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Abstract
Lazy search trees (Sandlund & Wild FOCS 2020, Sandlund & Zhang SODA 2022) are sorted
dictionaries whose update and query performance smoothly interpolates between that of efficient
priority queues and binary search trees – automatically, depending on actual use; no adjustments
are necessary to the data structure to realize the cost savings. In this paper, we design lazy B-trees,
a variant of lazy search trees suitable for external memory that generalizes the speedup of B-trees
over binary search trees wrt. input/output operations to the same smooth interpolation regime.

A key technical difficulty to overcome is the lack of a (fully satisfactory) external variant of
biased search trees, on which lazy search trees crucially rely. We give a construction for a subset of
performance guarantees sufficient to realize external-memory lazy search trees, which we deem of
independent interest.

As one special case, lazy B-trees can be used as an external-memory priority queue, in which
case they are competitive with some tailor-made heaps; indeed, they offer faster decrease-key and
insert operations than known data structures.
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1 Introduction

We introduce the lazy B-tree data structure, which brings the adaptive performance guarantees
of lazy search trees to external memory.

The binary search tree (BST) is a fundamental data structure, taught in every computer
science degree and widespread in practical use. Wherever rank-based operations are needed,
e.g., finding a kth smallest element in a dynamic set or determining the rank of an element
in the set, i.e., its position in the sorted order of the current elements, augmented BSTs
are the folklore solution: binary search trees using one of the known schemes to “balance”
them, i.e., guarantee O(log N) height for a set of size N , where we additionally store the
subtree size in each node. On, say, AVL-trees, all operations of a sorted dictionary, i.e., rank,
select, membership, predecessor, successor, minimum, and maximum, as well as insert, delete,
change-key, split, and merge can all be supported in O(log N) worst case time, where N is
the current size of the set.

From the theory of efficient priority queues, it is well known that much more efficient
implementations are possible if not all of the above operations have to be supported: When
only minimum, insert, delete, decrease-key, and meld are allowed, all can be supported to
run in constant time, except for O(log N) delete. Lazy search trees [44, 46] (LSTs) show that
we can get the same result with full support for all sorted-dictionary operations, so long as
they are not used. When they do get used, lazy search trees give the optimal guarantees of
any comparison-based data structure for the given query ranks, gracefully degrading from
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Figure 1 Schematic view of the original lazy search tree data structure [44].

priority-queue performance to BST performance, as more and more queries are asked. They
therefore serve as a versatile drop-in replacement for both priority queues and BSTs.1

The arguably most impactful application of sorted dictionaries across time is the database
index. Here, economizing on accesses to slow secondary storage can outweigh any other
costs, which gave rise to external-memory data structures; in particular B-trees and their
numerous variants. They achieve a log2(B)-factor speedup over BSTs in terms of input/output
operations (I/Os), for B the block size of transfers to the external memory, for scanning-
dominated operations such as a range query, even a factor B speedup can be achieved.

Much ingenuity has been devoted to (a) write-optimized variants of B-trees [3, 15], often
with batched queries, and (b), adaptive indices [31], or more recently learned indices [36] that
try to improve query performance via adapting to data at hand. Deferred data structuring –
known as database cracking in the systems community – is a special case of (b) that, like
lazy search trees, refines a sorted order (of an index) successively upon queries. Yet in the
past, these two approaches often remained incompatible, if not having outright conflicting
goals, making either insertions or queries fast. Lazy search trees are a principled solution
to get both (as detailed in Section 1.2); unfortunately, standard lazy search trees are not
competitive with B-trees in terms of their I/O efficiency, thus losing their adaptive advantages
when data resides on secondary storage.

1 We point out that a related line of work on “deferred data structures” also adapts to the queried
ranks in the way LSTs do, but all data structures prior to LSTs had Ω(log N) insertion time (with
the assumption that any insertion is preceded by a query for said element). These data structures are
therefore inherently unable to function as an efficient priority queue. Further related work is discussed
in Section 1.3.
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In this paper, we present lazy B-trees, an I/O-efficient variant of the original lazy search
trees [44].2 Lazy search trees consist of three layers (see Figure 1). The topmost layer consists
of a biased search tree of gaps (defined in Section 1.2), weighted by their size. The second
layer consists, for each gap ∆i, of a balanced binary search tree of O(log |∆i|) intervals Ii,j .
Intervals are separated by splitter elements (pivots as in Quicksort), but are unsorted within.
The third layer represents intervals as a simple unordered list.

A key obstacle to external-memory variants of lazy search trees – both for the original
version [44] and for optimal lazy search trees [46] – is the topmost layer. As discussed in
Section 1.3, none of the existing data structures fully solves the problem of how to design a
general-purpose external-memory biased search tree – and we likewise leave this as an open
problem for future work. However, we show that for a slightly restricted set of performance
guarantees sufficient for lazy search trees, a (to our knowledge) novel construction based on
partitioning elements by weight with doubly-exponentially increasing bucket sizes provides
an I/O-efficient solution. This forms the basis of our lazy B-trees, which finally bring the
adaptive versatility of lazy search trees to external memory.

1.1 The External-Memory Model
In this paper we study the sorted dictionary problem in a hierarchical-memory model, where
we have an unbounded external memory and an internal memory of capacity M elements,
and where data is transferred between the internal and external memory in blocks of B

consecutive elements. A block transfer is called an I/O (input/output operation). The I/O
cost of an algorithm is the number of I/Os it performs. Aggarwal and Vitter [2] introduced
this as the external-memory model (and proved, e.g., lower bounds for sorting in the model).

1.2 Lazy Search Trees
In this section we briefly describe lazy search trees [44]. Lazy search trees support all
operations of a dynamic sorted dictionary (details in [44]). We consider the following
operations (sufficient to base a full implementation on):

Construct(S): Constructs the data structure from the elements of set S.3
Insert(e): Adds element e to the set.
Delete(ptr): Deletes the element at pointer ptr from the set.
ChangeKey(ptr, e′): Changes the element e at pointer ptr to e′.
QueryElement(e): Locates the predecessor e′ to element e in the set, and returns rank

r of e′, and a pointer to e′.
QueryRank(r): Locates the element e with rank r in the set, and returns a pointer to e.

Lazy search trees maintain the elements of the set partitioned into G “gaps”, ∆1, . . . , ∆G.
All elements in ∆i are weakly smaller than all elements in ∆i+1, but the gaps are otherwise
treated as unsorted bags. Boundaries between gaps (and new gaps) are introduced only
via a query; initially we have a single gap ∆1. Every query is associated with its query
rank r [45, §4], i.e., the rank of its result, and splits an existing gap into two new gaps,
such that its query rank is the largest rank in the left one of these gaps. After queries with

2 The follow-up work [46] replaces the second and third layer using selectable priority queues; we discuss
why these are challenging to make external in Section 1.4.

3 Construct and iterative insertion have the same complexity in internal memory, but in external
memory, the bulk operation can be supported more efficiently.
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Table 1 Overview of results on Search Trees and Priority Queues for both the internal- and
external-memory model. For the internal model the displayed time is the number of RAM operations
performed, while for the external model the displayed time is the number of I/Os performed.
Amortized times are marked by “am.” and results doing batched updates and queries are marked by
“batched”. For priority queues, query is only for the minimum. All results use linear space.

Insert Query

Internal-Memory
Balanced BST [1, 26] O(log N) O(log N)
Priority Queue [14, 19] O(1) O(log N)
Lazy Search Tree [44] O

(
log N

|∆i| + log log N
)

O(log N + x log c) am.
Optimal LST [46] O

(
log N

|∆i|

)
O(log N + x log c) am.

External-Memory
B-tree [8] O(logB N) O(logB N)
Bε-tree [15] O

(
1

εB1−ε logB N
)

am. O
(

1
ε

logB N
)

am.
Buffer Tree [3, 4] O

(
1
B

logM/B
N
B

)
batched O

(
1
B

logM/B
N
B

)
batched

I/O-eff. heap [37] O
(

1
B

log2
N
B

)
am. O

(
1
B

log2
N
B

)
am.

x-treap heap [28] O
(

1
B

logM/B
N
B

)
am. O

(
Mε

B
log2

M/B
N
B

)
am.

This paper, LST
(Theorem 1) O

(
logB

N
|∆i| + logB logB |∆i|

) O
(

logB min {N, q} + 1
B

log2 |∆i|
+ logB logB |∆i| + 1

B
x log2 c

)
am.

This paper, PQ
(Corollary 2) O(logB logB N) O

(
1
B

log2 N + logB logB N
)

am.

ranks r1 < r2 < · · · < rq, we thus obtain the gaps ∆1, . . . , ∆q+1 where |∆i| = ri − ri−1 upon
setting r0 = 0 and rq+1 = n.

Lazy search trees support insertions landing in gap ∆i in O(log(N/ |∆i|) + log log |∆i|)
(worst-case) time and queries in O(x log c + log n) amortized time, where the query splits
a gap into new gaps of sizes x and cx for some c ≥ 1. Deletions are supported in O(log n)
(worst-case) time. To achieve these times, gaps are further partitioned into intervals, with an
amortized splitting and merging scheme (see Section 3 for details).

1.3 Related Work
We survey key prior work in the following; for a quick overview with selected results and
comparison with our new results, see also Table 1.

(External) Search trees. Balanced binary search trees (BSTs) exist in many varieties,
with AVL trees [1] and red-black trees [26] the most widely known. When augmented with
subtree sizes, they support all sorted dictionary operations in O(log N) worst-case time.
Simpler variants can achieve the same via randomization [47, 39] or amortization [48]. In
external memory, B-trees [8], often in the leaf-oriented flavor as B+-trees and augmented
with subtree sizes, are the benchmark. They support all sorted-dictionary operations in
O(logB N) I/Os. By batching queries, buffer trees [3, 4] substantially reduce the cost to
amortized O

( 1
B logM/B

N
B

)
I/Os, but are mostly useful in an offline setting due to the long

delay from query to answer. Bε-trees [15] avoid this with a smaller buffer of operations per
node to achieve amortized O

( 1
εB1−ε logB N

)
I/Os for updates and O

( 1
ε logB N

)
I/Os for

queries (with immediate answers), where ε ∈ (0, 1] is a parameter.
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Dynamic Optimality. The dynamic-optimality conjecture for Splay trees [48] resp. the
GreedyBST [38, 41, 21] algorithm posits that these methods provide an instance-optimal
binary-search-tree algorithm for any (long) sequence of searches over a static set of keys
in a binary search tree. While still open for Splay trees and GreedyBST, the dynamic
optimality of data structures has been settled in some other models: it holds for a variant
of skip lists [13], multi-way branching search trees, and B-trees [13]; it has been refuted for
tournament heaps [42]. As in lazy search trees, queries clustered in time or space allow a
sequence to be served faster. Unlike in lazy search trees, insertions can remain expensive
even when no queries ever happen close to them. A more detailed technical discussion of
similarities and vital differences compared to lazy search trees appears in [44, 45].

(External) Priority Queues. When only minimum-queries are allowed, a sorted dictionary
becomes a priority queue (PQ) (a.k.a. “heap”). In internal memory, all operations except
delete-min can then be supported in O(1) amortized [25] or even worst-case time [14, 19].
In external memory, developing efficient PQs has a long history. For batch use, buffer-tree
PQs [4] and the I/O-efficient heap of [37] support k operations of insert and delete-min in
O

(
k
B logM/B

N
M

)
I/Os, with N denoting the maximum number of stored keys over the k

operations. The same cost per operation can be achieved in a worst-case sense [16] (i.e., B

subsequent insert/delete-min operations cost O
(
logM/B

N
M

)
I/Os).

None of these external-memory PQs supports decrease-key. The I/O-efficient tournament
trees of [37] support a sequence of insert, delete-min, and decrease-key with O

( 1
B log2

N
B

)
I/Os per operation. A further log log N factor can be shaved off [32] (using randomization),
but that, surprisingly, is optimal [23]. A different trade-off is possible: insert and decrease-key
are possible in O

( 1
B logM/B

N
B

)
amortized I/Os at the expense of driving up the cost for

delete/delete-min to O
(

Mε

B log2
M/B

N
B

)
[28].

(External) Biased Search Trees. Biased search trees [9] maintain a sorted set, where each
element e has a (dynamic) weight w(e), such that operations in the tree spend O

(
log W

w(e)
)

time, for W the total weight, W =
∑

e w(e). Biased search trees can be built from height-
balanced trees ((2, b)-globally-biased trees [9]) or weight-balanced trees (by representing
high-weight elements several times in the tree [40]), and Splay trees automatically achieve
the desired time in an amortized sense [48, 40].

None of the original designs are well suited for external memory. Feigenbaum and
Tarjan [24] extended biased search trees to (a, b)-trees for that purpose. However, during
the maintenance of (a, b)-trees, some internal nodes may have a degree much smaller than
a (at least 2), which means that instead of requiring O(N/B) blocks to store N weighted
elements, they require O(N) blocks in the worst case.4 The authors in [24] indeed leave it
as an open problem to find a space-efficient version of biased (a, b)-trees. Another attempt
at an external biased search tree data structure is based on deterministic skip lists [5]. Yet
again, the space usage seems to be Ω(N) blocks of memory.5

4 In particular, in [24], they distinguish internal nodes between minor and major, minor being the nodes
that have degree < a or have a small rank. All external nodes are major.

5 Unfortunately, it remains rather unclear from the description in the article exactly which parts of
the skiplist “towers” of pointers of an element are materialized. Unlike in the unweighted case, an
input could have large and small weight alternating, with half the elements of height ≈ logb W . Fully
materializing the towers would incur Ω(n logb W ) space; otherwise this seems to require a sophisticated
scheme to materialize towers on demand, e.g., upon insertions, and we are not aware of a solution.
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To our knowledge, no data structure is known that achieves O
(
logB

W
w(e)

)
I/Os for a

dynamic weighted set in external memory while using O(N/B) blocks of memory.

Deferred Data Structures & Database Cracking. Deferred data structuring refers to the
idea of successively establishing a query-driven structure on a dataset. This is what lazy
search trees do upon queries. While the term is used more generally, it was initially proposed
in [35] on the example of a (sorted) dictionary. For an offline sequence of q queries on a given
(static) set of N elements, their data structure uses O(N log q + q log N) time. In [20], this
is extended to allow update operations in the same time (where q now counts all operations).
The refined complexity taking query ranks into account was originally considered for the
(offline) multiple selection problem: when q ranks r1 < · · · < rq are sought, leaving gaps
∆1, . . . , ∆q+1, Θ

(∑q+1
i=1 |∆i| log(N/∆i)

)
comparisons are necessary and sufficient [22, 33]. For

multiple selection in external memory, Θ
(∑q+1

i=1
|∆i|

B logM/B
N

|∆i|
)

I/Os are necessary and
sufficient [7, 17], even cache-obliviously [17, 18].

Closest to lazy search trees is the work on online dynamic multiple selection by Barbay
et al. [6, 7], where online refers to the query ranks arriving one by one. As pointed out
in [44], the crucial difference between all these works and lazy search trees is that the analysis
of dynamic multiple selection assumes that every insertion is preceded by a query for the
element, which implies that insertions must take Ω(log N) time. (They assume a nonempty
set of elements to initialize the data structure with, for which no pre-insertion queries are
performed.) Barbay et al. also consider online dynamic multiple selection in external memory.
By maintaining a B-tree of the pivots for partitioning, they can support updates – again,
implicitly preceded by a query – at a cost of Θ(logB N) I/Os each.

In the context of adaptive indexing of databases, deferred data structuring is known
under the name of database cracking [30, 29, 27]. While the focus of research is on systems
engineering, e.g., on the partitioning method [43], some theoretical analyses of devised
algorithms have also appeared [50, 49]. These consider the worst case for q queries on N

elements similar to the original works on deferred data structures.

1.4 Contribution
Our main contribution, the lazy B-tree data structure, is summarized in Theorem 1 below.

▶ Theorem 1 (Lazy B-Trees). There exists a data structure over an ordered set, that supports
Construct(S) in worst-case O(|S| /B) I/Os,
Insert in worst-case O

(
logB

N
|∆i| + logB logB |∆i|

)
I/Os,

Delete in amortized O
(
logB

N
|∆i| + 1

B log2 |∆i| + logB logB |∆i|
)

I/Os,
ChangeKey in worst-case O

(
logB logB |∆i|

)
I/Os if the element is moved towards the

nearest queried element but not past it, and amortized O
( 1

B log2 |∆i| + logB logB |∆i|
)

I/Os otherwise, and
QueryElement and QueryRank in amortized
O

(
logB min {N, q} + 1

B log2 |∆i| + logB logB |∆i| + 1
B x log2 c

)
I/Os.

Here N denotes the size of the current set, |∆i| denotes the size of the manipulated gap, q

denotes the number of performed queries, and x and cx for c ≥ 1 are the resulting sizes of
the two gaps produced by a query. The space usage is O(N/B) blocks.

From the above theorem, the following corollary can be derived, which states the perfor-
mance of lazy B-trees when used as a priority queue.
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▶ Corollary 2 (Lazy B-Trees as external PQ). A lazy B-tree may be used as a priority queue,
to support, within O(N/B) blocks of space, the operations

Construct(S) in worst-case O(|S| /B) I/Os,
Insert in worst-case O(logB logB N) I/Os,
Delete in amortized O

( 1
B log2 N + logB logB N

)
I/Os,

DecreaseKey in worst-case O(logB logB N) I/Os, and
Minimum in amortized O

( 1
B log2 N + logB logB N

)
I/Os.

The running times of lazy B-trees when used as a priority queue are not competitive with
heaps targeting sorting complexity (such as buffer trees [3, 4]); however these data structures
do not (and cannot [23]) support decrease-key efficiently. By contrast, for very large N , lazy
B-trees offer exponentially faster decrease-key and insert than previously known external
priority queues, while only moderately slowing down delete-min queries.

Our key technical contribution is a novel technique for partially supporting external
biased search tree performance, formally stated in Theorem 3 below. In the language of
a biased search tree, it supports searches (by value or rank) as well as incrementing or
decrementing6 a weight w(e) by 1 in O(logB(W/w(e))) I/Os for an element e or weight
w(e); inserting or deleting an element, however, takes O(logB N) I/Os irrespective of weight,
where N is the number of elements currently stored. Unlike previous approaches, the space
usage is the O(N/B) blocks throughout. A second technical contribution is the streamlined
potential-function-based analysis of the interval data structure of lazy search trees.

We mention two, as yet insurmountable, shortcomings of lazy B-trees. The first one is
the log log N term we inherit from the original Lazy search trees [44]. This cost term is in
addition to the multiple-selection lower bound and thus not necessary. Indeed, it was in
internal memory subsequently removed [46], using an entirely different representation of gaps,
which fundamentally relies on soft-heap-based selection on a priority queue [34]. The route to
an external memory version of this construction is currently obstructed by two road blocks.
First, we need an external-memory soft heap; the only known result in this direction [11]
only gives performance guarantees when N = O

(
B(M/B)M/2(B+

√
M/B)) and hence seems

not to represent a solution for the general problem. Second, the selection algorithm from [46]
requires further properties of the priority queue implementation, in particular a bound on
the fanout; it is not clear how to combine this with known external priority queues.

The second shortcoming is that – unlike for comparisons – we do not get close to the
I/O-lower bound for multiple-selection with lazy B-trees. Doing so seems to require a way
of buffering as in buffer trees, to replace our fanout of B by a fanout of M/B. This again
seems hard to achieve since an insertion in the lazy search tree uses a query on the gap data
structure, and a query on the lazy search tree entails an insertion into the gap data structure
(plus a re-weighting operation).

Outline. The remainder of the paper is structured as follows. Section 2 describes the
gap data structure (our partial external biased search tree) and key innovation. Section 3
sketches the changes needed to turn the interval data structure from [44] into an I/O-efficient
data structure; the full details, including our streamlined potential function, appear in
Appendix A. In Section 4, we then show how to assemble the pieces into a proof of our main
result, Theorem 1. We conclude in Section 5 with some open problems. To be self-contained,
we include proofs of some technical lemmas used in the analysis in Appendix B.

6 General weight changes are possible in that time with w(e) the minimum of the old and new weight.
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2 The Gap Structure: A New Restricted External Biased Search Tree

In this section we present a structure on the gaps, which allows for the following operations.
Let N denote the total number of elements over all gaps and G denote the number of gaps.
Note that G ≤ N , as no gaps are empty. We let ∆i denote the ith gap when sorted by
element, and |∆i| denote the number of elements contained in gap ∆i.

GapByElement(e) Locates the gap ∆i containing element e.
GapByRank(r) Locates the gap ∆i containing the element of rank r.
GapIncrement(∆i) / GapDecrement(∆i) Changes the weight of gap ∆i by 1.
GapSplit(∆i, ∆′

i, ∆′
i+1) Splits gap ∆i into the two non-overlapping gaps ∆′

i and ∆′
i+1,

s.t. the elements of ∆i are equal to the elements of ∆′
i and ∆′

i+1.

For the operations, we obtain I/O costs, as described in the theorem below.

▶ Theorem 3 (Gap Data Structure). There exists a data structure on a weighted ordered set,
that supports GapByElement, GapByRank, GapIncrement and GapDecrement in
O

(
logB

N
|∆i|

)
I/Os, and GapSplit in O(logB G) I/Os. Here N denotes the total size of all

gaps, |∆i| denotes the size of the touched gap and G denotes the total number of gaps. The
space usage is O(G/B) blocks.

▶ Remark 4 (Comparison with biased search trees). A possible solution would be an external-
memory version of biased search trees, but as discussed in the introduction, no fully satisfac-
tory such data structure is known. Instead of supporting all operations of biased trees in full
generality, we here opt for a solution solving (just) the case at hand. The solution falls short
of a general biased search trees, as the insertion or deletion costs are not a function of the
weight of the affected gap, but the total number G of gaps in the structure. Moreover, we
only describe how to change the weight of gaps by 1; however, general weight changes could
be supported, with the size of the change entering the I/O cost, matching what we expect
from a general biased search tree.

Note that the gaps in the structure are non-overlapping, and that their union covers
the whole element range. The query for an element contained in some gap is therefore a
predecessor query on the left side of the gaps, however, as their union covers the entire
element range, the queries on the gap structure behave like exact queries: we can detect
whether we have found the correct gap and can then terminate the search. (By definition,
there are no unsuccessful searches in our scenario, either.)

For consistency with the notation of biased search trees, we write in the following wi = |∆i|
and W =

∑
i wi. Note that W = N . Consider a conceptual list, where the gaps are sorted

decreasingly by weight, and let gap ∆i be located at some index ℓ in this list. This conceptual
list is illustrated in Figure 2, and Figure 3 gives a two-dimensional view of the list, which
considers both the gap weight as well as the gaps ordered by element. As the total weight
before index ℓ in the conceptual list is at most W and the weight of each gap before index ℓ

is at least wi, then it must hold that ℓ ≤ W
wi

. If we were to search for a gap of known
weight, it can therefore be found with an exponential search [10] in time O(log ℓ) = O

(
log W

wi

)
.

However, searches are based on element values (and, e.g., for insertions, without knowing
the target gap’s weight), so this alone would not work.

2.1 Buckets by Weight and Searching by Element
Instead, the gaps are split into buckets bj , s.t. the weight of all gaps in bucket bj is greater
than or equal to the weight of all gaps in bucket bj+1. We further impose the invariant
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0 1 2 3 4 5 6 7 8 . . . ℓ . . .

∆4 ∆9 ∆7 ∆2 ∆8 ∆6 ∆3 ∆5 ∆1 ∆i

b0 b1 b2early late buckets

Figure 2 The conceptual list of the gaps. The gaps are sorted by decreasing weight, with the
heaviest gap (largest weight), ∆4 at index 0. Gap ∆i with weight wi is stored at index ℓ ≤ W/wi in
the list. The gaps are split into buckets b0, b1, b2, . . . of doubly exponential size.
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Figure 3 Two dimensional view of the first gaps of Figure 2 represented by rectangles, with
the width of the rectangle denoting the weight (size) of the gap. The horizontal axis sorts gaps by
element value; the vertical axis by weight. Dashed lines show bucket boundaries.

that the size of (number of gaps in) bucket bj is exactly B2j for all but the last bucket,
which may be of any (smaller) size. Each bucket is a B-tree containing the gaps in the
bucket, sorted by element value. The time to search for a given element in bucket bj is
therefore O(logB(|bj |)) = O

(
2j

)
I/Os. For consistent wording, we will in the following

always use smaller/larger to refer to the order by element values, lighter/heavier for gaps of
smaller/larger weight/size, and earlier/later for buckets of smaller/larger index. Note that
earlier buckets contain fewer, but heavier gaps.

GapByRank. A search for a gap proceeds by searching in buckets b0, b1, b2, . . . until
the desired gap is found in some bucket bk. To search in all buckets up until bk requires∑k

j=0 O
(
2j

)
= O

(
2k

)
I/Os, which is therefore up to constant factors the same cost as

searching in only bucket bk. Consider some gap ∆i, which has the ℓth heaviest weight, i.e., it
is located at index ℓ, when sorting all gaps decreasingly by weight. By the invariant, the
buckets are sorted decreasingly by the weight of their internal elements. Let the bucket
containing ∆i be bk. It must then hold that the sizes of the earlier buckets does not allow
for ∆i to be included, but that bucket bk does. Therefore,

k−1∑
j=0

|bj | < ℓ ≤
k∑

j=0
|bj | .

As |bj | = B2j , the sums are asymptotically equal to the last term of the sum up to constant
factors (Lemma 10 in Appendix B). It then holds that ℓ = O

(
B2k )

and ℓ = Ω
(
B2k−1)

=
Ω

(
(B2k )1/2)

. Thus logB(ℓ) = Θ(logB |bk|), and conversely 2k = Θ(logB ℓ). The gap ∆i can
thus be found using O

(
logB

W
wi

)
I/Os, concluding the GapByElement operation.
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2.2 Updating the Weights

Both explicit weight changes in GapIncrement/GapDecrement as well as the GapSplit
operation require changes to the weights of gaps. Here, we have to maintain the sorting of
buckets by weight.

GapIncrement/GapDecrement. When performing GapIncrement on gap ∆i,
the weight is increased by 1. In the conceptual list, this may result in the gap moving to an
earlier index, with the order of the other gaps the same. This move is made in the conceptual
list (Figure 2) by swapping ∆i with its neighbor. As the buckets are ordered by element
value, swapping with a neighbor (by weight) in the same bucket does not change the bucket
structure. When swapping with a neighbor in an earlier bucket, however, the bucket structure
must change to reflect this. Following the conceptual list (Figure 2), this gap is a lightest
(minimum-weight) gap in bucket bk−1. This may then result in ∆i moving out of its current
bucket bk, into some earlier bucket. As the gap moves to an earlier bucket, some other gap
must take its place in bucket bk. Following the conceptual list, it holds that this gap is a
lightest (minimum-weight) gap in bucket bk−1, and so on for the remaining bucket moves.

When performing GapDecrement, the gap may move to a later bucket, where the
heaviest gap in bucket bk+1 is moved to bucket bk.

In both cases, a lightest gap in one bucket is swapped with a heaviest gap in the
neighboring (later) bucket. To find lightest or heaviest gaps in a bucket, we augment the
nodes of the B-tree of each bucket with the values of the lightest and heaviest weights in the
subtree for each of its children. This allows for finding a lightest or heaviest weight gap in
bucket bj efficiently, using O(logB |bj |) I/Os. Further, this augmentation can be maintained
under insertions and deletions.

Upon a GapIncrement or GapDecrement operation, the desired gap ∆i can be located
in the structure using O

(
logB

W
wi

)
I/Os, and the weight is adjusted. We must then perform

swaps between the buckets, until the invariant that buckets are sorted decreasingly by weight
holds. This swapping may be performed on all buckets up to the last touched bucket. For
GapIncrement the swapping only applies to earlier buckets as the weight of ∆i increases, and
the height of the tree in the latest bucket is O

(
logB

W
wi

)
. For GapDecrement the swapping

is performed into later buckets, but only up to the final landing place for weight wi − 1. If
wi ≥ 2, the height of the tree in the last touched bucket is O

(
logB

W
wi−1

)
= O

(
1 + logB

W
wi

)
.

If wi = 1, gap ∆i is to be deleted. The gap is swapped until it is located in the last bucket,
from where it is removed. We have O

(
logB

W
wi

)
= O

(
logB W

)
, as wi = 1, whereas the height

of the last bucket is O(logB G) = O(logB W ), as G ≤ W . Therefore both GapIncrement
and GapDecrement can be performed using O

(
logB

W
wi

)
I/Os.

GapSplit. When GapSplit is performed on gap ∆i, the gap is removed and replaced
by two new gaps ∆′

i and ∆′
i+1, s.t. |∆i| = |∆′

i| + |∆′
i+1|. In the conceptual list, the new gaps

must reside at later indexes than ∆i. As the sizes of the buckets are fixed, and the number
of gaps increases, some gap must move to the last bucket. Similarly to GapIncrement
and GapDecrement, the order can be maintained by performing swaps of gaps between
consecutive buckets: First, we replace ∆i (in its spot) by ∆′

i; if this violates the ordering of
weights between buckets, we swap ∆′

i with the later neighboring bucket, until the correct
bucket is reached. Then we insert ∆′

i+1 into the last bucket and swap it with its earlier
neighboring bucket until it, too, has reached its bucket. Both processes touch at most all
logB log2 G buckets and spend a total of O(logB G) I/Os.
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Figure 4 Illustration of “holes”. The figure shows the two-dimensional view of gaps described in
Figure 3 (gap widths not to scale). The hole between ∆11 and ∆21 in bucket b1, marked by the
dotted line, contains the total weight of all gaps marked in gray. These are precisely the gaps that
fall both (a) between ∆11 and ∆21 by element value and (b) in later buckets by (lighter) weight.
Note specifically that ∆13 and ∆18 are not counted in the hole, as they reside in an earlier bucket.

2.3 Supporting Rank Queries
The final operation to support is GapByRank. Let the global rank of a gap ∆i, r(∆i) =
|∆1| + · · · + |∆i−1|, denote the rank of the smallest element located in the gap, i.e., the
number of elements residing in gaps of smaller elements. The local rank of a gap ∆i in bucket
bj , rj(∆i), denotes the rank of the gap among elements located in bucket bj only.

Computing the rank of a gap. To determine the global rank of a gap ∆i, the total weight
of all smaller gaps must be computed. This is equivalent to the sum of the local ranks of ∆i

over all buckets: r(∆i) =
∑

j rj(∆i). First we augment the B-trees of the buckets, such that
each node contains the total weight of all gaps in the subtree. This allows us to compute the
local rank rj(∆i) of a gap ∆i inside a bucket bj using O(logB |bj |) I/Os. The augmented
values can be maintained under insertions and deletions in the tree within the stated I/O
cost. When searching for the gap ∆i, the local rank rj(∆i) of all earlier buckets bj up to the
bucket bk, which contains ∆i, can then be computed using O

(
logB

W
wi

)
I/Os in total.

It then remains to compute the total size of gaps smaller than ∆i in all buckets after bk,
i.e., the sum of the local ranks rℓ(∆i) for all later buckets bℓ, ℓ > k, to compute in total the
global rank r(∆i). As these buckets are far bigger, we cannot afford to query them. Note
that any gaps in these later buckets must fall between two consecutive gaps in bk, as the gaps
are non overlapping in element-value space. Denote the space between two gaps in a bucket
as a hole. We then further augment the B-tree to contain in each hole of bucket bj the total
size of gaps of later buckets contained in that hole, and let each node contain the total size of
all holes in the subtree. See Figure 4 for an illustration of which gaps contributes to a hole.

This then allows computing the global rank r(∆i) of gap ∆i, by first computing the local
rank rj(∆i) in all earlier buckets bj , i.e., for all j ≤ k, and then adding the total size of all
smaller holes in bk. The smaller holes in bk exactly sum to the local ranks rℓ(∆i) for all later
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buckets bℓ for ℓ > k. As this in total computes
∑

j rj(∆i), then by definition, we obtain the
global rank r(∆i) of the gap ∆i.

GapByRank. For a GapByRank operation, some rank r is given, and the gap ∆i is to
be found, s.t. ∆i contains the element of rank r, i.e., the global rank r(∆i) ≤ r < r(∆i+1).
The procedure is as follows. First, the location of the queried rank r is computed in the
first bucket. If this location is contained in a gap ∆i of the bucket, then ∆i must be the
correct gap, which is then returned. Otherwise, the location of r must be in a hole. As the
sizes of the gaps contained in the first bucket is not reflected in the augmentation of later
buckets, the value of r is updated to reflect the missing gaps of the first bucket: we subtract
from t the local rank r0(∆i) of the gap ∆i immediately after the hole containing the queried
rank r. This adjusts the queried rank r to be relative to elements in gaps of later buckets.
Put differently, the initial queried rank r is the queried global rank, which is the sum local
ranks; we now remove the first local rank again. This step is recursively applied to later
buckets, until the correct gap ∆i is found in some bucket bk, which contains the element of
the initially queried global rank r. As the correct gap ∆i must be found in the bucket bk

containing it, the GapByRank operation uses O
(
logB

W
wi

)
I/Os to locate it.

Maintaining hole sizes. The augmentation storing the sizes of all holes in a subtree can be
updated efficiently upon insertions or deletions of gaps in the tree, or upon updating the size
of a hole. However, computing the sizes of the holes upon updates in the tree is not trivial.
If a gap is removed from a bucket, the holes to the left resp. right of that gap are merged
into a single hole, with a size equal to the sum of the previous holes. If the removed gap
is moved to a later bucket, the hole must now also include the size of the removed gap. A
newly inserted gap must, by the non-overlapping nature of gaps, land within a hole of the
bucket, which is now split in two. If the global rank of the inserted gap is known, then the
sizes of the resulting two holes can be computed, s.t. the global rank is preserved.

In the operations on the gap structure, GapByElement or GapByRank do not
change the sizes of gaps, so the augmentation does not change. Upon a GapIncrement or
GapDecrement operation, the size of some gap ∆i changes. This change in size can be
applied to all holes containing ∆i in earlier buckets using O

(
logB

W
wi

)
I/Os in total. Then

swaps are performed between neighboring buckets until the invariant that buckets are sorted
by weight, holds again. During these swaps, the sizes of gaps do not change, which allows for
computing the global rank of the gaps being moved, and update the augmentation without
any overhead in the asymptotic number of I/Os performed. The total number of I/Os to
perform a GapIncrement or GapDecrement operation does not increase asymptotically,
and therefore remains O

(
logB

W
wi

)
.

When a GapSplit is performed, a single gap ∆i is split. As the elements in the two new
gaps ∆′

i and ∆′
i+1 remain the same as those of the old gap ∆i, there cannot be another gap

between them. The value in all smaller holes therefore remains correct. Moving ∆′
i+1 to

the last bucket then only needs updating the value of the holes of the intermediate buckets,
which touches at most all logB log2 G buckets spending O(logB G) I/Os in total. Swaps are
then performed, where updating the augmentation does not change the asymptotic number
of I/Os performed.

Space Usage. To bound the space usage, note that the augmentation of the B-trees at
most increase the node size by a constant factor. Since the space usage of a B-tree is linear
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in the number of stored elements, and since each gap is contained in a single bucket, the
space usage is O(G/B) blocks in total. This concludes the proof of Theorem 3.

3 The Interval Structure

A gap ∆i contains all elements in the range the gap covers. Note that by Theorem 1, a
query on the gap for an element must be faster for elements closer to the border of a gap;
information-theoretically speaking, such queries reveal less information about the data. It is
therefore not sufficient to store the elements in the gap in a single list.

External memory interval data structure. We follow the construction of Sandlund and
Wild [44], in their design of the interval structure. In this section we present the construction,
and argue on the number of I/Os this construction uses. The main difference from the
original construction is in the speed-up provided by the external-memory model; namely that
scanning a list is faster by a factor B, and that B-trees allows for more efficient searching.
These differences are also what allows for slightly improving the overall I/O cost of the
original construction, when moving it to the external-model. Due to space constraints, the
full analysis can be found in Appendix A.

We allow for the following operations:

IntervalsInsert(e): Inserts element e into the structure.
IntervalsDelete(ptr): Deletes the element e at pointer ptr from the structure.
IntervalsChange(ptr, e′): Changes the element e at pointer ptr to the element e′.
IntervalSplit(e) or IntervalSplit(r): Splits the set of intervals into two sets of

intervals at element e or rank r.

A gap has a “sidedness”, which denotes the number of sides the gap has had a query.
Denote a side as a queried side, if that rank has been queried before (cf. [44]). If there have
been no queries yet, the (single) gap is a 0-sided gap. When a query in a 0-sided gap occurs,
two new gaps are created which are both 1-sided. Note that “1-sided” does not specify which
side was queried – left or right. When queries have touched both sides, the gap is 2-sided.

We obtain the following I/O costs for the above operations.

▶ Theorem 5 (Interval Data Structure). There exists a data structure on an ordered set,
maintaining a set of intervals, supporting

IntervalsInsert in worst-case O(logB logB |∆i|) I/Os,
IntervalsDelete in amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os,

IntervalsChange in worst-case O(logB logB |∆i|) I/Os, if the element is moved towards
the nearest queried side or amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os otherwise, and

IntervalSplit in amortized O
( 1

B log2 |∆i| + logB logB |∆i| + 1
B x log2 c

)
I/Os.

Here |∆i| denotes the number of elements contained in all intervals, and x and cx for c ≥ 1
are the resulting sizes of the two sets created by a split. The space usage is O(|∆i| /B) blocks.

Intervals in external memory. Let the gap ∆i contain multiple non-overlapping intervals
Ii,j , which contain the elements located in the gap. The elements of the intervals are sorted
between intervals, but not within an interval. Intervals therefore span a range of elements
with known endpoints. Each such interval is a blocked-linked-list containing the elements
of the interval. Additionally, we store an augmented B-tree over the intervals, allowing for
efficiently locating the interval containing a given element (using O(logB(#intervals)) I/Os).
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The B-tree is augmented to hold in each node the total sizes of all intervals in the subtrees
of the node, which allows for efficient rank queries.

By packing all intervals into a single blocked-linked-list, and noting that there can be no
more intervals than there are elements, the space usage of the intervals and the augmented
B-tree over the intervals is O(|∆i| /B) blocks.

Intuition of interval maintenance of [44]. Intuitively, there is a trade-off in maintaining
intervals: having many small intervals reduces future query costs since these are typically
dominated by the linear cost of splitting one interval; but it increases the time to search
for the correct interval upon insertions (and other operations). Lazy search trees handle
this trade-off as follows. To bound the worst case insertion costs, we enforce a hard limit of
O(log2 |∆i|) on the number of intervals in a gap ∆i, implemented via a merging rule. To
amortize occasional high costs for queries, we accrue potential for any intervals that have
grown “too large” relative to their proximity to a gap boundary.

Given the logarithmic number of intervals, the best case for queries would be to have
interval sizes grow exponentially towards the middle. This makes processing of intervals close
to the boundary (i.e., close to previous queries) cheap; for intervals close to the middle, we
can afford query costs linear in ∆i. It can be shown that for exponentially growing intervals,
the increase of the lower bound from any query allows us to precisely pay for the incurred
splitting cost. However, the folklore rule of having each interval, say, 2–4 times bigger than
the previous interval seems too rigid to maintain. Upon queries, it triggers too many changes.

Merging & Potential. We therefore allow intervals to grow bigger than they are supposed
to be, but charge them for doing so in the potential. By enforcing the merging rule when
the number of elements in the gap decreases, we maintain the invariant that the number
of intervals is O(log2 |∆i|), which allows for locating an interval using O(logB log2 |∆i|) =
O(logB logB |∆i|) I/Os. Enforcing the merging rule is achieved by scanning the intervals
using the B-tree, and it can be shown that this operation uses amortized O

( 1
B log2 |∆i|

)
I/Os. Merging intervals takes O(1) I/O, but by adding extra potential to intervals, this step
of the merge can be amortized away.

Upon this, we can show that IntervalsInsert uses O(logB logB |∆i|) I/Os, and that
IntervalsDelete uses amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os. When performing

IntervalsChange, moving the element from one interval to another uses O(logB logB |∆i|)
I/Os. However, the potential function causes an increase of O

( 1
B log2 |∆i|

)
I/Os in the

amortized cost when an element is moved away from the closest queried side of the gap.
When a query occurs, an interval Ii,j is split around some element or rank. The interval can

be located using the B-tree over intervals on either element or rank in O(logB logB |∆i|) I/Os.
For splitting around an element, the interval is scanned and partitioned using O(|Ii,j | /B) I/Os.
For splitting around a rank, deterministic selection [12] is applied, which uses O(|Ii,j | /B) I/Os
(see, e.g., [17, 18]). In both cases the number of I/Os grows with the interval size. Analyzing
the change in the potential function upon this split, we can show that IntervalSplit uses
amortized O

( 1
B log2 |∆i| + logB logB |∆i| + 1

B x log2 c
)

I/Os.
This (together with the details from Appendix A) concludes the proof of Theorem 5.

4 Lazy B-Trees

In this section, we combine the gap structure of Section 2 and the interval structure of
Section 3, to achieve an external-memory lazy search-tree. Recall our goal, Theorem 1.
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▶ Theorem 1 (Lazy B-Trees). There exists a data structure over an ordered set, that supports
Construct(S) in worst-case O(|S| /B) I/Os,
Insert in worst-case O

(
logB

N
|∆i| + logB logB |∆i|

)
I/Os,

Delete in amortized O
(
logB

N
|∆i| + 1

B log2 |∆i| + logB logB |∆i|
)

I/Os,
ChangeKey in worst-case O

(
logB logB |∆i|

)
I/Os if the element is moved towards the

nearest queried element but not past it, and amortized O
( 1

B log2 |∆i| + logB logB |∆i|
)

I/Os otherwise, and
QueryElement and QueryRank in amortized
O

(
logB min {N, q} + 1

B log2 |∆i| + logB logB |∆i| + 1
B x log2 c

)
I/Os.

Here N denotes the size of the current set, |∆i| denotes the size of the manipulated gap, q

denotes the number of performed queries, and x and cx for c ≥ 1 are the resulting sizes of
the two gaps produced by a query. The space usage is O(N/B) blocks.

We use the I/O bounds shown in Theorems 3 and 5 to bound the cost of the combined
operations. These operations are performed as follows.

A Construct(S) operation is performed by creating a single gap over all elements in S,
and in the gap create a single interval with all elements. This can be done by a single scan
of S, and assuming that S is represented compactly/contiguously, this uses O(|S| /B) I/Os.

To perform an Insert(e) operation, GapByElement is performed to find the gap ∆i

containing element e. Next, IntervalsInsert is performed to insert e into the interval
structure of gap ∆i. Finally, GapIncrement is performed on ∆i, as the size has increased.
In total this uses worst-case O

(
logB

N
|∆i| + logB logB |∆i|

)
I/Os.

Similarly, upon a Delete(ptr) operation, IntervalsDelete is performed using ptr , to
remove the element e at the pointer location. Next GapDecrement is performed on the
gap ∆i. In total this uses amortized O

(
logB

N
|∆i| + 1

B log2 |∆i| + logB logB |∆i|
)

I/Os.
A ChangeKey operation may only change an element, s.t. it remains within the same

gap (otherwise we need to use Delete and Insert). This operation therefore does not need
to perform operations on the gap structure, but only on the interval structure of the relevant
gap. The operation is therefore performed directly using the IntervalsChange operation.

The QueryElement and QueryRank operations are performed in similar fashions.
First, GapByElement or GapByRank is performed to find the relevant gap ∆i con-
taining the queried element. Next IntervalSplit is performed on the interval struc-
ture, which yields two new gaps ∆′

i and ∆′
i+1, which is updated into the gap struc-

ture using GapSplit. Note that the number of gaps is bounded by the number of el-
ements N , but also by the number of queries q performed, as only queries introduce
new gaps. In total, the QueryElement and QueryRank operations uses amortized
O

(
logB min {N, q} + 1

B log2 |∆i| + logB logB |∆i| + 1
B x log2 c

)
I/Os.

The space usage of the gap structure is O(G/B) = O(N/B) blocks. For gap ∆i, the space
usage of the interval structure is O(|∆i| /B) blocks. If |∆j | = O(B), for some ∆j , we cannot
simply sum over all the substructures. By instead representing all such “lightweight” gaps
in a single blocked-linked-list, we obtain that the space usage over the combined structure
is O(N/B) blocks. The gaps are located in the combined list using the gap structure, and
updates or queries to the elements of the gap may then be performed using O(1) I/Os,
allowing the stated time bounds to hold. Similarly, an interval structure may be created for
a gap, when it contains Ω(B) elements using O(1) I/Os. The stated time bounds therefore
still applies to the lightweight gaps.

This concludes the proof of Theorem 1.
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Priority Queue Case. When a lazy B-tree is used a priority queue, the queries are only
performed on the element of smallest rank, and this element is deleted before a new query is
performed. If this behavior is maintained, we first note that the structure only ever has a
single 1-sided gap of size N , with the queried side to the left. This allows for Insert to be
performed in worst-case O(logB logB N) I/Os, as the search time in the gap structure reduces
to O(1). Similarly, Delete is performed using amortized O

( 1
B log2 N + logB logB N

)
I/Os.

To perform the DecreaseKey operation, a ChangeKey operation is performed. As the
queried side is to the left, this must move the element towards the closest queried side,
leading to a DecreaseKey operation being performed using worst-case O(logB logB N)
I/Os. Finally, Minimum is performed as a QueryRank(r) with r = 1. As this must
split the gap at x = 1 and cx = N − 1, the operation is performed using amortized
O

( 1
B log2 N + logB logB N

)
I/Os. This concludes the proof of Corollary 2.

5 Open Problems

The internal lazy search trees [44] discuss further two operations on the structure; Split
and Merge, which allows for splitting or merging disjoint lazy search tree structures around
some query element or rank. These operations are supported as efficient as queries in the
internal-model. In the external-memory case, the gap structure designed in this paper,
however, does not easily allow for splitting or merging the set of gaps around an element
or rank, as the gaps are stored by element in disjoint buckets, where all buckets must be
updated upon executing these extra operations. By sorting and scanning the gaps, the
operations may be supported, but not as efficiently as a simple query, but instead in sorting
time relative to the number of gaps. It remains an open problem to design a gap structure,
which allows for efficiently supporting Split and Merge.

In the external-memory model, bulk operations are generally faster, as scanning consecu-
tive elements saves a factor B I/Os. One such operation is RangeQuery, where a range
of elements may be queried and reported at once. In a B-tree, this operation is supported
in O(logB N + k/N) I/Os, when k elements are reported. The lazy B-tree designed in this
paper allows for efficiently reporting the elements of a range in unsorted order, by querying
the endpoints of the range, and then reporting all elements of the gaps between the end-
points. Note that for the priority-queue case, this allows reporting the k smallest elements in
O

( 1
B k log2

N
k + 1

B log2 N + logB logB N
)

I/Os. If the elements must be reported in sorted
order, sorting may be applied to the reported elements. However, this effectively queries
all elements of the range, and should therefore be reflected into the lazy B-tree. As this
introduces many gaps of small size, the I/O cost increases over simply sorting the elements
of the range. It remains an open problem on how to efficiently support sorted RangeQuery
operations, while maintaining the properties of lazy B-trees.

In the internal-memory model, an optimal version of lazy search trees was constructed [46],
which gets rid of the added log log N term on all operations. It remains an open problem to
similarly get rid of the added logB logB N term for the external-memory model.

Improvements on external-memory efficient search trees and priority queues use buffering
of updates to move more data in a single I/O, thus improving the I/O cost of operations.
The first hurdle to overcome in order to create buffered lazy B-trees is creating buffered
biased trees used for the gap structure. By buffering updates to the gaps, it must then hold
that the weights are not correctly updated, which imposes problems on searching; both by
element and rank. It remains an open problem to overcome this first hurdle as a step towards
buffering lazy B-trees.



C. M. Rysgaard, S. Wild. 17

References
1 Georgy M. Adelson-Velsky and Evgenii M. Landis. An algorithm for the organization of

information. Proceedings of the USSR Academy of Sciences (in Russian), 146:263–266, 1962.
2 Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116––1127, September 1988. doi:10.1145/
48529.48535.

3 Lars Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Workshop
on Algorithms and Data Structures (WADS), page 334–345. Springer, 1995. doi:10.1007/
3-540-60220-8_74.

4 Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1–24, 2003. doi:10.1007/S00453-003-1021-X.

5 Amitabha Bagchi, Adam L Buchsbaum, and Michael T Goodrich. Biased skip lists. Algorith-
mica, 42:31–48, 2005.

6 Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jon Sorenson. Dynamic online
multiselection in internal and external memory. In WALCOM: Algorithms and Computation,
pages 199–209. Springer, 2015. doi:10.1007/978-3-319-15612-5_18.

7 Jérémy Barbay, Ankur Gupta, Srinivasa Rao Satti, and Jon Sorenson. Near-optimal online
multiselection in internal and external memory. Journal of Discrete Algorithms, 36:3–17, 2016.
WALCOM 2015.

8 Rudolf Bayer and Edward M. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972. doi:10.1007/BF00288683.

9 Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. Biased search trees. SIAM Journal
on Computing, 14(3):545–568, 1985.

10 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(3):82–87, 1976. doi:10.1016/0020-0190(76)
90071-5.

11 Alka Bhushan and Sajith Gopalan. External Memory Soft Heap, and Hard Heap, a Meld-
able Priority Queue, page 360–371. Springer Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-32241-9_31.

12 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:10.1016/
S0022-0000(73)80033-9.

13 Prosenjit Bose, Karim Douïeb, and Stefan Langerman. Dynamic optimality for skip lists and
B-trees. In Symposium on Discrete Algorithms (SODA), pages 1106–1114. SIAM, 2008.

14 Gerth Stølting Brodal. Worst-case efficient priority queues. In Symposium on Discrete
Algorithms (SODA), 1996.

15 Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
546––554. Society for Industrial and Applied Mathematics, 2003.

16 Gerth Stølting Brodal and Jyrki Katajainen. Worst-case efficient external-memory priority
queues. In Stefan Arnborg and Lars Ivansson, editors, Algorithm Theory — SWAT’98, pages
107–118, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. doi:10.1007/BFb0054359.

17 Gerth Stølting Brodal and Sebastian Wild. Funnelselect: Cache-oblivious multiple selection. In
Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, European
Symposium on Algorithms (ESA), pages 25:1–25:17, 2023. doi:10.4230/LIPIcs.ESA.2023.25.

18 Gerth Stølting Brodal and Sebastian Wild. Deterministic cache-oblivious funnelselect. In
Scandinavian Symposium on Algorithm Theory (SWAT), 2024. arXiv:2402.17631, doi:
10.4230/LIPIcs.SWAT.2024.17.

19 Gerth Stølting Brodal, George Lagogiannis, and Robert E. Tarjan. Strict fibonacci heaps. In
Symposium on Theory of Computing (STOC), STOC’12, page 1177–1184. ACM, May 2012.
doi:10.1145/2213977.2214082.

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/S00453-003-1021-X
https://doi.org/10.1007/978-3-319-15612-5_18
https://doi.org/10.1007/BF00288683
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1007/978-3-642-32241-9_31
https://doi.org/10.1007/978-3-642-32241-9_31
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1007/BFb0054359
https://doi.org/10.4230/LIPIcs.ESA.2023.25
https://arxiv.org/abs/2402.17631
https://doi.org/10.4230/LIPIcs.SWAT.2024.17
https://doi.org/10.4230/LIPIcs.SWAT.2024.17
https://doi.org/10.1145/2213977.2214082


18 Lazy B-Trees

20 Yu-Tai Ching, Kurt Mehlhorn, and Michiel H.M. Smid. Dynamic deferred data structuring.
Information Processing Letters, 35(1):37 – 40, 1990.

21 Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Pǎtraşcu. The geometry
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A The Interval Structure

In this appendix, we give the full description and detailed analysis of the interval data
structure outlined in Section 3. We follow the construction of Sandlund and Wild [44], in
their design of the interval structure, with some improvements for external memory. To give
a self-contained analysis of the number of I/Os used by all operations, we reproduce the
analysis from [44, 45] and spell out all cases explicitly.

A gap ∆i contains all elements in the range the gap covers. Recall that a query on the
gap for an element must be faster for elements closer to the border of a gap. We allow for
the following operations:

IntervalsInsert(e): Inserts element e into the structure.
IntervalsDelete(ptr): Deletes the element e at pointer ptr from the structure.
IntervalsChange(ptr, e′): Changes the element e at pointer ptr to the element e′.
IntervalSplit(e) or IntervalSplit(r): Splits the set of intervals into two sets of

intervals at element e or rank r.

A gap has a “sidesness”, which denotes the number of sides the gap has had a query.
Denote a side as a queried side, if that rank has been queried before (cf. [44]). If there have
been no queries yet, the (single) gap is a 0-sided gap. When a query in a 0-sided gap occurs,
two new gaps are created which are both 1-sided. Note that both gaps which have a single
query on either the left or right side is called 1-sided. When queries have touched both sides,
the gap is 2-sided.

We obtain the following I/O costs for the above operations.

▶ Theorem 6. There exists a data structure on an ordered set, that maintains a set of
intervals, supporting

IntervalsInsert in worst-case O(logB logB |∆i|) I/Os,
IntervalsDelete in amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os,

IntervalsChange in worst-case O(logB logB |∆i|) I/Os, if the element is moved towards
the nearest queried side or amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os otherwise, and

IntervalSplit in amortized O
( 1

B log2 |∆i| + logB logB |∆i| + 1
B x log2 c

)
I/Os.

Here |∆i| denotes the number of elements contained in all intervals, and x and cx for c ≥ 1
are the resulting sizes of the two sets produced by a split. The space usage is O(|∆i| /B) blocks.

The structure is as follows. Let the gap ∆i contain multiple non-overlapping intervals
Ii,j , which contains the elements located in the gap. The elements of the intervals are sorted
between intervals, but not within an interval. Intervals therefore span a range of elements
with known endpoints. Each such interval is a blocked-linked-list containing the elements
of the interval. Additionally, we store an augmented B-tree over the intervals, allowing for
efficiently locating the interval containing a given element (using O(logB(#intervals)) I/Os).
The B-tree is augmented to hold in each node the total size of all intervals in the subtree of
the node, which allows for efficient rank queries.

By packing all intervals into a single blocked-linked-list, and noting that there can be no
more intervals than there are elements, the space usage of the intervals and the augmented
B-tree over the intervals is O(|∆i| /B) blocks.

A.1 Invariants and Potential
Intuitively, there is a trade-off in maintaining intervals: having many small intervals reduces
future query costs (typically dominated by the linear cost of splitting one interval), but
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increases the time to search for the correct interval upon insertions (and other operations).
Lazy search trees handle this trade-off as follows. To bound the worst case insertion costs,
we enforce a hard limit number on the number of intervals via a merging rule. To amortize
occasional high costs for queries, we accrue potential (Φi,j below) for any intervals that are
“too large” relative to their proximity of a gap boundary.

Moreover, for queries we would like to have interval sizes grow exponentially towards
the middle, as this allows for efficiently manipulating the intervals closest to the edge. This
folklore rule seems too rigid to maintain upon queries, though, as many changes can be
necessary.

A.1.1 Merging Intervals
We maintain the following invariant on the number of intervals:

Invariant (#Int): For a gap ∆i, the number of intervals Ii,j is at most 4 log2 |∆i| + 2.

This allows for locating an interval using O(logB log2 |∆i|) = O(logB logB |∆i|) I/Os.
This I/O cost also applies to recomputing the sizes of subtrees when updating an interval.
To bound the I/O cost of the operations, we define the following for the analysis. Let o(Ii,j),
the “outside (elements) of Ii,j”, denote the number of elements between interval Ii,j and a
queried side of the gap; if both sides have been queries, o(Ii,j) is the towards the closest side.
We denote an interval to be left if the closest edge is to the left and right otherwise. Note
for a 0-sided gap, the outside is always 0. For a 1-sided gap with a query on the left (resp.
right), all intervals are left (resp. right).

When an insertion occurs in the gap, the interval containing the inserted element is
located, and the inserted element is appended to the list of the interval. This increases |∆i|
by one, but does not create any new intervals, so (#Int) remains satisfied.

When a deletion occurs, |∆i| decreases, which may invalidate (#Int). We therefore need a
way to reduce the number of intervals, which we do by simply merging two adjacent intervals.
Recall that elements within intervals are not sorted, so merging two intervals effectively just
means “forgetting” about the pivot element currently separating them; here, we need to
concatenate the list of elements. The rule in lazy search trees is as follows, using the outside
as a measure for how close to the middle an interval is:

Merge Rule (M): If |Ii,j | + |Ii,j+1| < o(Ii,j), merge Ii,j and Ii,j+1.
This rule only applies between intervals of the same type; a left interval is never merged
with a right interval.

That is, an interval Ii,j is merged with its inner neighbor, if they combined contain fewer
elements than outside of the intervals; they are therefore intuitively “too small” for where
they reside in the gap. Note that we do not treat this rule as an invariant; we do not require
it to be true at all times, but only use it to reduce the number of intervals when explicitly
invoked in operation IntervalsMerge.

Suppose that IntervalsMerge has just merged all interval pairs that satisfy (M). We
then obtain bounds on the number of intervals as stated in the following two lemmas.

▶ Lemma 7 (The Merge rule on one side yields logarithmic internals). Let a set of N elements
partitioned in intervals that satisfy rule (M). Let further I be one of the intervals and k = o(I)
be its number of outside elements. Then there are at most max{1, 2 log2

N
k + 2} intervals

inside of I and on the same side as I.
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Proof. The proof goes by induction in N . When N = 1, there can be at most one interval.
If N < k, there can be at most one interval, as the merge rule would otherwise be violated.
In both cases, the claim is satisfied.

For N ≥ k, we may assume the induction hypothesis on all smaller values of N . If
there are less than three intervals, the bound holds from the additive constant. Otherwise,
let a, b and c be the size of the first three intervals in order. By the merge rule, it holds
that a + b ≥ k. By definition o(Ic) = k + a + b ≥ 2k. The number of intervals is then
the two intervals a and b, and the number of intervals from c, which by induction is
≤ 2 + 2 log2

N−a−b
o(Ic) + 2 ≤ 2 log2

N
2k + 4 = 2 log2

N
k + 2. This concludes the proof. ◀

▶ Lemma 8 ((M) implies (#Int)). Let a gap ∆i adhere to rule (M) on intervals. Then there
are at most 4 log2 |∆i| + 2 intervals.

Proof. The proof goes by case analysis on the sidesness of ∆i. If the gap is 0-sided, there
must be one interval. If the gap is 1-sided, the first interval has size at least 1, and there
must then be at most 2 log ∆i + 2 remaining intervals by Lemma 7. In both cases the bound
holds.

Otherwise, the gap must be 2-sided, and the merge rule holds from both left and right.
The outermost intervals have size at least 1. Let L and R denote the number of elements in
left and right intervals respectively. By Lemma 7, the number of intervals is at most

2+(2 log2 L+2)+(2 log2 R+2) = 6+2 log2(L ·R) ≤ 6+2 log2
∆2

i

4 = 4 log2 ∆i +2 . ◀

A.1.2 Potential
When a query occurs, an interval Ii,j is split around some element or rank. The interval can
be located using the B-tree over intervals on either element or rank in O(logB logB |∆i|) I/Os.
For splitting around an element, the interval is scanned and partitioned using O(|Ii,j | /B) I/Os.
For splitting around a rank, deterministic selection [12] is applied, which uses O(|Ii,j | /B)
I/Os (see, e.g., [17, 18]). In both cases the number of I/Os grows with the interval size.

We therefore need a potential function, which balances the time to split an interval with
how close to the border it is, which is defined using the outside of an interval. For 1-sided
gaps, the outside however only measures toward one side of the gap, and we therefore need
further potential for the 1-sided intervals. Let N01 be the number of elements contained in
total in 0- and 1-sided gaps. Further, we need potential to efficiently merge intervals in a
scan.

We let the potential be

Φ = 1
B

N01 +
∑
i,j

Φi,j

and let

Φi,j = 1 + 1
B

max {|Ii,j | − o(Ii,j), 0} .

Using this potential function, we can analyze the amortized I/O cost of applying the
merge rule on all intervals, which we denote as the IntervalsMerge operation. This
operation uses that scanning all keys of a B-tree can be done efficiently.

▶ Lemma 9 (Merging runtime). Let the number of intervals contained in the gap ∆i be k.
Then IntervalsMerge uses amortized O(k/B) I/Os.
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Proof. When IntervalsMerge is performed, first o(Ii,j) is computed for each Ii,j in
O(k/B) I/Os, by scanning the B-tree. The B-tree may then be scanned again, to perform
the merges on the intervals, and finally a new B-tree over the resulting intervals can be built.
As the number of intervals can only decrease, the B-tree can be build using O(k/B) I/Os.

Let Ii,j and Ii,j+1 be a pair of intervals which are merged during the operation. It must
hold that |Ii,j | + |Ii,j+1| < o(Ii,j). The merge is performed by following the pointers to the
intervals and concatenating the lists, using O(1) I/O. Let Ii,j′ be the resulting interval of
the merge. The potential then decreases by Φi,j and Φi,j+1, and increases by Φi,j′ . From
the merge rule and the definition of the outside, it follows that

Φi,j = 1 + 1
B

max {|Ii,j | − o(Ii,j), 0} = 1

Φi,j+1 = 1 + 1
B

max {|Ii,j+1| − (o(Ii,j) + |Ii,j |), 0} = 1

Φi,j′ = 1 + 1
B

max {(|Ii,j | + |Ii,j+1|) − o(Ii,j), 0} = 1 .

The difference in potential is therefore ∆Φ = −1, which covers the I/Os performed by the
merge, which concludes the proof. ◀

A.2 Updating Elements of the Intervals
Upon an IntervalsInsert operation, a new element e is added to the gap ∆i. The interval
Ii,j containing e can be located using the B-tree, and the size of the interval incremented by 1
using O(logB logB |∆i|) I/Os. As previously discussed, the intervals need not be merged, as
the invariant on the interval count is satisfied. In the potential function Φ, the outside of all
inner intervals grows by 1, which does not increase the value of Φ. The size of Ii,j grows by
1, and N01 grows by at most 1, which in total increases Φ by at most 2

B . IntervalsInsert
can therefore be performed in both amortized and worst-case O(logB logB |∆i|) I/Os.

When an IntervalsDelete operation occurs, a pointed to element is removed from
some interval Ii,j . The size is then decremented by 1, and the B-tree must be updated
to reflect so. If this decreases the size to 0, the interval is removed, which in total uses
O(logB logB |∆i|) I/Os. In contrast to the IntervalsInsert operation, upon removing an
element, the outside of all inner intervals decreases, which makes the potential function Φ
grow by at most 1

B for each such interval, of which there are O(log2 |∆i|). In addition, the
number of elements decreases without the number of intervals decreasing, which may leading
to breaking the invariant on the bound on the number of intervals. Note that merging a
single interval is enough to ensure that the number of intervals stays bounded, and even so,
only after linearly many deletes, the merge of a single interval needs to occur. However, as
the potential increases by O

( 1
B log2 |∆i|

)
, and the IntervalsMerge uses the same amount

of amortized I/Os, it is efficient enough to run IntervalsMerge after every delete. In total,
IntervalsDelete uses amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os.

When IntervalsChange(ptr , e′) in performed, the element e at pointer ptr is changed
to element e′. This new element must then be placed in the correct interval, which can be
done using the B-tree over intervals using O(logB logB |∆i|) I/Os. This then changes the
size of at most two intervals, with one increasing and the other decreasing, which increases
the potential by at most 1

B . This may also change the outside size of intervals. If the
element is moved towards the closest queried side, then the outside may increase, which does
not increase the potential. Otherwise, the outside may grow by one, for each interval the
element is moved past, which increases the potential by at most O

( 1
B log2 |∆i|

)
. In total,
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Query point

x cx

Figure 5 The query splits the gap in two, where some side contains x elements and the other
contains cx elements, for some c ≥ 1.

Interval before query:

Intervals after query:

Ii,j

Query point

ℓ/2 ℓ/4 ℓ/4 r/4 r/4 r/2

Left side, size ℓ Right side, size r

Figure 6 A query in interval Ii,j splits the interval into six new intervals.

IntervalsChange uses worst-case O(logB logB |∆i|) I/Os, if the element is moved towards
the closest queried side, and otherwise amortized O

( 1
B log2 |∆i| + logB logB |∆i|

)
I/Os.

A.3 Splitting the Intervals
When a query occurs in gap ∆i, the gap is split at the query element into two new gaps ∆′

i

and ∆′
i+1. Let the resulting gap sizes be x and cx for some c ≥ 1 (see Figure 5). We assume

here and throughout that the left resulting gap has size x; the other case is symmetric.
Upon a IntervalSplit operation, the interval Ii,j containing the query element must be

split, and the remaining intervals distributed into the two new gaps. First, IntervalsMerge
is applied on gap ∆i, to ensure structure on the intervals. Then interval Ii,j is split around
the query element into a left and right side of elements with respectively smaller and larger
elements. Let ℓ be the number of elements on the left side. Using deterministic selection, the
left side is partitioned into three intervals of sizes ℓ/2, ℓ/4 and ℓ/4, such that the sizes are
doubling from the query point and outwards. The right side is similarly split, resulting in six
new intervals covering the elements of Ii,j . See Figure 6 for an illustration of this split. From
these new intervals, along with the remaining intervals of gap ∆i, two new gaps ∆′

i and ∆′
i+1

are created, containing the intervals to the left and right side of the query point respectively.
To finally ensure invariant (#Int) on the two new gaps, we lastly apply IntervalsMerge
on them both, which concludes the steps of the IntervalSplit operation.

We next analyze the amortized I/O cost of IntervalSplit. The interval Ii,j can be
located using the B-tree in O(logB logB |∆i|) I/Os. Splitting the interval is done using a con-
stant number of scans and deterministic selections on the interval, which uses O

( 1
B |Ii,j |

)
I/Os

in total. When performing IntervalsMerge on ∆i, ∆′
i, and ∆′

i+1, then by Lemma 9, the
invariant on the number of intervals (#Int), and that splitting interval Ii,j creates O(1) new
intervals, it holds that these merges uses amortized O

( 1
B log2 |∆i|

)
I/Os in total. Note that
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these costs is independent on where Ii,j resides in the structure, and the sidesness of gap ∆i.
The change in potential however depends heavily on these properties. We shall therefore use
case analysis for the change in potential. These cases are on if the split interval is on the
left or right, and on the sidesness of the gap ∆i. We only analyze the difference in potential
under the splitting of interval Ii,j , as the IntervalsMerge operation already is amortized.

A.3.1 Gap ∆i is 2-sided.
The split must result in two new 2-sided gaps. Therefore, N01 is unchanged, and can be
disregarded for the potential difference. As the gap is 2-sided, o(Ii,j) is the smaller distance
to the two sides of the gap. It holds that Ii,j overlaps the query point, and therefore the
distance to the left side (in ∆i) is at most x, and the distance to the right side (in ∆i) is at
most cx. Therefore, o(Ii,j) ≤ x.

There are three types of intervals: the intervals resulting from splitting Ii,j , the intervals
to the left of Ii,j in ∆i, and the intervals to the right of Ii,j in ∆i. Let us first consider the
potential on the intervals resulting from splitting Ii,j . We denote this change in potential as
∆ΦI . The potential on Ii,j is Φi,j , which is removed. Then six new intervals are introduced.
Consider the intervals created on the left side of the query point, and let the total number of
elements in these three intervals be ℓ. The rightmost one of these intervals is next to a query
point in the new gap, and thus its outside is 0. The potential on this interval is therefore
1
B ℓ/4. The middle interval has the right interval as its outside, and as they are both of size
ℓ/4, there is no potential on this interval. The leftmost interval may have either side as its
outside; in the worst-case, it has a potential of 1

B ℓ/2. This holds symmetrically for the new
intervals on the right. As the size of the left and right in total is |Ii,j |, the total worst-case
potential on the new intervals is 3

4
1
B |Ii,j |. In total, the change in potential on the intervals

created from Ii,j is

∆ΦI ≤ 5 The number of intervals created vs removed

− 1
B

max {|Ii,j | − o(Ii,j), 0} Removing Ii,j

+ 3
4

1
B

|Ii,j | Introducing new intervals

To simplify this, we distinguish cases on the size of Ii,j , and compare it to the I/O
cost of splitting the interval. If |Ii,j | ≤ x, then ∆Φ ≤ 5 + 3

4
1
B x = O

( 1
B x

)
. Otherwise,

∆Φ ≤ 5 + 1
B x − 1

4
1
B |Ii,j |. The amortized cost of the split, including only the potential on

the intervals of Ii,j , is therefore O
( 1

B x
)

I/Os. The total amortized cost must also cover the
remaining intervals.

For the intervals to the left of Ii,j , let the change in potential be denoted as ∆ΦL. In
total there are at most x elements located on the left side. As there is no new intervals
introduced, the potential function on the left intervals is therefore bounded by the number
of elements, and thus ∆ΦL ≤ 1

B x. For the change in potential for the intervals on the right
of Ii,j , denoted ∆ΦR, we must further distinguish whether Ii,j is a left or right interval.

Case 1: Ii,j is a left interval. We partition the intervals on the right into three categories:
the intervals that were a left interval in ∆i and remain a left interval in ∆′

i+1 (LL), the
intervals that were right intervals in ∆i and become left intervals in ∆′

i+1 (RL), and the
intervals that were right intervals in ∆i and remain right intervals in ∆′

i+1 (RR). Note that
there cannot be any intervals that were left and became right, as the number of elements
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Ii,j LL RL RR

Query pointx cx

∆i

∆′
i ∆′

i+1

Figure 7 The categories of intervals upon splitting a 2-sided gap, with Ii,j being a left interval.

to the left decreases; if this was the side with the fewer elements before, it must remain so.
These categories are illustrated on Figure 7.

First note that the number of intervals and their sizes do not change from ∆i to ∆′
i+1.

The only change is in the size of the outsides. For the intervals in RR, their outside does not
change, and therefore their potential does not change.

Note that IntervalsMerge was performed before the split, and therefore rule (M) is
satisfied on the intervals in ∆i. Also note that splitting another interval does not alter the
outside values of other intervals. Therefore, for the intervals in LL, x elements are removed
from their outside in ∆′

i+1. We must then bound the number of intervals in LL, to bound
the change in the potential. As the outside of the leftmost interval in LL has an outside of
at least x in ∆i, and there are at most cx elements in LL, as they are all contained in ∆′

i+1,
then by Lemma 7, the number of intervals in LL is at most 2 log2

cx
x + 2 = O(log2 c). The

potential increase of LL is therefore bounded by O
( 1

B x log2 c
)
.

For the intervals in RL, as they were a right interval before in ∆i, but become a left
interval in ∆′

i+1 due to x elements being removed from the left, their outside can decrease
by at most x, when moved to ∆′

i+1. Consider all but the rightmost interval of RL. As these
are left intervals of ∆′

i+1 without the last left interval, it must hold that they are contained
entirely in the left half of the cx elements of ∆′

i+1. As they are right intervals in ∆i, then
their old outside is to the right in ∆i, and therefore the outside of the last considered interval
is in ∆i at least the right half of the cx elements. By Lemma 7, the number of intervals in
RL, including the rightmost interval, is bounded by 2 log2

cx/2
cx/2 + 2 + 1 = 3. The potential

increase of RL is therefore bounded by 3
B x.

In total, ∆ΦR = O
( 1

B x log2 c
)
.

Case 2: Ii,j is a right interval. As there are more elements to the left of Ii,j than to the
right in ∆i, there are at most x elements remaining to the right of Ii,j . As there are no new
intervals introduced, the potential function on the right intervals is therefore bounded by the
number of elements, and thus ∆ΦR ≤ 1

B x.

A.3.2 Gap ∆i is 0-sided.
As there have been no queries to the left or right of the gap, then there can only be a single
interval in ∆i, which is Ii,j . The bottom of Figure 6 therefore illustrates this case. Upon
splitting this interval, two 1-sided gaps are created. All elements are moved into these gaps
from ∆i, and therefore N01 is unchanged, and can be disregarded for ∆Φ. For both gaps,
the queried side is at the query point. Therefore, the outside of each interval in ∆′

i and ∆′
i+1
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Ii,j LL

Query pointx cx

∆i

∆′
i ∆′

i+1

Figure 8 The categories of intervals upon splitting a 1-sided gap, with left queried side.

Ii,j RL RR

Query pointx cx

∆i

∆′
i ∆′

i+1

Figure 9 The categories of intervals upon splitting a 1-sided gap, with right queried side.

is towards the middle. Following the analysis of ∆ΦI in the 2-sided case, it holds that the
new potential is 1

4
1
B |Ii,j |, as the outside of the outermost intervals is towards the middle,

and therefore ∆Φ = 5 − 3
4

1
B |Ii,j |.

Gap ∆i is 1-sided.

As before, we assume for the current query, that the left resulting new gap has size x. If in
∆i, the queried side was the left side, then gap ∆′

i becomes a 2-sided gap, and ∆′
i+1 remains

a 1-sided gap, with the queried side on the left. This case is illustrated on Figure 8. The
outside of Ii,j in ∆i remains bounded by x, and the analysis on the change in potential of
Ii,j remains the same as in the 2-sided gap analysis, which bounds the potential increase by
O

( 1
B x

)
. For the intervals on the left, the potential may be at most 1

B x, as in the 2-sided
case. However, N01 decreases by x, which bounds the increase in potential on the left to at
most 0. For the intervals on the right, it must hold that they were all left intervals in ∆i and
that they remain left intervals in ∆′

i+1. Following the argument for LL from the 2-sided gap
case above, the increase in potential is bounded by O

( 1
B x log2 c

)
.

The case when the queried side in ∆i is to the right is illustrated on Figure 9. In this
case, the outside of Ii,j is no longer bounded by x, but by cx. However, all elements on the
right leave the 1-sided gap ∆i, and enter the 2-sided gap ∆′

i+1; therefore N01 decreases by
cx, and so the potential decreases by 1

B cx. The intervals on the right must have been right
intervals in ∆i, and may be both left or right intervals in ∆′

i+1. Using the same analysis
as in the 2-sided case for the RL and RR intervals, it holds that the potential on the right
interval increase by at most 3

B x. The intervals to the left spans at most x elements, and the
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potential on these are at most 1
B x, as in the 2-sided case. In total

∆Φ ≤ 5 The number of intervals created vs removed

− 1
B

max {|Ii,j | − o(Ii,j), 0} Removing Ii,j

+ 3
4

1
B

|Ii,j | Introducing new intervals

− 1
B

cx Elements removed from 1-sided gap

+ 3
B

x + 1
B

x Potential change on the remaining intervals

Recall that o(Ii,j) ≤ cx. We then case analysis on the size of Ii,j . If |Ii,j | ≤ cx, then
∆Φ ≤ 5 − 1

4
1
B cx + 4

B x. As splitting the interval uses O
( 1

B |Ii,j |
)

I/Os, the amortized cost of
this case is O

( 1
B x

)
I/Os. Otherwise, if |Ii,j | > cx, then ∆Φ ≤ 5 − 1

4
1
B |Ii,j | + 4

B x, and the
amortized cost of this case is therefore also O

( 1
B x

)
I/Os.

A.3.3 Total I/O Cost
In total, the increase in potential on the intervals, and therefore also the amortized I/O cost
of the split, is bounded by O

( 1
B x log2 c

)
. The IntervalSplit operation, which includes

searching for the query point and the IntervalsMerge operations, therefore uses amortized
O

( 1
B log2 |∆i| + logB logB |∆i| + 1

B x log2 c
)

I/Os in total.
This concludes the proof of Theorem 6.

B Supporting Lemmas

▶ Lemma 10 (Bounding the Sum of Double Exponential Function). Let a, b ≥ 2. Then
n∑

i=0
abi

= Θ
(

abn
)

.

Proof. The proof proceeds by showing the lower and upper bound separately. For the lower
bound, as all terms of the sum is positive, then the sum is bounded below by the last term
of the sum. To show the upper bound, it is shown by induction in n that

n∑
i=0

abi

≤ 2abn

.

For n = 0 the inequality holds, as there is only one term which is equal to a.
n∑

i=0
abi

=
0∑

i=0
abi

= ab0
= a ≤ 2a = 2ab0

= 2abn

.

For the induction step, let n = n′ + 1, and let the inequality hold by induction for n′. Then

n∑
i=0

abi

=

 n′∑
i=0

abi

 + abn′+1
≤ 2abn′

+
(

abn′ )b

From here, the goal bound is twice that of the last term in the sum. It can therefore be
shown by proving that the second term bounds the first. For simplicity, let k = abn′

. Then it
holds that

2k ≤ kb ⇐⇒ logk(2k) ≤ b ⇐⇒ logk(2) + 1 ≤ b .
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As a, b ≥ 2 and n′ ≥ 0, then logk(2) ≤ 1, and the above inequality holds. It therefore holds
that

2abn′

+
(

abn′ )b

≤ 2
(

abn′ )b

= 2abn

,

Concluding the proof. ◀
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