyed by Besta and Hoefler [BH19]; see also [BLKB21].
Typical examples consider an application and exploit specifics of graphs arising there. A
statistical model of data and efficient queries are often not available.

2. Preliminaries
In this section, we collect some definitions and known results that we build on in this work.
We write [a..b] for {a, a + 1, . . . , b} and abbreviate [n] = [1..n]; also [a..b) = [a..b − 1]. We
use standard graph terminology; specifically, for a graph G and a vertex v ∈ V (G), we write
d(v) = dG(v) for the degree of v in G, i.e., the number of (potentially parallel) edges incident at v.
For directed graphs (digraphs), we distinguish in-degree and out-degree: d(v) = din(v) + dout(v);
we also write Nout(v) for the out-neighbourhood of v, i.e., the (multi)set of vertices w for which
there is a (bundle of) edge(s) vw in E(G). We call a DAG M -out-regular if dout(v) = M for all
vertices v ∈ V \ {v0}.

2.1. Empirical Entropy
For a text T [1..n] over alphabet Σ = [1..σ], the zeroth-order empirical entropy H0(T ) is given
by

H0(T ) =
σ∑

c=1
|T |c lg

(
n

|T |c

)
,

where |T |c = |{i ∈ [1..n] : T [i] = c}| denotes the number of occurrences of c in T . Additionally,
we define Hpc

0 (T ) = H0(T )/|T | to be the per-character zeroth-order empirical entropy of T . As
is standard, we set 0 lg(n/0) := 0 for notational convenience.

2.2. Preferential-Attachment Graphs
We consider the classical Barabási-Albert model of generating a random (undirected) graph
(with parallel edges); see Figure 1. Given a target size n and a parameter M ∈ N, we grow
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a graph G iteratively, where vertex vt arrives at time t, for t = 0, . . . , n. We denote by Gt

the graph after this arrival at time t; the vertex set is V (Gt) = {v0, . . . , vt}. G0 is the single
isolated vertex v0; G1 has M parallel edges between v0 and v1. Gt for t ≥ 2 results from Gt−1
by adding vt and M edges from vt to targets at,1, . . . , at,M ∈ V (Gt−1) = {v0, . . . , vt−1}, where
the at,1, . . . , at,M are mutually independent and identically distributed with

P[at,1 = vℓ] = · · · = P[at,M = vℓ] =
dGt−1(vℓ)

2|E(Gt−1)| (ℓ = 0, . . . , t− 1).

Note that if we orient the edges from new to old vertices in Gn ∼ PA(M ; n) (in the order
they arrived to the graph, i.e., from large to small t), we obtain a directed acyclic graph with
uniform out-degrees: dout(vt) = M for t ∈ [1..n] (dout(v0) = 0).

We will abbreviate dt(v) = dGt(v). Note that |E(Gt)| = tM and |V (Gt)| = t + 1. We write
Gn ∼ PA(M ; n) to indicate that Gn has been randomly chosen according to this preferential-
attachment process.

For G ∼ PA(M ; n), we obtain Hdeg
0 (G) as Hdeg

0 (G) = H0(A(G)) where

A(G) = [a1,1, . . . , a1,M , . . . , an,1, . . . , an,M ].

Let S(G) denote the structure of G, i.e., the class of graphs which are isomorphic to G. We
also refer to these as unlabelled graphs. We define the unlabelled graph distribution PAu(M ; n)
as the probability distribution on the family of S(G), where the probability of each class is the
sum of the probabilities that a labelled version of S(G) is PA(M ; n), that is,∑

H∈S(G)
P[H = PA(M ; n)].

2.3. Succinct Data Structures
For the reader’s convenience, we collect used results on succinct data structures here. First, we
cite the compressed bit vectors of Pătras,cu [Păt08].

Lemma 2.1 (Compressed bit vector): Let B[1..n] be a bit vector of length n, containing
m 1-bits. For any constant c > 0, there is a data structure using lg

(n
m

)
+ O

(
n

lgc n

)
≤ m lg

(
n
m

)
+

O
(

n
lgc n + m

)
bits of space that supports in O(1) time operations (for i ∈ [1..n]):

• access(B, i): return B[i], the bit at index i in B;

• rankα(B, i): return the number of bits with value α ∈ {0, 1} in B[1..i];

• selectα(B, i): return the index of the ith bit with value α ∈ {0, 1}. ◁

Using wavelet trees, we can support rank and select queries on arbitrary static strings/se-
quences while compressing them to zeroth-order empirical entropy.

Lemma 2.2 (Wavelet tree [Nav14]): Let S[1..n] be a array with entries S[i] ∈ Σ = [1..σ].
There is a data structure using H0(S) + o(n) bits of space that supports the following queries
in O(lg σ) time (without access to S at query time):

• access(S, i): return S[i], the symbol at index i in S;

• rankα(S, i): return the number of indices with value α ∈ Σ in S[1..i];

• selectα(S, i): return the index of the ith occurrence of value α ∈ Σ in S. ◁
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Proof: Many variants of wavelet trees are possible [Nav14]; for our result, we use the plain
encoding of the characters with ⌈lg σ⌉ bits each (balanced wavelet tree). All levels except the
last are full, so we can concatenate all bitvectors of nodes in the wavelet tree in level order
(pointerless wavelet tree [Nav14, §2.3]) and support navigation up and down the tree. Moreover,
using Lemma 2.1 for this bitvector of length at most ⌈lg σ⌉n yields space H0(S) + o(n) ([Nav14,
§3.1]). □

We lastly need a succinct data structure for ordinal trees. Several options exist for the basic
queries we need [BDM+05, GRR06]; (see [HMN+20, App. A] for a comprehensive review).

Lemma 2.3 (Succinct ordinal trees): Let T be an ordinal tree on n vertices. There is a
data structure using 2n + o(n) bits of space that supports the following queries in O(1) time
(where nodes are identified with their preorder index in T ):

• parent(T, v): return the parent of v in T ;

• degree(T, v): return the number of children of v in T ;

• child(T, v, i): return the ith child of v in T . ◁

3. Space Lower Bound
In this section, we derive the instance-specific lower bounds for preferential-attachment graphs.
Section 3.1 gives the main result for labelled graphs. Appendix A gives the proof for the
unlabelled case.

Let G ∼ PA(M ; n) be a labelled preferential-attachment graph. Recall that G is drawn
iteratively, where vertex vt arrives at time t, for t = 1, . . . , n. The graph after the arrival of vt

is Gt, where V (Gt) = {v0, . . . , vt}. The total number of edges in G = Gn is m = Mn.
For time t = 1, . . . , n, let Nout(vt) denote the random multiset of size M that contains the M

out-neighbours of vt randomly sampled from the set V (Gt−1) = {v0, v1, . . . , vt−1}. The vertex vt

attaches to a vertex in V (Gt−1) with probability proportional to its degree at time t− 1:

P
(t)
i = P

[
vi ∈ Nout(vt)

∣∣Gt−1
]

= dt−1(vi)
2(t− 1)M . (1)

Multinomial distribution of Nout(vt). The frequencies of appearance of vertices as out-
neighbours of vt follow a multinomial distribution. The number of trials in this case is M , where
each trial when vt chooses the neighbour from the set V (Gt−1) is independent of each other. Also,
each trial has t possible outcomes v0, v1, . . . vt−1, with probabilities as given by Equation (1).
Therefore, we have (conditional on Gt−1), that (C(t)

0 , . . . , C
(t)
t−1) ∼ Mult(M ; P

(t)
0 , P

(t)
1 , . . . , P

(t)
t−1),

where C
(t)
i denote the number of times the vertex vi is chosen randomly as a neighbour of vt at

time t. Therefore,

P
[
(C(t)

0 , . . . , C
(t)
t−1) = (c0, . . . ct−1)

∣∣Gt−1
]

=
(

M

c0, . . . , ct−1

)
(P (t)

0 )c0 . . . (P (t)
t−1)ct−1 .
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3.1. Proof of Theorem 1.1
In this subsection, we derive a lower bound on lg(1/P[G]) for P[G] the probability that a given
graph G ∼ PA(M ; n) results from a preferential-attachment process PA(M ; n).

Recall that G = Gn. Using the product rule, we get

P[G] = P[Nout(vn) |Gn−1] · P[Nout(vn−1) |Gn−2] · · · P[Nout(v2) |G1] · P[G1].

This implies

lg
( 1
P[G]

)
=

n∑
t=2

lg
( 1
P[Nout(vt) |Gt−1]

)

=
n∑

t=2

[
t−1∑
i=0

C
(t)
i lg

(2(t− 1)M
dt−1(vi)

)
− lg

((
M

C
(t)
0 , . . . , C

(t)
t−1

))]
. (2)

Consider −
∑n

t=2 lg
(( M

C
(t)
0 ,...,C

(t)
t−1

))
. We have

− lg
((

M

C
(t)
0 , . . . , C

(t)
t−1

))
= lg

C
(t)
0 ! . . . C

(t)
t−1!

M !

 ≥ lg
( 1

M !
)

= − lg(M !).

Now let us consider the first summand in (2),

n∑
t=2

t−1∑
i=0

C
(t)
i lg

(2(t− 1)M
dt−1(vi)

)

=
n−1∑
t=1

(
t∑

i=0
C

(t+1)
i lg(2tM)

)
−

n−1∑
t=1

(
t∑

i=0
C

(t+1)
i lg(dt(vi))

)
. (3)

Let us analyse the first summand. With
∑t

i=0 C
(t+1)
i = M , we find

n−1∑
t=1

(
t∑

i=0
C

(t+1)
i lg(2tM)

)
=

n−1∑
t=1

lg(2tM)
(

t∑
i=0

C
(t+1)
i

)
= M(n− 1) lg(2M) + M lg((n− 1)!).

Now consider the second summand in (3). Swapping the order of summation yields

−
n−1∑
t=1

(
t∑

i=0
C

(t+1)
i lg(dt(vi))

)
= −

n−1∑
i=0

 n−1∑
t=i+1

C
(t+1)
i lg(dt(vi))

.

Let Ti = {t ≥ 2 : C
(t)
i > 0} denote the set of timestamps such that the vertex vi is selected

as an out-neighbour; we have Ti = {t(i)
1 , . . . , t

(i)
din(vi)} with t

(i)
1 ≤ · · · ≤ t

(i)
din(vi), i.e., just before

time t
(i)
k , vi’s total degree was d

t
(i)
k

−1(vi) = M + k − 1.1 So far, the analysis works for general

1For ease of notation, we do not count the M edges from v1 to v0 in din(v0) here; then for all vertices, we have
d(vi) = din(vi) + M . That is also why we only include times t ≥ 2 in Ti.
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graphs; for the following simplification, we assume that no parallel edges2 are added in the
graph (for t ≥ 2). Then C

(t)
i ≤ 1 and the summand becomes

−
n−1∑
i=0

n∑
t=i+1

t≥2

C
(t)
i lg(dt−1(vi)) = −

n−1∑
i=0

din(vi)∑
k=1

lg(M + k − 1)

= −
n−1∑
i=0

din(vi)+M−1∑
k=1

lg(k)−
M−1∑
k=1

lg(k)


= −

n−1∑
i=0

lg((d(vi)− 1)!) + n lg((M − 1)!).

Therefore, Equation (2) becomes

lg
( 1
P[G]

)
≥ M(n− 1) lg(2M) + M(lg((n− 1)!))

−
n−1∑
i=0

lg((d(vi)− 1)!) + n lg((M − 1)!)

− (n− 1) lg(M !)

= Mn lg(2Mn) −
n−1∑
i=0

d(vi) lg(d(vi)) ± O(Mn)

(using d(v) = din(v) + M)

= Mn
n−1∑
i=0

din(vi)
Mn

lg
(2Mn

d(vi)

)
︸ ︷︷ ︸

(∗)

−
n−1∑
i=0

M lg(d(vi))︸ ︷︷ ︸
(†)

± O(Mn)

(bounding (∗) by Gibbs’ inequality, and (†) by the log-sum inequality)

≥ Mn
n−1∑
i=0

din(vi)
Mn

lg
(

Mn

din(vi)

)
± O(Mn lg M)

= Hdeg
0 (G) ± O(Mn lg M). (4)

This proves Theorem 1.1.

(The proof of Theorem 1.2 is given in Appendix A.)

4. Data Structures
In this section, we describe data structures that can represent a directed graph generated by
the preferential-attachment process in compressed form, while allowing for efficient navigational
queries without decompression.

For labelled graphs, we only use the wavelet tree portion of the data structure described
in the following. We omit the simple modifications here and present the data structure for
unlabelled graphs in detail; (see also [Nav14, §5.3] for the labelled case).

2We note that GM necessarily contains parallel edges, and our assumptions concern the edges chosen for t > M .
The contribution of these parallel edges in the calculation below can be shown to be O(M) overall, so we
ignore their presence for legibility.
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v0 v1 v2 v3 v4 v5G:

Nout(1) Nout(2) Nout(3) Nout(4) Nout(5)
A: 00 0 11 1 11 1 23 2 43 4

A′: 0 0 1 1 11 2 2 4 4

T :

0

1

2 3

4 5

Figure 2: Illustration of the construction of T , A and A′ on a sample preferential-attachment
graph where n = 5 and M = 3. The dashed red edges in G represent the edges that
are represented in T . Note that the vertices are labelled by their preorder index in T .

4.1. Construction
Let G′ ∼ PA(M ; n) be generated by the Barabási-Albert model. By iteratively “peeling off”
degree-M vertices, we uniquely obtain the directed version G = DAG(G′) [LMS19a].

We now sort vertices by indegree and construct a tree T informally by choosing, for each
vertex vt in G (except for v0), a parent among its out-neighbours with minimal (in-)degree.
Formally, define a bijective rank function σ : {v0, . . . , vn} → [0..n] such that din(u) > din(v)
implies σ(u) > σ(v). Construct a tree T with V (T ) = V (G) and

E(T ) =
n⋃

t=1

{
(vt, arg min

w∈Nout(vt)
σ(w))

}
.

Observe that T is indeed a tree since it consists of n + 1 vertices and n edges and is acyclic by
definition. Vertex v0 is the root of T .

We will store T using Lemma 2.3, where operations refer to nodes via their preorder index.
We hence perform a preorder traversal of T from its root, and relabel vt ∈ V (G) by its index in
the traversal, starting from 0.

For each vertex v ̸= 0 in G, define an order on its outgoing edges such that the edge (v, u),
for some u, is the first if and only if (v, u) ∈ E(T ), and all other vertices (v, w), u ̸= w, are
ordered arbitrarily. Finally, construct a static array A′ such that the (i + 1)th (i ∈ [1..M))
out-neighbour of vertex j in G is stored in A′[(j − 1)(M − 1) + i]. We store A′ in a wavelet
tree using Lemma 2.2.

4.2. Operations
Building upon the aforementioned data structures, we present algorithms to efficiently handle a
variety of navigational queries on G. Define source(i) = ⌈ i

M−1⌉ as the source of the edge whose
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target is stored in A′[i].

Computing the ith out-neighbour of v. The ith out-neighbour of v in G can be determined
as follows: if i = 1, it is the parent of v in T ; otherwise, it is given by A′[(v− 1)(M − 1) + i− 1]
(the (i− 1)th element of A′[(v − 1)(M − 1) + 1..v(M − 1)], which represents all but the first
out-neighbour of v).

Computing the ith in-neighbour of v. To determine the ith in-neighbour of v, we distinguish
two cases:

1. If v has at least i children in T , then its ith in-neighbour in G is simply its ith child in T .

2. Otherwise, if i > degree(T, v), we determine the (i − degree(T, v))th occurrence of v in
A′. The vertex whose neighbourhood includes this occurrence is found by computing
source(selectv(S, i− degree(T, v))).

Using these two operations, we can also iterate through the neighbourhoods or return all (in-
resp. out-) neighbours.

Computing the in-degree of v. The in-degree of a vertex v can be determined by summing the
number of its children in T (computable by degree(T, v)) and its occurrences in A′ (computable
by rankv(A′, n(M − 1)).

Determining if u and v are adjacent. If u and v are adjacent, either (1) u is the parent of v
in T , parent(T, v) = u, (2) vice versa, parent(T, u) = v, or (3) v occurs in A′[(u− 1)(M − 1) +
1..u(M − 1)] or (4) vice versa, u occurs in A′[(v − 1)(M − 1) + 1..v(M − 1)]. (If either of them
is v0, two cases need not be checked.) Conditions (1) and (2) are directly supported on T ; for
(3) and (4), we can use rank: If rankv(A′, u(M − 1))− rankv(A′, (u− 1)(M − 1)) ≥ 1, then v
occurs at least once, so v and u are adjacent. (4) is similar.

To conclude the proof of Theorem 1.3, it remains to analyse the space usage of our data
structure; details are given in Appendix B.

Remark 4.1 (General graphs): We point out that the data-structure techniques above
can be extended to general graphs. Using a compressed bit vector to mark where the next
neighbourhoods begin, we can support the same queries with n lg(m/n) + O(n) extra space. ◁

5. Conclusion
We designed a compressed representation for graphs generated by the Barabási-Albert model
of random preferential-attachment graphs approaching the instance-optimal lg(1/P[G]) bits of
space, where P[G] is the probability for the graph to arise in the model. We further related
lg(1/P[G]) to the empirical degree-entropy of G, Hdeg

0 (G); they coincide up to an error term
in both labelled and unlabelled graphs. Our compressed representation supports navigational
queries in O(log n) time and can simulate access to an adjacency-list representation.

Future work might study other models of preferential attachment. For example, the model
introduced by Cooper and Frieze [CF03], where the number of edges added follows a given
distribution. One can also consider a non-linear model in which the probability of a vertex,
when M edges are added, being chosen is proportional to its degree raised to some power α.
(Here α = 1.)
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More broadly speaking, this work merely made initial strides into data structures that adapt
to information-theoretic measures of compressibility in graphs, leaving many avenues for future
work open. For example, unlike in trees, a convincing notion of higher-order entropy for graphs
is not yet emerging, let alone data structures approaching them.
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Appendix
A. Proof of Theorem 1.2 (Lower Bound for Unlabelled PA Graphs)
Assuming an undirected graph G has been generated by the Barabási-Albert process, we can
uniquely reconstruct its directed version by iteratively “peeling” off degree-M vertices [LMS19a].
Note that the same is not true about the arrival times; in general the resulting DAG contains
only partial information about the vertex arrival order: any linear extension of the partial order
induced by the DAG is an admissible arrival order. Our analysis builds on results by Łuczak et
al. who proved that (1) most PA graphs have n! ·2−O(n lg lg n) admissible arrival orders [LMS19a,
p. 715] and (2) that each of these arises from PA(M ; n) with equal probability [LMS19a, Lem. 7].
We reproduce the relevant arguments here.

We define the admissible set Adm(S) of a given unlabelled graph S to be the set of all
labelled graphs G with S(G) = S such that G could have been generated according to the
preferential-attachment model. We can also define Adm(G) := Adm(S(G)). For a graph G, we
define Γ (G) to be the set of permutations π such that π(G) ∈ Adm(G). Let Aut(G) be the
automorphism group of G. For any G, we have the following equation [MGSS17]

|Adm(G)| := |Γ (G)|
|Aut(G)| . (5)

For a graph G ∼ PA(M ; n) and S(DAG(G)), every possible way to order the vertices will
result in the same probability for generating the resulting labelled DAG(G) since we can reorder
the numerators and denominators from (1).

Lemma A.1 ([LMS19a, Lem. 7]): Let H ∼ PA(M ; n) for some M ≥ 1. For any two graphs
G, G′ without parallel edges apart from the seed graph G1 satisfying S(DAG(G)) = S(DAG(G′)),
we have P(H = G) = P(H = G′). ◁

For an unlabelled graph S(G) without parallel edges, Lemma A.1 implies

P[S(G)] = P[G] · |Adm(S(G))|.

Since |Adm(G)| ≤ n!, the instance-specific lower bound for unlabelled S(G) is

lg
( 1
P[S(G)]

)
= lg

( 1
P[G]

)
− lg |Adm(S(G))| ≥ lg(1/P[G])− lg(n!),

which proves Theorem 1.2.

B. Space and Time Analysis of our Data Structure
In this section, we prove the space and time complexity of our preferential-attachment graph
representation. Note that for labelled graphs, the result follows directly from the guarantees of
wavelet trees: We use Lemma 2.2 to represent A = A(G); since we have (by definition) that
H0(A(G)) = Hdeg

0 (G), Theorem 1.3–(a) follows.
For Theorem 1.3–(b), we first state the achieved results in terms of the empirical entropy

of A′:

Lemma B.1: There exist data structures to represent T and A′ in H0(A′) + 2n + o(Mn) bits
of space, while allowing for Nout(v, i), Nin(v, i), degree(v), and adjacency(u, v) to run in O(lg n)
time, and Nout(v) and Nin(v), in O(lg n) time per neighbour. ◁
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Proof: As stated in Lemma 2.3, the tree T can be succinctly represented using 2n + o(n)
bits, while supporting relevant tree operations in constant time. Since T encodes the first
out-neighbour of each vertex in G, the remaining n(M−1) edges in A′ must be stored separately.

We store A′ using a wavelet tree. By Lemma 2.2, this uses H0(A′) + o(Mn) bits (since
|A′| = n(M − 1)), while allowing access, rank, and select queries in O(lg σ) time, where σ, the
alphabet size, is n here.

Overall, the data structures representing the preferential-attachment graph G occupy a
total of H0(A′) + 2n + o(Mn) bits.

As established in Lemma 2.2 and Lemma 2.3, the operations parent(T, v), child(T, v, i), and
degree(T, v) are supported in O(1) time, while access(S, i), rankv(S, i), and selectv(S, i) run in
O(lg n) time. Consequently, Nout(v, i), Nin(v, i), degree(v), and adjacency(u, v) can be computed
in O(lg n) time, while Nout(v) and Nin(v) require O(lg n) time per neighbour. □

Towards the proof of Theorem 1.3, we now need to connect H0(A′) and Hdeg
0 (S) = H0(A).

We start observing that the trivial bound for the empirical entropy, H0(A′) ≤ (M − 1)n lg n,
yields the second term in Theorem 1.3–(b). Since this is also the expected value of our lower
bound (computed by Łuczak et al. [LMS19a]), for typical graphs, our data structure uses
asymptotically the optimal space for an unlabeled preferential-attachment graph.

For a closer analysis, it is convenient to consider the per-character empirical entropy: for a
string w ∈ Σn of length n = |w|, we define Hpc

0 (w) = 1
nH0(w) ≤ lg |Σ|. We point out that in

general, deleting a character from a string may increase or decrease Hpc
0 . In Appendix C, we

will show that our scheme of choosing T , however, never increases the per-character entropy:

Lemma B.2: Let G be any M -out-regular DAG G and let A = A(G) and A′ be as per our
construction. Then Hpc

0 (A′) ≤ Hpc
0 (A). ◁

Using Lemma B.2, the space from Lemma B.1 becomes

H0(A′) + 2n + o(Mn) = Hpc
0 (A′)|A′|+ 2n + o(Mn)

= Hpc
0 (A′)(M − 1)n + 2n + o(Mn)

≤ Hpc
0 (A(S))(M − 1)n + 2n + o(Mn)

= H0(A(S))(M − 1)n
Mn

+ 2n + o(Mn)

= Hdeg
0 (S)

(
1− 1

M

)
+ 2n + o(Mn).

This concludes the proof of Theorem 1.3.

C. Proof of Lemma B.2 (Tree Deletion)
In this appendix, we prove Lemma B.2, the key lemma for bounding the space of the unlabelled
graph data structure. We will first reformulate the problem as a question on strings, which we
consider natural enough to be of independent interest.

C.1. Blocked Character Deletion
Let X · Y denote the concatenation of two strings X and Y , and let X \ c, for a character c,
denote the result of deleting a single occurrence of c from X.

With that, we can translate the process by which A′ results from A to strings: Given a
string A = X1 · X2 · . . . · Xn of n blocks (i.e. substrings) and alphabet Σ, we obtain string
A′ = X ′

1 ·X ′
2 · . . . ·X ′

n where, for i ∈ [n], X ′
i = Xi \ ci, for ci ∈ Xi; i.e., A′ is obtained by deleting
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exactly one character in each block of A. Can we achieve Hpc
0 (A′) ≤ Hpc

0 (A)? Our goal is to
show that a simple greedy method, the LFC scheme below, suffices for that, provided all blocks
are equally long, |X1| = |X2| = · · · = |Xn| = M .

C.2. Least-Frequent-Character (LFC) Scheme
We will now describe an algorithm that corresponds to our construction of the tree T from
Section 4.

First, let S be a sorted copy of A, where we sort characters by increasing frequency. Define
the bijective function σ : Σ → [|Σ|] which maps each character of the alphabet Σ of A to a
rank such that, for distinct characters x, y ∈ Σ, |A|x > |A|y =⇒ σ(x) > σ(y) (such a mapping
must exist). Then, construct the string S as follows: start with S = ∅, and for each i from 1 to
|Σ|, append the character σ−1(i) |A|σ−1 times.
Example C.1: Let n = 3, M = 4, and A = abracadabraa. We can then define

σ = {(c, 1), (d, 2), (b, 3), (r, 4), (a, 5)},

and construct S = cdbbrraaaaaa. Note that there can be multiple ways to define σ. ◁

To construct A′, we delete from each block its leftmost letter in S. Equivalently, but more
convenient for the analysis to follow, assume without loss of generality that λ ̸∈ Σ and follow
the procedure described in Algorithm 1.

Operation 1 Computation of A′ following the LFC scheme.
1: Â← A ▷ Â = X̂1 · X̂2 · . . . · X̂n is a copy of A = X1 ·X2 · . . . ·Xn.
2: F [1..n]← [0]n ▷ F stores which blocks in Â were flagged
3: for i = 1 to n do
4: k ← min{k′ : S[k′] ̸= λ} ▷ k is set to the smallest index such that S[k] ̸= λ.
5: c← S[k] ▷ c is set to the character at that index.
6: j ← min{j′ : c ∈ X̂j′ and F [j′] = 0} ▷ Index of some unflagged block where c occurs.
7: F [j]← 1 ▷ We register that the block has been flagged.
8: for all l ∈ X̂j do ▷ We iterate over all characters in the selected block X̂j.
9: i′ ← min{i′′ : S[i′′] = l}

10: S[i′]← λ
11: k ← min{k′ : X̂j [k′] = c}
12: X̂j [k]← λ ▷ This also updates Â since X̂j ⊆ Â.
13: A′ ← ∅
14: for i← 1 to nM do
15: if Â[i] ̸= λ then
16: A′ ← A′ · Â[i] ▷ A′ is built by copying Â and deleting positions where λ occurs.
17: return A′

Initially, all blocks in A are unflagged. The scheme proceeds in n steps. In each step, it
selects the leftmost non-λ character in S (call it c) located at position k (i.e. S[k] = c ̸= λ), and
flags every unflagged block that contains c; suppose it flags p such blocks. Then, in each of the
p flagged blocks, it replaces exactly one occurrence of c in the block with λ. For each remaining
character c′ in the block, it replaces one occurrence of c′ in S with λ. Finally, it replaces c itself
with λ.

At each step, exactly M characters are replaced by λ in S, so that after n steps, all nM
characters in S will have been replaced by λ. The string A′ is obtained by deleting all occurrences
of λ in A following the execution of the scheme.
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Example C.2: Let n = 3, M = 4, and A = abracadabraa. Define σ as in Example C.1; we
then get S = cdbbrraaaaaa. Let us compute A′ following the scheme outlined in Algorithm 1.

# for Â S F

abracadabraa cdbbrraaaaaa [0, 0, 0]
1 abraλadabraa λλbbrrλλaaaa [0, 1, 0]
2 aλraλadabraa λλλbrλλλλλaa [1, 1, 0]
3 aλraλadaλraa λλλλλλλλλλλλ [1, 1, 1]

◁

Figure 3: Sample execution of the LFC scheme on the string A = abracadabraa. The resulting
A′ is araadaraa, and Hpc

0 (A′) ≈ 1.22439 ≤ Hpc
0 (A) ≈ 1.95915.

C.3. Analysis
The proof uses a handy tool to bound entropies: the majorisation partial order. Let P =
(p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two n-sized distributions. We say that P majorises
Q (i.e. Q ⪯ P ) if and only if

∑k
i=1 p↓

i ≥
∑k

i=1 q↓
i for all k ∈ [n], where X↓ = (x↓

1, x↓
2, . . . , x↓

|X|)
denotes the |X|-sized vector of the distribution X sorted in non-increasing order. Given that
the entropy function is Schur-concave, Q ⪯ P implies Hpc

0 (P ) ≤ Hpc
0 (Q) [MOA79].

Assume M ≥ 2; the case where M = 1 is trivial. Let S be a string over alphabet Σ, and
let P = (p1, p2, . . . , p|Σ|) be a (non-ordered) distribution such that pi = |S|ci

|S| for all i ∈ [|Σ|],
where ci ∈ Σ is the ith character of the alphabet (without loss of generality, assume the latter
is ordered).

Lemma C.3: Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two n-sized distributions
such that

∑k
i=1 pi ≥

∑k
i=1 q↓

i for all k ∈ [n]. Then,
∑k

i=1 p↓
i ≥

∑k
i=1 q↓

i for all k ∈ [n]. ◁

Proof: Sorting P in non-increasing order does not reduce prefix sums, thus giving
∑k

i=1 p↓
i ≥∑k

i=1 pi ≥
∑k

i=1 q↓
i for all k ∈ [n]. □

Lemma C.4: Let k1 < k2 < · · · < kn be the n indices in S picked by the LFC scheme
(Algorithm 1, line 4). We have ki ≤ (i− 1)M + 1. ◁

Proof: Suppose, towards a contradiction, that at the ith selection, the leftmost non-λ character
in S is at position (i− 1)M + 2 or greater. This implies that for all j ∈ [(i− 1)M + 1], S[j] = λ.

Since i− 1 characters were selected previously, and (M − 1)(i− 1) other characters were
replaced by λ each time, then the next non-λ character must be at position at most (M − 1)(i−
1) + (i− 1) + 1 = M(i− 1) + 1. However, we assumed that position was occupied by λ, which
is a contradiction. □

Lemma C.5: Let A be a string of size nM and alphabet Σ, and construct its respective S
following the LFC scheme. Let S′ be obtained by copying S and simultaneously deleting its
characters at positions (i− 1)M + 1 for all i ∈ [n]. We then have Hpc

0 (S′) ≤ Hpc
0 (S). ◁

Proof: Let f1 ≤ f2 ≤ . . . f|Σ| be the normalised frequencies of the characters of Σ in their
order of appearance in S (by the way S is constructed, these must be non-decreasing), and let
f ′

i be the respective normalised frequency of the ith distinct character of S in S′; for instance,
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suppose f5 is the frequency of the fifth distinct character c in S, then f ′
5 is the frequency of c

in S′ (i.e. after the n deletions in S).
The post-deletion frequency f ′

i can be expressed in terms of fi under two distinct cases:

f ′
k =



nMfi − ⌈nfk⌉
n(M − 1) , (case 1) if

(
n

k−1∑
i=1

fi

)
mod M ≥ M − (nfk mod M)

nMfi − ⌊nfk⌋
n(M − 1) , (case 2) otherwise.

(6)

From those expressions, we want to show the following equality:
k∑

i=1
f ′

i =
k∑

i=1
fi + (n

∑k
i=1 fi) mod M

nM(M − 1) ; (7)

to do so, we proceed by induction.

Base case (k = 1). Clearly, the second case of Equation 6 applies for (one of) the
largest character(s) (of frequency fk in S), since there are no previous frequencies to add
up, so (n

∑0
i=1 fi) mod M = 0 < M − (nf1 mod M) (the RHS can never be 0). Hence,

f ′
1 = Mnf1−⌊nf1⌋

n(M−1) ≥ f1. The last inequality holds because:

⌊nf1⌋ ≤ nf1

−M⌊nf1⌋ ≥ −Mnf1

M2nf1 −M⌊nf1⌋ ≥M2nf1 −Mnf1

M(Mnf1 − ⌊nf1⌋) ≥Mnf1(M − 1)
Mnf1 − ⌊nf1⌋ ≥ nf1(M − 1)
Mnf1 − ⌊nf1⌋

n(M − 1) ≥ nf1(M − 1)
n(M − 1)

Mnf1 − ⌊nf1⌋
n(M − 1) ≥ f1.

Induction hypothesis. Assume that
k∑

i=1
f ′

i =
k∑

i=1
fi + (n

∑k
i=1 fi) mod M

(M − 1)Mn

for some k. Let us show that the equality holds when adding f ′
k+1 in either of the two cases of

Equation 6.

Case 1. We delete the character ⌈nfk+1⌉ times, i.e.

f ′
k+1 = Mnfk+1 − ⌈nfk+1⌉

n(M − 1) .

Recall that this case occurs if and only if(
n

k∑
i=1

fi

)
mod M ≥ M − (nfk+1 mod M).
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Therefore, we have
((n

∑k
i=1 fi) mod M)
n(M − 1) ≥ M − (fk+1n mod M)

n(M − 1)
and since

M − (nfk+1 mod M) = M(⌈nfk+1⌉ − nfk+1),

then
((n

∑k
i=1 fi) mod M)
n(M − 1) ≥ M(⌈nfk+1⌉ − nfk+1)

n(M − 1) .

Now, back to the assumed equality. Let us add the new frequency on both sides. We thus get

k∑
i=1

f ′
i + f ′

k+1 =
k∑

i=1
fi + (n

∑k
i=1 fi) mod M

(M − 1)Mn
+ f ′

k+1,

hence giving us

k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ Mnfk+1 − ⌈nfk+1⌉

n(M − 1) .

By splitting the fraction, we get:

k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌈nfk+1⌉

n(M − 1) + n(M − 1)fk+1
n(M − 1)

which gives us, by cancelling out the factors in the last fraction,

k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌈nfk+1⌉

n(M − 1) + fk+1

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌈nfk+1⌉

n(M − 1) .

By multiplying the numerator and denominator by M in the last summand, we obtain

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ M(nfk+1 − ⌈nfk+1⌉)

Mn(M − 1)
k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
− M(⌈nfk+1⌉ − nfk+1)

Mn(M − 1) .

Note that we can already establish that
∑k+1

i=1 f ′
i ≥

∑k+1
i=1 fi since

(n
∑k

i=1 fi) mod M

(M − 1)Mn
≥ M(⌈nfk+1⌉ − nfk+1)

Mn(M − 1) ≥ 0.

Finally, we have

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
− M − (nfk+1 mod M)

Mn(M − 1)
k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k+1

i=1 fi) mod M

(M − 1)Mn
,
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where the last equality holds because(
n

k+1∑
i=1

fi

)
mod M + (nfk+1) mod M ≥M,

which strictly follows from the condition of the case.

Case 2. We delete the character ⌊nfk+1⌋ times, i.e.

f ′
k+1 = Mnfk+1 − ⌊nfk+1⌋

n(M − 1) .

Again, let us add the new frequency on both sides. We have
k∑

i=1
f ′

i + f ′
k+1 =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ f ′

k+1

k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ Mnfk+1 − ⌊nfk+1⌋

n(M − 1) .

By splitting the fraction, we get
k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌊nfk+1⌋

n(M − 1) + n(M − 1)fk+1
n(M − 1)

k+1∑
i=1

f ′
i =

k∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌊nfk+1⌋

n(M − 1) + fk+1

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ nfk+1 − ⌊nfk+1⌋

n(M − 1) .

By multiplying the numerator and denominator by M in the last summand, we obtain
k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M

(M − 1)Mn
+ M(nfk+1 − ⌊nfk+1⌋)

Mn(M − 1)
k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M + M(nfk+1 − ⌊nfk+1⌋)
(M − 1)Mn

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k

i=1 fi) mod M + nfk+1 mod M

(M − 1)Mn

k+1∑
i=1

f ′
i =

k+1∑
i=1

fi + (n
∑k+1

i=1 fi) mod M

(M − 1)Mn
,

where the last equation strictly follows from the condition of the case, i.e.(
n

k+1∑
i=1

fi

)
mod M + (nfk+1) mod M < M.

In either case, the equality holds. Notice that we have, for all k ∈ [|Σ|]:

k∑
i=1

f ′
i ≥

k∑
i=1

fi
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since (n
∑k

i=1 fi) mod M

(M−1)Mn is non-negative.
Let P = (f1, f2, . . . , f|Σ|) and P ′ = (f ′

1, f ′
2, . . . , f ′

|Σ|). Clearly, by Lemma C.3 (note that P =
P ↓), the last inequality implies that P ↓ ⪯ P ′↓. This further implies that Hpc

0 (P ′↓) ≤ Hpc
0 (P ↓),

and the lemma follows. □

Let k1 < k2 < · · · < kn be the indices picked by the LFC scheme. Given that ki ≤ (i−1)M +1
for i ∈ [n], then any set of indices from the scheme can be obtained by setting all the indices to
their respective upper bounds and shifting them to the left (i.e. decreasing their respective k).

Lemma C.6: Let k1 < k2 < · · · < kn be the indices selected by the LFC scheme and let

j∑
i=1

f ′
i ≥

j∑
i=1

fi

for all j ∈ [n]. If some ki is set to ki − x, with x ∈ N, such that ki ≥ 1 and ki ̸= kj for all
j ∈ [n], then the inequality still holds. ◁

Proof: Suppose S[ki] = S[ki − x]. Clearly, shifting the index to the left does not change the
frequency of any character in Σ; therefore, in that case, the inequality will still hold.

Now, suppose S[ki] ̸= S[ki − x] and let f ′
a and f ′

b be the impacted frequencies, with a < b.
Shifting the index is equivalent to restoring the character at position ki and deleting the
character at position ki − x. Thus, f ′

b decreases by some value δ, and f ′
a increases by δ. This

clearly does not affect the prefix sums, and the lemma follows. □

Proof of Lemma B.2: Construct S, initially set the “deleting” indices to 1, M + 1, . . . , (n−
1)M + 1, and let S′ be the string obtained by deleting the characters of S at those indices. By
Lemma C.5, Hpc

0 (S′) ≤ Hpc
0 (S). We know that any set of indices computed by the scheme on

A must result with indices ki ≤ (i − 1)M + 1; so, for each index ki, shift them to wherever
the LFC scheme would put them on input A. That shifting still does not increase the entropy
beyond that of S, by Lemma C.6; thus Hpc

0 (S′) ≤ Hpc
0 (S) holds after the shifts.

Since Hpc
0 (A) = Hpc

0 (S), Hpc
0 (S′) = Hpc

0 (A′) and Hpc
0 (S′) ≤ Hpc

0 (S), it follows that
Hpc

0 (A′) ≤ Hpc
0 (A), completing the proof. □

Remark C.7 (Equal-sized blocks needed): We point out that, in contrast to Lemma B.2,
allowing blocks of different lengths in blocked character deletion can make it impossible to
achieve Hpc

0 (A′) ≤ Hpc
0 (A). ◁
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