
March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

JAguc – a software package for environmental diversity analyses

Markus E. Nebel†, Michael Holzhauser†, Lars Hüttenberger†, Raphael Reitzig†,

Matthias Sperber†, Sebastian Wild†, Thorsten Stoeck‡

†Computer Science Department
‡Department of Biology

University of Kaiserslautern,
67663 Kaiserslautern, Germany

email: nebel@cs.uni-kl.de

Background

The study of microbial diversity and community structures heavily relies on the analyses

of sequence data, predominantly taxonomic marker genes like the small subunit of the
ribosomal RNA (SSU rRNA) amplified from environmental samples. Until recently, the

“gold standard” for this strategy was the cloning and Sanger sequencing of amplified
target genes, usually restricted to a few hundred sequences per sample due to relatively

high costs and labor intensity. The recent introduction of massive parallel tag sequencing

strategies like pyrosequencing (454 sequencing) has opened a new window into microbial
biodiversity research. Due to its swift nature and relatively low expense, this strategy

produces millions of environmental SSU rDNA sequences granting the opportunity to

gain deep insights into the true diversity and complexity of microbial communities. The
bottleneck, however, is the computational processing of these massive sequence data,

without which, biologists are hardly able to exploit the full information included in

these sequence data.
Results

The freely available standalone software package JAguc implements a broad regime of

different functions, allowing for efficient and convenient processing of a huge number
of sequence tags, including importing custom-made reference data bases for basic local

alignment searches, user-defined quality and search filters for analyses of specific sets of

sequences, pairwise alignment-based sequence similarity calculations and clustering as
well as sampling saturation and rank abundance analyses. In initial applications, JAguc

successfully analyzed hundreds of thousands of sequence data (eukaryote SSU rRNA
genes) from aquatic samples and also was applied for quality assessments of different

pyrosequencing platforms.

Conclusions
The new program package JAguc is a tool that bridges the gap between computational

and biological sciences. It enables biologists to process large sequence data sets in order

to infer biological meaning from hundreds of thousands of raw sequence data. JAguc
offers advantages over available tools which are further discussed in this manuscript.

While providing a highly efficient implementation of its functionality adjusted to typical

molecular environmental diversity analyses, JAguc is not restricted to the analyses of
environmental pyrosequencing data but is applicable to a broad array of further appli-

cations, including motif searches or (meta)transcriptomes.

1

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

2

1. Background

Microorganisms (including bacteria, archaea, protists and fungi) constitute the ma-

jority of biomass on our planet, boast the widest range of evolutionary diversity

in the tree of life and are essential components in every ecosystem on the globe.

Therefore, profound knowledge of microbial community compositions and struc-

tures is crucial not only to understand ecosystem functionality, but also to inven-

tory local and global biodiversity and illuminate evolutionary processes. Due to

their small size, the identification of microbes using phenotypic characters like mor-

phology is severely hampered. Therefore, analyses of gene sequences from microbial

organisms have become standard in microbial ecology and diversity research. The

established approach includes the amplification of a taxonomic marker gene, rou-

tinely the small subunit of the ribosomal RNA (SSU rRNA), from genomic DNA

or from RNA extracted from environmental samples; the subsequent cloning of in-

dividual genes or gene fragments into a plasmid-vector; the multiplication of each

plasmid in a bacterial strain; the isolation of plasmids from a bacterial colony and

subsequent dideoxy-sequencing of the target gene. The downsides of this strategy

are the relatively high cost and labor intensive nature, which limits the number of

genes analyzed from a single sample to a few hundred (in exceptional cases more

than one thousand genes were analyzed in the framework of an individual project).

Novel massive parallel tag sequencing strategies in microfabricated high-denisty

picolitre reactors (pyrosequencing) originally developed for genome sequencing 13,

have recently been adapted and applied to microbial diversity surveys 8,18,19,22.

This strategy allows researchers to produce millions of environmental SSU rDNA

sequences from an individual samples at a fraction of the costs of traditional clone

library construction and Sanger sequencing. Over the few years since its application

in microbial ecology, this strategy has been widely used in a variety of environmental

diversity surveys, and scientists have gained new insights into microbial community

structures that have coined new concepts in microbial ecology. One example is the

concept of the “rare biosphere”, which became a central hypothesis driving research

in our understanding of the true extent of microbial richness, the mechanisms that

maintain such diversity, and the ecological roles microbes play in natural environ-

ments 18,15,21,6. In the near future, an even more massive increase of sequence data

from pyrosequencing projects can be expected. One main indicator is the number

of wells in a picolitre plates are steadily increasing (ca. 400 million reactions on

one plate in 2006 to ca. 1.4 billion reactions in 2009). In addition, the read length

for sequences is also steadily increasing (from 100 bp in 2006 to ca. 500 in 2009,

predictions for the end of 2010 are about 1000 bp). Therefore, our aim was the

development of a user-friendly stand-alone software package with a graphical user

interface (GUI) – finally called JAguca – that can be installed locally and used

aThe name fuses the letter J for the Java programming language and the letters for the nucleotides

that make up RNA.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

3

without detailed computational knowledge to exploit information included in these

sequence data. This manuscript outlines the workflow of this program package,

makes the implementations and algorithms transparent in order to provide full con-

trol of the functionalities of JAguc to the users, exemplifies the use of this tool and

compares the software with other tools developed for the processing and analyses

of massive sequence data sets.

2. Implementation

JAguc is implemented in Java and thus can be used on any platform (Linux, Mac,

Windows). Its architecture distinguishes between frontend and backend functional-

ity, the former for user interactions, the later to process the data.

JAguc’s workflow and user interface

The frontend organization allows for an easy analysis of a set of sequences using

the following workflow (Fig. 1):

(1) Data import (sequence identifiers, sequence data, reference databases);

(2) Data filtering;

(3) Descriptive statistics on imported data;

(4) Pairwise sequence alignments and calculation of a sequence similarity matrix;

(5) Calling operational taxonomic units (OTUs);

(6) Assigning taxonomies to individual OTUs;

(7) Statistical analyses on OTUs.

The sequences of samples are imported from FASTA files and are stored by JAguc

within an SQL database. Managing any number of samples is simple as each is fur-

nished with a user-provided unique identifier, date and description. While importing

a sample, the system allows truncated sequences after a user-defined position. This

allows for dealing with sequencing techniques only providing reliable data up to a

certain length. Furthermore, the system also allows for the removal of unique se-

quences (sequences that were obtained only once), because large proportions of such

unique sequences are due to erroneous sequence reads 20. In addition to the origi-

nally imported sequence data, JAguc also maintains all additional results generated

during data processing (like membership in a cluster or taxonomical information) in

the SQL database. Therefore advanced users are able to derive information about

a sample not directly provided by JAguc by querying the database directly. After

sequences have been imported, JAguc offers useful basic statistical information

on the data set(s) including: number of sequences, average, minimal and maximal

sequence length and a distribution plot for sequence lengths.

In the next step, the user can apply different sets of filters in order to select

those sequences of a sample for which pairwise alignments will be computed. Filters

identify specific data sets within a sample previously (during sequence generation)

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

4

J
A

g
u

c

re
fd

b

F
A

S
T

A

s
e

q
u

e
n

c
e

 d
a

ta

U
s
e

r

d
e

fi
n

e
d

G
e

n
b

a
n

k

s
a

m
p

le
s

s
e

q
u

e
n

c
e

id
e

n
ti
fi
e

r

(p
ri
m

e
r)

·

P
ri
m

e
r

·

q
u

a
lit

y
 k

e
y

·

id
e

n
ti
fi
e

r

F
ilt

e
r

P
a

ir
w

is
e

a
lig

n
m

e
n

t

(u
s
e

rd
e

fi
n

e
d

 p
a

ra
m

e
te

rs
)

S
im

ila
ri
ty

m
a

tr
ix

U
P

G
M

A

m
in

/m
a

x
/a

v
g

(u
s
e

rd
e

fi
n

e
d

 s
e

t
o

f

s
im

ila
ri
ty

 l
e

v
e

ls
)

O
T

U
s

M
e

g
a

b
la

s
t

(u
s
e

rd
e

fi
n

e
d

 p
a

ra
m

e
te

rs
)

T
a

x
a

In
p

u
ts

O
u

tp
u

ts

..
.

Fig. 1. Schematic representation of JAguc’s workflow and functionality.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

5

tagged with an identification key, truncate sequences at one or both ends (for ex-

ample removing primer oligomers) or perform sequence quality checks according to

user’s criteria for the subsequent elimination of low quality sequences (see above).

Furthermore, it is possible to devise a portion of the sequences (interval of sequence

positions) which is interpreted as barcode used to partition the results of an analy-

sis. This allows to process sequences from, e.g., different sample sets simultaneously.

For the resulting set of sequences, a pairwise alignment for all possible pairs of se-

quences (i.e. semi-global alignments allowing free gaps at the beginning or end of

a shorter sequence) is computed. Alignment parameters (gap-open and -extension

penalty, scoring matrix for matches and substitutions) can be user-defined. Based on

alignment scores of pairwise comparisons, a sequence similarityb matrix is created

and stored into a file for later reuse if requested by the user. This similarity matrix

provides the basis for the identification of operational taxonomic units (OTU, be-

cause sequence similarities can not readily identify taxonomic levels like species or

genera). The user defines the strategy (DOTUR’s nearest, furthest or average neigh-

bor clustering based on minimal, maximal or averaged similarities) as well as the

sequence similarity level (a specified % sequence similarity or a list of percentages

used to control different clustering runs in parallel) to call OTUs. For the taxonomic

assignment, one representative (the longest) sequence of each OTU is used in a ba-

sic local alignment search against a user-provided and curated reference database

(refdb). Such a refdb could for example be a flatfile release of NCBIs GenBank nu-

cleotide database (or a subset thereof) or a custom-made database including for

example only a hypervariable region of the SSU rRNA gene, usually applied in

environmental diversity surveys. The user can specify search parameters in order

to optimize alignments for each individual data set. For details on taxonomic as-

signments based on basic local alignment searches see below. As an alternative, the

user is free to cluster OTUs without computing a taxonomic assignment. However,

computation of taxonomic assignments for selected OTUs is possible at any time.

This enables analysis with many options for different settings (e.g., clustering for

maximal, minimal and average similarities using similarity levels 99%, 98% and

95%) spending computation time for taxonomic assignments only for clusters of

appropriate shape.

These steps (including alignment, clustering, taxon assignment performed for a

given sample and a certain set of parameters, i.e. alignment parameters, strategy

and percentages for clustering) are called a run. The most important results of a

run are:

• a list of OTU clusters with information on their size, members and classification

of their representatives (Fig. 2a);

• a sampling saturation profile providing information on the degree of undersam-

bWe divide the number of matches in the corresponding alignment by the alignment’s length to

get the percentage of similarity.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

6

pling of the sample (e.g., microbial community) under study (Fig. 2b);

• a rank abundance plot for the clusters showing the distribution of cluster sizes

(linear or logarithmic scale) (Fig. 3a), and

• a systematic interactive tree for the sample summarizing the number of OTUs

(including replicates, i.e. size of an OTU) at different hierarchical taxonomic

levels (Fig. 3b).

The sampling saturation profile and the rank abundance plot can be exported into

a csv- (data) or png-file (image). Detailed information on the systematic tree or a

selected subtree can be exported into a csv-file, the corresponding sequences, unique

tags or cluster representatives can be saved to FASTA-files. JAguc stores the results

of an individual run in the corresponding database. This enables comparisons among

different runs of the same sample with different user-defined parameters or sample

subsets.

JAguc’s algorithms and data structures

The main challenge of Jaguc was to find algorithms and data structures that make

the afore-mentioned functionality available when working on large sets of sequences

and under realistic time and memory constraints. Here, time constraints are most

relevant with respect to the computation of pairwise alignments as the number

of possible pairings grows quadratic in the number of sequences (i.e. doubling the

number of sequences quadruplicates the number of possible pairings) and the time

to compute a single pairwise alignment is quadratic in the sequence length (i.e. dou-

bling the length of the sequences introduces a factor 4 for the runtime). The main

memory of the computer being used is the limiting factor for JAguc’s cluster anal-

yses since the clustering algorithm requires access to the entire similarity matrixc

of size quadratic in the number of sequences resp. clusters. Thus, having 1GB=230

bytes of main memory availabled enables a maximum of
√

230 = 215 = 32768 clus-

ters to be processed efficiently when using a naive strategy. Therefore, JAguc offers

highly efficient implementations (described below) for both tasks (i.e. pairwise align-

ments and OTU clustering) which allow the user to process large sample sets on

modern desktop PCs.

Pairwise alignments

In order to efficiently compute all pairwise alignments, the program makes use of

structural similaritiese within the input sequences. Since the well-known dynamic

cThe similarity matrix S stores the similarity of each possible pair of clusters.
dA heap size of 2GB is the limit for any 32 bit Java virtual machine. However, using a 64 bit

Java virtual machine the heap size is only limited by the physical memory and swap space the

computer provides.
eHere we do not address the percentage od similarity between two sequences derived from the
alignment but similarities observed for two sequences considered as strings.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

7

Fig. 2. OTU clusters (a) and sampling saturation profile (b) as output of a run.

programming scheme (see, e.g., 14) to compute pairwise alignments processes the

sequences from left to right, JAguc searches for sequences with common prefixes.

Once common prefixes are found, portions of the dynamic programming scheme can

be reused rather than recomputed from scratch. As an example, assume that the

pairwise alignment for sequences s and t has been computed when a third sequence

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

8

Fig. 3. Rank abundance plot (a) and hierarchical tree of taxonomic OTU assignments (b) as output

of a run.

u which shares a common prefix with s of length n is found. Then the first n + 1

rows of the dynamic programming scheme remain unchanged when replacing s by u,

i.e. when computing the alignment of u and t. During our experiments we observed

that for typical inputs generated by pyrosequencing about 60% of all entries of the

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

9

dynamic programming schemes could have been reused. This also takes advantage of

the fact that for pyrosequencing errors are much more likely at the end of a sequence

than at the beginning thus common prefixes are not destroyed by sequencing-errors.

The data structure most appropriate to maintain sequences with common pre-

fixes is called a Trie (see 12 for details). A Trie is a treelike structure in which each

sequence is represented by a leaf. Symbols are attached to edges such that each edge

originating from a given vertex is uniquely identified by its label. Concatenating the

symbols on the path from the root of the Trie to a given leaf yields the sequence

represented by that leaf. As a consequence, common prefixes of sequences produce

a common path in the Trie which splits at some internal node according to the first

symbols at which the sequences differ. Within JAguc all sequences are initially

inserted into a Trie and then processed according to the left-to-right ordering of the

Tries’s leaves. When fixing a first sequence s to be part of a pairwise alignment,

a second sequence t is chosen among all leaves at the right of s (all possibilities

form left to right). The first common ancestor of the two selected leaves (sequences)

identifies the parts of the dynamic programm scheme of the previous run that can

be reused.

Besides accelerating the algorithm by reusing partial computations (parts of the

dynamic programming scheme), JAguc takes advantage of multicore features of

modern computers. Several CPUs in one computer allow for the parallelized com-

putation of pairwise alignments. For this purpose JAguc maintains on each CPU

a single thread for the computation of alignments. The set of all pairs of sequences

is distributed among the threads. Each thread maintains its own dynamic pro-

gramming scheme. Thus, the reuse of computations is restricted to computations

performed by the same thread. Even though some computations may be fully per-

formed, which in a single thread scenario would reuse partial results, this strategy

pays off with respect to the overall runtime: in the case of parallel threads compu-

tation time speeds up proportional to 1/number of CPUs (see results reported in

Section 3).

Since the computation of all pairwise alignments for a given sample is the most

time-consuming step in JAguc’s pipeline, it allows storage of the resulting similarity

matrix to a file for later use.

Clustering

Clustering is performed according to DOTUR’s nearest, furthest or average neigh-

bor clustering algorithm (see 17 for details). Initially, each sequence is assumed to

represent its own cluster. The matrix S = (si,j) assigned to this initial configu-

ration is given by the results of our alignment run, i.e. entry si,j of that matrix

(which represents the similarity of the ith and the jth cluster) and is initialized

by the sequence similarity (percentage) given by the alignment of the ith to the

jth sequence. Afterwards, clusters are joined until there are no two clusters with a

similarity larger or equal to a given threshold (JAguc handles any finite number of

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

10

different thresholds in parallel as specified by the user). When joining two clusters,

similarities have to be recomputed. Here the following three strategies are known

(and can be used within JAguc); when joining clusters i and j, giving the new

cluster the name i′, the similarity of i′ and any other cluster k is chosen according

to the

• average; si′,k =
|i|·si,k+|j|·sj,k
|i|+|j| ;

• maximum; si′,k = max {si,k, sj,k};
• minimum si′,k = min {si,k, sj,k}.

Here |x| denotes the size of cluster x ∈ {i, j}. Note that the clustering strategy

typically has no unique result since in each step there may be different choices for

the next pair of sequences resp. clusters to join.

It is inconvenient to implement the algorithm analog to this description when

the aim is a parallelized computation for different %-thresholds. Therefore, JAguc

utilizes a different implementation: a collection of trees (a forest in the common

terminology of computer science) in which each tree represents one cluster is con-

structed. Initially we consider the collection of n trees each consisting of a single

node. The joining together of two clusters is realized by the creation of a new node

obtaining the two joined clusters as its ascendants. Instead of terminating the pro-

cess of joining clusters when a given threshold of similarities is reached, JAguc

continues the iteration of joining the most similar clusters until a single cluster

(tree) results. As a consequence, the resulting tree offers all information necessary

to compute the clustering for any given threshold in linear time.

Inherent to DOTUR’s clustering algorithm is the need for a random access to

all similarities, i.e. to the similarity of any pair of sequences resp. clusters. As men-

tioned earlier, the computer’s main memory might be a limiting factor. When data

structures get too large to fit the main memory and paging mechanisms are acti-

vated by the operating system, a programmer must carefully select the ordering in

which objects are addressed such that page faults are rare. Therefore, JAguc has

a second variant of the clustering algorithm called disk clustering, which was devel-

oped to keep clustering highly efficient even when switching to secondary storage is

necessary.

Conceptually, disk clustering is a ”divide and conquer” approach. First the sim-

ilarity matrix is divided into fragments small enough to store two of them in the

main memory. We distinguish between triangular fragments (located along the di-

agonal of the original similarity matrix and for which only the upper triangular

part is needed due to symmetry) and quadratic fragments (the rest). An initial run

determines the maximal similarity observed among all pairs of sequences together

with counts of the number of occurrences of all different similarity values. This

information is constantly updated during the remaining computation. Afterwards,

each fragment is loaded into main memory and searched for occurrences of the

maximal value. If the value is found, the corresponding joining of two trees in the

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

11

clustering forest is performed. Additionally, updates of the similarity matrix which

affect the current fragment are immediately realized. Updates which are not local to

the fragment are recorded and performed whenever the corresponding fragment is

loaded. In this process, a carefully chosen ordering of the fragments is beneficial. In

detail, it is fruitful to first consider the triangular sub-matrices for a join implied by

one of their elements besides local changes gives only rise to changes located in one

of the quadratic sub-matrices. By bookkeeping we can postpone the corresponding

updates until the respective quadratic sub-matrix is loaded into memory anyway.

Afterwards the quadratic fragments are process where we do not take advantage of

any specific ordering. Before a fragment is swapped out of main memory, all changes

are made permanent by writing them to disk.

JAguc autonomously decides which version of the clustering algorithm to

choose; in cases where the similarity matrix fits the Java virtual machine’s heap,

the classical ram clustering approach is used, otherwise JAguc falls back on disk

clustering. Please note that even though both variants implement the UPGMA al-

gorithm to determine OTUs their results may differ. The reason for those potential

differences is a different order in which the elements of the similarity matrix may

be processed. However, disc clustering can only be viable when organized to use

a minimal number of disc accesses. Thus the order in which the elements of the

similarity matrix are processed must be determined by the need to minimize disc

accesses and cannot be used to resemble the behavior of ram clustering. Conversely,

ram clustering – with losings in efficiency – may be organized to behave like disk

clustering. However, since the behavior of disk clustering inherently depends on the

heap size, this would not prevent us from potential different outcomes when running

on different computers with varying heap sizes (and those differences would then

also apply to ram clustering which in its current implementation provides unique

results). To conclude, if we want to be able to get results in a reasonable amount of

time even for similarity matrices that do not fit into main memory, we must accept

potential differences in the results of ram and disk clustering.

Deriving taxonomical information

In order to assign taxonomic identity to an OTU cluster, JAguc uses a local instal-

lation of megablast 24 and (by default) a refdb from NCBI’s GenBank 3, typically a

nucleotide flatfile or a modified version thereof containing only the targeted region

of a specific gene. It is possible to perform megablast against a user-provided refdb;

however, in order to make the taxonomical information easily available within the

output of a megablast run, JAguc preprocesses the genbank seq-files before exe-

cuting BLAST’s formatdb command when installing a new refdb. The basic local

alignment search output for a respresentative (the longest) query sequence of an

OTU cluster is then parsed to extract “max” and “best” hits at a user defined

threshold for sequence similarity. Sequence similarities in the basic local alignment

search are calculated as the sum of identities for non overlapping (if any) HSP (High

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

12

Scoring Pairs, see the BLAST documentation) divided by the length of the query

sequence; this is a much more efficient method than simply taking the first HSP

into account. A max hit identifies a subject sequence in the refdb that exhibits the

highest sequence similarity to the query sequence. A best hit defines the highest

similarity among all non-environmental sequences of the refdb, i.e. considers only

sequences in the refdb from defined and identified organisms and ignores sequences

from environmental studies that do not have a reliable taxonomic identity. In cases

where the corresponding similarity exceeds the given threshold, the OTU is assigned

the hit’s taxonomical information that is provided in the refdb. For example, in the

GenBank flatfile the taxonomic identity includes the information from kingdom-

level to species or strain level, which is stored in the SQL-database. By default,

only unique query sequences with a hit of at least 80% similarity to a refdb se-

quence are assigned to a taxonomic category, giving a reliable assignment at least

at the class-level (in most cases, taxon assignments below class-levels are inaccurate

when dealing with short hypervariable regions of taxonomic marker genes, 22,19).

JAguc maintains two systematic trees, one derived from the best, one derived from

the max hits.

3. Results and Discussion

3.1. Performance analysis

In order to validate the efficiency of our software, we processed the pyrosequencing

data obtained from a protistan plankton sample 19 using the 64 bit version of

JAguc. From that sample the hypervariable V9 region (length ca. 200 nucleotides)

of the eukaryote SSU rRNA was amplified and sequenced using a GS FLX 454 DNA

pyrosequencer (454 Life) at Seq-IT (Kaiserslautern, Germany). The resulting data

set consists of 330, 873 sequences of average length 154 (minimal length 44 maximal

length 307) of which 31, 263 are unique (identified by JAguc while importing the

sequences). We performed a run controlling the pairwise alignments by using the

default IUB matrix to score matches resp. substitutions together with a penalty of

−10 for a gap opening and of −1 for a gap extension. Clustering was performed

using average similarities with a threshold of 95%. On a desktop PC (Intel Core i7

920 mit 2.67GHz, 4 cores, 8 logic processors with 6 GB of RAM) allowing the Java

virtual machine a heap of size at most 8 GB, we observed the following run times for

constructing the Trie, computing the alignments for all possible pairsf , clustering

at 95% and writing the result to the database (plot shows number of minutes as a

function of the number of threads):

fNote that for this input 54, 738, 305, 628 alignments had to be computed.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

13

0 2 4 6 8 number of threads200

400

600

800

1000

minutes processing time

Fig. 4. Comparison of measured run times (red line) and the least square fitting of equation (1)
as a function of the number of parallel threads.

maximal number of

parallel threads

approximate run time

1 15 hours, 27 minutes

2 9 hours, 35 minutes

4 7 hours, 2 minutes

8 4 hours, 40 minutes

Inspecting the run time as a function of the number of threads x it seems to

behave like 1
x . To support this conjecture, we computed a least square fitting of our

timing results allowing a constant term and the term 1
x . Rounded to full integers

we obtained

215 +
717

x
. (1)

This function, as an approximation, nicely fits our test results as shown in Figure

4; even if the usage of only 4 data points is not strongly convincing its shape can be

explained as follows: Parts of JAguc’s computation are not performed in parallel

(e.g., constructing the Trie) and thus imply a (for a fixed input) constant contri-

bution to the overall run time. Those parts that are parallelized (e.g., computing

pairwise alignments) give rise to a contribution scaled by the number of parallel

threads.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

14

3.2. Comparison to existing software

At present, the authors are aware of four comparable tools that are routinely used

in the processing and analyses of pyrosequencing data from environmental diver-

sity studies. The first one is an online service for the Visualization and Analysis of

Microbial Population Structure (VAMPS) hosted on a server of the Marine Biolog-

ical Laboratory (MBL) in Woods Hole, US. The second tool, PANGEA (Pipeline

for Analysis of Next GEneration Amplicons), was published only recently 9 and is,

similar to JAguc, a stand alone pipeline developed for personal computers and user-

provided refdb’s. Similar to PANGEA, the third tool QIIME 4 provides a pipeline

that integrates many third party tools for performing microbial community anal-

ysis. The fourth tool called ESPRIT 23 was designed for Estimating the SPecies

RIchness and exists in two implementations – one for personal computers and one

for computer clusters.

Architecture and workflow

Since VAMPS is a web-service, a user has no influence on the resources (main mem-

ory, CPUs) available for a computation. Accordingly, computation time depends on

the number of jobs submitted to the server and thus, can hardly be predicted. Fur-

thermore, the user cannot decide to fall back on a more powerful computer in cases

where a sample set is too large for standard processing. Working on a foreign com-

puter also implies the need to upload large sample files which in many cases may

cause difficulties due to a limited bandwidth of internet connections. Furthermore,

only a few options can be user defined while most parameters such as for alignment

searches (performed for tag sequence trimming and taxonomy assignment) are not

flexible and adjustable to individual data sets. Most importantly, the user cannot

define reference data (see next subsection). A decisive disadvantage of VAMPS is

that the user agrees to make all data sets submitted to VAMPS publicly available

six months after starting the analyses. This enables exploitation and publication of

data by third parties before the original party. Last but not least, the provider of

VAMPS may change algorithms, availability, default parameters, functionality etc.

without notice.

PANGEA like JAguc is a stand-alone tool. All can be run on self-administered

personal computers or servers. Thus modifications of the software (e.g., installation

of new releases) are made by the user, a fall-back to previous versions is always

possible. As a consequence, a user can rely on the availability of a certain database

release or functionality. The user has full control over the resources which are al-

located for the computation and can define priority of jobs when several jobs are

running in parallel. While JAguc is a program package that offers an all-in-one

solution with a graphical user interface, PANGEA consists of a chain of different

tools, which manually have to be combined in order to obtain the desired results.

For that purpose PANGEA uses well-known software packages like megablast or

CD-HIT 1 and new perl scripts to bridge the gaps between the inputs and outputs

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

15

of these packages. PANGEA offers no graphical user interface.

To QIIME – being a second pipeline of existing command line tools – the same

comments apply.

ESPRIT is a stand-alone console application that is configured by command line

parameters. Inputs and outputs are provides as sets of different files; the later may

be used for further analysis by third party tools.

Reference data (refdb)

The reference data of VAMPS is hosted and curated by the Josephine Bay

Paul Center in Comparative Molecular Biology and Evolution of MBL. As

VAMPS primarily focuses on natural bacterial populations, it predominantly

consists of hypervariable bacterial SSU rDNA collections. The primary ref-

erence database of near full-length reference sequences is derived from the

SILVA rRNA database project (http://www.arb-silva.de/) and individual ref-

erence databases for specific hypervariable regions are then created by the

host of VAMPS. As of April 2010, the VAMPS homepage claims the SILVA

database release 95 as the current backbone for VAMPS (information taken

from http://vamps.mbl.edu/resources/databases.php). However, at that point

SILVA released several updates of its database (version 102 in April 1st). This exam-

ple demonstrates the advantage of a database that can be created, maintained and

curated by the user as is the case for both JAguc, PANGEA and QIIME. Further-

more, the latter three packages offer the possibility to use other data bases targeting

other organisms, subsets of organisms or different taxonomic marker genes like the

large subunit of the rRNA, internal transcribed spacer regions (ITS) or functional

genes like nif or COI. This is not possible with VAMPS. Since ESPRIT offers no

functionality to determine the taxonomical information of OTUs no reference data

is used.

Identifying OTUs – Alignments and Clustering

JAguc, ESPRIT, PANGEA, QIIME and VAMPS use clustering algorithms to

call OTUs. However, there are major differences between the four platforms. For

PANGEA sort of a blast search using a self-made search heuristic of the sample

sequences is performed. According to its result, the sample set is divided into two

parts. The first part contains those sequences for which a blast hit has been found –

which have been classified by the blast search – the second are those which have not

been classified by blast. Afterwards, the sequences of the first part are grouped into

OTUs based on the relatedness of classification, i.e. based on the similarity level

observed for the blast hits. Sequences of the second part are grouped by means of

the CD-HIT algorithm that uses a short word filter instead of pairwise sequence

alignments to identify clusters. Finally both parts are merged again to obtain a

hybrid matrix of classified and unclassified OTUs.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

16

Even if this approach for identifying OTUs allows for an efficient implemen-

tation, it is disadvantageous to use different strategies to cluster different parts

of the sample set because the resulting OTUs are incomparable and may draw a

distorted image of species richness. Therefore, JAguc provides a procedure which

finds OTUs for the entire input in a homogeneous way based on a complete set of

pairwise alignments. Using a naive implementation, this would be impossible for

samples of realistic sizes. However, by distributing the task among several CPUs

(cores) combined with JAguc’s clever implementation based on Tries, this approach

works beautifully.

In QIIME, sequences are grouped onto OTUs at a user-defined level of se-

quence similarity (e.g., 97% to approximate species-level phylotypes). This step

can be performed either using a reference database of OTU representatives (e.g.,

with BLAST), or purely based on sequence similarity (e.g., using uclust, cdhit, or

MOTHUR). The second alternative more or less equals the way JAguc identifies

OTUs. However, some of the tools that may be used for QIIME (e.g., cdhit) are

heuristics only, not producing reliable results for sure. Furthermore, the authors are

not aware of any special feature of the corresponding tools in QIIME’s pipeline that

take care or efficiency problems that – for non-heuristic approaches – may occur,

e.g., in cases where a similarity matrix does not fit into main memory.

Like JAguc, VAMPS uses taxonomic independent analyses to cluster similar

sequences to represent closely related organisms (OTUs). Clusters are generated by

using the single-linkage preclustering algorithm followed by the primary pairwise,

average linkage clustering (see 10 for details). OTUs are created using similarity lev-

els 97%, 94% and 90%, respectively. However, VAMPS uses tags across all projects

and datasets to define OTUs – making comparisons to either JAguc, PANGEA or

QIIME impossible.

Similar to JAguc, ESPRIT computes pairwise distances in order to identify

OTUs. However, since a naive implementation of the Needleman-Wunsch algo-

rithm typically used to compute precise pairwise alignments is too time consuming

(JAguc solves this problem by its Trie-based approach), the authors decided to

make use of k-mer distances instead. Furthermore, the concept of k-mer counting

is used to remove unwanted sequence pairs (k-mer distance > 0.5) allowing for a

faster clustering stepg. It may hold true that this strategy does not significantly in-

fluence amplicon richness prediction, for which purpose ESPRIT was designed (23).

However, the scope of JAguc goes beyond this exclusive purpose (see Figure 1),

for which values of all individual pairwise comparisons, including k-mer > 0.5 are

important.

gESPRIT uses the remaining pairs of distances in ascending order for a complete-link hierarchical
clustering. There, different similarity levels are used to group the reads into clusters.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

17

Determining taxonomical information

After having determined OTUs, neither ESPRIT nor the PANGEA pipeline sched-

ule an additional step for assigning taxonomical information. However, for PANGEA

taxonomical information should at least be available for those sequences which have

been classified by the megablast search (while identifying OTUs).

VAMPS uses the so-called GAST (Global Alignment for Sequence Taxonomy)

process for assigning taxonomy. In a first step, each sequence of a sample (called

tag in the sequel to make a distinction to sequences of the refdb) is searched within

VAMPS refdb using BLAST (with a fixed set of parameters). Afterwards, for the

100 best local matches MUSCLE 7 is used (again with a fixed set of parameters) to

determine a multiple alignment. Based on this alignment the global distance from

the tag to each of the aligned reference sequences is computed as the number of

insertions, deletions and mismatches divided by the length of the tag. The sequence

or sequences of the alignment having a minimal global distance are considered the

top GAST match(es). Finally, all sequences of the refdb that contain the exact

hypervariable sequence of the top GAST match(es) are determined and a consensus

taxonomy (66% majority voting) is applied to the tag.

One potential shortcoming of this strategy may occur in cases where the 100

BLAST hits used as seed for determining the consensus taxonomy are quite different

to the tag at hand. In this case GAST may come up with a consensus taxonomy

which deviates decisively from the true taxonomic identity of a query tag. The

strategy of JAguc would leave an OTU unclassified in cases were it does not find

a sequence of sufficient similarity within the refdb. Further shortcomings of GAST

may result from using a multiple alignment to determine the global distance from

the tag to each reference sequence. If the 100 best BLAST hits contain only a few

sequences similar to the tag and many other sequences different from it but similar

to each other, the multiple alignment may be dominated by the wrong sequences as

may be the assigned consensus taxonomy. For the strategy of JAguc such effects

are impossible.

For QIIME either BLAST or RDP Classifier is used to assign taxonomy to

OTUs.

The end result is that both PANGEA and VAMPS determine taxonomical in-

formation on a sequence level while JAguc and QIIME assigns it to OTUs.

Functional differences

Another difference between the four software tools lies in the information a user may

obtain. Here ESPRIT uses methods from statistical inference (rarefaction analysis,

Chao1 and ACE the later being two abundance-based coverage estimators) to es-

timate species richness from the predicted OTUs; no further results are provided.

PANGEA provides a classification of the sequences, a χ2 test to compare OTUs and

a Shannon diversity index to quantify the diversity of communities. VAMPS allows

the user to download taxonomic counts and assignments together with information

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

18

on OTUs and a diversity analysis. The (intermediate) results produced by the QI-

IME pipeline (typically stored in text files) may be used as input for different tools

available thus allowing for a diverse set of outputs like phylogenetic trees, distance

histograms etc. JAguc offers different statistics on the input sequences (sequence

counts, sequence length, etc.), a similarity matrix for all sequences (which may be

used in connection with other software tools) as well as sampling saturation curves,

rank abundance plots and a systematic tree for the OTUs. Information on clusters

and sequences may be exported, e.g., by using drag and drop. Experienced users

may get much more information by querying JAguc’s SQL database directly. It

depends on the actual research which information is most appropriate.

Runtime and accuracy of results

In order to compare the different tools with respect to their efficiency we tried to

run the other tools on the protistan plankton sample from section 3.1. However,

since VAMPS is a webservice running on foreign computers the runtime really

consumed by an analysis can hardly be measured. Furthermore, only Archaeal and

Bacterial data can be uploaded to VAMPS, such that this input is not appropriate.

Accordingly, we decided to omit a comparison of JAguc and VAMPS.

ESPRIT, PANGEA and QIIME have been installed on the same hardware used

for the performance evaluation of JAguc. Unfortunately, neither ESPRIT nor QI-

IME or PANGEA were able to handle before mentioned input. ESPRIT took about

18 hours before crashing with the error message ”Error: Link Table Fulled!” while

clustering. However even if ESPRIT would have finished its run we can conclude

that JAguc is faster since it processed the same input in about 15.5 hours in total,

computing taxonomical information included. Running QIIME on our large input,

the program eventually runs out of memory and crashes. PANGEA after some

times outputs an uninformative error message and terminates. We tried hard to get

around those problems but finally had to resign ourselves to skip this experiment.

However, in order to compare the accuracy of the OTUs predicted by the different

tools we ran QIIME on a much smaller input. Surprisingly, even if JAguc has been

optimized to run efficiently on large inputs it was was about twice as fast as QIIME

even in this case (details follow). For PANGEA we even faced problems with this

attempt. Firstly, due to a special speed-optimized implementation of a blast search

the size of the reference database used to identify OTUs is limited to 216 = 65536.

This limit could only be overcome by re-implementing parts of PANGEA. As a

consequence, only a small portion of the NCBI GenBank – used as refdb by JAguc

– can be used, which makes a comparison of the two programs based on taxo-

nomical information on the clusters impractical and biased. Secondly, as explained

before PANGEA does not use clustering techniques to predict OTUs. Accordingly

a comparison on cluster level is also impossible. Thus we finally decided to judge

the quality of the OTUs determined by JAguc by comparing them to those com-

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

19

puted by ESPRITh and QIIME only. To this end we generated a set of sequences

(FLX V9) resulting from 22 different reference clones. In total, an input of about

41000 sequences separated in 22 files each containing the sequences resulting from

a single clone was obtained. Afterwards, each of the three tools was used to cluster

that data where for QIIME we had to eliminate all duplicates in order to get a re-

sult comparable to JAguc’s since there only uniques are considered for clustering.

Clusters were computed based on an average similarity of at least 97%. The results

were compared on sequence and cluster level, i.e. without reverting to taxonomical

information. For this purpose we first determined the number of OTUs (clusters)

computed and compared it to to the correct number 22. However, at least in cases

where there are more clusters than clones, not every clone is identified by only one

cluster. Accordingly, we determined the quotient of the number of clusters and the

number of different clones identified. We call this quotient the coverage rate. The

same measure was also considered after deleting singleton clusters, which were iden-

tified as technical artifacts based on sequencing errors (2, see also 11). Furthermore

we computed the so-called weighted purity5 (original and non-singleton clusters) in

the following way: Each cluster was assigned the clone from which the majority of

sequences of this cluster originates. Then for each cluster the percentage of correctly

grouped sequences multiplied by the size of the corresponding cluster is computed.

Those numbers are summed up and divided by the total number of sequences. As

a consequence, this measure being close to 1 implies that clusters mostly contain

sequences of just one clone. If additionally the number of clusters is close to the

number of clones and their coverage rate is close to 1 we can assume our OTUs

to have a high quality. In Table 1 the corresponding results are presented implying

that JAguc is not only the fastest but by far also the best of the three tools with

respect to the quality of OTUs predicted.

While ESPRIT finds rather pure clusters their number is too large by far i.e. the

species richness is overestimated. Even if JAguc’s clusters are less pure, their num-

ber nicely fits the number number of clones. Furthermore their purity of 0.87 was

good enough to identify the right species of the OTUs in many cases. In detail, for

about 45% of the OTUs, BLAST reported an environmental sample and once no

hit at all. This must not be understood as a mistake since our clones stem from a

sediment sample taken at Sylt such that some of the organisms may not have an ex-

plicit GenBank entry. Additionally, JAguc related 85% of the remaining OTUs to

hRecall that the main purpose of ESPRIT is the estimation of species richness based on amplicon
data sets using statistical tools. These tools rely on the abundance (frequency distribution) of the

observed amplicons. Therefore, this strategy is useful for bacteria, throughout which taxonomic

marker gene copies numbers are relatively evenly spread across all evolutionary lineages. However,
this is different for protists., because of highly variable SSU rRNA gene copy numbers and also

genome copy numbers within different eukaryote taxa 16,25. Therefore, the amplicon abundance in
an amplicon library does not necessarily reflect the relative abundance of the respective organisms
in the natural sample. As a consequence, abundance-based richness estimates as predicted by

ESPRIT would be highly biased for eukaryotes.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

20

Tool runtime all cluster non-singleton clusters

JAguc 24 sec. 80, 0.87, 3.64 22, 0.87, 1.11

QIMME 40 sec. 94, 0.69, 4.27 54, 0.69, 3.00

ESPRIT 40 sec. 188, 0.98, 8.55 147, 0.94, 7.35

Table 1. Comparison of the clustering results: the numbers in the column for all resp. only the

non-singleton clusters show the total number of clusters computed (not necessarily associated to
different clones), the corresponding weighted purity (italics) and the coverage rate (boldface).

exactly the same taxonomy as beforehand obtained by an elaborate manuell analy-

sis based on the complete 18S rDNA of the clones2. QIIME produces worse clusters

towards both measures; their purity is inferior while their number is larger. As a

consequence biologists should prefer JAguc when aiming for a precise estimate of

species richness and the corresponding taxonomical information.

3.3. Use cases and benefits

Thus far, JAguc has been successfully applied in different projects including the

comparative analyses of protistan plankton composition in different environmental

samples 19, in two methodological projects assessing the effect of pyrosequencing

errors on data interpretation 20 and the evaluation of two different hypervariable

regions of the SSU rDNA in massive parallel tag sequencing of protistan diversity
19. Also, individual applications of JAguc’s package have been applied (like the

implemented pairwise alignment function) in order to calculate sequence similarity

matrices for sequence comparisons. Because the resulting data are (being) published

elsewhere, we here only refer to the respective original papers.

3.4. Future developments

Next, we plan to provide means for the comparative analysis of different data sets

as well as further possibilities to export data. One of the author’s working group

uses JAguc intensively and is collecting ideas and needs resulting from everyday

work with the software to guide future developments.

4. Conclusions

JAguc is the first software tool which provides the user a stand alone platform

for an environmental diversity analyses combined with numerous built-in function-

alities like sampling saturation curves, rank abundance plots, etc. and a graphical

user interface useful for ecological interpretations. Because of its sophisticated algo-

rithms and efficient implementation that makes use of multi core features of modern

computers, it can process large sample sizes in a reasonable amount of computation

time. In this way it opens the door to gaining deep insights into the true diversity

and complexity of microbial communities. As a consequence, JAguc is a tool of

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

21

particular relevance; the before mentioned use cases and the corresponding publi-

cations prove JAguc’s applicability.

5. Availability and requirements

• Project name: JAguc

• Project home page: http://wwwagak.cs.uni-kl.de/jaguc

• Operating systems: Platform independent

• Programming language: Java

• Other requirements: Java 6 runtime environment or higher, MySQL database

serveri, local installation of megablast

• free usage for any academic purpose

On the project’s home page there is an installer available that installs everything

needed to use JAguc on a Windows system (XP or higher).

6. Acknowledgements

We acknowledge A. Behnke and M. Engel who intensively tested JAguc with en-

vironmental data sets as well as with a model community data in order to provide

feedback for further improvements of the program package. Furthermore we wish

to thank two anonymous referees for their helpful comments and suggestions.

References

1. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide
sequences.

2. Anke Behnke et al. Depicting more accurate pictures of protistan community com-
plexity using pyrosequencing of hypervariable ssu rrna gene regions. Environmental
Microbiology, 2010.

3. Benson et al. Genbank. Nucleic Acids Res, pages 25–30, 2008.
http://www.ncbi.nlm.nih.gov/genbank/.

4. J. G. Caporaso et al. Qiime allows analysis of high-throughput community sequencing
data. Nature Methods, 7:335–336, 2010.

5. Yixin Chen et al. Content-based image retrieval by clustering. Proceeding MIR ’03
Proceedings of the 5th ACM SIGMM international workshop on Multimedia informa-
tion retrieval, 2003.

6. S.C. Dawson and K.D. Hagen. Mapping the protistan ’rare biosphere’. J Biol, 8:105,
2009.

7. R.C. Edgar. Muscle: a multiple sequence alignment method with reduced time and
space complexity.

8. P.E. Galand, E.O. Casamayor, D.L. Kirchman, and C. Lovejoy. Ecology of the rare
microbial biosphere of the arctic ocean. Proc Natl Acad Sci U S A, 106:22427–22432,
2009.

iJAguc can also connect to other database servers but MySQL is preferred and its use intensively

tested.

March 3, 2011 15:9 WSPC/INSTRUCTION FILE jaguc

22

9. Giongo et al. Pangea: pipeline for analysis of next generation amplicons. ISME Jour-
nal, 2010. accepted for publication.

10. S. M. Huse et al. Ironing out the wrinkles in the rare biosphere through improved otu
clustering. Environmental Microbiology, 2010. accepted for publication.

11. V. Kunin et al. Wrinkles in the rare biosphere: pyrosequencing errors lead to artificial
inflation of diversity estimates. Environmental Microbiology, pages 118–123, 2010.

12. H. Mahmoud. Evolution of Random Search Trees. Series in Discrete Mathematics and
Optimization. Wiley-Interscience, 1992.

13. M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bemben, et al.
Genome sequencing in microfabricated high-density picolitre reactors. 437:376–380,
2005.

14. E. W. Myers and W. Miller. Optimal alignmetns in linear space. Comput Appl Biosci,
4:11–17, 1988.

15. C. Pedros-Alio. Ecology. dipping into the rare biosphere. Science, 315:192–193, 2007.
16. C. D. Prokopowich et al.
17. P. D. Schloss and J. Handelsman. Introducing DOTUR, a Computer Program for

Defining Operational Taxonomic Units and Estimating Species Richness. Applies and
Environmental Microbiology, 71:1501–1506, 2005.

18. M.L. Sogin, H.G. Morrison, J.A. Huber, D.M. Welch, S.M. Huse, P.R. Neal, et al.
Microbial diversity in the deep sea and the underexplored ”rare biosphere”. Proc Natl
Acad Sci U S A, 103:12115–12120, 2006.

19. T. Stoeck, D. Bass, M.E. Nebel, R. Christen, M.D. Jones, H.W. Breiner, and T.A.
Richards. Multiple marker parallel tag environmental dna sequencing reveals a highly
complex eukaryotic community in marine anoxic water. Mol Ecol, 19:21–31, 2010.

20. T: Stoeck, A. Behnke, and M. Engel. unpublished data.
21. T. Stoeck and S. Epstein. Protists and the rare biosphere. Crystal Ball. Environ

Microbiol Reports, 1:20–22, 2009.
22. T. Stoeck et al. Massively parallel tag sequencing reveals the complexity of anaerobic

marine protistan communities. BMC Biol, 72, 2009.
23. Sun et al. Esprit: estimating species richness using large collections of 16s rrna py-

rosequences. Nucleic Acids Research, 37, 2009.
24. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning

dna sequences. J Comput Biol, 7:203–214, 2000.
25. F. Zhu et al. Mapping of picoeucaryotes in marine ecosystems with quantitative pcr

of the 18s rrna gene. FEMS Microb Ecol, pages 79–92, 2005.

