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Proportional apportionment is the problem of assigning seats to states (resp.
parties) according to their relative share of the population (resp. votes), a field
heavily influenced by the early work of Michel Balinski, not least his influential
1982 book with Peyton Young [BY01].

In this article, we consider the computational cost of divisor methods (also
known as highest averages methods), the de-facto standard solution that is used
in many countries. We show that a simple linear-time algorithm can exactly sim-
ulate all instances of the family of divisor methods of apportionment by reducing
the problem to a single call to a selection algorithm. All previously published
solutions were iterative methods that either offer no linear-time guarantee in
the worst case or require a complex update step that suffers from numerical
instability.

1. Introduction

The mathematical problem of proportional apportionment arises whenever we have a finite
supply of k indivisible, identical resources which are to be distributed across n parties
proportionally to their publicly known and agreed-upon values v1, . . . , vn. The indivisibility
constraint makes a perfectly proportional assignment impossible unless the quotas k · vi/V
with V = v1 + · · · + vn happen to be all integral for i = 1, . . . , n; apportionment methods
decide how to allocate resources in the general case.

Apportionment directly arises in politics in two forms:

• In a proportional-representation electoral system seats in parliament are assigned to
political parties according to their share of all votes. (The resources are seats, and
the values are vote counts.)

∗Most of this work was done while both authors were at University of Kaiserslautern.
†Department of Computer Science, University of Kaiserslautern; {reitzig, wild} @ cs.uni-kl.de
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1. Introduction

• In federal states the number of representatives from each component state often reflects
the population of that state. (Resources are again seats, values are the numbers of
residents.)

While not identical in their requirements – for example, any state will typically have at least
one representative no matter how small it is – the same mathematical framework applies
to both instances. Further applications are tables wherein rounded percentages should add
up to 100%, the assignment of workers to jobs, or the allocation of service facilities to areas
proportional to demand.

In order to use consistent language throughout this article, we will stick to the first metaphor.
That is, we assign k seats to n parties proportionally to their respective votes vi; we call k the
house size. In the case of electoral systems which exclude parties below a certain threshold
of overall votes from seat allocation altogether, we assume they have already been removed
from our list of n parties. An apportionment method maps vote counts v = (v1, . . . , vn) and
house size k to a seat allocation s = (s1, . . . , sn) so that s1 + · · · + sn = k. We interpret s
as party i getting si seats.

There are many conceivable such methods, but Balinski and Young [BY01] show that the
divisor methods (introduced below) are the only methods that guarantee pairwise vote mono-
tonicity (population monotonicity in [BY01]), which requires that a party i cannot lose seats
to a party j when i gains votes while j loses votes (and all other parties remain unchanged).
For a comprehensive introduction into the topic with its historical, political, and mathe-
matical dimensions, including desirable and undesirable properties of various apportionment
methods and corresponding impossibility results, we refer the reader to the books of Balinski
and Young [BY01] and Pukelsheim [Puk14].

1.1. Problem Definition

Divisor methods (also known as highest-averages methods) are characterized by the used
rounding rule J·K; examples include rounding down, rounding up, or rounding to the nearest
even integer (see also Table 1 and [Puk14, p. 70]). Party i is then assigned Jvi/DK seats,
where D is a divisor chosen so that s1 + · · · + sn = k; such a D is guaranteed to exist
for any sensible rounding rule and obtained by solving the following optimization problem:
max D s.t.

∑n
i=1Jvi/DK ≥ k. We point out that without an algorithm to solve this problem,

divisor methods of apportionment cannot feasibly be applied in practice.

While the concept of divisor methods can be used more generally, a typical assumption
is that ⌊x⌋ ≤ JxK ≤ ⌈x⌉, which implies that si is roughly proportional to vi/V . For this
section, we also make this assumption; later, we slightly weaken it to nearly-arithmetic
divisor sequences (Definition 1).

Different rounding rules yield in general different apportionment methods, and there is no
per se best choice. For example, there are competing notions of fairness, each favoring a
different divisor method [BY01, Section A.3]. A reasonable approach is therefore to run
computer simulations of different methods and compare their outcomes empirically, for
example w.r.t. the distribution of final average votes per seat vi/si. For this purpose, many
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apportionments may have to be computed, making efficient algorithms desirable. Apart
from that, settling the computational complexity of this fundamental optimization problem
is interesting in its own right.

1.2. Previous Work

While methods for proportional apportionment have been studied for a long time, the
question of algorithmic complexity has only more recently been considered. A direct iterative
method (see Section 2) has complexity Θ(nk) when implemented naively, and Θ(k log n)
when using a priority queue. Note that typically k ≫ n, and indeed, the input consists of
n + 1 numbers, so this running time can be exponential in the size of a binary encoding of
the input.

A simple refinement, the jump-and-step algorithm described by Pukelsheim [Puk14] (see
also Section 4.1), avoids any dependency on k. It is based on the iterative method, but
jumps to within O(n) of the target value, so worst-case running times are O(n2) with naive
iteration and O(n log n) using a priority queue. These bounds seem to be folklore; they are
mentioned explicitly for example by [DK99; Zac06]. This running time is not optimal, but
the algorithm is simple and performs provably well in certain average-case scenarios [Puk14,
§6.7].

Finally, Cheng and Eppstein [CE14] obtained an algorithm with the optimal O(n) com-
plexity in the worst case. They reduce the problem of finding a divisor D to selecting
the kth smallest element from a multiset formed by n arithmetic progressions, and design
a somewhat involved algorithm to solve this special rank-selection problem in O(n) time.
This settles the theoretical complexity of the problem since clearly Ω(n) time is necessary
to read the input. However, apart from conceptual complexity, Cheng and Eppstein’s algo-
rithm suffers from a numerical-instability issue that we uncovered when implementing their
algorithm.

1.3. Contribution

Our main contribution is a much simpler algorithm than Cheng and Eppstein’s algorithm
for divisor methods of apportionment. It directly constructs a multiset Â of size O(n) and
a rank k̂ so that D is obtained as the k̂th smallest element in Â. An example execution of
our algorithm is shown in Table 2 (page 8). Apart from its improved conceptual simplicity
and practical efficiency (see Section 4), this also circumvents any issues from imprecise
arithmetic. Formally, our result is as follows.

Theorem 1 (Main result):
Given any rounding rule J·K with ⌊x⌋ ≤ JxK ≤ ⌈x⌉ for all x ∈ R≥0, any vector of votes
v ∈ Nn, and house size k ∈ N, our algorithm SandwichSelect computes a divisor D that
yields seat allocations s = (s1, . . . , sn) respecting si ∈ Jvi

D K and s1 + · · · + sn = k using
running time in O(n). It can do so without explicitly computing J·K.
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Method also known as Divisor Sequence δ(x) Sandwich
Smallest divisors Adams 0, 1, 2, 3, . . . x —
Greatest divisors d’Hondt, Jefferson 1, 2, 3, 4, . . . x + 1 —
Sainte-Laguë Webster, Major Fractions 1, 3, 5, 7, . . . 2x + 1 —

Modified Sainte-Laguë 1.4, 3, 5, 7, . . .
{2x+1

1.6x+1.4
x≥1
x<1 2x + 6

5 ± 1
5

Equal Proportions Huntington-Hill 0,
√

2,
√

6,
√

12, . . .
√

x(x + 1) x + 1
4 ± 1

4

Harmonic Mean Dean 0, 4
3 , 12

5 , 24
7 , . . . 2x(x+1)

2x+1 x + 1
4 ± 1

4

Imperiali 2, 3, 4, 5, . . . x + 2 —
Danish 1, 4, 7, 10, . . . 3x + 1 —

Table 1: Commonly used divisor methods [CE14, Table 1]. For each of the methods, we give
a possible continuation δ of the respective divisor sequence as well as linear sandwich
bounds on δ (where nontrivial; cf. Lemma 4 on page 10).

Moreover, we report from an extensive running-time study of the above apportionment
methods. We find that our new method is almost an order of magnitude (a factor 10)
faster than Cheng and Eppstein’s algorithm while at the same time avoiding the super-
linear complexity of the jump-and-step algorithm for large inputs. Implementations of all
algorithms and sources for the experiments are available online [RW15].

Outline. Section 2 defines divisor methods formally. In Section 3, we describe the selection-
based algorithms, including our new method. Section 4 describes results of our running-
time study; Section 5 concludes the paper. For the reader’s convenience, we include an
index of notation in Appendix A.

2. Preliminaries

Our exposition follows the notation of Cheng and Eppstein [CE14], but we also give the
names as used by Pukelsheim [Puk14].

2.1. Divisor Sequences

A divisor sequence is a nonnegative, strictly increasing and unbounded sequence of real
numbers. Throughout the paper, we consider a fixed divisor sequence d = (dj)∞

j=0; for
notational convenience, we set d−1 := −∞. We require a monotonic continuation δ of d on
the reals which is easy to invert; formally, we assume a function δ : R≥0 → R≥d0 with

(D1) δ is continuous and strictly increasing,

(D2) δ−1(x) for x ≥ d0 can be computed with a constant number of arithmetic operations,
and
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(D3) δ(j) = dj (and thus δ−1(dj) = j) for all j ∈ N0.

All the divisor sequences used in practice fulfill these requirements; cf. Table 1. For conve-
nience, we continue δ−1 on the complete real line requiring

(D4) δ−1(x) ∈ [−1, 0) for x < d0.

Lemma 1: Assuming (D1) to (D4), δ−1(x) is continuous and strictly increasing on R≥d0 .
Furthermore, it is the inverse of j 7→ dj in the sense that

⌊δ−1(x)⌋ = max{j ∈ Z≥−1 | dj ≤ x}

for all x ∈ R. □

In particular, ⌊δ−1(x)⌋ + 1 =
∣∣{j ∈ N0 : dj ≤ x}

∣∣ is the rank function for the set of all dj .

In the terminology of Pukelsheim [Puk14], d is a jumppoint sequence (of a rounding rule,
see below), but with a shift of indices (we start with d0 instead of s(1)). A divisor sequence
with j ≤ dj ≤ j + 1 for all j ∈ N0 is called a signpost sequence1.

While divisor methods can be defined for any nonnegative, strictly increasing and unbounded
sequence, we will focus our attention on those with the following property.

Definition 1 (nearly arithmetic): A divisor sequence (dj)j∈N0 resp. its continuation δ
is called nearly arithmetic if there are constants α > 0, β ∈ [0, α], and β ≥ 0 so that

∀x ∈ R≥0 αx + β ≤ δ(x) ≤ αx + β.

Table 1 lists divisor sequences for common apportionment methods; all are nearly arith-
metic. Further, any signpost sequence is trivially nearly arithmetic, including power-mean
signposts [Puk14, §3.11–12] and geometric-mean signposts [DK99]. Nearly arithmetic se-
quences are also exactly the class of divisor sequences addressed by Cheng and Eppstein
[CE14].

2.2. Ties, Rounding Rules, and Seat Allocations

Since the actual seat allocation s is not uniquely determined in case of ties, it is convenient
to have a set-valued rounding rule in addition to the rank function. The rounding rule J·K
induced by divisor sequence d is defined by JxK = Tδ−1(x)U + 1, were TxU = {⌊x⌋} if x /∈ Z
and TnU = {n − 1, n} for n ∈ Z. (The +1 is due to the index shift in divisor sequences; T·U
is the natural extension of ⌊·⌋ that returns both limits at jump discontinuities). Note that
we have ⌊x⌋ ≤ JxK ≤ ⌈x⌉ (for one of the possible values of JxK in case of ties) if and only
if the jumppoint sequence is a signpost sequence, making these particularly natural choices

1Note that Pukelsheim [Puk14] additionally requires that signpost sequences do not touch both endpoints of
the interval [j, j + 1] (“left-right disjunction”). Our conditions (D1) to (D4) already imply this property.

5



3. Fast Apportionment through Selection

for rounding rules. The set of valid seat assignments for given votes and house size is then
given by

S(v, k) =
{

s ∈ Nn
0

∣∣∣∣ n∑
i=1

si = k ∧ ∃D > 0. ∀ i ∈ [n]. si ∈
rvi

D

z}
. (1)

2.3. Highest Averages

Divisor methods can equivalently be defined by an iterative method [BY01, Prop. 3.3]:
Starting with no allocated seats, si = 0 for i ∈ [n], we iteratively assign the next seat to
a party with a currently “highest average”, i.e., maximal vi/dsi : a party with the most
votes per seat. For technical reasons, it turns out to be much more convenient to work with
reciprocal averages, i.e., assign the next seat to a party with minimal dsi/vi (fewest current
seats per vote). In case of ties, any choice leads to a valid seat allocation s ∈ S(v, k).

This iterative method does not yield an efficient algorithm, but it gives rise to to a key
structural observation: the minimal quotients dj/vi are weakly increasing over subsequent
iterations (by monotonicity of d), and we obtain the final (largest) quotient directly as

a∗ = max
{

dsi−1
vi

∣∣∣∣ i ∈ [n]
}

(2)

using the final seat assignment s. The iterative method yields the same seat assignments as
Equation (1) using D = 1/a∗ (cf. [Puk14, 59f]); to get the full set of all feasible assignments
S(v, k), one has to simulate all possibilities of breaking ties when selecting the next party
to be awarded a seat.

3. Fast Apportionment through Selection

Worst-case optimal algorithms for divisor methods of apportionment exploit that the quo-
tients dj/vi in the iterative method change monotonically: The final multiplier a∗ is the kth
smallest of all possible quotients dj/vi, and can hence be found directly using a selection
algorithm [CE14]. The challenge is to suitably restrict the candidate set from which to
select.

We need some more notation. Given a (multi)set M of (not necessarily distinct) numbers,
we write M(k) for the kth order statistic of M, i.e., the kth smallest element (counting
duplicates) in M. For example, if M = {5, 8, 8, 8, 10, 10}, we have M(1) = 5, M(2) = M(3) =
M(4) = 8, and M(5) = M(6) = 10. For given votes v = (v1, . . . , vn) ∈ Qn

>0, we define the sets

Ai :=
{
ai,j

∣∣ j = 0, 1, 2, . . .
}

with ai,j := dj

vi

and their multiset union A :=
⊎n

i=1 Ai. With that notation, we obtain that a∗ = A(k). We
further define the rank function r(x, A) as the number of elements in multiset A that are
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no larger than x, that is

r(x, A) :=
∣∣A ∩ (−∞, x]

∣∣ =
n∑

i=1

∣∣{ai,j ∈ A | ai,j ≤ x}
∣∣. (3)

We write r(x) instead of r(x, A) when A is clear from context. In light of the optimization
formulation, min a s.t. r(a, A) ≥ k, we call a value a feasible if r(a, A) ≥ k, otherwise it is
infeasible. Feasible a > a∗ are called suboptimal.

Note that A is infinite, but A(k) always exists since the terms ai,j = dj/vi are strictly
increasing in j for all i ∈ {1, . . . , n}.

3.1. Cheng and Eppstein’s Algorithm

Cheng and Eppstein [CE14] devise an iterative method that maintains an approximation
ξ of a∗. In each step, the method either (at least) halves the difference of r(ξ) to k or
it (at least) halves the number of parties still under consideration. By ensuring that the
initial distance of r(ξ) from k is O(n), their algorithm terminates after O(n) iterations.
Each iteration selects the median of the set of ai,j closest to ξ for all remaining parties i;
using a linear-time selection algorithm, this yields overall O(n) time. More concretely, their
algorithm, ChengEppsteinSelect, uses the following three steps.

(a) Identify contributing sequences and compute an initial coarse solution ξ, i.e., a value
with rank r(ξ) = k ± O(n).
(The initial coarse solution is essentially our a as defined below.)

(b) Compute a lower-rank coarse solution ξ′ with rank r(ξ′) ∈ [k − n..k] starting with ξ.

(c) Compute a∗ starting at ξ′.

Each of the steps involves a variant of the iterative median-based algorithm sketched above.
Remark 1 (Precision issues): While implementing it for our running time study, we discovered
the following shortcoming of ChengEppsteinSelect. After the median selection, one has to
determine for how many parties i the closest ai,j to ξ yields exactly the new upper bound u; all but
one of these have to be excluded and their number must be known precisely (see the computation of
m in Algorithm 2 of [CE14]). This comes down to testing whether dj/vi = dj′/vi′ for various values
of i, j, i′, j′; with a naive implementation based on floating-point arithmetic, this cannot be done
reliably. The situation is aggravated by the fact that such an implementation can return incorrect
results without any obvious signs of failure.

To circumvent this issue, one can either work with exact (rational) arithmetic, which slows down
comparisons during median selection considerably, or keep a mapping from quotients ai,j back to
party i to check dj/vi = dj′/vi′ by testing djvi′ = dj′vi. The latter requires additional space and
slows down swaps during median selection. We are not aware of a fully satisfactory solution to this
issue.

3.2. Our Algorithm

Our algorithm relies on explicitly constructing a small “slice” A ∩ [a, a] that contains a∗;
we can then directly apply a rank-selection algorithm on this slice. We delay any detailed
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Party ÖVP SPÖ Martin FPÖ GRÜNE BZÖ Total
Votes 858 921 680 041 506 092 364 207 284 505 131 261 2 825 027

Step 1 a = 17/2 825 027 = 6.01764 · 10−6, a = 23/2 825 027 = 8.14151 · 10−6

Step 3.1 vi · a 5.1687 4.0922 3.0455 2.1917 1.7121 0.7899
j = 5 j = 4 j = 3 j = 2 j = 1 j = 0

vi · a 6.9929 5.5366 4.1204 2.9652 2.3163 1.0687
j = 5 j = 4 j = 3 j = 1 j = 1 j = 0

Step 3.2 Â 6.9855 7.3525 7.9037 — 7.0298 7.6184 ·10−6

k̂ 17 − 5 − 4 − 3 − 2 − 1 − 0 = 2

Step 4 Â(k̂) a∗ = 7.0298

safe seats (j) 5 4 3 2 1 0 15
+ number ai,j ≤ a∗ 1 0 0 0 1 0 2
Seats si 6 4 3 2 2 0 17

Table 2: Execution of SandwichSelect on the example input from [Puk14, §4.9], the 2009
European Parliament election in Austria with n = 6 parties competing for k = 17
seats. The divisor sequence used is dj = j + 1, so we have α = 1 and β = β = 1
and we obtain δ−1(x) = x − 1.
The final seat distribution for party i is obtained by summing the j value for that party
and the number of terms ai,j contributed to Â that are no larger than a∗. Note that
to determine the seat distribution, we can simply recompute ai,j for j ≤ j ≤ j using
the exact same computation; any imprecision in these computations are without
consequence as long as they are deterministic and errors are small enough to not
affect the relative order of terms in Â.

justifications to Section 3.3 and first state our algorithm. An application of the algorithm
to an exemplary input is given in Table 2.

Recall that we assume a fixed apportionment scheme with a nearly-arithmetic divisor se-
quence, i.e., αj + β ≤ dj ≤ αj + β (Definition 1).

Algorithm 1: SandwichSelectd(v, k) :

Step 1 Compute a := max
{
0, α k

V − (α − β) n
V

}
and a := α k

V + β n
V .

Step 2 Initialize Â := ∅ and k̂ := k.

Step 3 For i = 1, . . . , n do:

Step 3.1 Compute j := max
{
0,

⌈
δ−1(vi · a)

⌉}
and j := ⌊δ−1(vi · a)⌋.

Step 3.2 For all j = j, . . . , j, add dj/vi to Â.

Step 3.3 Update k̂ := k̂ − j.

Step 4 Select and return the k̂th smallest element of Â.

The intuition behind bounds [a, a] on a∗ is to investigate the rank of a∗ in the multiset A of
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all candidates. Since any number between one and n parties can tie for the last seat, all we
can say a priori is that k ≤ r(a∗) ≤ k + n. We thus make an ansatz with r(a) ≥ k + n
and r(a) < k, and try solve for a and a. While it seems not possible to do this exactly,
we can obtain sufficiently tight bounds for nearly-arithmetic divisor sequences to guarantee
|Â| = O(n).

Remark 2 (Numerical stability): We note that all arithmetic computations in SandwichSelect
can safely be implemented with imprecise floating-point arithmetic when rounding conservatively,
i.e., rounding towards −∞ for a and j, resp. towards +∞ for a and j. Round-off errors may imply
a minor slow-down (by making Â slightly larger than necessary), but they do not affect correctness
since we use the same value j for filling Â and for adjusting k̂.

Remark 3 (Avoid evaluation of J·K): Functions δ−1 resp. J·K might be expensive to evaluate in
general. We can replace Step 3.1 by j := max{0, ⌈(via−β)/α⌉} and j := ⌊(via−β)/α⌋. This may make
Â slightly larger, but our upper bound from Lemma 4 on |Â| still applies (cf. Equation (8)). Thus
SandwichSelect can run without ever evaluating a rank function or computing an inverse of
the divisor sequence. Although this may not be a serious concern for the divisor sequences used
in applications, it is unclear whether ChengEppsteinSelect can similarly avoid evaluating rank
functions precisely.

Remark 4 (Relation to envy-free stick-division): SandwichSelect is based on a generaliza-
tion of our solution for the envy-free stick-division problem [RW18], a task that arose as a subproblem
in a cake-cutting protocol [SHA16]. Given n sticks of lengths L1, . . . , Ln and an integer k, the task
is to find the longest length ℓ so that we can cut k sticks of length exactly ℓ from the given sticks
(without gluing pieces together); this is essentially equivalent to apportionment with dj = j + 1.

3.3. Proof of Main Result

Towards proving Theorem 1, we first establish a few intermediate results. We will indeed
prove the slightly stronger statement that SandwichSelect correctly computes a∗ using
O(n) arithmetic operations for any nearly-arithmetic divisor sequence, not just signpost
sequences. We point out that the running time of SandwichSelect is thus independent
of k, even when k grows much faster than n. The proofs are elementary, but require care
to correctly deal with ties and boundary cases, so we give detailed calculations.

We start by expressing the rank function r(x) in terms of δ−1.

Lemma 2 (Rank via continuation): The rank function r(x, A) satisfies

r(x, A) =
n∑

i=1
⌊δ−1(vi · x)⌋ + 1.

Proof: By Equation (3) on page 7, it suffices to show that

∣∣{j ∈ N0 | dj/vi ≤ x}
∣∣ = r(x, Ai) = ⌊δ−1(vix)⌋ + 1

for each i ∈ {1, . . . , n}. By Lemma 1, r(y, {d0, d1, . . .}) = ⌊δ−1(y)⌋ + 1 for all y ∈ R. Since
x ≤ dj/vi if and only if y = xvi ≤ dj , it follows that r(x, Ai) = r(xvi, {d0, d1, . . .}) =
⌊δ−1(vix)⌋ + 1. □
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Next, we show simple sufficient conditions for bounds [a, a] to contain our target multiplier
a∗.

Lemma 3 (Valid slices): If a and a are chosen so that they fulfill

n∑
i=1

δ−1(vi · a) ≤ k − n and
n∑

i=1
δ−1(vi · a) ≥ k,

then a ≤ a∗ ≤ a.

Proof: As a direct consequence of Lemma 2 together with the fundamental bounds y −1 <
⌊y⌋ ≤ y on floors, we find that

n∑
i=1

δ−1(vi · x) < r(x) ≤
n∑

i=1

(
δ−1(vi · x) + 1

)
= n +

n∑
i=1

δ−1(vi · x) (4)

for any x. We now first show that any a < a is infeasible. There are two cases: if there is a
vi, such that via ≥ d0, we get by strict monotonicity of δ−1

r(a) ≤
(4)

n +
n∑

i=1
δ−1(vi · a) < n +

n∑
i=1

δ−1(vi · a) ≤ k

and a is infeasible. If otherwise via < d0 for all i, a must clearly have rank r(a) = 0 as it is
smaller than any element ai,j ∈ A. In both cases we found that a < a has rank r(a) < k.

It remains to show that a∗ ≤ a. By assumption we have

r(a) >
(4)

n∑
i=1

δ−1(vi · a) ≥ k,

so |A ∩ (−∞, a]| > k. Hence a∗ = A(k) ∈ A ∩ (−∞, a] and the claim a∗ ≤ a follows. □

The next lemma shows how to compute explicit bounds for a∗ for nearly-arithmetic divisor
sequences.

Lemma 4 (Sandwich bounds): Assume the continuation δ of divisor sequence d fulfills

αx + β ≤ δ(x) ≤ αx + β

for all x ∈ R≥0 with α > 0, β ∈ [0, α] and β ≥ 0. Then, the pair (a, a) defined by

a := max
{

0,
αk − (α − β) · n

V

}
and a := αk + β · n

V
(5)

fulfills the conditions of Lemma 3, that is a ≤ a∗ ≤ a. Moreover,

∣∣A ∩ [a, a]
∣∣ ≤ 2

(
1 +

β − β

α

)
· n.
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Proof: We consider the linear divisor sequence continuations

δ(j) = αj + β and δ(j) = αj + β

for all j ∈ R≥0 and start by noting that the inverses are

δ−1(x) = x/α − β/α and δ−1(x) = x/α − β/α

for x ≥ δ(0) = β and x ≥ δ(0) = β, respectively. For smaller x, we are free to choose the
value of the continuation from [−1, 0) (cf. (D4)); noting that x/α − β/α < 0 for x < β, a
choice that will turn out convenient is

δ−1(x) := max
{

x

α
−

β

α
, −1

}
resp. δ−1(x) := max

{
x

α
− β

α
, −1

}
. (6)

We state the following simple property for reference; it follows from δ(j) ≤ δ(j) ≤ δ(j) and
the definition of the inverses (recall that β ≤ α):

x

α
− β

α
≤ δ−1(x) ≤ δ−1(x) ≤ δ−1(x) ≤ x

α
−

β

α
, for x ≥ 0. (7)

Equipped with these preliminaries, we compute

a = αk + βn

V
.

⇐⇒ k = aV − βn

α
=

n∑
i=1

(
vi · a

α
− β

α

)
≤
(7)

n∑
i=1

δ−1(vi · a),

so a satisfies the condition of Lemma 3. Similarly, we find

a ≤
αk − (α − β)n

V
,

⇐⇒ k ≥
aV + (α − β)n

α
= n +

n∑
i=1

(
vi · a

α
−

β

α

)

≥
(7)

n +
n∑

i=1
δ−1(vi · a),

that is a also fulfills the conditions of Lemma 3.

For the bound on the number of elements falling between a and a, we compute

∣∣A ∩ [a, a]
∣∣ =

n∑
i=1

∣∣Ai ∩ [a, a]
∣∣

=
n∑

i=1

∣∣∣∣∣
{

j ∈ N0

∣∣∣∣ a ≤ dj

vi
≤ a

}∣∣∣∣∣

11



3. Fast Apportionment through Selection

=
n∑

i=1

∣∣∣{j ∈ N0
∣∣ vi · a ≤ dj ≤ vi · a

}∣∣∣
=

n∑
i=1

∣∣∣{j ∈ N0
∣∣ δ−1(vi · a) ≤ j ≤ δ−1(vi · a)

}∣∣∣
≤
(7)

n∑
i=1

∣∣∣{j ∈ N0
∣∣ δ−1(vi · a) ≤ j ≤ δ−1(vi · a)

}∣∣∣ (8)

≤
n∑

i=1

(
δ−1(vi · a) − δ−1(vi · a) + 1

)
≤
(7)

n∑
i=1

(vi · a − β

α
− vi · a − β

α
+ 1

)
=

(
1 +

β − β

α

)
· n + (a − a) · V

α

≤
(

1 +
β − β

α

)
· n +

(α + β − β) · n

V
· V

α

= 2
(

1 +
β − β

α

)
· n. □

We are now in the position to prove our main result.

Proof of Theorem 1: We construct the multiset Â ⊆ A as the subsequent union of Ai ∩
[a, a], that is

Â =
n⊎

i=1

{
dj

vi
∈ A

∣∣∣∣ j(i) ≤ j ≤ j(i)
}

=
n⊎

i=1

{
dj

vi
∈ A

∣∣∣∣ ⌈δ−1(vi · a)⌉ ≤ j ≤ ⌊δ−1(vi · a)⌋
}

=
n⊎

i=1

{
dj

vi
∈ A

∣∣∣∣ vi · a ≤ dj ≤ vi · a

}

=
n⊎

i=1

{
dj

vi
∈ A

∣∣∣∣ a ≤ dj

vi
≤ a

}
= A ∩ [a, a].

By Lemma 4, we know that a ≤ a∗ ≤ a for the bounds computed in Step 1, so we get in
particular that a∗ ∈ Â. It remains to show that we calculate k̂ correctly. Clearly, we discard
with (ai,0, . . . , ai,j−1) exactly j elements in Step 3.2, that is |Ai ∩ (−∞, a)| = j. Therefore,
we compute with

k̂ = k −
n∑

i=1

∣∣Ai ∩ (−∞, a)
∣∣ = r(a∗, A) −

∣∣A ∩ (−∞, a)
∣∣ = r(a∗, Â)

the correct rank of a∗ in Â.

12



4. Comparison of algorithms

For the running time, we observe that the computations in Step 1 and Step 2 are easily done
with O(n) primitive instructions. The loop in Step 3 and therewith Step 3.1 and Step 3.3
are executed n times. The overall number of set operations in Step 3.2 is |Â| = O(n) (cf.
Lemma 4). Finally, Step 4 runs in time O(|Â|) ⊆ O(n) when using a (worst-case) linear-
time rank selection algorithm (e. g., the median-of-medians algorithm [Blu+73]). □

4. Comparison of algorithms

We now report from an extensive empirical comparison of all algorithms for divisor methods
of apportionment that we found reported in the literature. A more complete discussion
of our results is given in our technical report [RW17]; all source codes are available on
GitHub [RW15]. For the reader’s convenience, we first briefly summarize the algorithms
that have not yet been introduced in this article.

4.1. Iterative methods

A naive implementation of the iterative apportionment method (Section 2.3) takes time
Θ(kn); using a priority queue, this can be sped up to O(k log n).

Pukelsheim [Puk14] notes that the above iterative method can be vastly improved in many
instances by starting from a more intelligently chosen initial value for s. His jump-and-step
algorithm [Puk14, Section 4.6] can be formulated using our notation as follows:

Algorithm 2: JumpAndStepd(v, k) :

Step 1 Compute an estimate a for a∗; the exact value depends on d:

a) If d is a stationary signpost sequence, i.e.,
dj = αj + β and β/α ∈ [0, 1], then set a := α

V

(
k + n · (β/α − 1/2)

)
.

b) If d is a stationary jumppoint sequence, i.e.,
dj = αj + β but β/α /∈ [0, 1] then set a := α

V

(
k + n · ⌊β/α⌋

)
.

c) Otherwise set a := αk
V .

Step 2 Initialize si = ⌊δ−1(vi · a)⌋ + 1 for i = 1, . . . , n.

Step 3 While
∑

si ̸= k

Step 3.1 If
∑

si < k set I := arg maxn
i=1 vi/dsi and sI := sI + 1;

else set I := arg minn
i=1 vi/dsi and sI := sI − 1.

The performance of JumpAndStep clearly depends on the initial distance from the house
size, ∆a :=

(∑n
i=1⌊δ−1(vi · a)⌋ + 1

)
− k: the running time is in Θ(n + |∆a| · log n) when

using priority queues for Step 3.1. With initial estimate a = k/V , we have ∆a ≤ n for any
signpost sequence [DK99, Prop. 1], yielding an O(n log n) method overall. We multiply by α
in the formula for a to account for nearly arithmetic sequences that are not signposts. Slight

13
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Figure 1: This figure shows average running times on a logarithmic scale for Sandwich-
Select , ChengEppsteinSelect , JumpAndStep with naive
resp. priority-queue minimum selection, and IterativeMethod with
naive resp. priority-queue minimum selection, normalized by dividing by
the number of parties n. The inputs are random apportionment instances with vote
counts vi drawn i. i.d. uniformly from [1, 3]. The numbers of parties n, house size k
and method parameters (α, β) have been chosen to resemble national parliaments
in Europe (left) and the U. S. House of Representatives (right), respectively.

improvements to |∆a| ≤ n/2 are possible for stationary signpost sequences, dj = j + β with
β ∈ [0, 1], using a = (k+n(β− 1

2))/V [Puk14, Section 6.1]; this corresponds to the case (a) in
Step 1. This bound for ∆a is best possible for the worst case [Puk14, Chap. 6]; it is therefore
not possible to obtain a worst-case linear-time algorithm based on JumpAndStep.

4.2. Running Time Comparison

We have implemented all discussed algorithms in Java and conducted a running-time study
to compare the practical efficiency of the methods. We use artificial instances; for a given
number of parties n, house size k and divisor sequence, we draw multiple vote vectors v
at random according to different distributions. We fix k to a multiple of n and consider
arithmetic divisor sequences of the form (αj + β)j∈N0 .

We focus on two scenarios here: one resembling current political applications and one ex-
hibiting the worst-case behavior of JumpAndStep; see our technical report [RW17] for a
more comprehensive evaluation. We note that in the context of democratic elections, the
effort of tallying up the votes likely dwarfs the effort spent for apportioning afterwards;
similarly for census data. However, the algorithmic tasks solved in this context are funda-
mental optimization problems interesting in their own right. We therefore do not want to
limit ourselves to the characteristics of specific current applications.

The implementation of ChengEppsteinSelect posed the complication mentioned in Re-
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Figure 2: The left plot shows normalized running times of SandwichSelect and Jump-
AndStep on instances with k = 2n and Pareto(3)-distributed vi for (α, β) =
(1, 0.001). The right plot shows |∆a|/n for all 1000 runs per n; it shows that the
expected |∆a| seems to converge to a constant fraction of n in this case. The
challenge of this family of apportionment instances lies in the heavy tail of the votes
distribution: the majority of parties will get 2 seats unless there are sufficiently many
sufficiently popular parties in the instance. Since JumpAndStep’s initial estimate
only considers V , which for large n is dominated by the vast majority of parties with
few votes, the initial seat allocation will give most parties 2 seats and additional seats
to the popular parties. More precisely, the expected value of a is 1 + 2

3 β = 1.0006;
fixing a = 1, the expected number of allocated seats is (1 + ζ(3))n ≈ 2.2021n, so
the expected allocation in excess of k = 2n is (ζ(3) − 1)n, which matches the data
very well.

mark 1. To not unduly slow it down in our running time study, we adopted a fast ad-hoc
solution of adding a small constant ϵ before computing floors of floating-point numbers. We
could manually determine a suitable ϵ for our benchmark inputs, but we point out that this
approach will in general lead to incorrect results (if vote counts are very close).

Figure 1 shows the results of two experiments with practical parameter choices. It is clear
that JumpAndStep dominates the field, although SandwichSelect comes close. All
other algorithms are substantially slower. As shown in our report [RW17], these observa-
tions are stable across many parameter choices. It is worth noting that for small instances,
the priority-queue based implementations are slower than the sequential-search based im-
plementations of the iterative method. This is likely due to the initialization overhead for
the priority queue.

4.3. Super-linear worst case for JumpAndStep

While JumpAndStep outperforms SandwichSelect for parameters modeling realistic
political scenarios – where its initial jump brings it close to the desired house size – in other
configurations, it clearly exhibits superlinear behavior; Figure 2 shows such a scenario.
Although the sizes are beyond current political applications, for sufficiently large n this
makes JumpAndStep slower than SandwichSelect.
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5. Conclusion

Our report [RW17] further shows that SandwichSelect has much smaller variance in
running times compared to JumpAndStep, both when varying the individual vote vectors
and the used divisor sequences.

In summary, we see that, despite its ω(n) worst case, JumpAndStep is very fast for many
scenarios, and is the best choice for small inputs. SandwichSelect allows for a robust
implementation and provides reliable performance across all tested scenarios, independent
of divisor sequence and vote distributions; for large instances of the apportionment opti-
mization problem, it is the fastest choice available.

5. Conclusion

We have shown that divisor methods of apportionment can be implemented by a simple and
numerically stable algorithm, SandwichSelect, that achieves the optimal linear complex-
ity even in the worst case; the same algorithm works for any rounding rule. The algorithm is
simple to state and implement, but its efficiency derives from a close study of the structure of
the problem. This concludes the quest for a robust and worst-case efficient implementation
of divisor methods.

A closely related area where this quest has not conclusively been achieved is bi-proportional
apportionment (double proportionality) [BD89b; BD89a; Puk14]. We leave the question
whether new insights from the one-dimensional version can be put to good use in the two-
dimensional variant for future work.
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A. Notation Index

A. Notation Index

In this section, we collect the notation used in this paper.

Generic Mathematical Notation

⌊x⌋, ⌈x⌉ . . . . . . . . floor and ceiling functions, as used in [GKP94].

J·K . . . . . . . . . . . used rounding rule; see Section 2.2

T·U . . . . . . . . . . . set-valued floor; TxU = {⌊x⌋} if x /∈ N and TnU = {n − 1, n} for n ∈ N.

O(f(n)), Ω, Θ, ∼ . . . asymptotic notation as defined, e.g., in [FS09, Section A.2].

M(k) . . . . . . . . . . The kth smallest element of (multi)set/vector M (assuming it exists); if
the elements of M can be written in non-decreasing order, M is given by
M(1) ≤ M(2) ≤ M(3) ≤ · · · .

x = (x1, . . . , xd) . . . to emphasize that x is a vector, it is written in bold

M . . . . . . . . . . . to emphasize that M is a multiset, it is written in calligraphic type.

M1 ⊎ M2 . . . . . . . multiset union; multiplicities add up.

Notation Specific to the Problem

party, seat, vote (count), house size
Parties are assigned seats (in parliament), so that the number of seats si

that party i is assigned is (roughly) proportional to that party’s vote
count vi and the overall number of assigned seats equals the house size k.

d = (dj)∞
j=0 . . . . . . the divisor sequence used in the highest averages method; d must be a

nonnegative, (strictly) increasing and unbounded sequence.

δ, δ−1 . . . . . . . . . a continuation of j 7→ dj on the reals and its inverse.

n . . . . . . . . . . . . number of parties in the input.

v, vi . . . . . . . . . . v = (v1, . . . , vn) ∈ Qn
>0, vote counts of the parties in the input.

V . . . . . . . . . . . . the sum v1 + · · · + vn of all vote counts.

k . . . . . . . . . . . . k ∈ N, the number of seats to be assigned; also called house size.

s, si . . . . . . . . . . s = (s1, . . . , sn) ∈ N0, the number of seats assigned to the respective
parties; the result.

ai,j . . . . . . . . . . . ai,j := dj/vi, the ratio used to define divisor methods; i is the party, j is
the number of seats i has already been assigned.

Ai . . . . . . . . . . . For party i, Ai := {ai,0, ai,1, ai,2, . . .} is the list of (reciprocals of) party i’s
ratios.

a . . . . . . . . . . . . We use a as a free variable when an arbitrary ai,j is meant.

A . . . . . . . . . . . . A := A1 ⊎ · · · ⊎ An is the multiset of all averages.
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A. Notation Index

r(x, A) . . . . . . . . . the rank of x in A, that is the number of elements in multiset A that are
no larger than x; r(x) for short if A is clear from context.

a∗ . . . . . . . . . . . . the ratio a∗ = ai∗,j∗ selected for assigning the last, i.e., kth seat.

a, a . . . . . . . . . . . lower and upper bounds on candidates a ≤ a ≤ a such that still
a∗ ∈ A ∩ [a, a].
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