
Succinct Permutation Graphs
Konstantinos Tsakalidis∗ Sebastian Wild† Viktor Zamaraev‡

September 24, 2022

Abstract

We present a succinct data structure for permutation graphs, and their superclass of
circular permutation graphs, i.e., data structures using optimal space up to lower order
terms. Unlike concurrent work on circle graphs [2], our data structure also supports
distance and shortest-path queries, as well as adjacency and neighborhood queries, all in
optimal time. We present in particular the first succinct exact distance oracle for (circular)
permutation graphs. A second succinct data structure also supports degree queries in
time independent of the neighborhood’s size at the expense of an O(logn/ log logn)-factor
overhead in all running times. Furthermore, we develop a succinct data structure for the
class of bipartite permutation graphs. We demonstrate how to run algorithms directly
over our succinct representations for several problems on permutation graphs: Clique,
Coloring, Independent Set, Hamiltonian Cycle, All-Pair Shortest Paths, and
others.
Finally, we initiate the study of semi-distributed graph representations; a concept that

smoothly interpolates between distributed (labeling schemes) and centralized (standard
data structures). We show how to turn some of our data structures into semi-distributed
representations by storing only O(n) bits of additional global information, circumventing
the lower bound on distance labeling schemes for permutation graphs.

1 Introduction
As a result of the rapid growth of data sets, memory requirements become a bottleneck in many
applications; in particular when data structures do no longer fit into faster levels of the memory
hierarchy of computer systems. Research on succinct data structures has lead to optimal-space
data structures for many types of data [27], significantly extending the size of data sets that
can be analyzed efficiently on commodity hardware. A data structure is called succinct when
its space usage is optimal up to lower order terms, i.e., optimal up to a factor of 1 + o(1).

Graphs are one of the most widely used types of data. In this paper, we study succinct
representations of specific classes of graphs, namely permutation graphs and related families of
graphs. A graph is a permutation graph (PG) if it can be obtained as the intersection graph
of chords (line segments) between two parallel lines [29], i.e., the vertices corresponding to
two such chords are adjacent, if and only if the chords intersect. PGs are a well-studied class
of graphs; they are precisely the comparability graphs of two-dimensional partial orders, and
the class of comparability graphs whose complement graph is also a comparability graph [13]
(see Section 2 for definitions of these concepts). Many generally intractable graph problems

∗University of Liverpool, UK, K.Tsakalidis @ liverpool.ac.uk
†University of Liverpool, UK, Sebastian.Wild @ liverpool.ac.uk
‡University of Liverpool, UK, Viktor.Zamaraev @ liverpool.ac.uk

2 Succinct Permutation Graphs

can be solved efficiently on PGs, for instance Clique [23, 22], Independent Set [23, 22],
Coloring [23, 22], Clique Cover [23, 22], Dominating Set [6], Hamiltonian Cycle [11],
and Graph Isomorphism [8]. All-Pair Shortest Paths on PGs can be solved faster than
in general graphs [24, 4]. Moreover, PGs can be recognized in linear time [22].

In this paper we study how to succinctly encode permutation graphs, while supporting the
following queries efficiently:

• adj(u, v): whether vertices u and v are adjacent;

• deg(v): the degree of vertex v, i.e., the number of vertices adjacent to v;

• nbrhood(v): the vertices adjacent to vertex v;

• next_nbr(u, v): the successor of vertex v in the adjacency list of vertex u;

• spath(u, v): listing a shortest path from vertex u to vertex v;

• spath_succ(u, v): the first vertex after vertex u on a shortest path from u to vertex v;

• dist(u, v): the length of the shortest path from vertex u to vertex v.

Data structures. A succinct data structure is space optimal in the sense that it stores a
given combinatorial object using asymptotically only the information-theoretic minimum of
bits. Specifically, given a class of graphs C and denoting by Cn for the set of graphs G ∈ C on
|V (G)| = n vertices, a succinct data structure for C is allowed to spend (1 + o(1)) lg |Cn| bits
of space when representing a graph in Cn. We present the first succinct data structures that
support the above queries on a PG (Theorem 3.1), as well as on its generalization, the circular
permutation graphs (CPGs, see Theorem 6.4). Moreover, we present the first succinct data
structure for the special case of a bipartite permutation graph (BPG, see Theorem 5.1). Table 1
summarizes these results. 1

Table 1: Our data structure results for (variants of) permutation graphs with n vertices. Space is
in bits. Query times are O(·) bounds; deg denotes the queried vertex’ degree and dist
the shortest-path distance between the queried vertices.

permutation graphs bipartite circular
(a) by grid (b) by array permutation permutation

Space Usage n lgn+ o(n logn) n lgn+O(n) 2n+ o(n) n lgn+O(n)
Lower Bound ∼ n lgn [4] ∼ n lgn [4] ∼ 2n [32] ∼ n lgn [4]

adj logn/ log logn 1 1 1
deg logn/ log logn deg + 1 1 deg + 1

nbrhood (deg + 1) logn/log logn deg + 1 deg + 1 deg + 1
next_nbr (deg + 1) logn/log logn 1 (amortized) 1 1 (amortized)

spath (dist + 1) logn/ log logn dist + 1 dist + 1 dist + 1
spath_succ logn/ log logn 1 1 1

dist logn/ log logn 1 dist + 1 1

Theorem Thm. 3.1–(a) Thm. 3.1–(b) Thm. 5.1 Thm. 6.4

To our knowledge, the only centralized data structures that store PGs are presented by
Gustedt et al. [18] and by Crespelle and Paul [9]. The former are not succinct (using O(n lgn)

1Throughout this paper, running times assume the word-RAM model with word size w = Θ(logn), where n
denotes the number of vertices of the input PG.

1 Introduction 3

words of space), but are parallelizable [18]. The latter support only adj queries (in constant
time), but are dynamic (supporting insertions and deletions of vertices/chords and edges).
We are not aware of previous work on data structures for CPGs, or on space-efficient data
structures for BPGs.

Bazzaro and Gavoille [4] present distance labeling schemes for PGs, a distributed distance
oracle, where the distance of two vertices can be computed solely from the two labels of the
vertices. Their scheme uses labels of ∼ 9 lgn bits per vertex2, and their dist queries take
constant time. By concatenating all labels, their labeling scheme implies a data structure with
matching time complexity and total space of ∼ 9n lgn bits. Our data structures (Theorem 3.1)
improve upon that space, while simultaneously supporting further queries besides dist.

Interestingly, Bazzaro and Gavoille [4] further give a lower bound of 3 lgn−O(lg lgn) bits
per vertex for dist labeling schemes on PGs. Comparing our data structures to this lower
bound reveals a separation in terms of total space between their distributed and our centralized
model: giving up the distributed storage requirement, a data structure using the optimal
∼ n lgn bits of space, i.e., lgn per vertex, becomes possible, proving that the centralized model
is strictly more powerful.

Semi-distributed graph representations. To further explore the boundary of the above sepa-
ration between standard centralized data structures and fully distributed labeling schemes, we
introduce a semi-distributed model of computation for graph data structures that smoothly
interpolates between these two extremes: in a 〈L(n), D(n)〉-space semi-distributed represen-
tation, each vertex locally stores a label of L(n) bits, but all vertices also have access to a
“global” data structure of D(n) bits to support the queries. Such a representation uses a total of
nL(n) +D(n) bits of space, but apart from the global part, only the labels of queried vertices
are accessible to compute the answer.

The lower bound from [4] implies that whenD(n) = 0, we must have L(n) ≥ 3 lgn−O(lg lgn)
to support dist on PGs, making the total space at least a factor 3 worse than the information-
theoretic lower bound. But what happens if we allow a small amount of global storage on top
of the labels? Is access to global storage inherently more powerful, even if insufficient encode
the entire PG? If so, what is the least amount of global storage that is necessary to overcome
the labeling-scheme lower bound?

We do not comprehensively answer the latter question, but settle the former in the affirmative:
we show that PGs admit a 〈2 lgn,O(n)〉-space semi-distributed representation that answers
distance queries in constant time, i.e., although the global space cannot distinguish all possible
PGs, it suffices to circumvent the lower bound for labeling schemes in terms of total space
and label size. Thus having access even to limited amounts of global space is inherently more
powerful than a fully distributed data structure.

Applications. Our data structures can replace the standard (space-inefficient) representation
by adjacency lists in graph algorithms. For several known algorithms on PGs that make explicit
use of their special structure (namely, linear-time algorithms for computing minimum colorings,
maximum cliques, maximum independent sets, or minimum clique covers), we show that they
can be run with minimal extra space directly on top of our succinct representation.

Moreover, our data structures immediately yield an optimal-time all-pairs shortest-paths
algorithm on PGs: For a PG with n vertices and m edges we can report all pairwise distances
in O(n2) time, matching the result of Mondal et al. [24]; however, our approach is more flexible
in that we can report the distances of any k specified pairs of vertices in just O(n + m + k)

2By ∼ we denote a leading-term asymptotic approximation, i.e., f(n) ∼ g(n) iff f(n)/g(n)→ 1 as n→∞.

4 Succinct Permutation Graphs

total time. Furthermore, we can report the shortest paths (not just their lengths) in total time
O(n + m + s), where s is the size of the output; this does not immediately follow from [24].
The labeling scheme of [4] yields the same running times, but uses more space.

Further related work. Similar to our work on PGs, succinct data structures that support the
considered set of queries have been presented for chordal graphs [25] and interval graphs [3, 19].
The latter also consider the special class of unit/proper interval graphs and the generalization
to circular interval graphs.

Concurrently3 to this work, Acan et al. [2] presented succinct data structures for circle
graphs (i.e., the intersection graph of chords of a (single) circle) and related classes (specifically
k-polygon circle graphs and trapezoid graphs). They show space lower bounds for these classes
and data structures with asymptotically matching space usage. Since a PG is also a circle graph,
their data structures can be applied to PGs, but this is not known for CPGs. Superficially, their
grid-based representation [2, Thm. 4.4] is similar to ours, but the construction uses a different
point set with different properties for queries: Acan et al. support navigational operations
adj, deg, and nbrhood, but none of their data structures offer dist or spath, which are a
main technical challenge of our work. A further difference is that for general circle graphs, no
succinct data structures with constant query time are known, whereas for PGs, we can use
our array-based data structure, offering constant-time support for adj, next_nbr, spath_succ,
dist.

Outline. The rest of this paper is organized as follows. Section 2 collects previous results
on PGs and succinct data structures. In Section 3, we describe our main result: the succinct
data structures for PGs. Our other results extend the techniques established in that section.
Section 4 describes how to simulate various algorithms on top of our succinct representation.
Section 5 discusses our data structure for bipartite PGs, and Section 6 extends our approach
to circular PGs. Finally, Section 7 introduces semi-distributed graph representations and our
corresponding results. Section 8 concludes the paper.

2 Preliminaries
We write [n..m] for {n, . . . ,m} ⊂ Z and [n] = [1..n]. We use standard notation for graphs,
in particular (unless stated otherwise) n denotes the number of vertices, m the number of
edges. N(v) is the neighborhood of v, i.e., the set of vertices adjacent to v. In a directed graph
G = (V,E), we distinguish out-neigborhood N+(v) = {u : (v, u) ∈ E} and in-neigborhood
N−(v) = {u : (u, v) ∈ E} of a vertex v ∈ V . The complement graph of G is denoted by G. We
use the “Iverson bracket” notation: [cond] is 1 if cond is true and 0 otherwise.

2.1 Permutation Graphs
It is easy to see from the intersection model of a PG G (as intersections of chords between
parallel lines) that only the relative order of upper (resp. lower) endpoints of the chords are
relevant (cf. Figure 1). Hence, a graph G is a PG if there exists a permutation π and a bijection
between the vertices of G and the elements of π, such that two vertices are adjacent if and only
if the corresponding elements are reversed by π; that explains the name.

3The preprint [1] (now published as [2]) appeared shortly after an initial version of this article [37] was published
on arXiv.

2 Preliminaries 5

1

2

3

45

6

7

8

9

10

11

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

1 2 3 4 5 6 7 8 9 10 11 v

1

2

3

4

5

6

7

8

9

10

11

π−1(v)

1

2

3

4

5

6

7

8

9

10

11

v
N
− (v)

N
+ (v)

Figure 1: Example permutation graph (top left) from [4] in different representations: a represen-
tation as intersections of chords between two parallels (top right), corresponding to the
permutation π = (5, 7, 2, 6, 1, 11, 8, 10, 4, 3, 9), and the points (v, π−1(v)) on a 2D grid
(bottom right). A point in the grid can “see” (is adjacent to) all points in the top left
resp. lower right quadrant around it as illustrated on the bottom left [4].

To avoid confusion in counting results, we carefully distinguish three related notions for PGs.
First, given a permutation π : [n]→ [n], the ordered PG induced by π, denoted Gπ = (V,E),
has vertices V = [n] and (undirected) edges {i, j} ∈ E for all i > j with π−1(i) < π−1(j), i.e., if
π has an inversion (i, j). Given an ordered PG G, we can uniquely reconstruct the permutation
π with Gπ = G: By setting bj , for each vertex j, to the number of its neighbors i with i > j,
we obtain the inversion table b1, . . . , bn of the permutation, from which there is a well-known
bijection to π itself [21, §5.1.1]. Hence, ordered PGs and permutations are in bijection. This
yields a simple recognition algorithm for ordered PGs: Compute π as above and check if the
given graph equals Gπ. The ordered PG Gπ can be characterized by its grid representation,
which is a collection of integer points in the plane associated with the vertices of Gπ: a vertex
v is associated with the unique point (v, π−1(v)) (see Figure 1). A useful property of the grid
representation is that the neighbors of the vertex v are exactly those vertices whose points are
located in the top left or the lower right quadrant around the point of v.

A graph G = ([n], E) is a labeled PG, written G ∈ Pn, if there is set of n chords between
two parallel lines and an assignment of vertices to chords, so that {i, j} ∈ E iff chords i and j
intersect. In other words, G ∈ Pn iff there are two permutations π : [n]→ [n] and ρ : [n]→ [n],
so that ρ(G) = ([n], ρ(E)) = Gπ, where ρ(E) =

{
{ρ(u), ρ(v)} : {u, v} ∈ E

}
; in short: G is a

labeled PG iff it is isomorphic to some ordered PG Gπ.
The set of unlabeled PGs of size n, denoted by Pn, is the family of equivalence classes of

labeled graphs in Pn under (graph) isomorphism.
To illustrate the notions of ordered, labeled, and unlabeled PGs, and to make the distinction

between them clear, we consider a few simple examples. Both the empty or complete unlabeled
graph correspond to a single ordered PG, namely with π the sorted (resp. reverse sorted)

6 Succinct Permutation Graphs

permutation. Similarly, there is only one labeled empty or complete graph; in this case, the
three notions coincide. However, the unlabeled graph with just a single edge corresponds to
n− 1 ordered PGs, namely all n− 1 permutations with a single inversion; and there are

(n
2
)

labeled graphs with a single edge. We can always select a representative (a labeled PG) for an
isomorphism class (the unlabeled PG) that is an ordered PG, but in general, there are more
ordered PGs than unlabeled PGs.

A graph is comparability if its edges can be oriented such that if there are edge (a, b) and
(b, c), then there is an edge (a, c). We will use the following classical characterization of PGs.

Theorem 2.1 (PG & comparability, [13]): A graph G is a PG if and only if both G and
G are comparability graphs. /

Finally, for the construction of our data structures, we will assume that an ordered PG Gπ is
given; the following result allows to compute such from a given PG in linear time.

Theorem 2.2 (PG recognition, [22]): There is an algorithm that given a graph G = (V,E)
on n = |V | vertices and m = |E| edges computes in O(n+m) time two bijections π : [n]→ [n]
and ρ : V → [n] with ρ(G) = Gπ, or determines that G is not a PG. /

2.2 Space Lower Bounds
Recall that Pn denotes the set of unlabeled PGs on n vertices. We obtain information-theoretic
lower bounds for storing an unlabeled PG from known counting results [4].

Corollary 2.3: lg |Pn| ≥ n lgn− O(n log logn) bits are necessary to represent an unlabeled
permutation graph on n vertices. /

Proof: Recall that we write Pn for the set of labeled PGs on n vertices and Pn for the set
of unlabeled PGs on n vertices. [4, Thm. 5.2] shows that lg |Pn| ≥ 2n lgn − O(n log logn).
Clearly |Pn| ≤ n!|Pn| since there are at most n! ways of assigning labels [n]. Using the Stirling
approximation, lg(n!) = n lgn−O(n), we obtain that lg |Pn| ≥ 2n lgn−O(n log logn)−lg(n!) ≥
n lgn−O(n log logn). �

Up to lower order terms, this lower bound coincides with lg(n!), so succinctly storing a given
grid representation of an ordered PG in our data structures suffices for a succinct PG data
structure. Generalizing a construction from Acan et al. [2], we can strengthen the above lower
bound.

Theorem 2.4 (Space lower bound): lg |Pn| ≥ n lgn−O(n) bits are necessary to represent
an unlabeled permutation graph on n vertices. /

Proof of Proof Sketch: We build on the proof of Thm. 4.2 of [2]; we reproduce the parts
that need amendment here. We construct a specific family of vertex-colored PGs that is large
enough so that – even after discounting the overcounting due to counting colored graphs –
it corresponds to 2n lgn−O(n) distinct unlabeled PGs, yielding the claim. We represent the
colored graphs via their (colored) permutation diagram. We begin with two parallel lines
and place n “chord slots” (points) on each line; we will later connect these to n disjoint
chords. Let p1, . . . , pn resp. q1, . . . , qn denote these points on the upper resp. lower line,
numbered from left to right; cf. Figure 2. As in [2], we fix parameters k and ` so that
k`+ 2k = n. Now fix 2k special cords as follows: The first k special cords connect q1, . . . , qk to
the points p`+1, p2(`+1), p3(`+1), . . . , pk(`+1), the second k special cords connect pn−k+1, . . . , pn
with qk+1, qk+1+(`+1), qk+1+2(`+1), . . . , qn. Each of the 2k special cords is colored using a unique

2 Preliminaries 7

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

1 2 3 4 5 6 7 8

A1

B1

A2

B2

A3

B3

A4

B4

Figure 2: The colored PG construction from Theorem 2.4 for ` = 3 and k = 4, and hence
n = k`+ 2k = 20. Special chords are shown in blue and red. The highlighted chord
(p9, q14) intersects the special chords [i..j] = {3, 4, 5, 6, 7} and has endpoints in Ai = A3
and Bj−k = B7−4 = B3.

color in [2k], assigned from left to right; all other chords (added below) have color 0. We have so
far used 4k of the chord slots; the remaining 2n− 4k slots are partitioned by the special chords
into 2k intervals of ` chord slots each: k on the upper line, k on the lower line, each separated
by an endpoint of a special chord. We name these intervals A1, . . . , Ak on the upper line and
B1, . . . , Bk on the lower line (see Figure 2). We now consider matchings of the remaining k`
slots on the upper line with the remaining k` slots on the lower line. Each such matching
corresponds to one way of adding the remaining k` chords; Figure 2 shows an example (gray
lines). In general, different matchings can correspond to the same unlabeled colored graph, but
we will see that this can only happen for bad matchings [2]: a matching is bad if it contains 3 or
more of chords connecting the same Ai with the same Bj ; otherwise it is good. A good matching
can be uniquely reconstructed from its induced colored PG: First, each colored vertex is unique
and its color uniquely determines which special chord it corresponds to. Next, each 0-colored
vertex must be adjacent to special chords with colors from a contiguous range [i..j] ⊂ [2k];
its upper endpoint then lies on Ai and its lower endpoint on Bj−k. Hence we can uniquely
reconstruct the intervals each chord’s endpoints belong to. Finally, if two chords u, v both end
in the same Ai, their relative order is determined by whether or not they are adjacent. Since
the matching is good, there is at most one such pair u, v where the relative order of endpoints
on the bottom line is not already determined, so we can work out a total order of the endpoints
within Ai from the colors and adjacencies. The argument for two chords ending in the same
Bj is similar. Using Lem. 4.1 of [2], which shows that for k = n3/4+ε, ε > 0 fixed, a 1− o(1)
fraction of all possible matchings is good, we can now finish the proof as in [2]:

|Pn|
(
n

2k

)
(2k)! ≥ # PGs with 2k vertices assigned unique colors in [2k]

≥ # colored PGs obtained from above construction
≥ # good matchings
= (1− o(1))(k`)! = (1− o(1))(n− 2k)! ;

hence we have, denoting by nk =
∏k−1
i=0 (n− i) the kth falling power of n, that

lg |Pn| ≥ lg((n− 2k)!) + lg(1− o(1))− lg(n2k)
≥ lg((n− 2k)!)− lg(n2k)−O(1)

8 Succinct Permutation Graphs

=
(
(n− 2k) lg(n(1− 2k/n))− (n− 2k) lg(e) +Θ(logn)

)
− 2k lg(n)− o(1)

≥ n lgn− lg(e)n−O(k logn).

This concludes the proof. �

Remark 2.5: We note that in the data-structures and graph-labeling-schemes communities,
the above approach for proving space optimality of graph representations via lower bounds on
the number of unlabeled graphs in the class is quite typical [16, 4, 3, 26]: One establishes a
lower bound on the number |Xn| of unlabeled graphs in a given class X by first deriving a lower
bound on the number |X n| of labeled (or colored) graphs in the class, and then applying the
obvious relation |X n| ≤ n!|Xn| (or a similar one for partially colored graphs). The non-trivial
part in this approach is the former one, and it usually boils down to an ad-hoc construction of
a large family of labeled graphs.

For leading-term estimates, a recent work of Sauermann [33] provides a uniform framework
for deriving tight lower bounds on the number of labeled graphs in any semi-algebraic graph
class. The family of semi-algebraic graph classes contains many geometric intersection graphs
classes, including interval graphs and PGs.

2.3 Succinct Data Structures
For the reader’s convenience, we collect used results on succinct data structures here. First, we
cite the compressed bit vectors of Pătras,cu [28].

Lemma 2.6 (Compressed bit vector): Let B[1..n] be a bit vector of length n, containing
m 1-bits. For any constant c > 0, there is a data structure using lg

(n
m

)
+ O

(
n

logc n

)
≤

m lg
(
n
m

)
+O

(
n

logc n +m
)
bits of space that supports in O(1) time operations (for i ∈ [1, n]):

1. access(B, i): return B[i], the bit at index i in B.

2. rankα(B, i): return the number of bits with value α ∈ {0, 1} in B[1..i].

3. selectα(B, i): return the index of the i-th bit with value α ∈ {0, 1}. /

Remark 2.7 (Simpler bitvectors): The result of Pătras,cu has the best theoretical guaran-
tees, but requires rather complicated data structures. Compressed bitvectors with space

lg
(
n

m

)
+ O

(
n log logn

logn

)
≤ nH

(m
n

)
+ O

(
n log logn

logn

)
= m lg

(n
m

)
+ O

(
n log logn

logn +m

)
have been proposed by Raman, Raman, and Rao [30] and implemented [17]. For our application,
indeed a plain (uncompressed) bitvector with O(1)-time support for rank and select and using
n+O(n/ log logn) bits of space is sufficient (see, e.g., [27, §4.2.2 & §4.3.3], originally proposed
in [20, 7]). /

Using wavelet trees, based on above bitvectors, we can also handle non-binary arrays.

Lemma 2.8 (Wavelet trees for constant σ): Let S[1..n] be a static array with entries
S[i] ∈ Σ = [1..σ] for σ a fixed constant. There is a data structure using lg(σ)n+ o(n) bits of
space that supports the following queries in O(log σ) = O(1) time (without access to S at query
time)

2 Preliminaries 9

1. access(S, i): return S[i], the symbol at index i in S.

2. rankα(S, i): return the number of indices with value α ∈ Σ in S[1..i].

3. selectα(S, i): return the index of the i-th occurrence of value α ∈ Σ in S. /

Proof: Wavelet trees [27, §6.2] support these operations in the stated time. For the case of a
small fixed σ that we need, we can use a separate compressed bitvector (Lemma 2.6) for each
of the O(σ) nodes in the wavelet tree. By the aggregation property of the entropy, the overall
space is bounded by nH0 + o(σn) ≤ n lg(σ) + o(n), where H0 is the (zeroth-order) empirical
entropy of S (see, e.g., [27, §6.2.4]). �

Given an array A[1..n] of comparable elements, (e.g., numbers), range-minimum queries
(resp. range-maximum queries) are defined for 1 ≤ i ≤ j ≤ n by

rmqA(i, j) = arg min
i≤k≤j

A[k],

rMqA(i, j) = arg max
i≤k≤j

A[k].

In both cases, ties are broken by the index, i.e., the index of the leftmost minimum (resp.
maximum) is returned.

Lemma 2.9 (RMQ index, [14, Thm. 3.7]): For any constant ε > 0 the following holds.
Given a static array A[1..n] of comparable elements, there is a data structure using εn bits
of space on top of A that answers range-minimum queries in O(1/ε) time (making as many
queries to A). /

Clearly, the same data structure can also be used to answer range-maximum queries by building
the data structure w.r.t. the reverse ordering.

Remark 2.10 (Sublinear RMQ): Indeed, ε can be chosen smaller than constant, yielding
sublinear extra space, at the cost of increasing the query time to superconstant; we only need
ε = Ω(n−1+δ) for some δ > 0. /

Given a static set of points in the plane, orthogonal range reporting asks to find all points
in the point set that lie inside a query rectangle [x1, x2]× [y1, y2]. Range counting queries only
report the number of such points.

Lemma 2.11 (Succinct point grids, [5, Thm. 1]): A set N of n points in an n×n integer
grid can be represented using n lgn+ o(n logn) bits of space so that

1. orthogonal-range-counting queries are answered in O(logn/ log logn) time, and

2. orthogonal-range-reporting queries are answered in O((k+1) logn/ log logn) time, where k
is the output size. /

Lemma 2.12 (Permutation grid): Given a permutation π : [n]→ [n], we can represent the
point set P = P (π) = {(x, π(x)) : x ∈ [n]} using n lgn+ o(n logn) bits of space so that we can
answer the following queries:

1. orthogonal-range-counting queries, RCountP (x1, x2; y1, y2) =
∣∣P ∩ [x1, x2] × [y1, y2]

∣∣ in
O(logn/ log logn) time;

10 Succinct Permutation Graphs

2. orthogonal-range-reporting queries, RPointsP (x1, x2; y1, y2) = P ∩ [x1, x2] × [y1, y2] in
O((k + 1) logn/ log logn) time, where k = RCountP (x1, x2; y1, y2);

3. application of π, YForXP (π)(x) = π(x) for x ∈ [n] in O(logn/ log logn) time;

4. inverse of π, XForYP (π)(y) = π−1(y) for y ∈ [n] in O(logn/ log logn) time. /

Proof: We use the grid data structure from Lemma 2.11 on P ; counting and reporting
queries are immediate, and for others we use that YForXP (π)(x) = RPointsP (x, x; 1, n).y and
XForYP (π)(y) = RPointsP (1, n; y, y).x. Here we write Q.x to denote the projection of point set
Q to the x-coordinates of the points. �

Remark 2.13 (Iterate over range): It is not clear if we can iterate over the result of
RPoints with O(logn/ log logn) time per point instead of obtaining all points in one go. /

Remark 2.14 (Simpler alternatives): At the slight expense of increasing running times by
a O(log logn) factor, we can replace the grid data structure by a wavelet tree, which is likely
to be favorable for an implementation [27, 3]. /

A last ingredient for our data structures is a recent result on succinct distance oracles for
proper interval graphs. Here, an interval graph is the intersection graph of a set of intervals
on the real line, and a proper interval graph is one that has an interval realization where no
interval strictly contains another one.

Lemma 2.15 (Succinct proper interval graphs [19, Thm. 12]): A proper interval graph
on n vertices can be represented in 3n+ o(n) bits of space so that dist(u, v) for u, v ∈ [n] can
be computed in O(1) time, and vertices are identified by the rank of the left endpoints of their
interval in some realization of the proper interval graph. We can also answer adj, deg, nbrhood
in O(1) time and spath(u, v) in O(dist(u, v)) time. For connected graphs, the space can be
reduced to 2n+ o(n) bits. /

Remark 2.16 (O(1) time neighborhood): It might sound impossible to do nbrhood in
constant time independent of the output size; this is possible in proper interval graphs since
neighborhoods are contiguous intervals (of vertex labels) and thus can be encoded implicitly in
a constant number of words. /

Remark 2.17 (Routing): By inspection of the proof, the data structure from [19] can also
support spath_succ(u, v) in constant time. Thus, not just can spath(u, v) be answered in
optimal overall time, but we can output the path step by step in optimal time per edge. /

3 Data Structures for Permutation Graphs
In this section, we assume a permutation π : [n] → [n] is given and we describe how to
answer queries on Gπ, i.e., we describe our data structures for ordered PGs. We present two
approaches: the first solution uses a grid data structure that can support all queries, albeit
with superconstant running time; the second solution stores π as an array and achieves optimal
query times for all operations except deg. Our formal result is as follows.

Theorem 3.1 (Succinct PG): A permutation graph can be represented

(a) using n lgn + o(n lgn) bits of space while supporting adj, deg, dist, spath_succ
in O(logn/ log logn) time, nbrhood(v) in O((deg(v) + 1) · logn/ log logn) time, and
spath(u, v) in O((dist(u, v) + 1) logn/ log logn) time; or

3 Data Structures for Permutation Graphs 11

(b) using n lgn+ (6.17 + ε)n+ o(n) bits of space (for any constant ε > 0) while supporting
adj, dist, spath_succ, next_nbr in O(1) time, nbrhood(v), deg(v) in O(deg(v) + 1)
time, and spath(u, v) in O(dist(u, v) + 1) time. The time for next_nbr(v) is amortized
O(1) over iterating through nbrhood(v). /

3.1 Grid-Based Data Structure
We first present the simpler grid-based data structure. Here, we store P (π) = {(v, π−1(v)) :
v ∈ [n]} in the data structure of Lemma 2.12 and identify vertices with the x-coordinates of
these points (the rank of the vertex’ chord endpoint on the upper line).

Adjacent. Given two vertices u and v, w.l.o.g. u < v. We compute π−1(u) = YForX(u) and
π−1(v) = YForX(v); then adj(u, v) = [π−1(u) > π−1(v)].

Neighborhood. We separate the neighbors of a vertex v into nbrhood(v) = N−(v) ∪N+(v)
where N−(v) = nbrhood(v) ∩ [1..v − 1] and N+(v) = nbrhood(v) ∩ [v + 1..n]. Using the
graphical representation of neighborhoods from Figure 1, we immediately obtain N−(v) =
RPoints(1, v − 1; YForX(v), n) and N+(v) = RPoints(v + 1, n; 1, YForX(v)).

Degree. Replacing the range-reporting queries from nbrhood by range-counting queries yields
deg(v) = |N−(v)|+ |N+(v)|.

3.2 Array-Based Data Structure
To improve the query time, we now give an alternative representation. A key observation is
that we never compute π; only π−1 is needed. Hence we simply store an array Π[1..n] with
Π[i] = π−1(i) using ndlgne ≤ n lgn + n bits of space. At the expense of a slightly more
complicated data structure, one can improve this space usage to dn lgne = n lgn+O(1) using
the techniques of Dodis et al. [12], still retaining access to Π in constant time. For legibility,
we continue to write π−1(i) in operations, but it is understood that this is indeed an access to
Π[i].

Adjacency. adj queries only use π−1, and thus they are solved exactly as above.

Neighborhood. Like in our previous approach, we separately handle the neighbors u of v with
u < v (in N−(v)) and with u > v (in N+(v)). Even though we do not explicitly store the point
set P (π) in our data structure, we can still answer the above range queries, because these are
effectively two-sided range queries (dominance queries):

For N−(v) = RPoints(1, v − 1;π−1(v), n), we maintain the range-maximum index from
Lemma 2.9 on Π[1..n] using εn bits of space. We can then iterate through the vertices in N−(v)
using the standard algorithm for three-sided orthogonal range reporting that uses priority
search trees: We compute i = rMqΠ(1, v− 1); if π−1(i) ≥ π−1(v), we report i as a neighbor and
recursively continue in the ranges [1..i− 1] and [i+ 1..v− 1]. Otherwise, if π−1(i) < π−1(v), we
terminate the recursion. (We also terminate recursive calls on empty ranges). Each recursive
call only takes constant time and either terminates or outputs a new neighbor of v, so we can
iterate through N−(v) with constant amortized time per vertex.

For N+(v) = RPoints(v + 1, n; 1, π−1(v)), we use the same technique, reflected: we store a
range-minimum index on Π[1..n], starting with the range [v + 1, n] and continue as long as the
returned minimum is at most π−1(v).

12 Succinct Permutation Graphs

Next neighbor. The above method can easily be used to iterate over neighbors one at a
time, instead of generating and returning the full neighborhood. The order of iteration is
implementation-defined (ultimately by the RMQ index), but fixed for any Gπ. An easy
argument shows that reporting the kth neighbor with the above algorithm can take Θ(k) time,
but amortized over the entire neighborhood of a vertex, iteration takes constant time per
neighbor. However, if done naively, it would require O(k) extra working space to store the k
ranges wherein the kth neighbor might be found.

We can improve the extra space to O(1) (words) and support starting at an arbitrary given
neighbor w to find next_nbr(v, w) in the traversal. For that, we have to look into the black
box that is the RMQ index from Lemma 2.9. Indeed, what we describe here is modification of
the construction of Fischer and Heun [14, Thm. 3.7] that has the same asymptotic performance
characteristics as in Lemma 2.9, but allows to iterate over values above a threshold.

Lemma 3.2 (RMQ index with next-above): Let A[1..n] be a static array of comparable
elements. For any constant ε > 0, there is a data structure using εn bits of space on top of A
that supports the following queries in O(1/ε) time (making as many queries to A) and using
O(1) words of working memory:

(a) range-maximum queries, rMqA(`, r),
(b) next-above queries, next_aboveA(`, r, y; i), enumerating {i ∈ [`, r] : A[i] ≥ y} in amor-

tized O(1/ε) time.
Formally, next_above implicitly defines a sequence (ij)j≥0 via i0 = rMqA(`, r) if A[i0] ≥ y
and i0 = null otherwise, and ij+1 = next_aboveA(`, r, y; ij) if ij 6= null and ij+1 = null
otherwise. Then we require {ij : ij 6= null} = {i ∈ [`, r] : A[i] ≥ y}. /

This index can be used to iterate over the result of 3-sided orthogonal range queries with
amortized constant delay and using constant working memory by computing the sequence (ij).

Proof: A 2εn+ o(n) bit RMQ index for an array A[1..n] can be obtained by (conceptually)
dividing A into εn blocks of d1/εe elements each and storing the Cartesian tree [15, 38] of the
block maxima as a succinct binary tree [10, Thm. 3] in 2εn+ o(n) bits. This tree data structure
allows in constant time to (a) map between nodes and their corresponding block indices in A,
(b) map between nodes and preorder indices, (c) find the lowest common ancestor (LCA) of
two nodes, and (d) return the number of descendants of a node. We first discuss how to solve
the problem for ε = 1, i.e., when all elements are part of the tree. We will identify nodes in
the Cartesian tree T with their inorder number, i.e., the index in A. To answer rMqA(`, r), we
simply use the Cartesian tree operations to find the nodes (of inorder index) ` and r and return
(the inorder index of) their LCA.

To iterate through all indices i ∈ [`, r] with A[i] ≥ y, we will now show how to compute the
next such index, next_aboveA(`, r, y; i), given only a current such index i (and `, r and y); if
no further such index exists, we will return “null”.

First, we compute i0 = rMqA(`, r). We will iterate through indices in the order of a preorder
traversal of the subtree rooted at i0, starting from the current node i. The challenge is to, in
constant time, skip over parts of the tree that are outside of the range [`, r] or have all A-values
below y. More specifically, the first step is to find the next candidate index s ∈ [`, r], for which
A[s] ≥ y might hold, given the current index i. We initialize s to the successor of i in preorder.

Now, we repeat the following steps until we have either found the next index or have
determined that none exists. If s is not a descendant of i0 in T , then there are no more indices
to report and we return null; we can check this condition in constant time by comparing the
preorder index of s to the sum of the preorder index of i0 and i0’s subtree size.

3 Data Structures for Permutation Graphs 13

If s is within i0’s subtree, we check whether s ∈ [`, r]; if not, s is too far left or too far right,
and we have to find the next node (in preorder) that lies inside [`, r]. If s < ` and i > `, then s
is the left child of i, and following right-child links from s eventually brings us back into the
range [`, r] since node i− 1 ∈ [`, r] must lie in s’s right subtree. In this case, we update s to the
LCA of ` and i− 1 to obtain, in O(1) time, the first node (in preorder) where this sequence of
right-child links from s enters the inorder range [`, r] again. If s < ` and i = `, i is the leftmost
node in the range and we have to skip its left subtree. We can do this by advancing from s (in
preorder) by as many nodes as s’s right child has descendants; the tree data structure again
supports this in constant time. The symmetric case of s > r is handled similarly. If i < r, we
set s to LCA of i+ 1 and r; if s > r and i = r, i was the last node in preorder with inorder
index in range [`, r], so we can return null.

In all cases, after O(1) time, we either terminate or arrive at the next candidate node s. If
A[s] ≥ y we return s and are done. Otherwise, i.e., if A[s] < y, then s and its entire subtree
have to be skipped; the tree data structure supports this in constant time (as above). Then we
repeat the above steps with the new s.

We note that the accesses to A are the same as in the naive implementation of three-sided
range reporting, and only constant time is needed between two such accesses; hence the same
time bounds hold.

When we use blocks of c = d1/εe elements and only construct T based on the block minima,
we modify this procedure as follows. When we are given a current index i, we first check the
indices j > i in i’s block. If any j has A[j] ≥ y, we return it. Only if none of the indices
in i’s block are returned, we continue with the above procedure to find the next candidate
node s. When we compare the candidate node “A[s] ≥ y”, we now iterate through the block
corresponding to node s and compare each array entry with y. When we find i with A[i] ≥ y,
we return this index; if none of the elements in the block where big enough, we continue as if
A[s] < y held. �

From the discussion above, it is clear that next_nbr corresponds exactly to next_above
queries (separately for N+ and N−), and so using Lemma 3.2, we can support next_nbr(u,w)
with constant words of extra working memory and amortized constant running time (amortized
over the iteration over all neighbors of u).

Remark 3.3 (Easy degrees): We can compute deg(v) as |nbrhood(v)| in O(deg(v)+1) time,
but this is not particularly efficient for high-degree vertices. We can obviously also add support
for deg in constant time by storing the degrees of all vertices explicitly in an array. This occupies
an additional ndlgne bits of space and is thus not succinct, but might in implementations be
preferable to the grid data structure (and offers all queries in optimal time complexity). /

3.3 Distance and Shortest Paths
Both of the above data structures can be augmented to support distance and shortest-path
queries; the only difference will be the running time to compute π−1(v).

For that, we follow the idea of [4]; we sketch their approach here and give a more formal
definition below. A shortest path from u to v in a PG can always be found using only left-to-right
maxima (“type A” vertices) and right-to-left minima (“type B” vertices) as intermediate vertices;
moreover, these are strictly alternating. Hence, after removing an initial segment of at most 2
edges on either end of the path, such a shortest path has either type A(BA)∗A or B(AB)∗B.
For example, a shortest path from vertex 15 to vertex 25 in Figure 3 is 15–14–23–22–25. Finally,
how many intermediate B-vertices are needed to move from one A vertex to another is captured
by a proper interval graph GA, and likewise for B-vertices in GB. We can hence reduce the

14 Succinct Permutation Graphs

shortest-path queries to proper interval graphs and use Lemma 2.15. We present the details
below.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

π−1(v)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1Ax
0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1Bx

0

1

1

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

1

1

0

0

1

1

Ay

1

0

1

1

0

0

1

0

1

0

1

0

1

0

0

1

0

1

0

0

0

1

0

0

0

0

1

1

0

1

By

Figure 3: Example of a permutation graph with n = 30 vertices, shown as the points P (π).
A-vertices are shown red, B-vertices are green and vertices that have both type A and
B (isolated vertices) are shown blue. Edges in Gπ are drawn yellow.

Distance. A vertex v ∈ [n] is a type-A vertex iff π−1 has a left-to-right maximum at position
v, i.e., when π−1(v) ≥ π−1(u) for all u < v. Note that 1 is always a left-to-right maximum.
Similarly, a vertex v ∈ [n] is type B iff π−1 has a right-to-left minimum at v, i.e., π−1(v) ≤ π−1(u)
for all u > v; vertex n is always type B. As in [4], we use A and B to denote the set of A-vertices
and B-vertices, respectively, and we define:

a−(v) = min (nbrhood(v) ∩A),
a+(v) = max(nbrhood(v) ∩A),
b−(v) = min (nbrhood(v) ∩B),
b+(v) = max(nbrhood(v) ∩B).

If we are computing a shortest path from u to v, then either u and v are adjacent, or there is a
shortest path whose first vertex after u is one of a+(u) and b+(u), if v > u, or one of a−(u) and
b−(u), if v < u. It is therefore vital to be able to compute these four functions. For that, we

3 Data Structures for Permutation Graphs 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

π−1(v)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 1 0 0 0 0 1 0Ax
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1Bx

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

1

Ay

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

By

Figure 4: Another example of a permutation graph; the drawing is as in Figure 3. This graph is a
typical graph when the π is chosen uniformly at random.

store four bitvectors with rank/select support (Lemma 2.6) that encode which points belong to
A (resp. B) given an x- (resp. y-)coordinate:

Ax[1..n] with Ax[u] = [u ∈ A],
Bx[1..n] with Bx[u] = [u ∈ B],
Ay[1..n] with Ay[i] = [π(i) ∈ A],
By[1..n] with Ay[i] = [π(i) ∈ B].

Figure 3 and Figure 4 show examples of these bitvectors. We can now use these to compute
the extremal A and B neighbors of a vertex v as follows:

a+(v) = select1
(
Ax, rank1(Ax, v)

)
,

a−(v) = select1
(
Ax, rank1(Ay, π−1(v)− 1) + 1

)
,

b+(v) = select1
(
Bx, rank1(By, π−1(v))

)
,

b−(v) = select1
(
Bx, rank1(Bx, v − 1) + 1

)
.

16 Succinct Permutation Graphs

The computation takes O(1) time plus at most one evaluation of π−1(v).

Remark 3.4 (π−1 for A/B-vertices): We note here (for later reference) that for a ∈ A
we can compute π−1(a) = select1(Ay, rank1(Ax, a)) just from the bitvectors without ac-
cess to Π, because π−1 is monotonically increasing on A; similarly for b ∈ B: π−1(b) =
select1(By, rank1(Bx, b)). /

In [4, Thm. 2.1], Bazzaro and Gavoille show that the distances/shortest paths in a PG can
now be found by testing for the special cases of distance at most 3 (using a± or b±) or by
asking a distance query in a proper interval graph. More specifically, let u < v.

1. If adj(u, v), the distance is 1 and we are done.

2. Otherwise, if adj(a+(u), v) or adj(b+(u), v), which can equivalently be written as a−(v) ≤
a+(u) ∨ b−(v) ≤ b+(u), the distance is 2 and we are done.

3. Otherwise, if adj(a+(u), b−(v)) or adj(b+(u), a−(v)), which is equivalent to a−(v) ≤
a+(b+(u)) ∨ b−(v) ≤ b+(a+(u)), the distance is 3 and we are done.

4. Otherwise, the distance is the minimum of the following four cases:
2 + 2 · distGB

(b+(u), b−(v)), 3 + 2 · distGB
(b+(a+(u), b−(v)),

2 + 2 · distGA
(a+(u), a−(v)), 3 + 2 · distGA

(a+(b+(u), a−(v)).

Here GA is the interval graph (intersection graph) defined by intervals [b−(v), b+(v)] for all
v ∈ A and GB by intervals [a−(v), a+(v)] for all v ∈ B. In general, these intervals share
endpoints, but they can be transformed into a proper realization by breaking ties by vertex v,
e.g., for GA, we use [b−(v)− (n− v) · ε, b+(v) + v · ε] instead of [b−(v), b+(v)] for, say, ε = 1/n2.
Then all endpoints are disjoint and no interval properly contains another; moreover, the ith
smallest left endpoint corresponds to the ith smallest vertex in A.

We compute the data structure of Lemma 2.15 for GA and GB ; to map vertex v ∈ A to the
corresponding vertex in GA, we simply compute rank1(Ax, v); recall that the data structure of
Lemma 2.15 identifies vertices with the rank of their left endpoints. With that, we can compute
the four distances above and return the minimum.

The running time for dist is the time needed for a constant number of extremal neighbor
queries (O(1) for the array-based data structure, O(logn/ log logn) for the grid-based one), a
constant number of adjacency checks (same running times), a constant number of rank-queries
(O(1) each), and finally a constant number of dist queries in proper interval graphs (again
O(1)). The running time for dist is thus dominated by the time for evaluating π−1.

Shortest paths. Suppose u < v. As noted by Bazzaro and Gavoille [4], the above case
distinction does not only determine the distance, but also determines in each case a next vertex
w after u on a shortest path from u to v. We output u and unless u = v, we recursively call
spath(w, v).

Since the running time for all checks above is dominated by π−1(v), we can iterate through
the vertices on spath(u, v) in O(1) time per vertex for the array-based data structure, and in
O(logn/ log logn) time per vertex for the grid-based data structure.

Space. The four bitvectors Ax, Bx, Ay, and By require no more than 4n+ o(n) bits of space
including the support for rank and select operations.

When we allow ourselves to modify π, we can slightly improve upon this: We first move
all isolated vertices to the largest indices. Note that any connected components can be freely

4 Algorithms on Succinct Permutation Graphs 17

permuted without changing the graph; in the point grid this has to be done by shifts along
the y = x line. We now store the number w of isolated vertices. Each of the remaining nodes,
[n− w], can either be an A-node, a B-node, or neither, which can be encoded as a string over
{A,B,N}. We store this string as a wavelet tree (Lemma 2.8) with support for rank and
select, using at most lg(3)n+ o(n) bits of space per dimension (x and y), for a total of at most
3.16993n+ o(n) bits.

(The data structure can sometimes achieve even better compression since it compresses to
the empirical entropy of the string).

GA and GB have no more than n vertices in total, so the data structures from Lemma 2.15
will use at most 3n+ o(n) bits of space. In addition to that, we need εn bits of space for the
range-maximum and range-minimum indices, for a total of (6.17 + ε)n+ o(n) bits of space on
top of storing Π. Assuming we using the data structure of [12] for the latter, the total space is
n lgn+ (6.17 + ε)n+ o(n).

This concludes the proof of Theorem 3.1.

4 Algorithms on Succinct Permutation Graphs
Clearly, next_nbr is equivalent to an adjacency-list based representation of a graph, so our
succinct data structures can replace them in standard graph algorithms, like traversals. Beyond
that, there are a few more properties specific to PGs that known algorithms for this class build
on and which are not reflected in our list of standard operations. Fortunately, as we will show
in the following, our data structures are capable of providing this more specialized access, as
well; we formulate these as remarks for later reference.

Remark 4.1 (Transitive orientations & topological sort): A graph is a comparability
graph iff it admits a transitive orientation, i.e., an orientation of all its edges so that if there
is a directed path from u to v, we must also have the “shortcut edge” (u, v). In any ordered
PG Gπ, orienting all edges {u, v} with u < v as (u, v) yields such a transitive orientation as is
immediate from the point-grid representation. Denote the resulting directed graph by G→π .

It follows that the partition of the neighborhood into N−(v) and N+(v) introduced above
coincides with in-neighborhood and out-neighborhood of v in G→π , respectively. Since both our
data structures for PGs handle N−(v) and N+(v) separately, our data structure can indeed
answer adj, nbrhood, deg, dist, and spath queries w.r.t. digraph G→π instead of Gπ at no
extra cost and in the same running time. (Note that dist and spath are trivial in a transitively
oriented digraph: All shortest directed paths are single edges.)

It is immediate from the definition that 1, . . . , n, i.e., listing the vertices by (increasing)
x-coordinate in the point grid, is a topological sort of the vertices in G→π . It is also easy to
see that the same is true for decreasing y-coordinate, i.e., π(n), π(n− 1), . . . , π(1) is a second
topological sort of G→π . Indeed, PGs are exactly the comparability graphs of posets of dimension
two, i.e., the edge set of G→π is obtained as the (set) intersection of two linear orders (namely
1, . . . , n and π(n), . . . , π(1)). /

Remark 4.2 (One data structure for G and G): PGs are exactly the graphs where both
G and the complement graph G are comparability graphs. That immediately implies that G is
also a PG, when G is such.

We can extend our data structure with just O(n) additional bits of space so that we can
also answer all queries in G that the data structure could answer for G; in fact, only the
distance-related data structures (Ax, Ay, Bx, By and GA, GB) need to be duplicated for G. /

18 Succinct Permutation Graphs

With these preparations, we can show how several known algorithms for PGs [22, 23] can
efficiently run directly on top of our data structure (without storing G separately).

Maximum Clique & Minimum Coloring. While computing (the size of) a maximum clique
is NP-complete for general graphs, in comparability graphs, they can be found efficiently: we
transitively orient the graph and then find a longest (directed) path. Note that any directed
path in the transitive orientation is actually a clique in the comparability graph.

Since our data structures already maintain Gπ in oriented form (Remark 4.1), the textbook
dynamic-programming algorithm for longest paths in DAGs [34] suffices: For each vertex v, we
store the length of the longest directed path ending in v seen so far in an array L[v]. We iterate
through the vertices in a topological sort; say v = 1, . . . , n (in that order). To process vertex v,
we iterate through its in-neighborsN−(v) and compute L[v] = max

(
{L[u]+1 : u ∈ N−(v)}∪{1}

)
.

Then, ` = maxv L[v] is the length of the longest path in G→π , and the path can be compute by
backtracing. The same ` vertices then form a clique in G. As McConnell and Spinrad [22] noted,
L[v] is simultaneously a valid coloring for G with ` colors, so no larger clique can possibly exist.

The running time of above algorithm is O(n+m), where m is the number of edges in Gπ;
the extra space on top of our data structure is just n words to store the colors.

Maximum Independent Set & Minimum Clique Cover. Clearly, a maximum independent
set in G is a maximum clique in G, and similarly, a minimum clique cover of G equals a
minimum coloring of G. As discussed in Remark 4.2, our data structure can without additional
space support to iterate through N−G(v), the in-neighbors of v in G, which is enough to run
the above max-clique/min-coloring algorithm on G.

5 Bipartite Permutation Graphs
Bipartite permutation graphs (BPGs) are permutation graphs that are also bipartite. While
our data structures for general PGs clearly apply to BPGs, their special structure allows to
substantially reduce the required space.

Theorem 5.1 (Succinct BPG): A bipartite permutation graph can be represented

(a) using 2n+ o(n) bits of space while supporting adj, deg, spath_succ in O(1) time and
nbrhood(v) in O(deg(v)) time,

(b) using 5n+ o(n) bits of space while supporting adj, deg, spath_succ, dist in O(1) time
and nbrhood(v) in O(deg(v)) time. /

By iterating spath_succ, we can answer spath(u, v) in optimal O(dist(u, v) + 1) time.

5.1 Data Structure
As already observed in [4], BPGs consist of only A and B vertices. Isolated vertices are formally
of both type A and B; thus it is convenient to assign them to the highest possible indices and
to exclude them from further discussion. (All operations on them are trivial.)

All vertices being of type A or B means that every vertex corresponds to a left-to-right
maximum or a right-to-left minimum. The permutation π−1 thus consists of two shuffled
increasing subsequences and can be encoded using the bitvectors Ax and Ay (introduced in
Section 3.3) in just 2n bits. We add rank and select support to both bitvectors (occupying o(n)
additional bits of space). Figure 5 shows an example.

5 Bipartite Permutation Graphs 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 v

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

π−1(v)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0Ax

0

0

1

1

1

0

0

0

0

0

0

0

1

1

1

1

0

1

0

0

0

1

1

0

1

0

0

1

0

0

0

0

0

1

0

0

1

1

1

1

Ay

Figure 5: An exemplary bipartite permutation graph, shown as the grid P (π).

20 Succinct Permutation Graphs

The key operation is to simulate access to π−1(v) based on the above representation:

π−1(v) =
{

select1(Ay, rank1(Ax, v)) if Ax[v] = 1
select0(Ay, rank0(Ax, v)) if Ax[v] = 0

Computation of π−1 is thus supported in constant time. That immediately allows to compute
adj(u, v) as before; moreover, a−(v), a+(v), are directly supported, too. For b−(v), b+(v),
we exploit that in BPGs, Bx[v] = 1 − Ax[v] so b+(v) = select0(Ax, rank0(Ay, π−1(v))), and
similarly for b−(v).

It is easy to see that for a B-vertex v, its neighbors are exactly all A-vertices in [a−(v), a+(v)];
similarly for A-vertex v, we have N(v) = [b−(v), b+(v)] ∩ B. We can iterate through these
(in sorted order) using rank/select on Ax, so nbrhood can be answered in constant time per
neighbor.

The degree of a vertex can computed inO(1) time. If v is aB-vertex, deg(v) = rank1(Ax, a+(v))−
rank1(Ax, a−(v))− 1, and similarly for an A-vertex.

Finally, shortest paths in BPGs are particularly simple since there is only one candidate
successor vertex left: Let u < v and assume u is an A-vertex. Then either u and v are adjacent,
or spath_succ(u, v) = b+(u). The situation where u is a B-vertex is symmetric. Computing
dist(u, v) faster than Θ(dist(u, v)) seems only possible using the distance oracles for GA and
GB, which require 3n+ o(n) additional bits of space. The query itself is as for general PGs.

This concludes the proof of Theorem 5.1.

5.2 Space Lower Bound
A known counting result for unlabeled BPGs implies that our data structure from Theorem 5.1
is succinct. Let us denote by bn the number of unlabeled BPGs and by bn the number of
unlabeled connected BPGs. Saitoh et al. [32, Thm. 3.14] showed that

bn =

1
4
(
Cn−1 + Cn/2−1 +

(n
n/2
))

if n is even
1
4
(
Cn−1 +

(n−1
(n−1)/2

))
if n is odd

= Cn−2(1 + o(1)),

for n ≥ 2, where Cn is the nth Catalan number. Hence lg bn ≥ lg bn = 2n−O(logn) bits are
necessary to represent an unlabeled BPG on n vertices. This is asymptotically equivalent to
the amount of space required by our data structure.

5.3 Algorithms
Our data structure for BPGs can be used to solve the Hamiltonian Path and the Hamiltonian
Cycle problems in O(n) time with no extra space. A Hamilton path (resp. Hamiltonian
cycle) in a graph is a simple path (resp. simple cycle) which contains every vertex of the
graph. Given a graph G, the Hamiltonian Path (resp. Hamiltonian Cycle) problem asks
whether the graph G contains a Hamiltonian path (resp. Hamiltonian cycle). These problems
are NP-complete even when restricted to several special classes of bipartite graphs, but can
be solved efficiently in the class of BPGs (see [35] and references therein). We will show how
our data structure can be used to execute the algorithms from [35] in O(n) time without using
extra space.

In order to explain the algorithms and their execution on the data structure, we need to
introduce some preliminaries from [35]. A strong ordering of the vertices of a bipartite graph

5 Bipartite Permutation Graphs 21

G = (A,B,E) consists of an ordering of A and an ordering of B such that for all {a, b}, {a′, b′}
in E, where a, a′ are in A and b, b′ are in B, a < a′ and b > b′ imply {a, b′} and {a′, b} are in
E. The algorithms are based on the following characterization of BPGs.

Theorem 5.2 (Strong ordering, [35]): A graph G = (A,B,E) is BPG if and only if there
exists a strong ordering of A ∪B. /

Let G = (A,B,E) be a BPG, where A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bs}, and the
vertices are indexed according to a strong ordering of A ∪B. Then using the characterization
from Theorem 5.2, the following results were proved in [35].

Theorem 5.3 (Hamiltonian path, [35]): Graph G contains a Hamiltonian path if and only
if

• either s = k − 1 and a1, b1, a2, b2, . . . , bk−1, ak is a Hamiltonian path,

• or s = k and a1, b1, a2, b2, . . . , bk−1, ak, bk is a Hamiltonian path,

• or s = k + 1 b1, a1, b2, a2, . . . , ak, bk+1 is a Hamiltonian path,

• or s = k and b1, a1, b2, a2, . . . , ak−1, bk, ak is a Hamiltonian path. /

Theorem 5.4 (Hamiltonian cycle, [35]): Graph G contains a Hamiltonian cycle if and
only if k = s ≥ 2 and ai, bi, ai+1, bi+1 is a cycle of length four for 1 ≤ i ≤ k − 1. /

In order to make use of these results, we will show that in our data structure, vertices
of a given ordered BPG are stored in a strong ordering. Recall, that given a permutation
π : [n] → [n], the ordered PG induced by π, denoted Gπ = (V,E), has vertices V = [n] and
edges {i, j} ∈ E for all i > j with π−1(i) < π−1(j).

Claim 5.5: Let Gπ = (A,B,E) be an ordered BPG, then the ordering 1 < 2 < . . . < n−1 < n
(restricted to A and B, respectively) is a strong ordering of A ∪B. /

Proof: As before, we assume that A is the set of A-vertices and B is the set of B-vertices of G.
Let a, a′ ∈ A and b, b′ ∈ B be such that {a, b} and {a′, b′} are in E, and a < a′ and b > b′. We
will show that in this case {a, b′} and {a′, b} are also in E. By definition, we need to establish:

(1) a < b′ and π−1(a) > π−1(b′); and

(2) a′ < b and π−1(a′) > π−1(b).

We will show only (1), as (2) is proved similarly. Since {a′, b′} ∈ E and a′ is an A-vertex, we
have that a′ < b′ and hence a < b′ (as, by assumption, a < a′). To prove the second part of (1),
we note that π−1(b) < π−1(a) and b > a because {a, b} ∈ E. Furthermore, since {b′, b} 6∈ E
and b′ < b, we have that π−1(b′) < π−1(b). Consequently, π−1(b′) < π−1(a). �

Hamiltonian Path. Using Theorem 5.3 and Claim 5.5 the problem can be solved by going
in constant time from the first A-vertex a1 to its first B-neighbor b1 = b−(a1), then going in
constant time from b1 to its first A-neighbor a2 = a−(b1), and so on until we can no longer move.
If we made n moves, then we have visited all the vertices of the graph following a Hamiltonian
path. Otherwise, we try to do the same but this time starting from the first B-vertex. Similarly,
if we made n moves, then the graph has a Hamiltonian path. If both attempts fail, the graph
does not contain a Hamiltonian path. This algorithm works in O(n) time.

22 Succinct Permutation Graphs

Hamiltonian Cycle. First, we check that the number of A-vertices is equal to the number of
B-vertices. If so, we check next if the graph contains a Hamiltonian path using the previous
algorithm (this will ensure that A- and B-vertices alternate). In the case of success, at the final
stage of the algorithm, we iterate through A-vertices following the strong ordering, and for every
A-vertex ai calculate in constant time the vertices bi,1 = b−(ai), ai,2 = a−(bi,1), bi,2 = b−(ai,2)
and check if the vertices ai and bi,2 are adjacent, (i.e., whether all the four vertices induce a
cycle on four vertices), which is equivalent to π−1(ai) > π−1(bi,2). Theorem 5.4 and Claim 5.5
imply that the graph contains a Hamiltonian cycle if and only if all stages of the algorithm
were successful. Overall, the algorithm works in O(n) time.

6 Circular Permutation Graphs
Circular permutation graphs (CPGs) are a natural generalization of PGs first introduced by
Rotem and Urrutia [31]. In this section, we show how to extend our data structure to CPGs.

6.1 Preliminaries
CPGs results from PGs by allowing circular/cyclic permutation diagrams, i.e., in the intersecting
chords representation, we connect the right and left end of the gray ribbon to form a cylinder.
The cylinder can be smoothly transformed into two concentric circles with chords in the annular
region between them; Figure 6 shows an example.

1

2

3

4

5

6

7 1

1

2

2

3

3

4

4

5

5

6

6

7

7

1

2

3
4

5

6

7

4

1

6

3

2

7

5

Figure 6: Small circular permutation graph on 7 vertices (left) that is not a standard permutation
graph, shown as the intersection of chords between concentric circles (middle), and as
intersections of chords on a cylinder that has been cut open (note that chord 2 wraps
around the cut).

By cutting the annulus open again, we obtain the permutation diagram with crossings,
i.e., where some chords cross the cut and continue from the opposite end; (Figure 6 right).
This induces a linear order of the endpoints on both circles (in counterclockwise direction
starting at the cut) and hence a permutation π : [n]→ [n] as before; e.g., for Figure 6, we have
π = (4, 1, 6, 3, 2, 7, 5). Note that for CPGs, though, π no longer uniquely determines a graph
because chords between circles can wrap around the inner circle in clockwise or counterclockwise
direction and this affects intersections. The representation becomes unique again upon adding
an assignment of chord types t : [n]→ {N,F,B} to π with the following meaning: N -chords
do not cross the cut at all. F -chords do cross the cut, namely in forward direction, i.e., when
following the chord from the upper endpoint to the lower endpoint, we move to the right.
Finally, B-chords also cross the cut, but in backward direction, i.e., following the chord top

6 Circular Permutation Graphs 23

down moves us to the left. A larger example with all types of crossings is shown in Figure 8
(page 26).

Note that every PG is also a CPG (setting t(v) = N for all vertices), so the lower bounds
from Section 2.2 applies here as well.

Remark 6.1 (Improper diagrams): The original definition of CPGs required the permuta-
tion diagram to be “proper”, meaning that no two chords intersect more than once. All our
permutation diagrams are required to be proper in this sense. (Later works [36] achieved a
similar effect by defining vertices adjacent iff their chords intersect exactly once.)

Note that monotonic/straight chords and forbidding double crossings of the cut are not
sufficient: not all combinations of π and t lead to a proper permutation diagram. Indeed, the
pair (π, t) is valid iff no pair of chords u, v has one of the following forbidden combinations of
crossing type and relative location:

1. u < v, π−1(u) > π−1(v) (inversion), t(v) = N , and t(u) = F .

2. u < v, π−1(u) > π−1(v) (inversion), t(v) = B, and t(u) = N .

3. u < v, π−1(u) < π−1(v) (no inversion), and N 6= t(v) 6= t(u) 6= N .

Each of these cases implies a double crossing and a chord length > n after “pulling one chord
straight” (by turning the two circles against each other). /

Sritharan [36] gave a linear-time algorithm for recognizing CPGs, which also computes the
circular permutation diagram if the input is a CPG.

6.2 Ordered CPGs and the Thrice-Unrolled PG
In analogy to ordered PG Gπ, we define the ordered CPG Gπ,t for a (valid combination of)
permutation π : [n]→ [n] and chord types t : [n]→ {N,F,B}.

From now on, we assume such a graph Gπ,t is given. In preparation of our succinct data
structure for CPGs, we again define a planar point set based on which we support all queries:

P (π, t) =
{
(v + kn, π−1(v) + kn) : v ∈ [n], k ∈ {0, 1, 2}, t(v) = N

}
∪
{
(v + kn, π−1(v) + (k + 1)n) : v ∈ [n], k ∈ {0, 1}, t(v) = F

}
∪
{
(v + kn, π−1(v) + (k − 1)n) : v ∈ [n], k ∈ {1, 2}, t(v) = B

}
P (π, t) lies in a 3n × 3n grid and 2n ≤ |P (π, t)| ≤ 3n. Intuitively, P (π, t) is obtained by
unrolling the circular permutation diagram of Gπ,t three times: We record the times at which
we see a chord’s endpoints during this unrolling process and output a point for these times. We
only output chords when we have seen both endpoints during this process, so each noncrossing
chord is output three times, whereas the crossing chords are only present twice. See Figure 7
for an example.

Clearly, P (π, t) corresponds to the grid representation of a (larger) PG, denoted by G3 =
G3(π, t), which “contains” Gπ,t in the sense detailed in Lemma 6.2 below. Denote the vertices
in G3 by `j , cj , and rj , j ∈ [n], respectively, where `j is the vertex corresponding to point (x, y)
with x = j ∈ [n], cj is the vertex for (x, y) with x = j + n ∈ (n..2n] and rj is the vertex for
(x, y) with x = j + 2n ∈ (2n..3n]. (Note that in general not all `j (resp. rj) will be present.)
We call cv the main copy of vertex v in Gπ,t, and `v and rv are the left (resp. right) copies of v.

24 Succinct Permutation Graphs

1 1 12 2 23 3 34 4 45 5 56 6 67 7 7 v

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

π−1(v)

1

1

1

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

1

2

3

4

5

6

7

1

1 2

3

3

4

4

5

5

6

6

7

7

1

1

2 3

3

4

4

5

5

6

6

7

7

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 7: The circular permutation graph from Figure 6 and its thrice-unrolled PG G3 as a
permutation diagram and in the grid representation.

6 Circular Permutation Graphs 25

Lemma 6.2 (Neighborhood from G3): Let v be a vertex in Gπ,t and cv its main copy in
G3(π, t). Then v’s neighbors (in Gπ,t) can be deduced from cv’s neighbors in in G3(π, t) as
follows:

N−(v) = {w : cw ∈ N−(cv) ∨ `w ∈ N−(cv)},
N+(v) = {w : cw ∈ N+(cv) ∨ rw ∈ N+(cv)}. /

Proof: First note that by construction, any edge in G3 between copies of u and v in G3 (i.e.,
any edge between `u, cu, ru, resp. `v, cv, rv) implies an edge in G between u and v. Hence
we never report non-neighbors in the set for N−(v) and N+(v) above. Moreover, for any
combination of `, c, r where both copies of u and v exist, these copies are adjacent in G3. It
remains to show that any edge in G is witnessed by at least one pair of copies. For that, consider
the permutation diagram of G3 and note that it contains a complete copy of the permutation
diagram with crossings of G in its middle third (see Figure 7), so every neighbor of v in G can
be witnessed from cv in G3. �

Remark 6.3 (Thrice or twice?): It follows directly from the definition of a proper permu-
tation diagram that the upper endpoints of all backward-crossing chords must precede all upper
endpoints of forward-crossing chords, and vice versa for lower endpoints. As a consequence, we
can remove further copies from G3 without affecting Lemma 6.2; one can show that at most
two copies of every noncrossing chord are always sufficient. Since the size of G3 will only affect
lower-order terms of space, we omit this optimization here for ease of presentation. /

6.3 Succinct CPGs
With this preparation, we can now describe our succinct data structure for CPGs. Conceptually,
we store our succinct PG data structure for G3 and reduce the queries to it. For the space-
dominant part, i.e., the inverse permutation π−1, we store it implicitly, exploiting the special
structure of G3.

Theorem 6.4 (Succinct CPGs): An (unlabeled) circular permutation graph on n vertices
can be represented using n lgn+O(n) bits of space while supporting adj, dist, spath_succ
in O(1) time and nbrhood(v) and deg(v) in O(deg(v) + 1) time. /

As always, we can add constant-time degree support at the expense of another ndlgne bits of
space.

We are now ready to give the proof of Theorem 6.4. Let a valid pair (π, t) be given and
consider Gπ,t. As for PGs, we store the array Π[1..n] with Π[i] = π−1(i); additionally, we
store the sequence t = t(1), . . . , t(n) over alphabet {N,F,B} for constant-time access; (two
bitvectors suffice for the claimed space).

For the operations, we will show how to simulate access to the grid representation of G3;
the reader will find it useful to consult the larger example CPG in Figure 8 when following the
description.

Mapping between vertex v in G and the x-coordinates of `v, cv, rv in G3 is trivial. To access

26 Succinct Permutation Graphs

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

1 1 12 2 23 3 34 4 45 5 56 6 67 7 78 8 89 9 910 10 1011 11 1112 12 1213 13 1314 14 1415 15 15 v

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

π−1(v)

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

7

7

7

8

8

8

9

9

10

10

10

11

11

12

12

12

13

13

13

14

14

15

15

Figure 8: A larger circular permutation graph with n = 15 vertices, represented by the permutation
diagram with crossings (top) and the grid representation of the thrice-unrolled PG
(bottom). In the permutation diagram, noncrossing chords are drawn black, forward
crossing chords are green (vertices 9, 11, 14, 15) and backward crossing chords are
brown (vertices 1, 6).

7 Semi-Distributed Graph Representations 27

the y-coordinate for a point (x, y), y(x), we consult the type of the corresponding vertex v:

y(`v) =
{
Π[v] if t[v] = N

Π[v] + n if t[v] = F

y(cv) =

Π[v] + n if t[v] = N

Π[v] + 2n if t[v] = F

Π[v] if t[v] = B

y(rv) =
{
Π[v] + 2n if t[v] = N

Π[v] + n if t[v] = B

All can be answered in O(1) time. Based on that, we can answer the main queries.

Adjacency. u < v are adjacent (in Gπ,t) iff y(cu) > y(cv) ∨ y(`v) > y(cu) ∨ y(cv) > y(ru); if
any of the involved copies does not exist, that part of the condition is considered unfulfilled.

Neighborhood. Given a vertex v, we use Lemma 6.2 to reduce the query to neighborhood
queries on G3. To compute the neighborhood of cv in the PG G3, we use the same method as
in Section 3.2; for that we store the range-minimum/maximum index from Lemma 2.9 for the
sequence of y-values of all vertices in G3 (filling empty slot from missing copies with +∞, resp.
−∞, values). Note that this index only requires access to individual values in the sequence of
y-values (which we can provide in constant time); it does not require the values to be stored
explicitly in an array. The additional space cost for constant-time range-min/max queries is
only εn bits. The time stated for deg follows from counting the neighbors one by one.

Distance and shortest paths. As for neighborhood, we augment our data structure with the
additional data structures from Section 3.3 for the PG G3, i.e., we define A, B, a±(v), b±(v),
and GA, GB as before for G3. All now have up to 3n vertices instead of n, but only occupy
O(n) bits in total.

By construction, two vertices u and v in G3 are only adjacent if the corresponding vertices
in G are adjacent. Therefore, the distance between u and v can be found as the minimum over
all combinations of copies of u and v in G3 (at most 9).

For (the first vertex on) a shortest path, the minimal distance pair of copies can be used
with the spath_succ query on G3.

This concludes the proof of Theorem 6.4.

7 Semi-Distributed Graph Representations
While Bazzaro and Gavoille [4] report that no distance labeling scheme for PGs exists with less
than 3 lg(n)(1− o(1)) bits per label, our succinct data structure with overall n lg(n)(1 + o(1))
bits of space clearly demonstrates that this lower bound can be overcome in “centralized” data
structures. An interesting question is whether this lower bound can also be circumvented using
only a small amount of global memory on top of the local labels.

More formally, a semi-distributed (distance) oracle consists of a vertex labeling ` : V →
{0, 1}? and a data structure D, so that dist(u, v) can be computed from (`(u), `(v),D). If we
allow arbitrary data structures D, this notion is not very interesting; one could simply ask D
to compute all queries. But if we restrict D to less space than necessary to simply encode the

28 Succinct Permutation Graphs

graph, we obtain an interesting model of computation that interpolates between standard data
structures and labeling schemes.

Let us call a representation an 〈L(n), D(n)〉-space semi-distributed representation if for
every n-vertex graph we have |`(v)| ≤ L(n) for all vertices v and |D| ≤ D(n). Our question can
then be formulated as follows: What is the smallest D(n) that permits a 〈(3− ε) lgn,D(n)〉
space semi-distributed distance oracle for permutation graphs?

The known distance labeling scheme from [4] implies a 〈9 lgn, 0〉-space semi-distributed
representation, and our succinct data structure constitutes a 〈lgn, n lg(n)(1 + o(1))〉-space
semi-distributed representation.

A closer look at Section 3 reveals that the dominant space in our (array-based) data structure
comes from storing π−1. In particular, all further data structures required to answer dist
queries occupy only O(n) bits of space. Moreover, all computations to determine distances, and
even the entire shortest path, require only π−1 of the original endpoints (cf. Remark 3.4). We
can thus move π−1(v) into the label of node v, thereby making it inaccessible from any other
vertex without affecting the queries. We hence obtain the following result.

Theorem 7.1 (Semi-distributed PGs): Permutation graphs admit a 〈2 lgn,O(n)〉-space
semi-distributed representation that allows to answer the following queries: adj, dist, and
spath_succ in O(1) time and spath(u, v) in O(dist(u, v) + 1) time. /

Proof: The label `(v) consists of the pair of (v, π−1(v)), i.e., the x- and y-coordinate in the
grid representation of G. All remaining data structures from Section 3 occupy O(n) bits of
space. As discussed above, for the listed operations access to π−1 is only needed for the queried
vertices. �

Remark 7.2 (Who stores the labels): Note that in our succinct data structures, we iden-
tify vertices with the (left-to-right) ranks of the upper endpoints of their chords in the per-
mutation diagram. That means that the user of our data structure is willing to let (the
construction algorithm of) our succinct data structure decide how to label vertices, and vertices
are henceforth referred to using these labels. In a (semi-)distributed representation, we have
to assign and store a unique label for each vertex, because queries are computed only from
the labels of the vertices (and potentially D). The semi-distributed scheme derived from our
succinct representation therefore takes up a total of ∼ 2n lgn bits. /

This 〈2 lgn,O(n)〉 scheme circumvents the lower bound for distance labelings in label length
and overall space; it thus gives a novel trade-off beyond the fully distributed and fully centralized
representations. In particular, it shows that access to global storage, even a fairly limited
amount, is inherently more powerful than a fully-distributed labeling scheme.

8 Conclusion
We presented the first space-efficient data structures for permutation graphs (PGs), circular
permutation graphs (CPGs), and bipartite permutation graphs (BPGs). They use space close
to the information-theoretic lower bound for these classes of graphs, while supporting many
queries in optimal time. The use of our data structures as space-efficient exact distance oracles
improves the state of the art and proves a separation between standard, centralized data
structures and distributed graph labeling schemes for distance oracles in permutation graphs.
Our notion of semi-distributed graph representations interpolates between these two extremes;
an initial result shows that access to global memory is inherently more powerful even if we
cannot store the entire graph there.

There are several interesting directions for future research.

References 29

1. Is it possible to support degree queries in constant time and succinct space, together
with the queries covered by our data structures? With our current approach, this seems
to require improvements to range searching in succinct grids, but the queries are of a
restricted form.

2. What is the least amount of global storage in a semi-distributed representation for
distances in permutation graphs that overcomes the lower bound for distance labeling
schemes? Is there a smooth trade-off between the “amount of decentralization” and total
space, or does it exhibit a sharp threshold?

3. Comparability graphs of dimension k. These graphs have representations with k−1 chord
segments per vertex; PGs correspond to k = 2. It is known [4] that for k ≥ 3, distance
labels require Ω(n1/3) bits. Is a succinct distance oracle with efficient queries possible for
these graphs?

4. Circle graphs. While navigational operations are possible [2], efficient distance queries
remain an open problem.

Acknowledgements. We thank the TCS Open Problem Group of the Department of Computer
Science of University of Liverpool for creating the productive environment from which this
research originated.

References
[1] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, Kei Nakashima, Kunihiko Sadakane,

and Srinivasa Rao Satti. Succinct navigational oracles for families of intersection graphs
on a circle, 2020. arXiv:2010.04333.

[2] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, Kei Nakashima, Kunihiko Sadakane,
and Srinivasa Rao Satti. Succinct navigational oracles for families of intersection graphs
on a circle. Theoretical Computer Science, 2022. doi:10.1016/j.tcs.2022.06.022.

[3] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct
encodings for families of interval graphs. Algorithmica, April 2020. doi:10.1007/s00453-020-
00710-w.

[4] Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure for comparability
graphs. Discrete Mathematics, 309(11):3465–3484, June 2009. doi:10.1016/j.disc.2007.12.091.

[5] Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range
search structures on a grid with applications to text indexing. In Workshop on Algorithms
and Data Structures (WADS), pages 98–109. Springer Berlin Heidelberg, 2009. doi:10.1007/978-
3-642-03367-4_9.

[6] H.S. Chao, F.R. Hsu, and R.C.T. Lee. An optimal algorithm for finding the mini-
mum cardinality dominating set on permutation graphs. Discrete Applied Mathematics,
102(3):159–173, June 2000. doi:10.1016/s0166-218x(98)00145-0.

[7] David R. Clark. Compact PAT Trees. Phd thesis, 1996.

[8] Charles J. Colbourn. On testing isomorphism of permutation graphs. Networks, 11(1):13–21,
1981. doi:10.1002/net.3230110103.

http://arxiv.org/abs/2010.04333
https://doi.org/10.1016/j.tcs.2022.06.022
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1016/j.disc.2007.12.091
https://doi.org/10.1007/978-3-642-03367-4_9
https://doi.org/10.1007/978-3-642-03367-4_9
https://doi.org/10.1016/s0166-218x(98)00145-0
https://doi.org/10.1002/net.3230110103

30 Succinct Permutation Graphs

[9] Christophe Crespelle and Christophe Paul. Fully dynamic algorithm for recognition and
modular decomposition of permutation graphs. Algorithmica, 58(2):405–432, 2010.

[10] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. On succinct representations
of binary trees. Mathematics in Computer Science, 11(2):177–189, March 2017. doi:
10.1007/s11786-017-0294-4.

[11] Jitender S. Deogun and George Steiner. Polynomial algorithms for hamiltonian cycle
in cocomparability graphs. SIAM Journal on Computing, 23(3):520–552, June 1994.
doi:10.1137/s0097539791200375.

[12] Yevgeniy Dodis, Mihai P˘ atras,cu, and Mikkel Thorup. Changing base without losing
space. In Proceedings of the forty-second ACM symposium on Theory of computing, pages
593–602, 2010.

[13] Ben Dushnik and Edwin W. Miller. Partially ordered sets. American journal of mathematics,
63(3):600–610, 1941.

[14] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM Journal on Computing, 40(2):465–492, January
2011. doi:10.1137/090779759.

[15] Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related techniques
for geometry problems. In Symposium on Theory of Computation (STOC). ACM Press,
1984. doi:10.1145/800057.808675.

[16] Cyril Gavoille and Christophe Paul. Optimal distance labeling for interval graphs and
related graph families. SIAM Journal on Discrete Mathematics, 22(3):1239–1258, January
2008. doi:10.1137/050635006.

[17] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In International Symposium on Experimental
Algorithms (SEA), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

[18] Jens Gustedt, Michel Morvan, and Laurent Viennot. A compact data structure and parallel
algorithms for permutation graphs. In Graph-Theoretic Concepts in Computer Science,
pages 372–380. Springer Berlin Heidelberg, 1995. doi:10.1007/3-540-60618-1_89.

[19] Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Breadth-first
rank/select in succinct trees and distance oracles for interval graphs, 2020. arXiv:2005.07644.

[20] Guy Jacobson. Space-efficient static trees and graphs. In Symposium on Foundations of
Computer Science (FOCS), pages 549–554, 1989.

[21] Donald E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison
Wesley, 2nd edition, 1998.

[22] Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive
orientation. Discrete Mathematics, 201(1-3):189–241, April 1999. doi:10.1016/s0012-365x(98)
00319-7.

[23] Rolf H. Möhring. Algorithmic aspects of comparability graphs and interval graphs. In
Graphs and Order, pages 41–101. Springer Netherlands, 1985. doi:10.1007/978-94-009-5315-4_2.

https://doi.org/10.1007/s11786-017-0294-4
https://doi.org/10.1007/s11786-017-0294-4
https://doi.org/10.1137/s0097539791200375
https://doi.org/10.1137/090779759
https://doi.org/10.1145/800057.808675
https://doi.org/10.1137/050635006
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/3-540-60618-1_89
http://arxiv.org/abs/2005.07644
https://doi.org/10.1016/s0012-365x(98)00319-7
https://doi.org/10.1016/s0012-365x(98)00319-7
https://doi.org/10.1007/978-94-009-5315-4_2

References 31

[24] Sukumar Mondal, Madhumangal Pal, and Tapan K. Pal. An optimal algorithm to solve
the all-pairs shortest paths problem on permutation graphs. Journal of Mathematical
Modelling and Algorithms, 2(1):57–65, 2003.

[25] J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th
International Symposium on Algorithms and Computation, ISAAC 2018, December 16-19,
2018, Jiaoxi, Yilan, Taiwan, pages 67:1–67:12, 2018. doi:10.4230/LIPIcs.ISAAC.2018.67.

[26] J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th
International Symposium on Algorithms and Computation (ISAAC 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[27] Gonzalo Navarro. Compact Data Structures – A practical approach. Cambridge University
Press, 2016.

[28] Mihai Pătras,cu. Succincter. In Symposium on Foundations of Computer Science (FOCS).
IEEE, October 2008. doi:10.1109/focs.2008.83.

[29] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification of
permutation graphs. Canadian Journal of Mathematics, 23(1):160–175, February 1971.
doi:10.4153/cjm-1971-016-5.

[30] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms, 3(4):43–es, nov 2007. doi:10.1145/1290672.1290680.

[31] D. Rotem and J. Urrutia. Circular permutation graphs. Networks, 12(4):429–437, 1982.
doi:10.1002/net.3230120407.

[32] Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random generation
and enumeration of bipartite permutation graphs. Journal of Discrete Algorithms, 10:84–97,
January 2012. doi:10.1016/j.jda.2011.11.001.

[33] Lisa Sauermann. On the speed of algebraically defined graph classes. Advances in
Mathematics, 380:107593, 2021.

[34] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 4th edition, 2011.

[35] Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

[36] R. Sritharan. A linear time algorithm to recognize circular permutation graphs. Networks,
27(3):171–174, May 1996. doi:10.1002/(sici)1097-0037(199605)27:3<171::aid-net1>3.0.co;2-f.

[37] Konstantinos Tsakalidis, Sebastian Wild, and Viktor Zamaraev. Succinct permutation
graphs, 2020. arXiv:2010.04108.

[38] Jean Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–
239, April 1980. doi:10.1145/358841.358852.

https://doi.org/10.4230/LIPIcs.ISAAC.2018.67
https://doi.org/10.1109/focs.2008.83
https://doi.org/10.4153/cjm-1971-016-5
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1002/net.3230120407
https://doi.org/10.1016/j.jda.2011.11.001
https://doi.org/10.1002/(sici)1097-0037(199605)27:3<171::aid-net1>3.0.co;2-f
http://arxiv.org/abs/2010.04108
https://doi.org/10.1145/358841.358852

	1 Introduction
	2 Preliminaries
	2.1 Permutation Graphs
	2.2 Space Lower Bounds
	2.3 Succinct Data Structures

	3 Data Structures for Permutation Graphs
	3.1 Grid-Based Data Structure
	3.2 Array-Based Data Structure
	3.3 Distance and Shortest Paths

	4 Algorithms on Succinct Permutation Graphs
	5 Bipartite Permutation Graphs
	5.1 Data Structure
	5.2 Space Lower Bound
	5.3 Algorithms

	6 Circular Permutation Graphs
	6.1 Preliminaries
	6.2 Ordered CPGs and the Thrice-Unrolled PG
	6.3 Succinct CPGs

	7 Semi-Distributed Graph Representations
	8 Conclusion
	References

