
RNA secondary structures: from ab initio
prediction to better compression, and back
Evarista Onokpasa∗ Sebastian Wild∗ Prudence W.H. Wong∗

February 22, 2023

Abstract

In this paper, we use the biological domain knowledge incorporated into stochastic models
for ab initio RNA secondary-structure prediction to improve the state of the art in joint
compression of RNA sequence and structure data (Liu et al., BMC Bioinformatics, 2008).
Moreover, we show that, conversely, compression ratio can serve as a cheap and robust
proxy for comparing the prediction quality of different stochastic models, which may help
guide the search for better RNA structure prediction models.

Our results build on expert stochastic context-free grammar models of RNA secondary
structures (Dowell & Eddy, BMC Bioinformatics, 2004; Nebel & Scheid, Theory in Bio-
sciences, 2011) combined with different (static and adaptive) models for rule probabilities
and arithmetic coding. We provide a prototype implementation and an extensive empir-
ical evaluation, where we illustrate how grammar features and probability models affect
compression ratios.

1. Introduction
In this article, we explore the interplay and potential symbiosis between data compression
and probabilistic methods for predicting the folding structure of (non-coding) RNA molecules.
Ribonucleic acid (RNA) is a bio-polymer that serves various roles in the coding, decoding,
expression and regulation of genes in cells. An RNA molecule consists of a chain of nucleotides
each having a base attached to it (either adenine (A), cytosine (C), guanine (G), or uracil (U));
this string of bases forms the sequence of the molecule. Unlike the related DNA, RNA is usually
single-stranded and forms spatial structures by folding onto itself (similar to proteins), with
complementary bases forming a stabilizing hydrogen bond. The set of (indices of the) bases that
form such pairs is the secondary structure of the molecule; it can be encoded by the dot-bracket
notation, (see Figure 1; a formal definition is given in Section 2).

The secondary structure is instrumental for the biological function of non-coding RNA
molecules and of great interest to biologists. Much research has hence been devoted to
computationally predict the secondary structure from a known RNA sequence (ab initio RNA
secondary-structure prediction) [4, 9, 26], including human swarm intelligence [15], and it
remains an active research area [22, 7, 23]. We explore areas around RNA secondary structures
where innovations in compression methods are central for further progress.
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Figure 1: An example RNA sequence and structure. Left:
schematic drawing of structure. Above: Represen-
tation as dot-bracket sequence when the backbone
is “pulled straight”.

Better RNA Compression. Our first goal is to use the domain knowledge on RNA foldings
incorporated into secondary-structure prediction models for improved methods for the joint
compression of the sequence and secondary structure of RNA sequences. With biological
databases ever increasing, compressed representations become desirable. In the case of databases
for non-coding RNA sequences with known secondary structures, the data volume has long
remained manageable, but growth is now accelerating: For example, RNA Central [2] now
aggregates over 25 million trusted secondary structures 8 years after its first release; 1.8 million
of these come from the rfam database [11], collected over its 20 years of existence.

The need for space-efficient representations of joint RNA sequence and secondary structure
databases has been identified by Liu et al. in 2008 [16]. Their algorithm RNACompress,
based on a stochastic context-free grammar (SCFG, defined below), has been recognized
as an early application of ideas from grammar-based compression in the data-compression
community [17, 12]. As we demonstrate in this article, substantially better compression ratios
can be achieved than Liu et al. report; interestingly, by carefully extending their very method to
a general framework of SCFG-based compression. Improvements are then realized by applying
this framework on tried and tested grammars from the RNA secondary structure prediction
literature [3, 20] (as well as further, orthogonal refinements).

Apart from the practical utility of less space, compression methods are of direct interest
in bioinformatics as a way to upper bound the Kolmogorov complexity [13] of a dataset, and
hence its inherent information content [8]. For example in the context of RNA sequences, one
can ask how much additional information is contained in the secondary structure of the RNA
when the sequence is known.

Compression as a proxy for predictive power. Our second and main goal is to test our
hypothesis that for comparing probabilistic models for RNA secondary structures, compression
ratio can serve as proxy for prediction quality in RNA secondary-structure prediction. Advances
in next-generation sequencing allows determining the sequence of many molecules at scale,
whereas secondary structures need to be determined by much more expensive techniques
like X-ray crystallography [26]. A much cheaper and faster alternative is to computationally
predict the structure from a known sequence. The state-of-the-art approaches either build on a
chemical model of the molecules and try to identify a structure with minimal free energy or
use a machine-learning approach. Both can formally be described by stochastic context-free
grammars (see Section 2).

RNA secondary-structure prediction plays a vital role in studying the biological function of
RNA molecules and for designing artificial RNA sequences, and so numerous software packages
implement different algorithms for this task. Comparing their prediction quality is a delicate
undertaking, because no definitive similarity metric is known to judge how close the predicted
secondary structure is from an experimentally determined one [18]. Indeed, the method of
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choice in the literature to compare structure prediction is solely based on individual base
pairs [18, 3, 21, 20]: One compares the sensitivity and positive predictive value (PPV) of
different approaches (defined in Section 2).

We will use the compressed size (in bits per base) of the reference structure under the trained
stochastic model as a more direct means to compare how well different models capture RNA
folding behavior. This compressed size effectively reflects the log-likelihood of the reference
structure and hence has a natural interpretation as the information content that model assigns
to the RNA structure.

This has several advantages over sensitivity/PPV: (a) It directly evaluates the quality of
the model, separating it from the method to produce a (single) predicted secondary structure.
There are different options to predict a structure; one can use the most likely structure, or a
consensus structure containing the most likely individual pairs, or return a sample of several
nearly optimal structures. No choice clearly dominates the others, but they affect the sensitivity
and PPV scores. (b) Log-likelihood is a single natural metric derived from first principles of
information theory; it does not need trade-offs or further parameters.

Contributions. Our contributions are as follows. First, we improve the compression ratio
achieved for joint RNA sequence and structure data by 45% over the state of the art, Liu et
al.’s RNACompress [16]; compared to the general-purpose compressor paq8l (http://mattmahoney.
net/dc/#paq), we see a 70% improvement. The improvement over RNACompress is the combined
result of several refinements, but a 30% reduction in compressed size is observed when keeping
everything but the used SCFG constant. This clearly shows the relevance of the grammar
and the validity of our approach to employ structure-prediction grammars. The proposal and
implementation of the more sophisticated grammars (such as the one based on [20]) is hence a
useful contribution. Second, we demonstrate that compression ratio can be used as a robust
predictor of how well a grammar will perform for ab initio secondary-structure prediction.
To our knowledge, this is the first such attempt to identify suitable probabilistic models for
RNA structure prediction that is not based on comparing predicted structures to a benchmark
dataset. Finally, we reproduce and confirm the computational study of [3] with an independent
implementation and additional modifications to their grammars.

Related Work. Liu et al. [16] proposed RNACompress in 2008; we discuss their methodology
in detail in Section 3. Naganuma et al. [19] explore a related method of SCFG compression closer
to grammar-based compression using straight-line programs. They create a stochastic grammar
from the text to compress with a variation of the RePair heuristic [14]. For a broader context
of grammar-based compression, see the recent survey of Kieffer and Yang [12]. Friemel [6]
also targets the joint RNA compression problem, but using a different approach. He encodes
RNA structures as labeled trees with each node representing a nucleotide and the branches
representing the bonds; unpaired bases yield unary nodes. Friemel’s algorithm RNAContract
contracts sequences of unary nodes (similar to compact tries) or a sequence of multiple nested
brackets in the dot-bracket notation. After the node contraction the algorithm encodes the
contracted node tree using Huffman coding.

Outline. The rest of this paper is structured as follows. Section 2 collects required concepts.
Section 3 explains the grammar-based compression of RNA. Then we report on our two
studies: Section 4 discusses the compression achieved with various grammars and Section 5
explores the connection between compressed size and prediction quality. We conclude in
Section 6 with future work. In the appendix, we give details on the comparison with a general-

http://mattmahoney.net/dc/#paq
http://mattmahoney.net/dc/#paq
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purpose compressor (Appendix A), list the precise grammars we used (Appendix B), and
investigate further differences between our approach and [16] (Appendix C). Further details, all
datasets and code to produce the figures in this article are available online as supplementary
material: https://www.wild-inter.net/publications/onokpasa-wild-wong-2023 ; the code is available on GitHub:
https://github.com/evita35/joint-rna-compression.

2. Preliminaries
Dot-bracket notation. An RNA sequence is a string of bases A, C, G, U. Stable hydrogen
bonds are possible between A and U resp. C and G (the Watson-Crick pairs) and to a lesser
extent also between G and U. RNA secondary structures1 can be represented by the dot-bracket
notation [10]: a well-nested string over {•, (, )} where a base pair is denoted by matching
parentheses () and an unpaired base by •; see Figure 1 for an example. We use “RNA” as an
abbreviation for “a pair of an RNA sequence and its secondary structure”.

SCFG. Dot-bracket strings can be generated by a context-free grammar (CFG). A CFG is a
tuple (N, T, R, S) where N and T are finite sets of nonterminals and terminals, respectively,
R ⊆ N × (N ∪ T )∗ is a finite set of production rules, and S ∈ N is the start symbol. A rule in R
is written as A → α. A stochastic context-free grammar (SCFG) is a tuple G = (N, T, R, S, W )
such that (N, T, R, S) is a CFG and W : R → [0, 1] is a function satisfying

∑
(A→α)∈R W (A →

α) = 1 for all A ∈ N . For every A ∈ N , W represents a probability distribution over the set of
rules with left-hand side A.

Earley Parser. The Earley Parsing algorithm [5] is able to process any SCFG and efficiently
determine whether a string belongs to the language of the grammar. We use the Earley parser
implementations by [25, 27] when comparing various SCFGs since it does not require a rigid
normal form for grammars.

RNA secondary-structure prediction. A stochastic context-free grammar can be used for RNA
secondary-structure prediction where terminals correspond to bases and the leftmost derivation
of an RNA sequence encodes a secondary structure of the sequence. The used SCFGs allow
many different derivations (and hence secondary structures) for a given sequence and the rule
probabilities induce a probability distribution over those. Using a classical machine-learning
approach, the rule probabilities are chosen as maximum likelihood parameters w.r.t. a given
training dataset (with known secondary structures). For predicting/inferring the (unknown)
secondary structure of a new RNA sequence, a probabilistic parser determines the maximum-
likelihood derivation (Viterbi parse) of the RNA sequence in the SCFG, which encodes the
most likely secondary structure (under the given probabilistic model).

We measure the quality of prediction by sensitivity and positive predictive value (PPV): the
fraction of correctly predicted base pairs among all pairs in the reference structure resp. all
pairs in the predicted structure. More formally, let TP, TN , FP, FN be the number of base
pairs that are true positives, true negatives, false positives, and false negatives, respectively.
Then Sensitivity = TP

TP+FN and PPV = TP
TP+FP .

1As is often done in the area, we do not consider structures with pseudoknots in this paper.

https://www.wild-inter.net/publications/onokpasa-wild-wong-2023
https://github.com/evita35/joint-rna-compression
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3. RNA compression using stochastic context-free grammars
We now show how to jointly compress an RNA sequence and secondary structure using a
SCFG G. This method has been used by Liu et al. [16] on a fixed grammar; we generalize it
here to arbitrary grammars G and rule-probability models. The terminals of G are pairs of
characters, e.g.,

[A
(
]

for base A in the RNA sequence and ( in the (dot-bracket representation
of the) secondary structure.2 To encode an RNA, we determine the sequence of rules in a
leftmost derivation of the RNA and then encode this sequence of rules using a model for the rule
probabilities using a standard code; Liu et al. use a fixed Huffman code; we employ arithmetic
coding [28].

We illustrate the process on the RNA sequence
[G

(
][A

•
][C

)
]

with the grammar of Liu et al.:
GL = (N, T, R, S) has N = {S, L}, T = {

[A
(
]
,
[C

(
]
,
[G

(
]
,
[U

(
]
,
[A

)
]
,
[C

)
]
,
[G

)
]
,
[U

)
]
,
[A

•
]
,
[C

•
]
,
[G

•
]
,
[U

•
]
}, and rules

R shown in Table 1. The (unique) leftmost derivation using the grammar is as follows:

rule prob. interval rule prob. interval rule prob. interval

S → LS 0.65 [0.00, 0.65) L →
[C

(

]
S

[G
)

]
0.10 [0.20, 0.30) L →

[A
•

]
0.10 [0.50, 0.60)

S → ε 0.35 [0.65, 1.00) L →
[G

(

]
S

[C
)

]
0.05 [0.30, 0.35) L →

[U
•

]
0.15 [0.60, 0.75)

L →
[A

(

]
S

[U
)

]
0.05 [0.00, 0.05) L →

[U
(

]
S

[G
)

]
0.05 [0.35, 0.40) L →

[C
•

]
0.10 [0.75, 0.85)

L →
[U

(

]
S

[A
)

]
0.15 [0.05, 0.20) L →

[G
(

]
S

[U
)

]
0.10 [0.40, 0.50) L →

[G
•

]
0.15 [0, 85, 1.00)

Table 1: A (fictitious) set of rule probabilities for the grammar of Liu et al. [16], including the
partition of the unit interval as used in arithmetic coding.

S ⇒ LS ⇒
[G

(
]
S

[C
)
]
S ⇒

[G
(
]
LS

[C
)
]
S ⇒

[G
(
][A

•
]
S

[C
)
]
S ⇒

[G
(
][A

•
]
ε
[C

)
]
S ⇒

[G
(
][A

•
][C

)
]
ε =

[G
(
][A

•
][C

)
]
,

where the sequence on applied production rules is

S → LS, L →
[G

(
]
S

[C
)
]
, S → LS, L →

[A
•
]
, S → ε, S → ε.

Since we always replace the leftmost nonterminal, the next nonterminal to replace is known
inductively, and we can reconstruct the leftmost derivation from only the (index of the) used
right-hand sides: 1, 4, 1, 7, 2, 2, using the order of rules in Table 1; (the 4 indicates that the
second used rule, where we know it expends L, is the 4th rule with left-hand side L, i.e.,
L →

[G
(
]
S

[C
)
]
). Now suppose we have the (static) rule probabilities for R from Table 1 and we

use arithmetic coding to store the right-hand sides. We obtain the corresponding sequence of
intervals from the rules, [0.00, 0.65), [0.30, 0.35), [0.00, 0.65), [0.50, 0.60), [0.65, 1.00), [0.65, 1.00);
which we encode using arithmetic coding to obtain the final binary codeword: 0011010100100.

The example above (and [16]) uses a static rule-probability model, usually obtained from a
training dataset with known structures by counting how often each rule is used in the dataset
derivations. With arithmetic coding, we can easily replace this by an adaptive rule-probability
model, where rule probabilities are computed as relative frequencies in the prefix encoded so far
(starting with some initial value for counters, typically 1). This entirely avoids the need for
a second pass or a training dataset, as well as storing the rule probabilities. For long inputs,
the adaptive model converges to the sequence-specific relative rule frequencies; we hence also
include the semi-adaptive model where rule counts are determined for the given sequence in
a first pass. Unless one also stores the rule counts, this model does not allow decoding, but
indicates the limiting behavior of the adaptive model.

2Liu et al. use 2 grammars instead – one for the sequence and one for the secondary structure – the two
descriptions are equivalent.
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4. Joint compression of RNA sequence and secondary structure
To investigate the effectiveness of different parameters, we have developed a generic prototype
implementation in Java that allows us to combine arbitrary SCFGs, rule-probability models,
and final encoders (Huffman or arithmetic coding). We use an existing open-source Earley
Parser implementation [25] for obtaining a parse tree (given a SCFG and an RNA with sequence
and structure).3 Apart from GL from [16], we use the structure-prediction grammars from [3]
and [20]. Since non-canonical bonds are regularly found in experimentally determined secondary
structures, all our grammars come in two versions: one that only allows the Watson-Crick and
“G-U wobble” pairs, and one that allows all 16 pairs. The difference for compression is small:
while most RNA structures do contain non-canonical bonds, most contain only very few of
them.

For the compression-quality study, we use the “friemel” dataset, consisting of 17 000 ribosomal
RNAs from [1] where ambiguously sequenced bases, non-canonical base pairs and pseudoknots
have been removed [6]. Information of each RNA in the given datasets is stored in a text file,
using the dot-bracket notation. 24 contained empty hairpin loops; since 2 grammars from [3]
exclude these, we replaced the innermost pair by two unpaired bases; for the evaluation, we
exclude these 24 RNAs.

Figure 2 shows the compression quality of different grammars, normalized to the (average)
number of bits per base in the RNA. It is striking that the current state-of-the-art method
from the literature, Liu et al.’s RNACompress [16], performs much worse than all the structure-
prediction grammars (for all rule-probability models), indicating that these grammars indeed
incorporate effective domain knowledge about RNA structures. Also note that a simplistic
encoding of the RNA sequence alone would use 2 bits/base; the most sophisticated grammars
come very close to that for the joint encoding of sequence and structure: 2.21 bits/base on
average for the grammar of Nebel and Scheid [20]. The large grammars G2, G7, and G8 [3]
(those with “stacking parameters”) and the huge grammar by Nebel and Scheid [20] perform
overall best. But some much smaller grammars like G6 come very close, despite having a factor
10 fewer parameters. This shows that it is the structure of the grammar, not merely the number
of parameters of the model, that improve compression of RNA secondary structures.

5. Compression ratio vs. prediction quality
We have seen that the choice of the grammar heavily influences the compression quality of our
generic joint RNA compressor. In this section, we take a closer look at this grammar dependence
from the perspective of both compression and secondary-structure prediction. For that, we
reproduced the classic study of Dowell and Eddy [3] comparing several hand-crafted SCFG
for their ability to correctly infer RNA secondary structures given only the RNA sequence as
input. Due to the bugs from [25], we here used the probabilistic Earley parser from [27]. We
use the original datasets from [3] (available at http://eddylab.org/software/conus/): The “benchmark”
dataset was used in [3] to compare the prediction quality of SCFGs, whose rule probabilities
have been trained on their “mixed80” dataset; see [3] for further details. Both datasets contain
many non-canonical bonds and 8 RNAs contain empty hairpin loops; we again eliminated the
latter. Mixed80 contains numerous ambiguous bases; these were randomly replaced with a
compatible base.

Figure 3 shows the results of comparing for each grammar how well it compresses the

3This parser has been reported to yield incorrect results for certain inputs; for the compression experiment, we
could confirm that it works correctly on all our inputs and grammars.

http://eddylab.org/software/conus/
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2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, static model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid
Friemel RNAContract

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, adaptive model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
compressed size (bits/base)

Compressed Size for various grammars (Friemel dataset, semiadaptive model)

Liu et al.
Dowell Eddy G2
Dowell Eddy G3
Dowell Eddy G4
Dowell Eddy G5
Dowell Eddy G6
Dowell Eddy G7
Dowell Eddy G8
Nebel Scheid

Figure 2: Means (vertical bars) and distributions (shaded violin plot) of the normalized compressed
size using various grammars on Friemel’s RNA dataset. All compressed sizes are shown
as bits per base. Top: results using static rule probabilities, determined from the
entire dataset. Middle: results using adaptive rule-probabilities model (LaPlace model).
Bottom: semi-adaptive rule probabilities (ignoring space for storing rule probabilities).
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Figure 3: Scatter plot of compression vs. prediction quality for the grammars from [3]. Each
grammar is presented as one point with error bars. The x-axis shows the compressed
size (in bits per base) for joint compression of RNA sequence and secondary structure,
averaged over the benchmark dataset [3]. Horizontal error bars show one standard
deviation of compressed size over the benchmark dataset. The y-axis shows the
geometric mean of sensitivity and PPV (for each predicted RNA secondary structure,
averaged over the benchmark dataset); error bars show one standard deviation. For
the ambiguous grammars G1 and G2, no vertical error bars are available (we did not
reproduce predictions for these; the average is taken from [3]). Both compression and
prediction use the same training dataset (mixed80 from [3]) to determine the parameters
of the grammars; compression here uses the static model for rule probabilities.

benchmark dataset of RNAs and how well it predicts secondary structures of this set (using
the setup and parameters as in [3]). Taking into account the variability across different RNAs
within the dataset, a clear and strong negative correlation is visible between compressed
size and prediction quality; in particular, there is a clearly distinct cluster of grammars that
simultaneously give the best compression and the best prediction. At least for the grammars
from [3], this shows that one can use compressed size as a more rigidly defined and robust proxy
for secondary-structure prediction quality.

Figure 4 takes a closer look at the correlation on a per-RNA level. Even there, a correlation
remains visible; in particular very accurately predicted structures are also well compressed.
The right panel in Figure 4 shows that compressed size for different grammars is very strongly
correlated; pictures for other grammar pairs are similar (excluding the poor performing G1, G4,
and G5). Note that despite the strong correlation at RNA level, there is a significant difference
in the (mean) compression ratio between different grammars. This might indicate that there
are intrinsically more and less “surprising” RNA secondary structures (knowing only the RNA
sequence).

6. Conclusion
In this paper, we demonstrated how domain knowledge of RNA secondary structures encapsu-
lated in stochastic context-free grammars for structure prediction can be used to obtain the best
single-RNA compression ratios known for this type of data. Moreover, we showed promising
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Figure 4: Scatter plots with one point per RNA sequence in the benchmark dataset. Left:
compressed size against prediction quality using G6. Right: compressed size using
G6 against compressed size using G8. All compression methods use the static rule
probabilities trained on mixed80.

first evidence for the utility of compression ability as a cheap and robust proxy for prediction
quality for RNA secondary-structure prediction.

This work opens up several enticing avenues for future research. Using compression ability as
simpler guide, we are working on an approach to discover new promising models for secondary-
structure prediction. It would be interesting to investigate whether the robust correlation
between prediction quality and compressed size continues to hold for large grammars with many
parameters; here prediction could suffer due to overfitting issues, whereas compression might
continue see improvements from additional parameters. Since many natural RNA secondary
structures contain “pseudoknots”, a principled approach for compressing such structures would
be interesting. If the compression-prediction correlation can be demonstrated in this domain as
well, the lack of reliably free-energy models for pseudoknotted RNA structures and the relative
lack of high-fidelity training data would make compression ability of even greater value in the
search for better predictions models.
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Appendix
A. Comparison with general purpose compressors
To compare the compression quality of our approach with state-of-the-art generic compressors,
we use the paq8l tool (http://mattmahoney.net/dc/#paq). We compressed each individual RNA text file
(with sequence in the first line and the secondary structure as dot-bracket string in the second
line) in the friemel-modified dataset using paq8l -8 (the setting for best compression) and
summed up the file sizes of all compressed RNAs.

The uncompressed size of friemel-modified is 39 284 962 bytes and all RNAs combined
have 19 357 501 bases (2 bytes per base, one for sequence, one for structure, plus a small amount
of metadata overhead). paq8l compressed this to 9 146 548 bytes. Dividing this total compressed
size (in bytes) by the total number of bases in the dataset yields an average of 3.78 bits per
base. This is 70% more than the 2.211 bits that our compressed with GS achieves (using a
static rule-probability model).

It is not unexpected that a general purpose tool like paq8l does not come anywhere close
to the compression of a domain-aware model; however, it is a bit surprising that paq8l uses
substantially more space than the local first order empirical entropy: All first lines of the files
have letters in {A, C, G, U}, and thus a local entropy of at most 2 bits per character. For the
second line, we only have {(, ), •}, and hence at most lg(3) ≈ 1.58 bits per character. Exploiting
this local entropy would result in 3.58 bits per base.

B. Grammars

Here, we list the used grammars; we use the compact notation from [3], where we only give a
and â as terminals instead of the pairs introduced in Section 2. The actual RNA grammars
would have 4 rules for each rule with a single “a”; instead of A → αaβ, we would actually have
A → α

[A
•
]
β, A → α

[C
•
]
β, A → α

[G
•
]
β, and A → α

[U
•
]
β; similarly, each rules with a “aâ” pair

actually stands for 6 rules resp. 16 rules if we allow non-canonical base pairs. For the stacking
grammars, nonterminals Baâ are shorthand notation for 6 resp. 16 different nonterminals, which
“remember” an enclosing pair. If there are several occurrences of the same aâ pair within one
rule, these must be replaced consistently (with the same bases in all occurrences).

Our parsers require grammars to be free of ε-rules, so we eliminated these in all grammars.

Moreover, the fast stochastic parser used for the prediction study requires a slightly more
restrictive form: the grammars are not allowed to have left-recursive rules, and the nonterminals
must be ordered, so that B comes before A whenever one can derive Bα from A. We only
use the unambiguous grammars G3, . . . , G8 for the prediction study, so we directly give those
grammars in the required form.

Grammar GL′ (LiuGrammar)

The first grammar is GL′ from Liu et al. [16] where we eliminate ε-rules.

T → a (4 rules)
T → aSâ (16 rules)
S → T | TS

http://mattmahoney.net/dc/#paq
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Grammar G1 (DowellGrammar1Bound)

Next, G1, . . . , G8 are the grammars taken from Dowell and Eddy [3].
U → a
B → aSâ
C → B | U
X → UX | SX | U | S
S → C | CX | US | USX

Grammar G2 (DowellGrammar2Bound)

U → a
P aâ → aP aââ | S
S → aP aââ | U | US | SU | SS

Grammar G3 (DowellGrammar3Bound)

U → a
B → aSâ
L → B | UL
R → U | UR
S → B | UL | RU | LS | U

Grammar G4 (DowellGrammar4Bound)

U → a
B → aSâ
C → B | U
D → C | CD
Q → B | BD
S → U | US | Q

Grammar G5 (DowellGrammar5Bound)

U → a
B → aSâ
S → U | B | US | BS

Grammar G6 (DowellGrammar6Bound)

U → a
B → aMâ
T → B | U
M → B | TS | T
S → TS | T

An alternative version does not have the rule M → T ; that grammar then disallows hairpins of
length one, i.e., ‘( • ) ‘.
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Grammar G7 (DowellGrammar7Bound)

U → a
B → aV aââ (16 rules)
Bbb̂ → aV aââ (16 · 16 rules)
L → B | UL
M → UM | U
T → U | UL | MU | LS
V aâ → Baâ | T (16 · 2 rules)
S → B | UL | MU | U | LS

Grammar G8 (DowellGrammar8Bound)

U → a
B → aV aââ
Bbb̂ → aV aââ
C → U | B
D → C | CD
E → B | BD
N → U | E | US | EU | EB
V aâ → Baâ | N
S → U | E | US

Grammar GS (SchulzGrammar)

The grammar GS is taken from [20]; see also [24, Def. A.1.2]; we have made the modifications
described below to make the grammar more suitable for compression.

Since we have to expand every occurrence of a â on the right-hand side into 6 (or even 16) rules
in our RNA grammars, we replaced “aLâ” in several right-hand sides with a nonterminal that
expands to aLâ (A when we start a new stem and the new nonterminal I when we continue
after an interior loop or bulge). This reduces the number of parameters and hence the expressive
power a bit, but will keep the grammar substantially smaller.

p′
0 : S′ → S,

p′
1 : S → A, p′

2 : S → AC, p′
3 : S → TA, p′

4 : S → TAC,

p′
5 : T → A, p′

6 : T → AC, p′
7 : T → TA, p′

8 : T → TAC,

p′
9 : T → C,

p′
10 : C → XC , p′

11 : C → CXC ,

p′
12 : A → aLâ,

p′
13 : L → aLâ, p′

14 : L → M, p′
15 : L → P, p′

16 : L → Q,

p′
17 : L → R, p′

18 : L → F, p′
19 : L → G,

p′
20 : G → Ia, p′

21 : G → IXBXB, p′
22 : G → IBXBXB,

p′
23 : G → aI p′

24 : G → XBXBI p′
25 : G → XBXBBI

p′
26 : B → XB p′

27 : B → BXB
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p′
28 : F → XF XF XF p′

29 : F → XF XF XF XF p′
30 : F → XF XF XF XF XF

p′
31 : F → XF XF XF XF XF H

p′
32 : H → XH p′

33 : H → HXH

p′
34 : P → aIa p′

35 : P → XIIXIXI p′
36 : P → XIXIIXI p′

37 : P → XIXIIXIXI

p′
38 : Q → XIXIIXIXIXI p′

39 : Q → XIXIIKXIXIXI p′
40 : Q → XIXIXIIXIXI

p′
41 : Q → XIXIXIJIXIXI

p′
42 : Q → XIXIXIIKXIXI p′

43 : Q → XIXIXIJIKXIXI

p′
44 : R → XIIXIXIXI p′

45 : R → XIIKXIXIXI p′
46 : R → XIXIXIIXI p′

47 : R →
XIXIXIJIXI

p′
48 : J → XI p′

49 : J → JXI

p′
50 : K → XI p′

51 : K → KXI

p′
52 : M → AA p′

53 : M → UAA p′
54 : M → AUA p′

55 : M → AAN

p′
56 : M → UAUA p′

57 : M → UAAN p′
58 : M → AUAN p′

59 : M → UAUAN

p′
60 : N → A p′

61 : N → UA p′
62 : N → AN p′

63 : N → UAN

p′
64 : N → U

p′
65 : U → XU p′

65 : U → UXU

We add the following rules:

F → XF F → XF XF (allow length 1 and 2 in hairpins)

I → aLâ (new nonterminal for use inside bulges/interior loops)

S → C (allow completely unpaired sequences)

Rules for all unpaired nonterminals:
XB → a, XC → a, XF → a, XH → a, XI → a, XU → a

C. Further results
This appendix reports on some further results that were left out of the main text due to space
constraints in the proceedings version.

C.1. Huffman coding vs. Arithmetic coding
We here compare the influence of the coding step on compression ratio in isolation. For that,
we modify Liu et al.’s RNACompress [16] to use arithmetic coding instead of a Huffman code,
leaving everything else unchanged, and compare the results.

We were not able to obtain the original implementation of RNACompress and the datasets
from Liu et al. [16]. We hence re-implemented RNACompress, and used the friemel-modified
dataset of 17 000 RNA samples originally taken from [1] instead of the dataset from [16]. Some
of the RNAs in Friemel’s dataset have non-canonical bonds (these are less stable secondary
bonds). Since Liu et al. do not allow non-canonical bonds in their tool, we also removed these
from Friemel’s dataset, i.e., we replaced the open ( and close ) parenthesis for non-canonical
bonds with unpaired bases • in the positions were non-canonical bonds appeared. Afterwards
only the stable bonds (Watson-Crick and G–U wobble bonds) were left in all samples in the
dataset, which we call friemel-modified.
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Unsurprisingly, the arithmetic coding produced better compression results than Huffman
coding, but the difference between the means is only 2.7%. Figure 5 shows the distribution of
compressed size over the RNAs; while arithmetic coding has moderate impact on the mean
compressed size, it helps a lot to bring down the right tail. The scatterplot in Figure 6 further
shows that indeed, arithmetic coding (with this fixed static model) is doing better on almost
all RNAs, and the effect is bigger for those RNAs that are compressed worse.

Figure 5: Compressed size in bits per base for RNACompress (original with Huffman coding)
and RNACompress with arithmetic coding, and the RNACompress variant with the
ε-rule-free grammar. The vertical bars show from, left to right, the 1% quantile, mean,
99% quantile, and maximum. The means are at 3.195 resp. 3.110 bits per base.

Figure 6: The same data as in Figure 5, but as scatter plots with one point per RNA.

C.2. Nullable Grammar vs. Non-Nullable Grammar
Liu et al. [16] originally use the following grammar (in the notation from Appendix B):

GL

L → aSâ | a
S → LS | ε

For general parsers, ε-rules are often inconvenient; we therefore modified this grammar to GL′

shown in Appendix B. This transformation makes the probabilistic model slightly richer and
so will help compression, but it does not change the nature of the grammar; the structure of
leftmost derivations of strings remain (almost) the same. (We here ignore the fact that the
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empty string is no longer in the language of grammar GL′ , while it was derivable in GL. For
RNA compression, this is not relevant.) We manually implemented a parser for the original
GL grammar and compared the compression outcome. As Figure 5 shows, this very moderate
enrichment of the probabilistic model has a larger impact than moving from Huffman to
arithmetic coding. The scatter plot in Figure 6 (right) shows that again, we never do worse
in GL′ compared to GL, but that this time, the biggest savings are happening for the (much
larger number of) RNAs that are compressed well.
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