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Abstract

We introduce the lazy search tree data structure. The lazy search tree is a comparison-
based data structure on the pointer machine that supports order-based operations such as rank,
select, membership, predecessor, successor, minimum, and maximum while providing dynamic
operations insert, delete, change-key, split, and merge. We analyze the performance of our data
structure based on a partition of current elements into a set of gaps {∆i} based on rank. A
query falls into a particular gap and splits the gap into two new gaps at a rank r associated with
the query operation. If we define B = ∑i ∣∆i∣ log2(n/∣∆i∣), our performance over a sequence of n
insertions and q distinct queries is O(B +min(n log logn,n log q)). We show B is a lower bound.

Effectively, we reduce the insertion time of binary search trees from Θ(logn) to
O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)), where ∆i is the gap in which the inserted element
falls. Over a sequence of n insertions and q queries, a time bound of O(n log q + q logn) holds;
better bounds are possible when queries are non-uniformly distributed. As an extreme case
of non-uniformity, if all queries are for the minimum element, the lazy search tree performs
as a priority queue with O(log logn) time insert and decrease-key operations. The same data
structure supports queries for any rank, interpolating between binary search trees and efficient
priority queues.

Lazy search trees can be implemented to operate mostly on arrays, requiring only O(min(q, n))
pointers, suggesting smaller memory footprint, better constant factors, and better cache perfor-
mance compared to many existing efficient priority queues or binary search trees. Via direct
reduction, our data structure also supports the efficient access theorems of the splay tree, provid-
ing a powerful data structure for non-uniform element access, both when the number of accesses
is small and large.
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1 Introduction

We consider data structures supporting order-based operations such as rank, select, membership,
predecessor, successor, minimum, and maximum while providing dynamic operations insert, delete,
change-key, split, and merge. The classic solution is the binary search tree (BST), perhaps the most
fundamental data structure in computer science. The original unbalanced structure is credited to
papers by Booth and Colin [BC60], Douglas [Dou59], Windley [Win60], and Hibbard [Hib62] in
the early 1960’s. Since then, a plethora of balanced binary search tree data structures have been
proposed [AVL62, BM72, Bay72, And89, GR93, ST85, SA96, NR72], notable examples including
AVL trees [AVL62], red-black trees [BM72], and splay trees [ST85]. A balanced binary search tree
is a staple data structure included in nearly all major programming language’s standard libraries
and nearly every undergraduate computer science curriculum. The data structure is the dynamic
equivalent of binary search in an array, allowing searches to be performed on a changing set of
keys at nearly the same cost. Extending to multiple dimensions, the binary search tree is the base
data structure on which range trees [Ben79], segment trees [Ben77], interval trees [Ede80, McC80],
kd-trees [Ben75], and priority search trees [McC85] are all built.

The theory community has long focused on developing binary search trees with efficient query
times. Although Ω(logn) is the worst-case time complexity of a query, on non-uniform access
sequences binary search trees can perform better than logarithmic time per query by, for example,
storing recently accessed elements closer to the root. The splay tree was devised as a particularly
powerful data structure for this purpose [ST85], achieving desirable access theorems such as static
optimality, working set, scanning theorem, static finger, and dynamic finger [ST85, CMSS00, Col00].
The most famous performance statement about the splay tree, however, is the unproven dynamic
optimality conjecture, which claims that the performance of the splay tree is within a constant factor
of any binary search tree on any sufficiently long access sequence, subsuming all other access theorems.
Proving this conjecture is widely considered one of the most important open problems in theoretical
computer science, receiving vast attention by data structure researchers [AM78, DHI+09, DHIP07,
IL16, BCI+20, ST83, Wil89, KS19, CGK+15, Iac01, BCDI07]. Despite ultimately remaining unsolved
for nearly four decades, this topic continues to receive extensive treatment [IL16, BCI+20, CGK+15,
LT19, BCDI07].

Although widely considered for the task in literature, the binary search tree is not the most
efficient data structure for the standard dictionary abstract data type: in practice, dictionaries are
almost always implemented by hash tables, which support O(1) time insert, delete, and look-up in
expectation [FKS84, PR04]. The advantage of binary search trees, over hash tables, is that they
support order-based operations. We call dictionaries of this type sorted dictionaries, to differentiate
them from the simpler data structures supporting only membership queries.

If we limit the order-based operations required of our sorted dictionary to queries for the minimum
or maximum element (or both), a number of alternative solutions to the binary search tree have
been developed, known as priority queues. The first of which was the binary heap, invented in 1964
for the heapsort algorithm [Wil64]. The binary heap achieves asymptotic complexity equivalent
to a binary search tree, though due to the storage of data in an array and fast average-case
complexity, it is typically the most efficient priority queue in practice. Later, the invention of
the binomial heap showed that the merging of two arbitrary priority queues could be supported
efficiently [Vui78, Bro78], thus proving that the smaller operation set of a priority queue allows
more efficient runtimes. The extent to which priority queues can outperform binary search trees
was fully realized with the invention of Fibonacci heaps, which showed insertion, merge, and an
additional decrease-key operation can all be supported in O(1) amortized time [FT87]. Since then,
a number of priority queues with running times close to or matching Fibonacci heaps have been
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developed [FSST86, Cha09, BLT12, Elm09, HST11, Bro96, HKTZ17]. We refer to such priority
queues with o(logn) insertion and decrease-key costs as efficient priority queues, to distinguish
them from their predecessors and typically simpler counterparts with O(logn) insertion and/or
decrease-key cost.

The history of efficient priority queues contrasts that of binary search trees. Efficient priority
queues have been developed for the case when the number of queries is significantly less than the
number of insertions or updates. On the other hand, research on binary search trees has focused
on long sequences of element access. Indeed, the dynamic optimality conjecture starts with the
assumption that n elements are already present in the binary search tree, placing any performance
improvements by considering insertion cost entirely outside of the model. However, the theory
of efficient priority queues shows that on some operation sequences, the efficiency gains due to
considering insertion cost can be as much as a Θ(logn) factor, showing an as-of-yet untapped
area of potential optimization for data structures supporting the operations of a binary search
tree. Further, aside from the theoretically-appealing possibility of the unification of the theories of
efficient priority queues and binary search trees, the practicality of improved insertion performance
is arguably greater than that of improved access times. For the purpose of maintaining keys in a
database, for example, an insert-efficient data structure can provide superior runtimes when the
number of insertions dominates the number of queries, a scenario that is certainly the case for
some applications [OCGO96, BF03] and is, perhaps, more likely in general. Yet in spite of these
observations, almost no research has been conducted that seriously explores this frontier [BHM09].

We attempt to bridge this gap. We seek a general theory of comparison-based sorted dictionaries
that encompasses efficient priority queues and binary search trees, providing the operational flexibility
of the latter with the efficiency of the former, when possible. We do not restrict ourselves to any
particular BST or heap model; while these models with their stronger lower bounds are theoretically
informative, for the algorithm designer these lower bounds in artificially constrained models are
merely indications of what not to try. If we believe in the long-term goal of improving algorithms and
data structures in practice – an objective we think will be shared by the theoretical computer science
community at large – we must also seek the comparison with lower bounds in a more permissive
model of computation.

We present lazy search trees. The lazy search tree is the first data structure to support the
general operations of a binary search tree while providing superior insertion time when permitted
by query distribution. We show that the theory of efficient priority queues can be generalized to
support queries for any rank, via a connection with the multiple selection problem. Instead of sorting
elements upon insertion, as does a binary search tree, the lazy search delays sorting to be completed
incrementally while queries are answered. A binary search tree and an efficient priority queue are
special cases of our data structure that result when queries are frequent and uniformly distributed
or only for the minimum or maximum element, respectively. While previous work has considered
binary search trees in a “lazy" setting (known as “deferred data structures”) [KMR88, CMS90] and
multiple selection in a dynamic setting [BGRSS15, BGSS16], no existing attempts fully distinguish
between insertion and query operations, severely limiting the generality of their approaches. The
model we consider gives all existing results as corollaries, unifying several research directions and
providing more efficient runtimes in many cases, all with the use of a single data structure.

Before we can precisely state our results, we must formalize the model in which they are attained.

1.1 Model and Results

We consider comparison-based data structures on the pointer machine. While we suggest the use of
arrays in the implementation of our data structure in practice, constant time array access is not needed
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for our results. Limiting operations to a pointer machine has been seen as an important property in
the study of efficient priority queues, particularly in the invention of strict Fibonacci heaps [BLT12]
compared to an earlier data structure with the same worst-case time complexities [Bro96].

We consider data structures supporting the following operations on a dynamic multiset S with
(current) size n = ∣S∣. We call such data structures sorted dictionaries:

• Construction(S) ∶= Construct a sorted dictionary on the set S.

• Insert(e) ∶= Add element e = (k, v) to S, using key k for comparisons; (this increments n).

• RankBasedQuery(r) ∶= Perform a rank-based query pertaining to rank r on S.

• Delete(ptr) ∶= Delete the element pointed to by ptr from S; (this decrements n).

• ChangeKey(ptr, k′) ∶= Change the key of the element pointed to by ptr to k′.

• Split(r) ∶= Split S at rank r, returning two sorted dictionaries T1 and T2 of r and n − r
elements, respectively, such that for all x ∈ T1, y ∈ T2, x ≤ y.

• Merge(T1,T2) ∶= Merge sorted dictionaries T1 and T2 and return the result, given that for all
x ∈ T1, y ∈ T2, x ≤ y.

We formalize what queries are possible within the stated operation RankBasedQuery(r) in
Section 4. For now, we informally define a rank-based query as any query computable in O(logn)
time on a (possibly augmented) binary search tree and in O(n) time on an unsorted array. Operations
rank, select, contains, successor, predecessor, minimum, and maximum fit our definition. To each
operation, we associate a rank r: for membership and rank queries, r is the rank of the queried
element (in the case of duplicate elements, an implementation can break ties arbitrarily), and for
select, successor, and predecessor queries, r is the rank of the element returned; minimum and
maximum queries are special cases of select with r = 1 and r = n, respectively.

The idea of lazy search trees is to maintain a partition of current elements in the data structure
into what we will call gaps. We maintain a set of m gaps {∆i}, 1 ≤ i ≤m, where a gap ∆i contains
a bag of elements. Gaps satisfy a total order, so that for any elements x ∈ ∆i and y ∈ ∆i+1, x ≤ y.
Internally, we will maintain structure within a gap, but the interface of the data structure and the
complexity of the operations is based on the distribution of elements into gaps, assuming nothing
about the order of elements within a gap. Intuitively, binary search trees fit into our framework
by restricting ∣∆i∣ = 1, so each element is in a gap of its own, and we will see that priority queues
correspond to a single gap ∆1 which contains all elements. Multiple selection corresponds to gaps
where each selected rank marks a separation between adjacent gaps.

To insert an element e = (k, v), where k is its key and v its value, we find a gap ∆i in which it
belongs without violating the total order of gaps (if x ≤ k for all x ∈ ∆i and k ≤ y for all y ∈ ∆i+1,
we may place e in either ∆i or ∆i+1; implementations can make either choice). Deletions remove
an element from a gap; if the gap is now empty we can remove the gap. When we perform a
query, we first narrow the search down to the gap ∆i in which the query rank r falls (formally,
∑
i−1
j=1 ∣∆j ∣ < r ≤ ∑

i
j=1 ∣∆j ∣). We then answer the query using the elements of ∆i and restructure the

gaps in the process. We split gap ∆i into two gaps ∆′
i and ∆′

i+1 such that the total order on gaps is
satisfied and the rank r element is either the largest in gap ∆′

i or the smallest in gap ∆′
i+1; specifically,

either ∣∆′
i∣ +∑

i−1
j=1 ∣∆j ∣ = r or ∣∆′

i∣ +∑
i−1
j=1 ∣∆j ∣ = r − 1. (Again, implementations can take either choice.

We will assume a maximum query to take the latter choice and all other queries the former. More
on the choice of r for a given query is discussed in Section 4. Our analysis will assume two new gaps
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replace a former gap as a result of each query. Duplicate queries or queries that fall in a gap of size
one follow similarly, in O(logn) time.) We allow duplicate insertions.

Our performance theorem is the following.

Theorem 1 (Lazy search tree runtimes). Let n be the total number of elements currently in
the data structure and let {∆i} be defined as above (thus ∑mi=1 ∣∆i∣ = n). Let q denote the total
number of queries. Lazy search trees support the operations of a sorted dictionary on a dynamic set
S in the following runtimes:

• Construction(S) in O(n) worst-case time, where ∣S∣ = n.

• Insert(e) in O(min(log(n/∣∆i∣)+ log log ∣∆i∣, log q)) worst-case time1, where e = (k, v) is such
that k ∈ ∆i.

• RankBasedQuery(r) in O(x log c + logn) amortized time, where the larger resulting gap from
the split is of size cx and the other gap is of size x.

• Delete(ptr) in O(logn) worst-case time.

• ChangeKey(ptr, k′) in O(min(log q, log log ∣∆i∣)) worst-case time, where the element pointed
to by ptr, e = (k, v), has k ∈ ∆i and k′ moves e closer to its closest query rank2 in ∆i; otherwise,
ChangeKey(ptr, k′) takes O(logn) worst-case time.

• Split(r) in time according to RankBasedQuery(r).

• Merge(T1,T2) in O(logn) worst-case time.

Define B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣). Then over a series of insertions and queries with no duplicate

queries, the total complexity is O(B +min(n log logn,n log q)).

We can also bound the number of pointers needed in the data structure.

Theorem 2 (Pointers). An array-based lazy search tree implementation requires O(min(q, n))
pointers.

By reducing multiple selection to the sorted dictionary problem, we can show the following lower
bound.

Theorem 3 (Lower bound). Suppose we process a sequence of operations resulting in gaps
{∆i}. Again define B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). Then this sequence of operations requires B −O(n)

comparisons and Ω(B + n) time in the worst case.

Theorem 3 indicates that lazy search trees are at most an additive O(min(n log logn,n log q))
term from optimality over a series of insertions and distinct queries. This gives a lower bound on
the per-operation complexity of RankBasedQuery(r) of Ω(x log c); the bound can be extended to

1 To simplify formulas, we distinguish between log2(x), the binary logarithm for any x > 0, and log(x), which we
define as max(log2(x),1).

2 The closest query rank of e is the closest boundary of ∆i that was created in response to a query. For gaps
∆i with 1 ≠ i ≠ m, this is the boundary of ∆i that is closer with respect to the rank of k. Gaps ∆1 and ∆m may
follow similarly to i ≠ 1,m if a minimum or maximum has been extracted. With a single gap ∆1, increase-key is
supported efficiently if maximums have been removed and decrease-key is supported efficiently if minimums have
been removed. If both have been removed, the gap functions as in the general case for i ≠ 1,m. Intuitively, this is
configured to support the behavior of decrease-key/increase-key without special casing when the data structure is
used as a min-heap/max-heap.
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Ω(x log c + logn) if we amortize the total work required of splitting gaps to each individual query
operation. A lower bound of Ω(min(log(n/∣∆i∣), logm)) can be established on insertion complexity
via information theory. We describe all lower bounds in Section 5.

We give specific examples of how lazy search trees can be used and how to analyze its complexity
according to Theorem 1 in the following subsection.

1.2 Example Scenarios

Below, we give examples of how the performance of Theorem 1 is realized in different operation
sequences. While tailor-made data structures for many of these applications are available, lazy
search trees provide a single data structure that seamlessly adapts to the actual usage pattern while
achieving optimal or near-optimal performance for all scenarios in a uniform way.

1. Few Queries: The bound B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣) satisfies B = O(n log q + q logn). In the

worst case, queries are uniformly distributed, and the lower bound B = Θ(n log q + q logn).
Over a sequence of insertions and queries without duplicate queries, our performance is optimal
O(n log q + q logn). If q = nε for constant ε > 0, lazy search trees improve upon binary search
trees by a factor 1/ε. If q = O(logc n) for some c, lazy search trees serve the operation sequence
in O(cn log logn) time and if q = O(1), lazy search trees serve the operation sequence in linear
time. Although it is not very difficult to modify a previous “deferred data structure" to answer
a sequence of n insertions and q queries in O(n log q + q logn) time (see Section 2.1), to the
best of our knowledge, such a result has not appeared in the literature.

2. Clustered Queries: Suppose the operation sequence consists of q/k “range queries”, each
requesting k consecutive keys, with interspersed insertions following a uniform distribution.
Here, B = O(n log(q/k) + q logn), where q is the total number of keys requested. If the
queried ranges are uniformly distributed, B = Θ(n log(q/k) + q logn), with better results
possible if the range queries are non-uniform. Our performance on this operation sequence
is O(B +min(n log logn,n log q)), tight with the lower bound if k = Θ(1) or q/k = Ω(logn).
Similarly to Scenario 1, we pay O(n log(q/k)) in total for the first query of each batch;
however, each successive query in a batch costs only O(logn) time as the smaller resulting
gap of the query contains only a single element. We will see in Section 5 that we must
indeed pay Ω(logn) amortized time per query in the worst case; again our advantage is to
reduce insertion costs. Note that if an element is inserted within the elements of a previously
queried batch, these insertions take O(logn) time. However, assuming a uniform distribution
of element insertion throughout, this occurs on only an O(q/n) fraction of insertions in
expectation, at total cost O(n ⋅ q/n ⋅ logn) = O(q logn). Other insertions only need an overall
O(n log(q/k) +min(n log logn,n log q)) time.

3. Selectable Priority Queue: If every query is for a minimum element, each query takes
O(logn) time and separates the minimum element into its own gap and all other elements
into another single gap. Removal of the minimum destroys the gap containing the minimum
element, leaving the data structure with a single gap ∆1. All inserted elements fall into
this single gap, implying insertions take O(log logn) time. Further, the ChangeKey(ptr, k′)
operation supports decrease-key in O(log logn) time, since all queries (and thus the closest
query) are for rank 1. Queries for other ranks are also supported, though if queried, these ranks
are introduced into the analysis, creating more gaps and potentially slowing future insertion
and decrease-key operations, though speeding up future selections. The cost of a selection is
O(x log c+ logn) amortized time, where x is the distance from the rank selected to the nearest
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gap boundary (which was created at the rank of a previous selection) and c = ∣∆i∣/x − 1, where
the selection falls in gap ∆i. If no selections have previously occurred, x is the smaller of the
rank or n minus the rank selected and c = n/x − 1.

Interestingly, finding the kth smallest element in a binary min-heap can be done in O(k)
time [Fre93], yet we claim our runtime optimal! The reason is that neither runtime dominates
in an amortized sense over the course of n insertions. Our lower bound indicates that Ω(B +n)
time must be taken over the course of multiple selections on n elements in the worst case. In
Frederickson’s algorithm, the speed is achievable because a binary heap is more structured
than an unprocessed set of n elements and only a single selection is performed; the ability
to perform further selection on the resulting pieces is not supported. On close examination,
lazy search trees can be made to answer the selection query alone without creating additional
gaps in O(x+ logn) amortized time or only O(x) time given a pointer to the gap in which the
query falls (such modification requires fulfilling Rules (B) and (C) on category A intervals in
Section 7.2).

4. Double-Ended Priority Queue: If every query is for the minimum or maximum element,
again each query takes O(logn) time and will separate either the minimum or maximum
element into its own gap and all other elements into another single gap. The new gap is
destroyed when the minimum or maximum is extracted. As there is only one gap ∆1 when
insertions occur, insertions take O(log logn) time. In this case, our data structure natively
supports an O(log logn) time decrease-key operation for keys of rank n/2 or less and an
O(log logn) time increase-key operation for keys of rank greater than n/2. Further flexibility
of the change-key operation is discussed in Section 7.4.

5. Online Dynamic Multiple Selection: Suppose the data structure is first constructed on n
elements. (A close analysis of insert in Section 7.1 shows that alternatively, we can construct the
data structure on an empty set and achieve O(1) time insertion before a query is performed.)
After construction, a set of ranks {ri} are selected, specified online and in any order. Lazy
search trees will support this selection in O(B) time, where B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣) is the

lower bound for the multiple selection problem [KMMS05]. We can further support additional
insertions, deletions and queries. Data structures for online dynamic multiple selection were
previously known [BGRSS15, BGSS16], but the way we handle dynamism is more efficient,
allowing for all the use cases mentioned here. We discuss this in Section 2.

6. Split By Rank: Lazy search trees can function as a data structure for repeated splitting by
rank, supporting construction on an initial set of n elements in O(n) time, insertion into a
piece of size n in O(log logn) time, and all splitting within a constant factor of the information-
theoretic lower bound. Here, the idea is that we would like to support the operations insert
and split at rank r, returning two pieces of a data structure of the same form. In a sense,
this is a generalization of priority queues, where instead of extracting the minimum, we may
extract the k smallest elements, retaining the ability to perform further extractions on either
of the two pieces returned. As in scenario 3, the cost of splitting is O(x log c + logn), where x
is the number of elements in the smaller resulting piece of the split, and we define c so that
the number of elements in the larger resulting piece of the split is cx. Again, O(x log c + logn)
is optimal. Note that we could also use an O(log logn) time change-key operation for this
application, though this time complexity only applies when elements are moved closer to the
nearest split rank. If repeatedly extracting the k smallest elements is desired, this corresponds
to an O(log logn) time decrease-key operation.
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7. Incremental Quicksort: A version of our data structure can perform splits internally via
selecting random pivots with expected time complexity matching the bounds given in Theorem 1.
(We initially describe a version using exact selection, which is conceptually simpler but less
practical.) The data structure can then be used to extract the q smallest elements in sorted
order, online in q, via an incremental quicksort. Here, B = Θ(q logn) and our overall time
complexity is O(n + q logn), which is optimal up to constant factors3. Previous algorithms
for incremental sorting are known [PN06, NP10, RP15, AA15]; however, our algorithm is
extremely flexible, progressively sorting any part of the array in optimal time O(B + n) while
also supporting insertion, deletion, and efficient change-key. The heap operations insert and
decrease-key are performed in O(log logn) time instead of O(logn), compared to existing
heaps based on incremental sorting [NP08, NP10]; see also [EEK12, Bro13]. Our data structure
also uses only O(min(q, n)) pointers, providing many of the same advantages of sorting-based
heaps. A more-complicated priority queue based on similar ideas to ours achieves Fibonacci
heap amortized complexity with only a single extra word of space [MP05].

We discuss the advantages and disadvantages of our model and data structure in the following
subsections.

1.3 Advantages

The advantages of lazy search trees are as follows:

1. Superior runtimes to binary search trees can be achieved when queries are infrequent or
non-uniformly distributed.

2. A larger operation set, with the notable exception of efficient general merging, is made possible
when used as a priority queue, supporting operations within an additive O(n log logn) term of
optimality, in our model.

3. Lazy search trees can be implemented to use only O(min(q, n)) pointers, operating mostly
on arrays. This suggests smaller memory footprint, better constant factors, and better cache
performance compared to many existing efficient priority queues or binary search trees. Our
data structure is not built on the heap-ordered tree blueprint followed by many existing efficient
priority queues [FT87, FSST86, Cha09, BLT12, Elm09, HST11, Bro96, HKTZ17]. Instead,
we develop a simple scheme based on unordered lists that may of independent interest. In
particular, we are hopeful our data structure or adaptations thereof may provide a theoretically-
efficient priority queue that gets around the practical inefficiencies associated with Fibonacci
heaps [FT87] and its derivatives.

4. While not a corollary of the model we consider, lazy search trees can be made to satisfy all
performance theorems with regards to access time satisfied by splay trees. In this way, lazy
search trees can be a powerful alternative to the splay tree. Locality of access can decrease
both access and insertion times. This is discussed in Section 11.

1.4 Disadvantages

The weaknesses of lazy search trees are as follows:
3Note that n + q logn = Θ(n + q log q). If the q logn term dominates, q = Ω(n/ logn) and so logn = Θ(log q).
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1. Our gap-based model requires inserted elements be placed in a gap immediately instead of
delaying all insertion work until deemed truly necessary by query operations. In particular, a
more powerful model would ensure that the number of comparisons performed on an inserted
element depends only on the queries executed after that element is inserted. There are operation
sequences where this can make a Θ(logn) factor difference in overall time complexity, but it is
not clear whether this property is important on operation sequences arising in applications.

2. We currently do not know whether the additive O(min(n log q, n log logn)) term in the com-
plexity described in Theorem 1 over a sequence of insertions and queries is necessary. Fibonacci
heaps and its variants show better performance is achievable in the priority queue setting. In
Section 9, we show the (essentially) O(log log ∣∆i∣) terms for insertion and change-key can be
improved to a small constant factor if the (new) rank of the element is drawn uniformly at
random from valid ranks in ∆i. As a priority queue, this corresponds with operation sequences
in which binary heaps [Wil64] provide constant time insertion.

3. The worst-case complexity of a single RankBasedQuery(r) can be O(n). Further, unlike
amortized search trees like the splay tree [ST85], the average case complexity is not necessarily
O(logn). By delaying sorting, our lower bound indicates that we may need to spend Θ(n)
time to answer a query that splits a gap of size ∣∆i∣ = Θ(n) into pieces of size x and cx for
c = Θ(1). Further, aside from an initial O(logn) time search, the rest of the time spent during
query is on writes, so that over the course of the operation sequence the number of writes is
Θ(B + n). In this sense, our algorithm functions more similarly to a lazy quicksort than a
red-black tree [BM72], which requires only Θ(n) writes regardless of operation sequence.

1.5 Paper Organization

We organize the remainder of the paper as follows. In the following section, Section 2, we discuss
related work. In Section 3, we give a high-level overview of the technical challenge. In Section 4,
we formalize the definition of the queries we support. In Section 5, we discuss lower bounds in our
gap-based model. In Section 6, we show how lazy search trees perform insertions, queries, deletions,
and change-key operations. We analyze the costs of these operations in Section 7. In Section 8,
we explain how binary search tree bulk-update operations split and merge can be performed on
lazy search trees. We show in Section 9 that the complexity of insertion and change-key can be
improved with a weak average-case assumption. In Section 10, we show that exact selection in our
query algorithm can be replaced with randomized pivoting while achieving the same expected time
complexity. In Section 11, we show how splay trees can be used with lazy search trees and show
that lazy search trees can be made to support efficient access theorems. We give concluding remarks,
open problems, and briefly discuss a proof-of-concept implementation in Section 12.

2 Related Work

Lazy search trees unify several distinct research fields. The two largest, as previously discussed,
are the design of efficient priority queues and balanced binary search trees. We achieved our result
by developing an efficient priority queue and lazy binary search tree simultaneously. There are no
directly comparable results to our work, but research in deferred data structures and online dynamic
multiple selection comes closest. We further discuss differences between dynamic optimality and our
work.
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2.1 Deferred Data Structures

To our knowledge, the idea of deferred data structures was first proposed by Karp, Motwani, and
Raghavan in 1988 [KMR88]. Similar ideas have existed in slightly different forms for different
problems [Smi89, BGLY81, BGJS11, Bar19, BOS17, AMT02, GL01, AR91]. The term “deferred
data structure” has been used more generally for delaying processing of data until queries make
it necessary, but we focus on works for one-dimensional data here, as it directly pertains to the
problem we consider.

Karp, Motwani and Raghavan [KMR88] study the problem of answering membership queries on
a static, unordered set of n elements in the comparison model. One solution is to construct a binary
search tree of the data in O(n logn) time and then answer each query in O(logn) time. This is not
optimal if the number of queries is small. Alternatively, we could answer each query in O(n) time,
but this is clearly not optimal if the number of queries is large. Karp et al. determine the lower
bound of Ω((n+ q) log(min(n, q))) = Ω(n log q + q logn) time to answer q queries on a static set of n
elements in the worst case and develop a data structure that achieves this complexity.

This work was extended in 1990 to a dynamic model. Ching, Melhorn, and Smid show that
q′ membership queries, insertions, and deletions on an initial set of n0 unordered elements can
be answered in O(q′ log(n0 + q

′) + (n0 + q
′) log q′) = O(q′ logn0 + n0 log q′) time [CMS90]. When

membership, insertion, and deletion are considered as the same type of operation, this bound is
optimal.

It is not very difficult (although not explicitly done in [CMS90]) to modify the result of Ching et
al. to obtain a data structure supporting n insertions and q′′ membership or deletion operations
in O(q′′ logn + n log q′′) time, the runtime we achieve for uniform queries. We will see in Section 3
that the technical difficulty of our result is to achieve the fine-grained complexity based on the
query-rank distribution. For more work in one-dimensional deferred data structures, see [Smi89,
BGLY81, BGJS11, Bar19, BOS17, GL01].

2.2 Online Dynamic Multiple Selection

The optimality of Karp et al. [KMR88] and Ching et al. [CMS90] is in a model where the ranks
requested of each query are not taken into account. In the multiple selection problem, solutions
have been developed that consider this information in the analysis. Suppose we wish to select the
elements of ranks r1 < r2 < ⋯ < rq amongst a set of n unordered elements. Define r0 = 0, rq+1 = n,
and ∆i as the set of elements of rank greater than ri−1 and at most ri. Then ∣∆i∣ = ri − ri−1 and
as in Theorem 1, B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). The information-theoretic lower bound for multiple

selection is B −O(n) comparisons [DM81]. Solutions have been developed that achieve O(B + n)
time complexity [DM81] or B + o(B) +O(n) comparison complexity [KMMS05].

The differences between the multiple selection problem and deferred data structuring for one-
dimensional data are minor. Typically, deferred data structures are designed for online queries,
whereas initial work in multiple selection considered the setting when all query ranks are given at
the same time as the unsorted data. Solutions to the multiple selection problem where the ranks
r1, . . . , rq are given online and in any order have also been studied, however [BGJ+13]. Barbay et
al. [BGRSS15, BGSS16] further extend this model to a dynamic setting: They consider online dynamic
multiple selection where every insertion is preceded by a search for the inserted element. Deletions
are ultimately performed in O(logn) time. Their data structure uses B + o(B) + O(n + q′ logn)
comparisons, where q′ is the number of search, insert, and delete operations. The crucial difference
between our solution and that of Barbay et al. [BGRSS15, BGSS16] is how we handle insertions.
Their analysis assumes every insertion is preceded by a search and therefore insertion must take
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Ω(logn) time. Thus, for their result to be meaningful (i.e., allow o(n logn) performance), the
algorithm must start with an initial set of n0 = n ± o(n) elements. While Barbay et al. focus on
online dynamic multiple selection algorithms with near-optimal comparison complexity, the focus
of lazy search trees is on generality. We achieve similar complexity as a data structure for online
multiple selection while also achieving near-optimal performance as a priority queue. We discuss the
technical challenges in achieving this generality in Section 3.

2.3 Dynamic Optimality

As mentioned, the dynamic optimality conjecture has received vast attention in the past four
decades [AM78, DHI+09, DHIP07, IL16, BCI+20, ST83, Wil89, KS19, CGK+15]. The original
statement conjectures that the performance of the splay tree is within a constant factor of the
performance of any binary search tree on any sufficiently long access sequence [ST85]. To formalize
this statement, in particular the notion of “any binary search tree”, the BST model of computation
has been introduced, forcing the data structure to take the form of a binary tree with access from
the root and tree rotations for updates. Dynamic optimality is enticing because it conjectures splay
trees [ST85] and a related “greedy BST” [DHI+09] to be within a constant factor of optimality on
any sufficiently long access sequence. This per-instance optimality [FLN03] is more powerful than
the sense of optimality used in less restricted models, where it is often unattainable. Any sorting
algorithm, for example, must take Ω(n logn) time in the worst case, but on any particular input
permutation, an algorithm designed to first check for that specific permutation can sort it in O(n)
time: simply apply the inverse permutation and check if the resulting order is monotonic.

The bounds we give in Section 5 are w. r. t. the worst case over operation sequences based on
distribution of gaps {∆i}, but hold for any comparison-based data structure. Hence, lazy search
trees achieve a weaker notion of optimality compared to dynamic optimality, but do so against a
vastly larger class of algorithms.

Since splay trees, greedy BSTs, and lazy search trees are all implementations of sorted dictionaries
and conjectured dynamically optimal, it is insightful to contrast the access theorems of dynamically-
optimal BSTs with the improvements given in Theorem 1. Superficially, the two notions are
orthogonal, with dynamic optimality allowing only queries, and our bound becoming interesting
mostly when insertions and queries are mixed. On the other hand, the form of performance
improvements achievable are indeed quite similar, as the following property shows.

Definition 4 (Static Optimality [Knu73, AM78, ST85]). Let S denote the set of elements in
the data structure and let qx denote the number of times element x is accessed in a sequence of m
accesses. Assume every element is accessed at least once. A data structure is said to achieve static
optimality if the cost to perform any such access sequence is

O(m +∑
x∈S

qx log(m/qx)).

Historically, research into optimal binary search trees started with this notion of static optimality,
and both splay trees and greedy BSTs have been shown to be statically optimal [ST85, Fox11].
Contrast the bound given in Definition 4 with the bound O(B + n), where again we define B =

∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣). If we replace qx and m in Definition 4 with ∣∆i∣ and n, respectively, they are

exactly the same: the savings for query costs arising from repeated accesses with nonuniform access
probabilities equal the savings for insertion costs when query ranks are nonuniform.
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3 Technical Overview

This research started with the goal of generalizing a data structure that supports n insertions and
q ≤ n rank-based queries in O(n log q) time. Via a reduction from multiple selection, Ω(n log q)
comparisons are necessary in the worst case. However, by applying the fine-grained analysis based
on rank distribution previously employed in the multiple selection literature [DM81], a new theory
which generalizes efficient priority queues and binary search trees is made possible.

As will be discussed in Section 5, to achieve optimality on sequences of insertion and distinct
queries with regards to the fine-grained multiple selection lower bound, insertion into gap ∆i should
take O(log(n/∣∆i∣)) time. A query which splits a gap ∆i into two gaps of sizes x and cx (c ≥ 1),
respectively, should take O(x log c+ logn) time. These complexities are the main goals for the design
of the data structure.

The high-level idea will be to maintain elements in a gap ∆i in an auxiliary data structure (the
interval data structure of Section 6). All such auxiliary data structures are then stored in a biased
search tree so that access to the ith gap ∆i is supported in O(log(n/∣∆i∣)) time. This matches
desired insertion complexity and is within the O(logn) term of query complexity. The main technical
difficulty is to support efficient insertion and repeated splitting of the auxiliary data structure.

Our high-level organization is similar to the selectable sloppy heap of Dumitrescu [Dum19]. The
difference is that while the selectable sloppy heap keeps fixed quantile groups in a balanced search
tree and utilizes essentially a linked-list as the auxiliary data structure, in our case the sets of
elements stored are dependent on previous query ranks, the search tree is biased, and we require a
more sophisticated auxiliary data structure.

Indeed, in the priority queue case, the biased search tree has a single element ∆1, and all
operations take place within the auxiliary data structure. Thus, we ideally would like to support
O(1) insertion and O(x log c) split into parts of size x and cx (c ≥ 1) in the auxiliary data structure.
If the number of elements in the auxiliary data structure is ∣∆i∣, we can imagine finding the minimum
or maximum as a split with x = 1 and c = ∣∆i∣ − 1, taking O(log ∣∆i∣) time. However, the ability to
split at any rank in optimal time complexity is not an operation typically considered for priority
queues. Most efficient priority queues store elements in heap-ordered trees, providing efficient access
to the minimum element but otherwise imposing intentionally little structure so that insertion,
decrease-key, and merging can all be performed efficiently.

Our solution is to group elements within the auxiliary data structure in the following way. We
separate elements into groups (“intervals”) of unsorted elements, but the elements between each
group satisfy a total order. Our groups are of exponentially increasing size as distance to the gap
boundary increases. Within a gap ∆i, we maintain O(log ∣∆i∣) such groups. Binary search then
allows insertion and key change in O(log log ∣∆i∣) time. While not O(1), the structure created by
separating elements in this way allows us to split the data structure in about O(x) time, where x is
the distance from the split point to the closest query rank. Unfortunately, several complications
remain.

Consider if we enforce the exponentially-increasing group sizes in the natural way in data structure
design. That is, we select constants c1 ≤ c2 such that as we get farther from the gap boundary,
the next group is at least a factor c1 > 1 larger than the previous but at most a factor c2. We can
maintain this invariant while supporting insertion and deletion, but splitting is problematic. After
splitting, we must continue to use both pieces as a data structure of the same form. However, in the
larger piece, the x elements removed require restructuring not only the new closest group to the gap
boundary but could require a cascading change on all groups. Since the elements of each group are
unstructured, this cascading change could take Ω(∣∆i∣) time.

Thus, we must use a more flexible notion of “exponentially increasing" that does not require
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significant restructuring after a split. This is complicated by guaranteeing fast insertion and fast
splits in the future. In particular, after a split, if the larger piece is again split close to where
the previous split occurred, we must support this operation quickly, despite avoiding the previous
cascading change that would guarantee this performance. Further, to provide fast insertion, we must
keep the number of groups at O(log ∣∆i∣), but after a split, the best way to guarantee fast future
splits is to create more groups.

We will show that it is possible to resolve all these issues and support desired operations efficiently
by applying amortized analysis with a careful choice of structure invariants. While we do not achieve
O(1) insertion and decrease-key cost, our data structure is competitive as an efficient priority queue
while having to solve the more complicated issues around efficient repeated arbitrary splitting.

4 Rank-Based Queries

We formalize operation RankBasedQuery(r) as follows. We first describe what we call an aggregate
function.

Definition 5 (Aggregate function). Let S be a multiset of comparable elements and let f(S) be
a function4 computed on those elements. Suppose S′ is such that S′ differs from S by the addition
or removal of element x. Let n = max(∣S∣, ∣S′∣). Then f is an aggregate function maintainable in
g(n) time if f(S′) can be computed from f(S) and x in g(n) time.

We focus on aggregates with g(n) = O(1), though in principle any g(n) can be supported with
appropriate changes to overall runtime complexity. We formalize rank-based queries as follows.

Definition 6 (Rank-based query). Call a query on a multiset of comparable elements S such
that ∣S∣ = n a rank-based query pertaining to rank r if the following two conditions are satisfied:

1. Consider if S is split into two sets X and Y such that for all x ∈X, y ∈ Y , x ≤ y. It must be
possible, based on an aggregate function f on X and Y , to reduce the query to a query that
can be answered considering only the elements of X or only the elements of Y . The query
rank r should be such that if the query is reduced to X, r ≤ ∣X ∣, and if the query is reduced to
Y , ∣X ∣ < r.

2. It must be possible to answer the query on S in O(n) time.

Critical to our analysis is the rank r associated with each RankBasedQuery(r) operation. We
associate with each operation a rank r which must be contained in each subproblem according to a
recursion based on Definition 6. Amongst a set of unsorted elements, r can be chosen arbitrarily, but
whichever rank is chosen will affect the restructuring and change the complexity of future operations.
Implementation decisions may change r to be r − 1 or r + 1; such one-off errors do not have measured
effect on complexity, as long as the extract minimum or extract maximum queries result in a single
gap ∆1.

The following well-studied operations fit our definition of rank-based query with ranks r as
described; the aggregate function is either the cardinality of the set or a range of keys for the set.

• Rank(k) ∶= Determine the rank of key k. Rank r is the rank of k in S.

• Select(r) ∶= Select the element of rank r in S. Rank r is the rank selected.
4We do not actually require a strict function f(S) = y for a set S, but rather can let the aggregate function depend

on the queries that dynamically change that set. In particular, we can (initially) map f(S) = minS or f(S) = maxS
and change this value to decrease/increase monotonically as S is updated, even if the minimum/maximum is removed.
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• Contains(k) ∶= Determine if an element (k, v) is represented in S (and if so, returns v).
Rank r is the rank of k in S.

• Successor(k) ∶= Determine the successor of key k in S. Rank r is the rank of the successor
of k.

• Predecessor(k) ∶= Determine the predecessor of key k in S. Rank r is the rank of the
predecessor of k.

• Minimum() ∶= Return a minimum element of S. Rank r is 1.

• Maximum() ∶= Return a maximum element of S. Rank r is n.

On edge cases where the successor or predecessor does not exist, we can define r to be n or 1,
respectively. Similarly, in the case (k, v) is represented in S on a Rank(k) or Contains(k) query,
we must pick a tie-breaking rule for rank r returned consistent with the implemented recursion
following Definition 6.

5 Lower and Upper Bounds

The balanced binary search tree is the most well-known solution to the sorted dictionary problem.
It achieves O(logn) time for a rank-based query and O(logn) time for all dynamic operations. Via
a reduction from sorting, for a sequence of n arbitrary operations, Ω(n logn) comparisons and thus
Ω(n logn) time is necessary in the worst case.

However, this time complexity can be improved by strengthening our model. The performance
theorems of the splay tree [ST85] show that although Ω(q logn) time is necessary on a sequence of
q arbitrary queries on n elements, many access sequences can be answered in o(q logn) time. Our
model treats sequences of element insertions similarly to the splay tree’s treatment of sequences of
element access. Although Ω(n logn) time is necessary on a sequence of n insert or query operations,
on many operation sequences, o(n logn) time complexity is possible, as the theory of efficient priority
queues demonstrates.

Our complexities are based on the distribution of elements into the set of gaps {∆i}. We can
derive a lower bound on a sequence of operations resulting in a set of gaps {∆i} via reducing multiple
selection to the sorted dictionary problem. We prove Theorem 3 below.

Proof of Theorem 3. We reduce multiple selection to the sorted dictionary problem. The input of
multiple selection is a set of n elements and ranks r1 < r2 < ⋯ < rq. We are required to report the
elements of the desired ranks. We reduce this to the sorted dictionary problem by inserting all n
elements in any order and then querying for the desired ranks r1, . . . , rq, again in any order.

Define r0 = 0, rq+1 = n, and ∆i as the set of elements of rank greater than ri−1 and at most
ri. (This definition coincides with the gaps resulting in our data structure when query rank r
falls in the new gap ∆′

i, described in Section 1.1.) Then ∣∆i∣ = ri − ri−1 and as in Theorem 1,
B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). Note that here, m = q + 1. The information-theoretic lower bound for

multiple selection is B −O(n) comparisons [DM81]. Since any data structure must spend Ω(n) time
to read the input, this also gives a lower bound of Ω(B + n) time. This implies the sorted dictionary
problem resulting in a set of gaps {∆i} must use at least B −O(n) comparisons and take Ω(B + n)
time, in the worst case.

Remark 7 (Multiple selection inputs). For the operation sequence from the proof of Theorem 3,
Theorem 1 states our performance as O(B +min(n log q, n log logn)). A closer examination of our
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data structure in Section 7.1 shows we actually achieve O(B + n) complexity on such sequences,
since insertions performed before any queries actually take O(1) time.

To achieve the performance stated in Theorem 3 on any operation sequence, we will first consider
how the bound Ω(B+n) changes with insertions and queries. This will dictate the allotted (amortized)
time we can spend per operation to achieve an optimal complexity over the entire operation sequence.

We give the following regarding insertion time; recall our convention from Footnote 1 (page 4)
that log(x) = max(log2(x),1) and log2 is the binary logarithm.

Lemma 8 (Influence of insert on lower bound). Suppose we insert an element into gap ∆i.
Then the bound Ω(B + n) increases by Ω(log(n/∣∆i∣)).

Proof. The insertion simultaneously increases ∣∆i∣ and n, but we will consider the effect of these
changes separately. We first keep n unchanged and consider howB changes in gap ∆i. Before insertion,
the contribution to B for gap ∆i is ∣∆i∣ log2(n/∣∆i∣); after the insertion it is (∣∆i∣+1) log2(n/(∣∆i∣+1)).
Therefore, the change is

(∣∆i∣ + 1) log2(n/(∣∆i∣ + 1)) − ∣∆i∣ log2(n/∣∆i∣). (1)

Consider the function f(x) = x log2(n/x), where we treat n as a constant. Then (1) is at least
the minimum value of the derivative f ′(x) with x ∈ [∣∆i∣, ∣∆i∣ + 1]. The derivative of f(x) is
f ′(x) = − log2(e) + log2(n/x). This gives that the change in B is at least − log2(e) + log2(n/∣∆i∣).

Now consider the effect of making n one larger. This will only increase B; by the bound Ω(B+n),
this change is (at least) Ω(1). We may therefore arrive at an increase of Ω(log2(n/∣∆i∣) + 1) =

Ω(log(n/∣∆i∣)).

Lemma 8 implies that optimal insertion complexity is Ω(log(n/∣∆i∣)). This bound is using the
fact the change in the set of gaps {∆i} resulting from an insertion corresponds to a multiple selection
problem with lower bound greater by Ω(log(n/∣∆i∣)). Since the multiple selection problem itself has
insertions preceding queries, this lower bound is in some sense artificial. However, we can alternatively
consider the problem of determining in which gap an inserted element falls. Here, information theory
dictates complexities of Ω(logm) if each gap is weighted equally or Ω(log(n/∣∆i∣)) if gap ∆i is
weighted with weight ∣∆i∣ [BST85]. The latter corresponds with the change in B noted above.

We now give the following regarding query time.

Lemma 9 (Influence of query on lower bound). Suppose a query splits a gap ∆i into two
gaps of size x and cx, respectively, with c ≥ 1. Then the bound Ω(B + n) increases by Ω(x log c).

Proof. The change in B is

x log2 (
n

x
) + cx log2 (

n

cx
) − (c + 1)x log2 (

n

(c + 1)x
) . (2)

By manipulating logarithms and canceling terms, we can rearrange (2) to x((c+1) log2(c+1)−c log2 c),
which is greater than x log2(c + 1). Thus the increase in Ω(B + n) is Ω(x log c).

Lemma 9 gives a lower bound of Ω(x log c) per rank-based query operation. Here, the bound is
not artificial in any sense: insertions precede queries in the reduction of multiple selection to the
sorted dictionary problem. We must spend time Ω(x log c) to answer the query as more queries may
follow and the total complexity must be Ω(B + n) in the worst case.

We can improve the query lower bound by considering the effect on B over a sequence of
gap-splitting operations. Consider the overall bound B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). It can be seen that
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B = Ω(m logn). Therefore, we can afford amortized O(logn) time whenever a new gap is created,
even if it is a split say with x = 1, c = 1.

Consider the lower bound given by the set of gaps {∆i} in Theorem 3 combined with the above
insight that queries must take Ω(logn) time. If query distribution is not considered, the worst case
is that ∣∆i∣ = Θ(n/q) for all i. Then B + q logn = Ω(n log q + q logn). This coincides with the lower
bound given in [KMR88].

It is worth noting that both Lemma 8 and Lemma 9 can also be proven by information-theoretic
arguments, without appealing to the algebraic bound B given in multiple selection. The number of
comparisons to identify the x largest elements in a set of (c + 1)x elements is log (

(c+1)x
x

), which is
Ω(x log c). A similar argument can be made that increasing n by 1 and category ∆i by 1 implies the
number of comparisons required of the underlying selection problem increases by Ω(log(n/∆i)).

6 Data Structure

We are now ready to discuss the details of lazy search trees. The high-level idea was discussed in
Section 3. The data structure as developed is relatively simple, though it requires a somewhat tricky
amortized time analysis given in the following section.

We split the data structure into two levels. At the top level, we build a data structure on the set
of gaps {∆i}. In the second level, actual elements are organized into a set of intervals within a gap.
Given a gap ∆i, intervals within ∆i are labeled Ii,1,Ii,2, . . . ,Ii,`i , with `i the number of intervals in
gap ∆i. The organization of elements of a gap into intervals is similar to the organization of elements
into a gap. Intervals partition a gap by rank, so that for elements x ∈ Ii,j , y ∈ Ii,j+1, x ≤ y. Elements
within an interval are unordered. By convention, we will consider both gaps and intervals to be
ordered from left to right in increasing rank. A graphical sketch of the high-level decomposition is
given in Figure 1.

I1,1 I1,2 I1,3 I1,4 I1,5 I1,6 I2,1 I2,2 I2,3 I2,4 I2,5 I2,6 I2,7 I2,8 I3,1 I3,2 I3,3 I3,4

∆1 ∆2 ∆3Gaps:

Intervals:

Figure 1: The two-level decomposition into gaps {∆i} and intervals {Ii,j}.

6.1 The Gap Data Structure

We will use the following data structure for the top level.

Lemma 10 (Gap Data Structure). There is a data structure for the set of gaps {∆i} that
supports the following operations in the given worst-case time complexities. Note that ∑mi=1 ∣∆i∣ = n.

1. Given an element e = (k, v), determine the index i such that k ∈ ∆i, in O(log(n/∣∆i∣)) time.

2. Given a ∆i, increase or decrease the size of ∆i by 1, adjusting n accordingly, in O(log(n/∣∆i∣))

time.

3. Remove ∆i from the set, in O(logn) time.

4. Add a new ∆i to the set, in O(logn) time.

It is also possible to store aggregate functions within the data structure (on subtrees), as required
by some queries that fit Definition 6.



Lazy Search Trees §6 Data Structure ⋅ 16

Proof. We can use, for example, a globally-biased 2, b tree [BST85]. We assign gap ∆i the weight
wi = ∣∆i∣; the sum of weights, W , is thus equal to n. Access to gap ∆i, operation 1, is handled in
O(log(n/∣∆i∣)) worst-case time [BST85, Thm. 1]. By [BST85, Thm. 11], operation 2 is handled via
weight change in O(log(n/∣∆i∣)) worst-case time. Again by [BST85, Thm. 11], operations 3 and 4
are handled in O(logn) worst-case time or better.

Remark 11 (Alternative implementations). A variety of biased search trees can be used as the
data structure of Lemma 10. In Section 11, we suggest splay trees for that purpose, which greatly
simplifies implementation at the cost of making the runtimes amortized. What is more, we show
that efficient access properties of the data structure of Lemma 10 can be inherited by the lazy search
tree, hence the (orthogonal) efficiency gains for insertions in lazy search trees and for structured
access sequences in splay trees can be had simultaneously.

The top level data structure allows us to access a gap in the desired time complexity for insertion.
However, we must also support efficient queries. In particular, we need to be able to split a gap
∆i into two gaps of size x and cx (c ≥ 1) in amortized time O(x log c). We must build additional
structure amongst the elements in a gap to support such an operation efficiently. At the cost
of this organization, in the worst case we pay an additional O(log log ∣∆i∣) time on insertion and
key-changing operations.

6.2 The Interval Data Structure

We now discuss the data structure for the intervals. Given a gap ∆i, intervals Ii,1,Ii,2, . . . ,Ii,`i are
contained within it and maintained in a data structure as follows. We maintain with each interval
the two splitting keys (kl, kr) that separate this interval from its predecessor and successor (using
−∞ and +∞ for the outermost ones), respectively; the interval only contains elements e = (k, v) with
kl ≤ k ≤ kr. We store intervals in sorted order in an array (see Remark 13), sorted with respect to
(kl, kr). We can then find an interval containing a given key k, i.e., with kl ≤ k ≤ kr, using binary
search in O(log `i) time.

Remark 12 (Handling duplicate keys). Recall that we allow repeated insertions, i.e., elements
with the same key k. As detailed in Section 6.5, intervals separated by a splitting key k can then
both contain elements with key k. To guide the binary search in these cases, we maintain for each
interval the number of elements with keys equal to the splitting keys kl and kr.

As we will see below, the number of intervals in one gap is always O(logn), and only changes
during a query, so we can afford to update this array on query in linear time.

Remark 13 (Avoiding arrays). Note that, to stay within the pointer-machine model, we can
choose to arrange the intervals within any gap in a balanced binary search tree, thus providing the
binary search without array accesses. This also allows the ability to add new intervals efficiently. In
practice, however, binary search on an array is likely to be preferred.

We conceptually split the intervals into two groups: intervals on the left side and intervals on
the right side. An interval is defined to be in one of the two groups by the following convention.

(A) Left and right intervals: An interval Ii,j in gap ∆i is on the left side if the closest query
rank (edge of gap ∆i if queries have occurred on both sides of ∆i) is to the left. Symmetrically,
an interval Ii,j is on the right side if the closest query rank is on the right. An interval with
an equal number of elements in ∆i on its left and right sides can be defined to be on the left
or right side arbitrarily.
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Recall the definition of closest query rank stated in Footnote 2. The closest query rank is the
closest boundary of gap ∆i that was created in response to a query.

We balance the sizes of the intervals within a gap according to the following rule:

(B) Merging intervals: Let Ii,j be an interval on the left side, not rightmost of left side intervals.
We merge Ii,j into adjacent interval to the right, Ii,j+1, if the number of elements left of Ii,j in
∆i equals or exceeds ∣Ii,j ∣ + ∣Ii,j+1∣. We do the same, reflected, for intervals on the right side.

The above rule was carefully chosen to satisfy several components of our analysis. As mentioned, we
must be able to answer a query for a rank r near the edges of ∆i efficiently. This implies we need
small intervals near the edges of gap ∆i, since the elements of each interval are unordered. However,
we must also ensure the number of intervals within a gap does not become too large, since we must
determine into which interval an inserted element falls at a time cost outside of the increase in B as
dictated in Lemma 8. We end up using the structure dictated by Rule (B) directly in our analysis of
query complexity, particularly in Section 7.2.2.

Note that Rule (B) causes the loss of information. Before a merge, intervals Ii,j and Ii,j+1 are
such that for any x ∈ Ii,j and y ∈ Ii,j+1, x ≤ y. After the merge, this information is lost. Surprisingly,
this does not seem to impact our analysis. Once we pay the initial O(log `i) cost to insert an element
via binary search, the merging of intervals happens seldom enough that no additional cost need be
incurred.

Rule (B) ensures the following.

Lemma 14 (Few intervals). Within a gap ∆i, there are at most 4 log(∣∆i∣) intervals.

Proof. First consider intervals on the left side. Let intervals Ii,j+1 and Ii,j+2 be on the left side. It
must be that the number of elements in intervals Ii,j+1 and Ii,j+2 together is equal to or greater than
the number of elements in the first j intervals, by Rule (B). Indeed, the worst-case sequence of interval
sizes is 1, 1, 1, 2, 2, 4, 4, 8, 8, 16, 16, . . ., obtained recursively as a1 = a2 = 1 and aj = a1+⋯+aj−2+1−aj−1.
It follows that with every two intervals, the total number of elements at least doubles; indeed we can
show that the first k intervals contain at least (

√
2)k+2 elements, therefore n elements are spread

over at most 2 log2 n − 2 intervals. To count intervals on the left resp. right side in ∆i, we observe
that the maximal number of intervals occurs if half of the elements are on either side, so there can
be at most 2 ⋅ (2 log2(∣∆i∣/2) − 2) ≤ 4 log(∣∆i∣) intervals in gap ∆i.

For ease of implementation, we will invoke Rule (B) only when a query occurs in gap ∆i. In the
following subsection, we will see that insertion does not increase the number of intervals in a gap,
therefore Lemma 14 will still hold at all times even though Rule (B) might temporarily be violated
after insertions. We can invoke Rule (B) in O(log ∣∆i∣) time during a query, since ∣∆i∣ ≤ n and we
can afford O(logn) time per query.

6.3 Representation of Intervals

It remains to describe how a single interval is represented internally. Our analysis will require that
merging two intervals can be done in O(1) time and further that deletion from an interval can be
performed in O(1) time (O(logn) time actually suffices for O(logn) time delete overall, but on many
operation sequences the faster interval deletion will yield better runtimes). Therefore, the container
in which elements reside in intervals should support such behavior. An ordinary linked list certainly
suffices; however, we can limit the number of pointers used in our data structure by representing
intervals as a linked list of arrays. Whenever an interval is constructed, it can be constructed as a
single (expandable) array. As intervals merge, we perform the operation in O(1) time by merging
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the two linked lists of arrays. Deletions can be performed lazily, shrinking the array when a constant
fraction of the entries have been deleted.

We analyze the number of pointers required of this method and the resulting improved bounds
on insertion and key change in Section 7.5. If we choose not to take advantage of this directly, we
can alternatively replace standard linked lists with linked list/array hybrids such as unrolled linked
lists [SRA94], which will likely outperform standard linked lists in practice.

6.4 Insertion

Insertion of an element e = (k, v) can be succinctly described as follows. We first determine the
gap ∆i such that k ∈ ∆i, according to the data structure of Lemma 10. We then binary search the
O(log ∣∆i∣) intervals (by maintaining “router” keys separating the intervals) within ∆i to find the
interval Ii,j such that k ∈ Ii,j . We increase the size of ∆i by one in the gap data structure.

Remark 15 (A single data structure). The attentive reader may wonder why we must first
perform a binary search for gap ∆i and then perform another binary search for interval Ii,j within
∆i. It seems likely these two binary searches can be compressed into one, and indeed, this intuition is
correct. If preferred, we can use the data structure of Lemma 10 directly on intervals within gaps, so
that weight ∣∆i∣ is evenly distributed over intervals Ii,1,Ii,2, . . . ,Ii,`i . (Alternatively, assigning weight
∣∆i∣/`i + ∣Ii,j ∣ to interval Ii,j can provide better runtimes in average case settings.) Unfortunately,
doing so means only an O(logn) time change-key operation can be supported (unless the data
structure is augmented further), and (small) weight changes must be performed on the full set of
intervals within gap ∆i on insertion and deletion. While such a data structure is possible, we find
the current presentation more elegant and simpler to implement.

Remark 16 (Lazy insert). One seemingly-obvious way to improve insertion complexity, improving
perhaps either of the first two disadvantages listed in Section 1.4, is to insert lazily. That is, instead
of performing a full insert of e = (k, v) through the gap data structure and then again through the
interval data structure, we keep a buffer at each node of the respective BSTs with all the elements
that require processing at a later time. While this can improve overall time complexity on some
simple operation sequences, it seems difficult to make this strategy efficient overall, when insertions,
deletions and queries can be mixed arbitrarily.

So while improving either of the two disadvantages listed in Section 1.4 (and indeed, an improve-
ment in one may imply an improvement in the other) would likely utilize aspects of lazy insertion,
we do not currently see a way to achieve this by maintaining buffers on nodes of the BSTs we use.

6.5 Query

To answer a query with associated rank r, we proceed as follows. We again determine the gap ∆i

such that r ∈ ∆i according to the process described in Definition 6 on the data structure of Lemma 10.
While we could now choose to rebalance the intervals of ∆i via Rule (B), our analysis will not require
application of Rule (B) until the end of the query procedure. We recurse into the interval Ii,j such
that r ∈ Ii,j , again using the process described in Definition 6 on the intervals of ∆i (this may use
aggregate information stored in the data structure for intervals).

We proceed to process Ii,j by answering the query on Ii,j and replacing interval Ii,j with smaller
intervals. First, we partition Ii,j into sets L and R, such that all elements in L are less than or equal
to all elements in R and there are r elements in the entire data structure which are either in L or in
an interval or gap left of L. This can typically be done in O(∣Ii,j ∣) time using the result of the query
itself; otherwise, linear-time selection suffices [BFP+73].
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We further partition L into two sets of equal size Ll and Lr, again using linear-time selection,
such that all elements in Ll are smaller than or equal to elements in Lr; if ∣L∣ is odd, we give the
extra element to Ll (unsurprisingly, this is not important). We then apply the same procedure one
more time to Lr, again splitting into equal-sized intervals. Recursing further is not necessary. We do
the same, reflected, for set R; after a total of 5 partitioning steps the interval splitting terminates.
An example is shown in Figure 2.

∣Ii,j ∣ = 19

interval Ii,j

query
rank
r = 6

3 2 1 3 3 7

⇒
L R

Figure 2: An interval Ii,j is split and replaced with a set of intervals.

Remark 17 (Variants of interval replacement). There is some flexibility in designing this
interval-replacement procedure; the critical property needed for our result is the following; (details of
which will become clear in Section 7.2): (1) It yields at most O(log ∣∆i∣) intervals in gap ∆i (typically
by application of Rule (B)), (2) it satisfies an invariant involving a credit system – Invariant (C) on
page 20 – and (3) splitting takes time O(∣Ii,j ∣). In Section 10, we show that exact median selection
(when splitting L, Lr, R, and Rl) can be replaced with pivoting on a randomly chosen element.
On a set of n elements, this requires only n comparisons instead of the at least 1.5n required by
median-finding in expectation [CM89], and it is substantially faster in practice.

After splitting the interval Ii,j as described above, we answer the query itself and update the gap
and interval data structures as follows. We create two new gaps ∆′

i and ∆′
i+1 out of the intervals of

gap ∆i including those created from sets L and R. Intervals that fall left of the query rank r are
placed in gap ∆′

i, and intervals that fall right of the query rank r are placed in gap ∆′
i+1. We update

the data structure of Lemma 10 with the addition of gaps ∆′
i and ∆′

i+1 and removal of gap ∆i.
Finally, we apply Rule (B) to gaps ∆′

i and ∆′
i+1.

6.6 Deletion

To delete an element e = (k, v) pointed to by a given pointer ptr, we first remove e from the interval
Ii,j such that k ∈ Ii,j . If e was the only element in Ii,j , we remove interval Ii,j from gap ∆i (we can
do so lazily, when Rule (B) is next run on gap ∆i). Then we decrement ∆i in the gap data structure
of Lemma 10; if that leaves an empty gap, we remove ∆i from the gap data structure.

6.7 Change-Key

The change-key operation can be performed as follows. Suppose we wish to change the key of element
e = (k, v), given by pointer ptr, to k′, and that e currently resides in interval Ii,j in gap ∆i. We
first check if k′ falls in ∆i or if e should be moved to a different gap. If the latter, we can do so as
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in deletion of e and re-insertion of (k′, v). If the former, we first remove e from Ii,j . If necessary,
we (lazily) delete Ii,j from ∆i if Ii,j now has no elements. We then binary search the O(log ∣∆i∣)

intervals of ∆i and place e into the new interval in which it belongs.
Note that although this operation can be performed to change the key of e to anything, Theorem 1

only guarantees runtimes faster than O(logn) when e moves closer to its nearest query rank within
gap ∆i. Efficient runtimes are indeed possible in a variety of circumstances; this is explored in more
detail in Section 7.4.

7 Analysis

We use an amortized analysis [Tar85]. We will use a potential function with a built-in credit system.
Recall that our desired insertion complexity is about O(log(n/∣∆i∣)) time. On a query that splits a
gap into two gaps of size x and cx, we attempt to do so in (amortized) O(logn + x log c) time. We
require several definitions before we may proceed.

We distinguish between 0-sided, 1-sided, and 2-sided gaps. A 2-sided gap is a gap ∆i such that
queries have been performed on either side of ∆i; thus, intervals in ∆i are split into intervals on
the left side and intervals on the right side. This is the typical case. A 1-sided gap ∆i is such that
queries have only been performed on one side of the gap; thus, intervals are all on the side towards
the query rank in ∆i. There can be at most two 1-sided gaps at any point in time. In the priority
queue case, there is a single 1-sided gap. The final category is a 0-sided gap; when the data structure
has performed no queries, all elements are represented in a single interval in a single 0-sided gap.

We now give the following functional definitions.

c(Ii,j) ∶= # of credits associated with interval Ii,j .
o(Ii,j) ∶= # of elements outside Ii,j in ∆i, i. e.,

# of elements in ∆i that are left (right) of Ii,j if Ii,j is on the left (right) side.
M ∶= total # of elements in 0-sided or 1-sided gaps.

As previously mentioned, intervals are defined to be on either the left or right side according to
Rule (A) (page 16). For an interval Ii,j in a 2-sided gap ∆i, o(Ii,j) hence is the minimum number
of elements either to the left (less than) or to the right (greater than) Ii,j in gap ∆i.

The rules for assigning credits are as follows: A newly created interval has no credits associated
with it. During a merge, the credits associated with both intervals involved in the merge may be
discarded; they are not needed. When an interval Ii,j is split upon a query, it is destroyed and new
intervals (with no credits) are created from it; by destroying Ii,j , the c(Ii,j) credits associated with
it are released.

We use the following potential function:

Φ = 10M + 4∑
1≤i≤m,
1≤j≤`i

c(Ii,j).

Credits accumulated when an operation is cheaper than its amortized bound increase Φ; in this way,
we use credits to pay for work that will need to be performed in the future. We do so by maintaining
the following invariant:

(C) Credit invariant: Let Ii,j be an interval. Then ∣Ii,j ∣ ≤ c(Ii,j) + o(Ii,j).

Remark 18 (Intuition behind Invariant (C)). The intuition behind Invariant (C) is that the
cost of splitting Ii,j is entirely paid for by the credits associated with Ii,j and by outside elements,
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i.e., either released potential or by the distance to previous queries causing a corresponding increase
in B. The intervals constructed from the elements of Ii,j are constructed in such a way that they
satisfy Invariant (C) at cost a constant fraction of the cost of splitting Ii,j .

Remark 19 (Alternative potential function). It is possible to remove the credits in our potential
function and Invariant (C) and instead use the potential function

Φ = 10M + 4∑
1≤i≤m,
1≤j≤`i

max(∣Ii,j ∣ − o(Ii,j),0).

We opt for the current method as we believe it is easier to work with.

Observe that before any elements are inserted, Φ = 0, and we have a single 0-sided gap with one
interval containing no elements. Thus Invariant (C) is vacuously true. We proceed with an amortized
analysis of the operations. For our amortization arguments, we assume the potential function to be
adjusted to the largest constant in the O(⋅) notation necessary for the complexity of our operations.
In the interest of legibility, we will drop this constant and compare outside of O(⋅) notation, as is
standard in amortized complexity analysis.

7.1 Insertion

Insertion of element e = (k, v) can be analyzed as follows. As stated in Lemma 10, we pay
O(log(n/∣∆i∣)) time to locate the gap ∆i that e belongs into. We adjust the size of ∆i and n
by one in the data structure of Lemma 10 in O(log(n/∣∆i∣)) time. By Lemma 14, there are
O(log ∣∆i∣) intervals in gap ∆i, and so we spend O(log log ∣∆i∣) time to do a binary search to find
the interval Ii,j that e belongs into. We increase the size of Ii,j by one and add one credit to Ii,j
to ensure Invariant (C). Thus the total amortized cost of insertion5 (up to constant factors) is
log(n/∣∆i∣) + log log ∣∆i∣ + 4 + 10 = O(log(n/∣∆i∣) + log log ∣∆i∣). Note that if the data structure for
Lemma 10 supports operations in worst-case time, insertion complexity is also worst-case. We show
in Section 7.5 that the bound O(log q) also holds.

We use the following lemma to show that Invariant (C) holds on insertion.

Lemma 20 (Insert maintains Invariant (C)). Updating side designations according to Rule (A)
after insertions preserves Invariant (C).

Proof. The insertion of additional elements may cause an interval Ii,j′ in the middle of ∆i to change
sides. This occurs exactly when the number of elements on one side exceeds the number of elements
on the other side. However, before this insertion occurred, Invariant (C) held with an equal number
of elements on both sides of Ii,j′ . Since we do not change the number of credits associated with Ii,j′ ,
in effect, o(Ii,j′) just changes which side it refers to, monotonically increasing through all insertions.
It follows Invariant (C) holds according to redesignations via Rule (A) after insertions.

Invariant (C) then holds on insertion due to Lemma 20 and since o(Ii,j′) only possibly increases
for any interval Ii,j′ , j′ ≠ j, with ∣Ii,j′ ∣ remaining the same; recall that an extra credit was added to
interval Ii,j to accommodate the increase in ∣Ii,j ∣ by one.

Note that from an implementation standpoint, no work need be done for intervals Ii,j′ on
insertion, even if they change sides. Any readjustment can be delayed until the following query in
gap ∆i.

5Note that although log log ∣∆i∣ can be o(log logn), there is no difference between O(∑q+1
i=1 ∣∆i∣(log(n/∣∆i∣) +

log logn)) and O(∑q+1
i=1 ∣∆i∣(log(n/∣∆i∣) + log log ∣∆i∣). When the log logn term in a gap dominates, ∣∆i∣ = Ω(n/ logn),

so log logn = Θ(log log ∣∆i∣).
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7.2 Query

We now proceed with the analysis of a query. We split the analysis into several sections. We first
assume the gap ∆i in which the query falls is a 2-sided gap. We show Invariant (C) implies we
can pay for the current query. We then show how to ensure Invariant (C) holds after the query.
Finally, we make the necessary adjustments for the analysis of queries in 0-sided and 1-sided gaps.
Recall that our complexity goal to split a gap into gaps of size x and cx (c ≥ 1) is O(logn + x log c)
amortized time.

7.2.1 Current Query

For the moment, we assume the gap in which the query rank r satisfies r ∈ ∆i is a 2-sided gap.
Further, assume the query rank r falls left of the median of gap ∆i, so that the resulting gaps are a
gap ∆′

i of size x and a gap ∆′
i+1 of size cx (c ≥ 1). A picture is given in Figure 3. The case of query

rank r falling right of the median of ∆i is symmetric.

Ii,j

query

gap ∆i

gap ∆′

i
∣∆′

i∣ = x
gap ∆′

i+1
∣∆′

i+1∣ = cx

intervals outside
of Ii,j in ∆i will
move to gap ∆′

i

intervals on
same side of Ii,j ,
will move to ∆′

i+1

last interval on
left side of ∆i

Figure 3: A query that splits Ii,j in gap ∆i.

It takes O(log(n/∣∆i∣)) = O(logn) time via the data structure of Lemma 10 to find the gap ∆i.
We then find the interval Ii,j such that r ∈ Ii,j . By Definition 6, answering the query on the set of
unsorted elements Ii,j can be done in O(∣Ii,j ∣) time. Splitting interval Ii,j as described in Section 6.5
can also be done in O(∣Ii,j ∣) time.

Updating the data structure of Lemma 10 with the addition of gaps ∆′
i and ∆′

i+1 and removal
of gap ∆i can be done in O(logn) time. Similarly, the total number of intervals created from the
current query is no more than 6, and no more than O(log ∣∆i∣) intervals existed in gap ∆i prior to
the query, again by Lemma 14. Thus, applying Rule (B) to gaps ∆′

i and ∆′
i+1 after the query takes

no more than O(log ∣∆i∣) = O(logn) time, because merging two intervals can be done in O(1) time.
We next show that merging of intervals according to Rule (B) will preserve Invariant (C).

Lemma 21 (Merge maintains (C)). Suppose interval Ii,j is merged into interval Ii,j′ (note
j′ = j + 1 if Ii,j is on the left side and j′ = j − 1 if Ii,j is on the right side), according to Rule (B).
Then the interval Ii,j′ after the merge satisfies Invariant (C).

Proof. Suppose interval Ii,j is merged into interval Ii,j′ according to Rule (B). Then o(Ii,j) ≥

∣Ii,j ∣ + ∣Ii,j′ ∣. This implies that after the merge, o(Ii,j′) ≥ ∣Ii,j′ ∣, since elements outside the merged
interval Ii,j′ are outside both of the original intervals. Thus Ii,j′ satisfies Invariant (C) without any
credits.

In total, we pay O(logn + ∣Ii,j ∣) actual time. As the O(logn) component is consistent with the
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O(logn) term in our desired query complexity, let us focus on the O(∣Ii,j ∣) term. We have the
following.

Lemma 22 (Amortized splitting cost). Consider a query which falls in interval Ii,j and splits
gap ∆i into gaps of size x and cx. Then ∣Ii,j ∣ − c(Ii,j) ≤ x.

Proof. By Invariant (C), ∣Ii,j ∣ − c(Ii,j) ≤ o(Ii,j). Now, since ∆i is a 2-sided gap, o(Ii,j) is the lesser
of the number of elements left or right of Ii,j . Since the query rank r satisfies r ∈ Ii,j , this implies
o(Ii,j) ≤ x (See Figure 3 for a visual depiction).

We can apply amortized analysis with Lemma 22 as follows. Interval Ii,j is destroyed and intervals
that are built from its contents have no credits. Thus, 4c(Ii,j) units of potential are released. By
applying Lemma 22, we can use c(Ii,j) units of this released potential to bound the cost ∣Ii,j ∣ with
x. This gives an amortized cost thus far of logn + x − 3c(Ii,j). We will use the extra 3c(Ii,j) units
of potential in the following section, ensuring Invariant (C) holds for future operations.

7.2.2 Ensuring Invariant (C)

We must ensure Invariant (C) holds on all intervals in gaps ∆′
i and ∆′

i+1. Again, we will suppose ∆′
i

is the smaller gap of the two, so that ∆′
i has x elements and ∆′

i+1 has cx elements; the other case is
symmetric.

Let us first consider gap ∆′
i. This gap contains intervals from ∆i outside of Ii,j as well as

intervals made from the elements of Ii,j . Observe (cf. Figure 3) that gap ∆′
i has in total x elements.

Therefore, we can trivially ensure Invariant (C) holds by adding enough credits to each interval of
∆′
i to make it so, at total amortized cost at most 4x. Let us do this after applying Rule (B) to ∆′

i,
so it is balanced and satisfies Invariant (C).

We now consider gap ∆′
i+1 after rebalancing according to Rule (B). The application of Rule (B)

after the query may cause some intervals to change sides towards the query rank r and subsequently
merge. Intervals created from Ii,j may also merge (this may be because Rule (B) was applied lazily
or even because the largest interval created from Ii,j may be on the opposite side of the rest of the
intervals created from interval Ii,j). In total, the intervals of ∆′

i+1 fall into four distinct categories.
Recall that when we apply Rule (B), we merge an interval Ii,j′ into interval Ii,j′′ , so we assume the
identity of the merged interval as Ii,j′′ , and interval Ii,j′ ceases to exist.

We call the four categories A, B, C, and D, and show how to ensure Invariant (C) on each of
them. Category A are intervals that are created from Ii,j that fall on the side of the query rank r so
as to become ∆′

i+1 intervals after the query. Category B are intervals on the same side as Ii,j before
the query which were located inward from Ii,j in ∆i. Category C are intervals that were on the
opposite side of interval Ii,j before the query, but now switch sides due to the removal of the gap ∆′

i.
Finally, category D are intervals that lie on the opposite side of interval Ii,j both before and after
the query. A picture is given in Figure 4.

We proceed with ensuring Invariant (C) on each category.

• Category D: Category D intervals are easiest. These intervals are not affected by the query
and thus still satisfy Invariant (C) with no additional cost.

• Category A: Now consider category A intervals. Three such intervals, I ′i+1,1, I
′
i+1,2, and

I ′i+1,3, are created in the query algorithm stated in Section 6.5. The leftmost and middlemost
intervals, I ′i+1,1 and I ′i+1,2, have size 1

4 ∣R∣± 1, and the rightmost interval I ′i+1,3 has size 1
2 ∣R∣± 1

(the ±1 addresses the case that ∣R∣ is not divisible by 4).
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old Ii,j
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i+1
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i+1
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Figure 4: Gap ∆′

i+1 after query within interval Ii,j of ∆i. The picture assumes Ii,j was a left-side
interval.

Up to one element, I ′i+1,2 has at least as many elements outside of it as within it. Thus after
giving it one credit, I ′i+1,2 satisfies Invariant (C). Similarly, I ′i+1,3 will remain on the same side
in most cases, and thus will also have enough elements outside it from the other two intervals
(potentially after giving it one credit, too). But we always have to assign credits to I ′i+1,1.
Moreover, if interval Ii,j was very large, then I ′i+1,3 may actually switch sides in the new gap
∆′
i+1.

In the worst case, we will require credits to satisfy Invariant (C) on both I ′i+1,1 and I ′i+1,3.
As their sizes total 3

4 ∣R∣ +O(1), at 4 units of potential per credit the amortized cost to do
so is no more than 3∣Ii,j ∣ + O(1). We can use the extra 3c(Ii,j) units of potential saved
from Section 7.2.1 to pay for this operation. By applying Lemma 22 again, we can bound
3∣Ii,j ∣ − 3c(Ii,j) with 3x, bringing the amortized cost of satisfying Invariant (C) on category A
intervals to O(x).

• Categories B and C: We’ll handle category B and C intervals together. First observe that
since x elements were removed with the query, we can bound the number of credits necessary
to satisfy Invariant (C) on a single interval in category B or C with either x or the size of
that interval. For category C intervals, this follows because they had more elements on their
left side prior to the query, thus upon switching sides after the query, x credits will suffice to
satisfy Invariant (C), similarly to the proof of Lemma 20. In the new gap ∆′

i+1, let j
′ be the

smallest index such that ∣Ii+1,j′ ∣ ≥ x. We will handle category B and C intervals left of Ii+1,j′

and right of Ii+1,j′ differently.

Let us first consider category B and C intervals left of interval Ii+1,j′ . All such intervals
have size less than x. If there are less than two such intervals, we may apply x credits to
each to ensure Invariant (C) at total cost O(x). Otherwise, consider intervals Ii+1,j′−2 and
Ii+1,j′−1. Due to application of Rule (B) after the query, intervals Ii+1,j′−2 and Ii+1,j′−1 make
up more than half of the total number of elements left of interval Ii+1,j′ . Since ∣Ii+1,j′−2∣ < x
and ∣Ii+1,j′−1∣ < x, it follows there are no more than 4x elements located in intervals left of
interval Ii+1,j′ in gap ∆′

i+1. For each such interval, we add at most the size of the interval in
credits so that Invariant (C) holds on all intervals left of Ii+1,j′ in gap ∆′

i+1. The total cost
is O(x).

Now consider intervals right of Ii+1,j′ . If there are less than two such intervals, we may apply x
credits to each to ensure Invariant (C) at total cost O(x). Otherwise, consider intervals Ii+1,j′+1

and Ii+1,j′+2. By Rule (B) after the query, ∣Ii+1,j′+1∣ + ∣Ii+1,j′+2∣ > x, since interval Ii+1,j′ is
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outside intervals Ii+1,j′+1 and Ii+1,j′+2 and ∣Ii+1,j′ ∣ ≥ x by choice of j′. Similarly, if such intervals
are category B or C intervals, then ∣Ii+1,j′+3∣ + ∣Ii+1,j′+4∣ > 2x and ∣Ii+1,j′+5∣ + ∣Ii+1,j′+6∣ > 4x.
In general, ∣Ii+1,j′+2k−1∣+ ∣Ii+1,j′+2k∣ > 2k−1x for any k where intervals Ii+1,j′+2k−1 and Ii+1,j′+2k

are category B or C intervals. Since there are cx total elements in gap ∆′
i+1, it follows the

number of category B and C intervals right of Ii+1,j′ is O(log c). We may then apply x credits
to all such intervals and interval Ii+1,j′ for a total cost of O(x log c).

Altogether, we can ensure Invariant (C) for future iterations at total O(x log c) amortized cost.

7.2.3 0-Sided and 1-Sided Gaps

We proceed with a generalization of the previous two sections for when the gap ∆i in which the
query falls is a 0-sided or 1-sided gap. If gap ∆i is 0-sided, we spend O(n) time to answer the query,
according to Definition 6 on a set of n unsorted elements. Since Invariant (C) is satisfied prior to
the query, 4n credits are released. Quantity M does not change. Thus, 4n units of potential are
released, giving amortized time n − 4n = −3n. All intervals in the data structure resulting from the
query are category A intervals. The analysis of the preceding section for category A intervals applies.
We can pay O(x) to satisfy Invariant (C) on the smaller gap, and the remaining 3n units of released
potential are enough to guarantee Invariant (C) holds on all intervals in the larger gap.

Now suppose ∆i is 1-sided. If the query rank r is closer to the side of ∆i on which queries have
been performed, then the same analysis of the preceding sections suffices. Note that there will be
neither category C nor category D intervals. The creation of 2-sided gap ∆′

i out of elements of
1-sided gap ∆i will cause 10x additional units of potential to be released due to the decrease in M ;
these units are not used in this case.

We are left with the case ∆i is 1-sided and the query rank r is closer to the side of ∆i on which
queries have not been performed; suppose without loss of generality that previously only the right
endpoint of ∆i has been queried and r is closer to the left endpoint. In this case, the creation of
2-sided gap ∆′

i+1 out of elements of 1-sided gap ∆i will cause 10cx units of potential to be released
due to the decrease in M . Since c ≥ 1, this is at least 5∣∆i∣ units of potential. We use them as follows.
Answering the query takes no more than O(∣∆i∣) time, and ensuring intervals satisfy Invariant (C)
in new gaps ∆′

i and ∆′
i+1 after the query similarly takes no more than ∣∆i∣ credits, which costs 4∣∆i∣

units of potential. Thus, in total this takes no more than ∣∆i∣ + 4∣∆i∣ − 5∣∆i∣ = O(1) amortized time.

Putting the preceding three sections together, we may answer a query in O(logn+x log c) time while
ensuring Invariant (C) for future operations.

7.3 Deletion

The analysis of deletion of e = (k, v) pointed to by ptr is as follows. The element e can be removed
from the interval in which it resides in O(1) time. Removing said interval lazily, if applicable, takes
O(1) time. If the gap in which e resides also needs removal, Lemma 10 says doing so will take
O(logn) time.

In any case, when element e ∈ ∆i is deleted, we must ensure Invariant (C) on the remaining
intervals of ∆i. If e was outside of an interval Ii,j , o(Ii,j) decreases by one. Thus, for any such
intervals, we pay one credit to ensure Invariant (C) remains satisfied. Thus in accordance with
Lemma 14, this takes O(log ∣∆i∣) total credits.

The total amortized cost is thus no more than O(logn+ log ∣∆i∣) = O(logn). If the data structure
of Lemma 10 supports operations in worst-case time, this runtime is also worst-case.
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7.4 Change-Key

We analyze the change-key operation as follows. Suppose ptr points to element e = (k, v) and we
change its key as described in Section 6.7 to k′. If k′ falls outside gap ∆i, O(logn) complexity follows
from deletion and re-insertion of (k′, v). Otherwise, the binary search in ∆i takes O(log log ∣∆i∣)

time, again by Lemma 14. To ensure Invariant (C) on the intervals of ∆i, as is the case for deletion,
we must pay one credit per interval e is no longer outside of. Thus, the key-change operation takes
at most O(log ∣∆i∣) time; however, if we change the key of e towards the nearest query rank, we can
show Invariant (C) is satisfied without spending any credits.

At any point in time, all intervals in ∆i are classified as being on the left side or the right side
according to the closest query rank, in accordance to Rule (A). Any element of a left-side interval
can have its key decreased, while only increasing or keeping constant the number of elements outside
of any other left-side interval. The same is true for key increases of elements in right side intervals.

Now consider if e ∈ Ii,j and Ii,j is the rightmost interval on the left side. Then we can also
increase the key of e while keeping the same or increasing the number of elements outside of any
interval in ∆i. The same is true of decreasing the key of an element in the leftmost interval on
the right side. Since the median of ∆i falls in either the leftmost interval of the right side or the
rightmost interval of the left side, it follows that we can ensure Invariant (C) as long as the element
whose key changes moves closer to its nearest query rank. Note that this analysis holds even as
intervals change side designations due to insertions; for a refresher of this analysis see the proof of
Lemma 20. This is despite delaying the application of Rule (B) until the following query in gap ∆i.

This proves our statement in Theorem 1 about change-key. The dichotomy displayed therein
between cheap and expensive key changes can be refined as follows. Suppose c ≥ 2 is such that e is
located between (gap-local) ranks ∣∆i∣/c and ∣∆i∣− ∣∆i∣/c in ∆i; then we can change its key arbitrarily
in O(log log ∆i + log c) time. This is because of the geometric nature of interval sizes. Intervals are
highly concentrated close to the edges of gap ∆i in order to support queries that increase B very
little, efficiently. Thus, we can support arbitrary key changes in O(log log ∣∆i∣) time for the vast
majority of the elements of gap ∆i, since ensuring Invariant (C) will only require a constant number
of credits, and the performance smoothly degrades as the changed elements get closer to previous
query ranks.

A second refinement is that we can change e arbitrarily without paying any credits if an insertion
closer to the endpoint of gap ∆i has happened before said key-change, but after the query that
created ∆i: such insertion increases the number of elements outside of all intervals that are potentially
affected by moving e closer to the middle of ∆i, thus no credits have to be supplied. A similar
argument shows that the time complexity of deletion is only O(1) if an element was previously
inserted closer to the gap endpoint than the deleted element. We point out again that, from the
perspective of the data structure, these savings are realized automatically and the data structure will
always run as efficiently as possible; the credits are only an aspect of the analysis, not our algorithms.

In the following section, we show that a bound on the number of created intervals can bound the
number of pointers required of the data structure and the insertion and change-key complexities
when the number of queries is small.

7.5 Pointer Bound and Improved Insertion and Change-Key

The preceding sections show insertion into gap ∆i in O(log(n/∣∆i∣)+ log log ∣∆i∣) time and a change-
key time complexity of O(log log ∣∆i∣). A bound of O(log q) can also be made, which may be more
efficient when q is small. We also prove the bound stated in Theorem 2 on the total number of
pointers required of the data structure. We address the latter first.
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Proof of Theorem 2. Each query (including Split(r) queries) creates at most 6 intervals, and no
other operations create intervals. The number of pointers required of all interval data structures
is linear in the number of total intervals created, bounded to at most n. This is because elements
within an interval are contiguous (in the sense an expandable array is contiguous) unless the interval
is a result of merged intervals, where we assume that intervals are implemented as linked lists of
arrays. Each merged interval must have been created at some point in time, thus the bound holds.
The number of pointers required in the data structure of Lemma 10 is linear in the number of gaps
(or intervals, if the data structure operates directly over intervals), taking no more than O(min(q, n))
pointers, as the number of intervals is O(min(q, n)).

The above proof shows that the number of intervals and gaps in the entire data structure can
be bounded by q. This implies the binary searches during insertion (both in the data structure of
Lemma 10 and in Section 6.4) and change-key operations take no more than O(log q) time. This
gives a refined insertion time bound of O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)) and a change-key
time bound of O(min(log q, log log ∣∆i∣)). To guarantee an O(log q) time bound in the gap data
structure, we can maintain all gaps additionally in a standard balanced BST, with pointers between
corresponding nodes in both data structures. A query can alternatively advance from the root
in both structures, succeeding as soon as one search terminates. Updates must be done on both
structures, but the claimed O(logn) time bounds (for queries, delete, split, and merge) permit this
behavior.

8 Bulk Update Operations

Lazy search trees can support binary search tree bulk-update operations. We can split a lazy search
tree at a rank r into two lazy search trees T1 and T2 of r and n − r elements, respectively, such that
for all x ∈ T1, y ∈ T2, x ≤ y. We can also support a merge of two lazy search trees T1 and T2 given
that for all x ∈ T1, y ∈ T2, x ≤ y.

We state this formally in Lemma 23.

Lemma 23. Operation Split(r) can be performed on a lazy search tree in time the same as
RankBasedQuery(r). Operation Merge(T1,T2) can be performed on lazy search trees in O(logn)
worst-case time.

Proof. To perform operation Split(r), we first query for rank r in the lazy search tree. We then
split the data structure of Lemma 10 at the separation in gaps induced by the query for rank r.
Two lazy search trees result, with their own future per-operation costs according to the number of
elements and gaps that fall into each tree. Using a globally-biased 2, b tree [BST85] with weights as
in the proof of Lemma 10, the split takes O(logn) worst-case time (Theorem 10 of [BST85]). The
overall time complexity is dominated by the query for rank r in the original tree, since queries take
at least Ω(logn) time.

To perform operation Merge(T1,T2), we perform a merge on the data structures of Lemma 10
associated with each lazy search tree. Future per-operation costs are adjusted according to the
union of all gaps and totaling of elements in the two lazy search trees that are combined. Using a
globally-biased 2, b tree [BST85] with weights as in the proof of Lemma 10, the merge takes O(logn)
worst-case time or better (Theorem 8 of [BST85]).

Lemma 23 completes the analysis for the final operations given in Theorem 1.
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9 Average Case Insertion and Change-Key

Our time bounds from Theorem 1 are an additive O(log logn) away from the optimal time of
insertion and change-key; it turns out that in certain average-case scenarios, we can indeed reduce
this time to an optimal expected amortized time. The essential step will be to refine the binary
search within a gap to an exponential search.

9.1 Insert

Recall that we store intervals in a sorted array. We modify the insertion algorithm of the interval data
structure in Section 6.4 so that we instead perform a double binary search (also called exponential
search [BY76]), outward from the last interval on the left side and first interval on the right side.
This is enough to prove the following result.

Theorem 24 (Average-case insert). Suppose the intervals within a gap are balanced using
Rule (B) and further suppose insertions follow a distribution such that the gap in which an inserted
element falls can be chosen adversarially, but amongst the elements of that gap, its rank is chosen
uniformly at random. Then insertion into gap ∆i takes expected time O(log(n/∣∆i∣)).

Proof. First note that the double binary search during insertion finds an interval that is k intervals
from the middlemost intervals in time O(log k); apart from constant factors, this is never worse than
the O(log `i) of a binary search.

The assumption on insertion ranks implies that the probability to insert into interval Ii,j (out of
the possible `i intervals in gap ∆i) is ∣Ii,j ∣/∣∆i∣ ±O(1/∣∆i∣), i.e., proportional to its size. Recall that
in a gap ∆i satisfying Lemma 14, interval sizes grow at least like (

√
2)k; that implies the largest

(middlemost) intervals contain a constant fraction of the elements in ∆i; for these, insertion takes
O(1) time. The same applies recursively: With every outward step taken, the insertion procedure
takes O(1) more time, while the number of elements that fall in these intervals decreases by a
constant factor. The expected insertion time in the interval data structure is proportional to

∞
∑
k=1

log k

(
√

2)k
≤

∞
∑
k=1

k

(
√

2)k
= 4 + 3

√
2,

i.e., constant overall. Adding the O(log(n/∣∆i∣)) time to find the gap yields the claim.

Observe that walking from the largest intervals outward, instead of performing an exponential
search [BY76], is sufficient for the above analysis. However, the exponential search also satisfies the
worst case O(log logn) bound (more precisely O(min(log log ∣∆i∣, log q))) described in Sections 6.4
and 7.1.

Remark 25 (Fast insertion without arrays). We can achieve the same effect if intervals are
stored in another biased search tree so that interval Ii,j receives weight ∣∆i∣/`i + ∣Ii,j ∣.

Theorem 24 assumes that intervals are balanced according to Rule (B). In Section 6, we
described balancing according to Rule (B) lazily. Keeping (B) balanced while insertions or change-
key operations occur, in the required time complexity, is nontrivial. We show it can be done in O(1)
amortized time below.

Lemma 26 (Strict merging). Given a gap ∆i, we can keep intervals in ∆i balanced according to
within a constant factor of the guarantee of Rule (B) in O(1) amortized time per insertion into ∆i.
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Proof. We utilize the exponentially-increasing interval sizes due to Lemma 14. We check the
outermost intervals about every operation and exponentially decrease checking frequency as we move
inwards. The number of intervals checked over k operations is O(k). The guarantee of Rule (B)
is changed so that the number of elements left of Ii,j in ∆i is no more than a constant times
∣Ii,j ∣ + ∣Ii,j+1∣ (reflected for right side intervals), to which previous analysis holds.

9.2 Change-Key

If we apply Lemma 26, we can also support improved average-case change-key operations in the
following sense.

Theorem 27 (Average-case change-key). If a ChangeKey(ptr, k′) operation is performed such
that the element pointed to by ptr, e = (k, v), moves closer to its closest query rank within its gap
and the rank of k′ is selected uniformly at random from valid ranks, it can be supported in O(1)
expected time.

Proof. We again perform a double binary search (exponential search [BY76]) for the new interval of
e; this time we start at the interval Ii,j in which e currently resides and move outwards from there.
The analysis follows similarly to Theorem 24.

When used as a priority queue, Theorem 27 improves the average-case complexity of decrease-key
to O(1).

10 Randomized-Selection Variant

We can improve the practical efficiency of lazy search trees by replacing exact median-finding in the
query procedure with randomized pivoting. Specifically, after finding sets L and R as described in
Section 6.5, we then partition L into sets Ll and Lr by picking a random element p ∈ L and pivoting
so that all elements less than p are placed in set Ll and all elements greater than p are placed in set
Lr. To avoid biasing when elements are not unique, elements equal to p, should be split between Ll
or Lr. We then repeat the procedure one more time on set Lr. We do the same, reflected, for set R.

Remark 28 (Partitioning with equal keys). In our analysis, we assume for simplicity that the
number of elements with same key as p, including p itself, that are assigned to the left segment is
chosen uniformly at random from the number of copies. That implies overall a uniform distribution
for the size of the segments. Partitioning procedures as used in standard implementations of
quicksort [Sed78] actually lead to slightly more balanced splits [Sed77]; they will only perform better.
For practical implementations of lazy search trees, choosing the partitioning element p as the median
of a small sample is likely to improve overall performance.

Changing the query algorithm in this way requires a few changes in our analysis. The analysis
given in Section 7 is amenable to changes in constant factors in several locations. Let us generalize
the potential function as follows, where α is a set constant, such as α = 4 in Section 7. One can see
from Section 7.2.3 that this will imply the constant in front of M must be at least 2(α + 1).

Φ = 2(α + 1)M + α∑
1≤i≤m,
1≤j≤`i

c(Ii,j).

Insertion still takes O(min(log(n/∣∆i∣) + log log ∣∆i∣, log q)) time. As before, splitting into sets L
and R can typically be done in O(∣Ii,j ∣) deterministic time via the result of the query, but if not,
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quickselect can be used for O(∣Ii,j ∣) expected (indeed with high probability) time performance [Hoa61,
FR75, Kiw05]. The modified pivoting procedure described above for Ll and Lr is repeated in total
4 times. We can thus bound the complexity of these selections at O(∣Ii,j ∣), regardless of the
randomization used.

Then by application of Lemma 22, we reduce the current amortized time to split Ii,j to O(x),
leaving (α − 1)c(Ii,j) units of potential to handle ensuring Invariant (C) on category A intervals in
Section 7.2.2.

The number of credits necessary to satisfy Invariant (C) on category A intervals is now a random
variable. Recall the arguments given in Section 7.2.1 and Section 7.2.2 regarding category A intervals.
As long as the (expected) number of credits to satisfy Invariant (C) on category A intervals is at
most a constant fraction γ of ∣Ii,j ∣, we can set α = 1

1−γ and the amortized analysis carries through.
We have the following regarding the expected number of credits to satisfy Invariant (C) on

category A intervals using the randomized splitting algorithm.

Lemma 29. Suppose a query falls in interval Ii,j and the intervals built from the elements of Ii,j
are constructed using the randomized splitting algorithm. The expected number of credits necessary
to satisfy Invariant (C) on category A intervals after a query is no more than 143

144 ∣Ii,j ∣ +O(1).

Proof. We prove the loose bound considering only one random event in which a constant fraction of
∣Ii,j ∣ credits are necessary, which happens with constant probability.

We orient as in Section 7.2.2, assuming the larger new gap, ∆′
i+1, is right of the smaller new

gap, ∆′
i. We must consider the number of credits necessary to satisfy Invariant (C) on the three

category A intervals I ′i+1,1, I ′i+1,2, and I ′i+1,3 of new gap ∆′
i+1. The rightmost interval I ′i+1,3 has

size drawn uniformly at random in 1, . . . , ∣R∣, the leftmost, I ′i+1,1, takes size uniformly at random
from the remaining elements, and the middlemost interval I ′i+1,2 takes whatever elements remain.

Suppose the rightmost interval I ′i+1,3 comprises a fraction of x = ∣I ′i+1,3∣/∣R∣ ∈ [1
3 ,

2
3
] of all

elements in R, and further suppose the leftmost interval I ′i+1,1 takes between 1/2 and 3/4 of the
remaining elements, i.e., a fraction y = ∣I ′i+1,1∣/∣R∣ ∈ [1

2(1 − x),
3
4(1 − x)] of the overall elements in R.

In this case, it is guaranteed we require no credits to satisfy Invariant (C) on the middlemost interval.
The number of credits to satisfy Invariant (C) on the rightmost and leftmost intervals is (x + y)∣R∣,
which is maximized at 11

12 ∣R∣. This event happens with probability 1
3 ⋅

1
4 −O (1/∣R∣) = 1

12 −O (1/∣R∣),
where we include the O (1/∣R∣) term to handle rounding issues with integer values of ∣R∣. As we
never require more than ∣R∣ credits in any situation and ∣R∣ ≤ ∣Ii,j ∣, we can then bound the expected
number of necessary credits at 11

12 ⋅ ∣Ii,j ∣ +
1
12 ⋅

11
12 ∣Ii,j ∣ +O(1) = 143

144 ∣Ii,j ∣ +O(1).

With Lemma 29, we can set α = 144 and use the remaining 143c(Ii,j) credits from destroying Ii,j
and bound 143∣Ii,j ∣ − 143c(Ii,j) with 143x via Lemma 22. All other query analysis in Section 7.2.2
is exactly as before. This gives total expected amortized query time O(logn + x log c) on 2-sided
gaps. With a constant of 2(α + 1) in front of M in the generalized potential function, the analysis
for 0 and 1-sided gaps in Section 7.2.3 carries through.

Putting it all together, we get the following result.

Theorem 30 (Randomized splitting). If partitioning by median in the query algorithm is
replaced with splitting on random pivots, lazy search trees satisfy the same time bounds, in worst-
case time, as in Theorem 1, except that RankBasedQuery(r) and Split(r) now take O(logn+x log c)
expected amortized time.

Note that another possible approach is to change Invariant (C) to something like c(Ii,j)+2o(Ii,j) ≥
∣Ii,j ∣, which gives further flexibility in the rest of the analysis. This is, however, not necessary to
prove Theorem 30.
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11 Lazy Splay Trees

Splay trees [ST85] are arguably the most suitable choice of a biased search tree in practice; we
thereby explore their use within lazy search trees in this section. We show that an amortized-runtime
version of Lemma 10 can indeed be obtained using splay trees. We also show that by using a splay
tree, the efficient access theorems of the splay tree are achieved automatically by the lazy search
tree. This generalizes to any biased search tree that is used as the data structure of Lemma 10.

11.1 Splay Trees For The Gap Data Structure

We show that splay trees can be used as the gap data structure.

Lemma 31 (Splay for Gaps). Using splay trees as the data structure for the set of gaps {∆i}

allows support of all operations listed in Lemma 10, where the time bounds are satisfied as amortized
runtimes over the whole sequence of operations.

Proof. We use a splay tree [ST85] and weigh gap ∆i with wi = ∣∆i∣. The sum of weights, W , is thus
equal to n. Operation 1 can be supported by searching with e = (k, v) into the tree until gap ∆i is
found and then splayed. According to the Access Lemma [ST85], this is supported in O(log(n/∣∆i∣))

amortized time. Operation 2 requires a weight change on gap ∆i. By first accessing gap ∆i, so
that it is at the root, and then applying a weight change, this operation can be completed in time
proportional to the access. According to the Access Lemma [ST85] and the Update Lemma [ST85],
this will then take O(log(n/∣∆i∣)) amortized time. Note that for our use of operation 2, the element
will already have just been accessed, so the additional access is redundant. Operations 3 and 4 are
supported in O(logn) time by the Update Lemma [ST85]. Note that when the gap data structure
is used in a lazy search tree, it always starts empty and more gaps are added one by one when
answering queries. Hence any sequence of operations arising in our application will access every
element in the splay tree at least once.

Note that a bound of O(log q) amortized cost for all operations also holds by using equal weights
in the analysis above (recall that in splay trees, the node weights are solely a means for analysis and
do not change the data structure itself).

11.2 Efficient Access Theorems

We now specify a few implementation details to show how lazy search trees can perform accesses as
fast as the data structure of Lemma 10 (resp. Lemma 31).

If an element e is the result of a query for a second time, then during that second access, e is
the largest element in its gap. Instead of destroying that gap, we can assume the identity of the
gap e falls into after the query to be the same gap in which e previously resided (depending on
implementation, this may require a key change in the data structure of Lemma 10, but the relative
ordering of keys does not change). In this way, repeated accesses to elements directly correspond
to repeated accesses to nodes in the data structure of Lemma 10. Further, implementation details
should ensure that no restructuring occurs in the interval data structure when an element previously
accessed is accessed again. This is implied by the algorithms in Section 6, but care must be taken in
the case of duplicate elements. This will ensure accessing a previously-accessed element will take
O(1) time in the interval data structure.

With these modifications, the lazy search tree assumes the efficient access properties of the data
structure of Lemma 10. We can state this formally as follows.
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Theorem 32 (Access Theorem). Given a sequence of element accesses, lazy search trees perform
the access sequence in time no more than an additive linear term from the data structure of Lemma 10,
disregarding the time to access each element for the first time.

Proof. Once every item has been accessed at least once, the data structures are the same, save for
an extra O(1) time per access in the interval data structure. The cost of the first access may be
larger in lazy search trees due to necessary restructuring.

While we would ideally like to say that lazy search trees perform within a constant factor of splay
trees on any operation sequence, this is not necessarily achieved with the data structure as described
here. Time to order elements on insertion is delayed until queries, implying on most operation
sequences, and certainly in the worst case, that lazy search trees will perform within a constant
factor of splay trees, often outperforming them by more than a constant factor. However, if, say,
elements 1,2, . . . , n are inserted in order in a splay tree, then accessed in order n,n − 1, . . . ,1, splay
trees perform the operation sequence in O(n) time, whereas lazy search trees as currently described
will perform the operation sequence in O(n logn) time.

Theorem 32 shows using a splay tree for the gap data structure (Lemma 31) allows lazy search
trees to achieve its efficient-access theorems. Observing that the initial costs of first access to
elements total O(n logn), we achieve Corollary 33 below.

Corollary 33. Suppose a splay tree is used as the gap data structure. Then lazy search trees achieve
the efficient access theorems of the splay tree, including static optimality, static finger, dynamic
finger, working set, scanning theorem, and the dynamic optimality conjecture [ST85, CMSS00, Col00,
Elm04].

12 Conclusion and Open Problems

We have discussed a data structure that improves the insertion time of binary search trees, when
possible. Our data structure generalizes the theories of efficient priority queues and binary search
trees, providing powerful operations from both classes of data structures. As either a binary search
tree or a priority queue, lazy search trees are competitive. From a theoretical perspective, our work
opens the door to a new theory of insert-efficient order-based data structures.

This theory is not complete. Our runtime can be as much as an additive O(n log logn) term from
optimality in the model we study, providing O(log logn) time insert and decrease-key operations as
a priority queue when O(1) has been shown to be possible [FT87]. Further room for improvement is
seen in our model itself, where delaying insertion work further can yield improved runtimes on some
operation sequences. We see several enticing research directions around improving these shortcomings
and extending our work. We list them as follows:

1. Extend our model and provide a data structure so that the order of operations performed is
significant. A stronger model would ensure that the number of comparisons performed on an
inserted element depends only on the queries performed after that element is inserted.

2. Within the model we study, improve the additive O(n log logn) term in our analysis to worst-
case O(n), or give a lower bound that shows this is not possible while supporting all the
operations we consider.

3. Explore and evaluate competitive implementations of lazy search trees. In the priority queue
setting, evaluations should be completed against practically efficient priority queues such as
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binary heaps [Wil64], Fibonacci heaps [FT87], and pairing heaps [FSST86]. On binary search
tree workloads with infrequent or non-uniformly distributed queries, evaluations should be
completed against red-black trees [BM72], AVL trees [AVL62], and splay trees [ST85].

4. Support efficient general merging of unordered data. Specifically, it may be possible to support
O(1) or O(logn) time merge of two lazy search trees when both are used as either min or max
heaps.

5. Although the complexity of a rank-based query must be Ω(n) when the query falls in a gap
of size ∣∆i∣ = Ω(n), the per-operation complexity of RankBasedQuery(r) could potentially be
improved to O(x log c + logn) worst-case time instead of amortized time, with x and c defined
as in Theorem 1.

6. Develop an external memory version of lazy search trees for the application of replacing
B-trees [BM72], Bε trees [BF03], or log-structured merge trees [OCGO96] in a database
system.

7. Investigate multidimensional geometric data structures based off lazy search trees. Range
trees [Ben79], segment trees [Ben77], interval trees [Ede80, McC80], kd-trees [Ben75], and
priority search trees [McC85] are all based on binary search trees. By building them off lazy
search trees, more efficient runtimes as well as space complexity may be possible.

Regarding point 3, we have implemented a proof-of-concept version of a lazy search tree in C++,
taking no effort to optimize the data structure. Our implementation is roughly 400 lines of code
not including the gap data structure, to which we use a splay tree [ST85]. Intervals are split via
randomized pivoting, as described in Section 10. The optimization to support O(1) time average
case insertion into the interval data structure is implemented, and the data structure also satisfies
the O(min(q, n)) pointer bound by representing data within intervals in a linked list of C++ vectors.

Our implementation has high constant factors for both insertion and query operations. For
insertion, this is likely due to several levels of indirection, going from a gap, to an interval, to
a linked list node, to a dynamically-sized vector. For query, this is likely due to poor memory
management. Instead of utilizing swaps, as in competitive quicksort routines, our implementation
currently emplaces into the back of C++ vectors, a much slower operation. The current method of
merging also suggests some query work may be repeated, which although we have shown does not
affect theoretical analysis, may have an effect in practice.

Still, initial experiments are promising. Our implementation outperforms both the splay tree which
our implementation uses internally as well as C++ set, for both low query load scenarios and clustered
queries. To give a couple data points, on our hardware, with n = 1 000 000, our implementation
shaves about 30% off the runtime of the splay tree when no queries are performed and remains
faster for anything less than about 2 500 uniformly distributed queries. When n = 10 000 000, our
implementation shaves about 60% off the runtime of the splay tree when no queries are performed
and remains faster for anything less than about 20 000 uniformly distributed queries. The C++
set has runtime about 30% less than our splay tree on uniformly distributed query scenarios.
Our experiments against C++ STL priority_queue show that our current implementation is not
competitive.

Finally, regarding points 2 and 4, since this article was written we have succeeded in devising a
solution using very different techniques that removes the O(log logn) terms and supports constant
time priority queue merge. The new solution requires sophisticated data structures and is not based
on arrays, so the approach discussed herein is likely to be more practical.
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