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We prove a separation between offline and online algorithms for finger-based tourna-
ment heaps undergoing key modifications. These heaps are implemented by binary
trees with keys stored on leaves, and intermediate nodes tracking the min of their
respective subtrees. They represent a natural starting point for studying self-adjusting
heaps due to the need to access the root-to-leaf path upon modifications. We combine
previous studies on the competitive ratios of unordered binary search trees by [Fredman
WADS2011] and on order-by-next request by [Martínez-Roura TCS2000] and [Munro
ESA2000] to show that for any number of fingers, tournament heaps cannot handle a
sequence of modify-key operations with competitive ratio in o(

√
logn).

Critical to this analysis is the characterization of the modifications that a heap can
undergo upon an access. There are exp(Θ(n logn)) valid heaps on n keys, but only
exp(Θ(n)) binary search trees. We parameterize the modification power through the
well-studied concept of fingers: additional pointers the data structure can manipulate
arbitrarily. Here we demonstrate that fingers can be significantly more powerful than
servers moving on a static tree by showing that access to k fingers allow an offline
algorithm to handle any access sequence with amortized cost O(logk(n) + 2lg∗ n).

1. Introduction
One of the most intriguing open questions in data structures is the dynamic-optimality conjecture.
The conjecture states that splay trees can serve any sequence of operations with at most a constant
times the cost of the best (adaptive) binary-search-tree (BST) based method, even if we allow the
latter to know the sequence of accesses in advance (i.e., to work in “offline” mode). Despite decades
of active research and deep results [34, 30, 8, 33, 18, 15, 7, 5, 20, 24, 26] the main conjecture
remains wide open, and so is the more general question:

Is there an online binary-search-tree algorithm that – on any access sequence –
performs within a constant factor of the offline optimal for that sequence?
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In this paper, we ask the same question for heaps1. Dynamic optimality of heaps has
attracted a lot of interest recently due to the work of Kozma and Saranurak [24] who formalized a
correspondence between self-adjusting BSTs and self-adjusting heaps like pairing heaps. They show
that every heap algorithm in their model, “stable heaps in sorting mode” (discussed in Section 2.4
in more detail), implies a corresponding BST algorithm with the same cost (up to constant factors
and on the time-space inverted input). If the converse holds, too, is unclear, and they had to leave
the question of dynamic optimality for heaps open. We note that refuting dynamic optimality for
stable heaps would hence not have immediate consequences for the existence (or nonexistence) of
dynamically optimal BSTs.

While the dynamic-optimality conjecture has spurred the much wider study of online algorithms,
e.g., [28, 2, 16, 1, 4, 25], competitiveness results are notoriously sensitive to details of the model
of computation. In fact, the historical starting point of competitive analysis, searching on linear
lists [32], is taught in graduate courses, but – as often overlooked – a more realistic model allowing
arbitrary rearrangements (which can be simplified to linked-list operations) on the visited prefix,
allows to serve any sequence known in advance with O(n logn) operations – significantly less than
the Ω(n2) lower bound for even processing random online access sequences [29, 30].

For the binary-search-tree problem itself, such a possibility, while strange, could also be
consistent with observed gaps between performances of splay algorithms and more tuned dictionary
data structures2. And as we will show in this paper, the separation of online and offline algorithms
is a fact for heaps: we refute dynamic optimality for heaps based on tournament trees with
decrease-key operations.

Our model of computation is a natural restriction of general pointer machines; analogous to
how computation on linked lists [29, 30] and binary search trees [15, 7] have been defined. Since
nodes in a pointer machine have constant size, arbitrary-degree heap-ordered forests (as used in
stable heaps) are not a convenient choice as primitive objects of manipulation. Instead, we use
tournament trees [22, §5.2.3]: Here each node has two children, and all the original keys are stored
in the leaves. Moreover, each internal node stores the minimum of its children.

The priority-queue operations can be implemented as follows: The global minimum is always
found at the root. To extract the minimum, we follow the path of copies of the minimum to the
leaf that stores it, remove it (and its parent internal node) from the tree, and update the labels
on the path. Insertion of a new element can be achieved by adding the new leaf and the old root
as the two children of a new root node; merging two queues is similar. Assuming a pointer is
provided to a leaf, we can also change its key to a different value and update the labels on the
path from this leaf to the root.

In this work, we focus on the propagation part of the operations, particular after changing a
key of a leaf, and we will assume the worst case, namely that propagation of label changes always
continues all the way up to the root. This corresponds to a sequence of decrease-key operations
where the new key is the new minimum.3 Our formal model encodes this implicitly by requiring
any access to touch the root-to-leaf path:

1In the context of this paper, by a “heap” we mean any tree-based priority-queue data structure.
2The performance gaps are often quoted as between 1.5× to 3×, while the value of lg lgn for most values of n in
practice is at most 5. To our knowledge, the O(log logn)-competitive search tree algorithms [8, 33] have not
been evaluated in practice.

3Sequences of only change-key operations naturally occur, e.g., in merging n runs; updates that all produce a new
minimum are much less natural, but are sufficient for our negative result. A dynamically optimal tournament
heap would in particular have to handle such sequences optimally.
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Definition 1.1 (Tournament trees): In the tournament-tree-with-k-fingers model of computa-
tion, one maintains a collection of n elements in the leaves of a binary tree. To serve an access
to x, we start with all fingers F1, . . . , Fk pointing at the root. We can then use the following
operations for each of the fingers Fi, i = 1, . . . , k:

1. Move Fi to the parent, the left child or right child of its current location (provided the
followed pointer is not null).

2. Copy the location of Fi into F0 (the temporary finger).
3. Move Fi to the location F0.
4. Swap the subtree with root F0 with the left or right child of the node at Fi’s current location.
5. Detach the subtree with root F0 from its parent and make it the left or right child of the

node at Fi’s current location (provided the replaced pointer is null).
6. Serve request from Fi (provided x is stored at its current location).

Each sequence of operations must eventually serve the access (via the last operation). The cost of
this access is taken to be the number of operations (total of all fingers).

Our result for this model is the following separation of offline and online performance.

Theorem 1.2 (Online/Offline Separation): For any value k = k(n), the competitive ratio of
tournament heaps with k-fingers is Ω(max{logk(n), log k}) = Ω(

√
logn).

Moreover, while any online algorithm incurs amortized cost Ω(logn) per access for most inputs
even when k is as large as

√
n, we show that we can do much better even with a subpolynomial

number of fingers in the offline case by present a simple, efficiently-computable offline algorithm.

Theorem 1.3 (Efficient Offline Algorithm): Any sequence of operations on a tournament
heaps can be served using k fingers with amortized O(logk(n) + 2lg∗(n)) cost per access.

Theorems 1.2 and 1.3 show the fundamental importance that the underlying rearrangement
primitives play, in stark contrast to the BST model where any subtree replacement can be
simulated via rotations in linear time. The reason for this difference comes mainly from the fact
that there are only exponentially (2Θ(n)) many BSTs on n keys, but factorially (2Θ(n logn)) many
heaps4, so tree rearrangements are much more powerful in heaps, and standard local primitives like
rotations are no longer sufficient. Recall how weak primitive operations were also the critique of
the model for self-adjusting linear lists [29, 30] mentioned earlier. Adding the number of fingers as
a parameter to the model allows us to precisely quantify the effect of more powerful rearrangement
operations in tournament heaps.

Note that tournament trees place no restrictions on the order of keys in the leaves; they are
thus essentially equivalent to leaf-oriented unordered binary trees. Fredman [13, 14] previously
studied a similar model, namely unordered binary trees, where keys are stored in all nodes, but
no ordering constraint is placed on them. He only considers a single finger, and purely local
restructuring (rotations and subtree swaps). He proved that in his model, for any given online
method, one can construct (adaptively and in exponential time) an adversarial input on which

4This statement being true for both standard heap-ordered trees and tournament trees, but not for Kozma and
Saranurak’s stable heaps!
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this online method incurs cost Ω(n logn), whereas the same input can be also served with linear
costs (by an offline method tailored to this purpose).

Our result strengthens Fredman’s work by explicitly studying leaf-oriented trees and (more
importantly) by taking more realistic rearrangement primitives into account. The result is a much
stronger separation between offline and online algorithms as soon as a non-constant number of
fingers is available: The worst-case cost of our offline algorithm on sufficiently long sequences
is asymptotically smaller than the average cost any online algorithm can achieve on random
sequences. With k = ω(1), we refute dynamic optimality for tournament heaps even for the
average competitive ratio.

Outline. In Section 2, we discuss related work, and introduce notations for describing our models
of trees. In Section 3, we prove the (worst-case) separation between online and offline methods.
Section 4 presents our efficient offline algorithm for many fingers. Section 5 summarizes our
findings and lists open problems.

2. Background
In this section we introduce some notation for the search tree model, and summarize related works,
in particular we discuss differences of related models for trees studied in the context of dynamic
optimality.

Our analysis will use the standard big-O notation, and we write f ∼ g to denote f = g(1±o(1))
We will use lg to denote the binary logarithm, and lg(k) to denote the k-times iterated logarithms,
i.e., lg(1)(n) = lg(n) and lg(k+1)(n) = lg(lg(k)(n)). By lg∗(n) we denote the smallest k so that
lg(k)(n) ≤ 1. Intervals over integers ranging from a to b will be denoted using [a . . . b], and [a] will
be the shorthand for [1 . . . a].

Dynamic optimality asks whether a data structure that sees a sequence of operations online,
that is, one at a time, can perform as well as a data structure that sees the entire access sequence
ahead of time. The critical definition for studying dynamic optimality is the definition of an access
sequence. We will denote the n keys as 1 . . . n, and denote an access sequence of length m as
A = a1, . . . , am. Usually, we are interested in the case m ≥ n.

For such an access sequence, the cost of an online algorithm is the cost of it accessing a1, and
then a2 and so on, while the offline optimal cost of accessing A is the minimum total cost of
accessing the entire sequence. The competitiveness ratio of an online algorithm Alg on inputs of
size n is then

lim
m→∞

max
A of length m

cost(Alg(A))
OfflineOptimum(A) .

We say that Alg is f(n)-competitive if its competitive ratio on any input of size n is at most f(n)
for large enough n. For the converse, to show that Alg is not f(n)-competitive, it suffices to find
a specific family of (arbitrarily large) inputs where the competitive ratio is worse than f(n).

Small differences in the models of computation have profound consequences for the performances
of heaps. We therefore start by formally defining and comparing these models.

2.1. Trees in the Pointer Machine Model, and Fingers
All of our data structures will be modeled using pointer machines. Here nodes of trees are
represented as a collection of O(1) pointers, each pointing to some other node. In particular, a
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binary tree is a collection of nodes each pointing to a parent, and a left/right child; some of these
pointers can be “null”.

Access and modifications of pointer-based data structures are done by manipulating the
pointers. For this purpose, it is useful to consider “fingers”, which are special global pointers kept
by the data structure at the topmost level. These objects can be viewed as generalizations of
the “root” vertex, which in this terminology is a static finger where all subsequent accesses start
from. We keep the number of fingers as a parameter, k, which is allowed to depend on the size n
of the data structure, (similar to how the word size w of a word-RAM may depend on n). As
mentioned in Definition 1.1, the cost of performing a sequence of accesses is entirely the number
of operations performed in moving/duplicating the fingers, and rearranging the pointers incident
to them. Our notion of fingers is in principle the same as defined earlier for BSTs, see, e.g., the
lazy fingers [9], but we prefer to explicitly distinguish between transient and persistent fingers:

Definition 2.1: A data structure has access to k persistent fingers if it is able to track, as global
variables, k special pointers that it is able to retain across accesses. The algorithm is allowed to
manipulate these fingers arbitrarily during the accesses. In contrast, we use transient finger to
denote fingers that only exist during a single operation, and are forgotten / reset before the next
operation.

Our definition of transient fingers is motivated by the observation that a large number of persis-
tent pointers trivializes most data structure questions – formalized in Appendix A, specifically
Lemma A.1 – but the same is not true for transient fingers. We can use transient fingers for tree
rearrangement, but not for shortening the access path. In particular, in the standard BST model,
transient fingers do not add any power to the algorithm, as local rearrangements (rotations) are
equally powerful there.

2.2. Dynamic Optimality in Binary Search Trees
The binary-search-tree model is another restricted pointer-machine model, in which each node of
a binary tree stores a key, and the keys have to fulfill the search-tree property. An execution in
the model can move a finger around the tree or rotate an edge of the tree. A variant of the BST
model instead asks for specifying a replacement tree for the subset of nodes visited while serving a
request. Here, costs are measured by the number of visited nodes. For BSTs, both models are
equivalent (up to constant factors) [23], and so is the addition of further transient fingers. For a
general overview on dynamic optimality, we refer the reader to Iacono’s 2013 survey [19] and the
comprehensive introduction in Kozma’s dissertation [23]. They discuss (instance-specific) upper
bounds (e.g., the working-set bound), (instance-specific) lower bounds, and the state of knowledge
on concrete algorithms, in particular Splay [32] and Greedy [27, 30], as well as the geometric view
of BST algorithms based on satisfied point sets [7].

It is easy to see that when we do not know the accesses in advance, most access sequences
will require costs in Ω(n logn): at any point in time all but 2blgnc/2 ≤

√
n nodes are at depths

≥ blgnc/2 (and hence incur logarithmic cost to access). In the offline model, when we do know all
accesses in advance, this is not at all obvious, but it has been shown that there are “universally
hard” access sequences that require Ω(n logn) access cost in any binary-search-tree algorithm,
online or not [34, 7].

An intriguing feature of the binary-search-tree model is that not only the question about
constant-competitive online algorithms remains wide open, also the existence of (reasonably
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efficient) instance-optimal offline algorithms is unsolved. Indeed, designing good offline algorithms
seems no simpler, and this fact is seen as one reason of why a proof of (or counterexample
for) dynamic optimality for splay trees has remained elusive [5, 26]. To add insult to the
injury, a breakthrough result in the field was that Greedy, the most promising candidate of an
instance-optimal offline algorithm, can indeed be turned into an online algorithm (paying only a
constant-factor increase in access costs, but a hefty fee in terms of conceptual complexity of the
algorithm) [7]. The current best upper bounds are O(log logn) competitive search trees [8, 33].

Standard vs Leaf-Oriented Trees. The standard BST model stores a key in every node of a
binary tree. An alternative are leaf-oriented BSTs, where only leaves carry a key, and internal
nodes contain a copy of key serving only as “routers” for guiding searches. Even though they
are much less prominent than their cousins with keys in all nodes, leaf-oriented BSTs have been
studied, e.g., in the context of concurrent data structures [10], where their conceptual simplicity
and the locality of pointer changes is valuable.

From the perspective of adaptive BSTs, standard BSTs and leaf-oriented BSTs turn out to be
equivalent: there are constant-factor-overhead simulations for both directions. The details are
given in Appendix B.

2.3. Unordered Binary Trees
The work closest to ours are the articles by Fredman [13, 14] mentioned above; his motivation,
too, was to study self-adjusting heaps. Clearly, the search-tree property is a useless restriction for
priority-queue implementations; but so seems insisting on binary trees. Indeed, both pairing heaps
(an analog of splay trees in the priority-queue world) and Fibonacci heaps are heap-ordered trees
with arbitrary node degrees. However, Fredman earlier showed that such forest-based heaps can –
in some generality – be encoded as binary tournament trees: In [12], he discusses how tournament
trees can be simulated by forest-based heaps, and this mapping can also be used in reverse.

In tournament trees, all accesses are to leaves, so if one was to consider the question whether
pairing heaps or other self-adjusting heap variants – recast as tournament-tree rearrangement
heuristics – are (constant-)competitive algorithms, one should only demand competitiveness
against accesses to leaves. In Fredman’s model of unordered binary trees, all nodes carry a key,
but we extend his arguments to the leaf-oriented tournament trees in this paper.

2.4. Stable heaps
In a recent work, Kozma and Saranurak [24] set out to establish a theory of instance-optimality
for forest-oriented heaps (and in particular pairing heap variants). They restrict access sequences
on heaps to “sorting mode” – n inserts followed by n extract-mins – and modify the primitive
“link” operation to be “stable”, i.e., to always keep the left-to-right order of subtrees intact.

More specifically, after an initial sequence of n inserts, the heap consists of a list of n top-level
singleton roots. Each of the following n extract-min operations is served by stably linking adjacent
pairs of top-level roots, reducing their number by on each time, until a single root is left (which
contains the minimum). The minimum is then removed, and its children form the new list of
top-level roots.

The main result of Kozma and Saranurak is that every heap algorithms in this “stable-heap”
model translates to a binary-search-tree algorithm, but critically, does not show that binary-search-
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tree algorithms imply heap ones. Therefore, the connections exhibited in [24] do not rule out the
possibility that dynamic optimality holds for binary search trees, but not for (stable) heaps.

An important observation about stable heaps is that the stability condition for links implies
that there are at most Cn ≤ 4n stable heap structures for a fixed insertion order of n elements. It
is unclear what consequences this restriction of the freedom in rearrangements has for algorithms.

2.5. Further Related Work
There are few other works that modify the computational model to gain insight into the nature
of the dynamic-optimality conjecture. Iacono [18] introduced the notion of “key-independent
optimality”, in which costs are averaged over all possible orders of keys (key ranks chosen randomly).
He shows that any algorithm satisfying the working-set bound is optimal in the key-independent
sense, and hence so are Splay and Greedy. The setup is different from our unordered trees since
the maintained tree does have to conform to the search-tree property once the order of keys has
been chosen. Bose et al. [3] studied dynamic optimality on skip lists and variants of B-trees. They
show that when insisting on certain balancing criteria, the working set bound is actually a lower
bound for serving an access sequence with these data structures.

To our knowledge, the systematic separation of online and offline algorithms, or lower bounds
for competitive ratios, is relatively understudied. Lower bounds for competitive data structures
that we are aware of only include deterministic paging algorithms [28], and linear searches on lists
under arbitrary rearrangements of visited portions [29, 30].

Our modeling of heaps with the goal of providing an offline/online separation is motivated by
analogous results on lists [29, 30], which gave a rearrangement model where online algorithms
must take Ω(n2), while offline algorithms take O(n logn). However, we spend significantly more,
if not most, of our effort addressing limitations on how the visited portion at each access can be
rearranged. This is because of the much lower worst-case runtime upper bound in the static case
(O(n logn) as opposed to O(n2) for move-to-front on lists): the O(logn) overhead associated with
an arbitrary shuffle, or the O(n logn) upper-bound obtained from implementing a merge-sort like
scheme [30] is too high for heaps.

Our treatment of fingers follows the study of multi-finger binary search trees by Demaine et
al. [9] and Chalermsook et al. [5]. To our knowledge, aside from the restriction to rotations made
by Fredman [13, 14], which implicitly assumes a constant number of fingers, the role of fingers in
heaps have not been explicitly studied previously.

3. Online and Offline Separations
In this section, we prove our first result, Theorem 1.2. As a warmup, we present a (simplified)
counting argument for Fredman’s “Wilber-style” lower bound. We then provide two bounds for
the competitive ratio of any online tournament-tree algorithm, which are interesting for a small
resp. large numbers of fingers.

3.1. Information-Theoretic Wilber Bound
Fredman proved for his model of unordered binary trees, that some access sequences require cost
Ω(n logn) to serve (Theorem 3 in [14]). We extend his result to tournament trees with k fingers.
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Theorem 3.1 (Wilber-style lower bound): For any n and m there is an access sequence
A ∈ [n]m that requires total cost at least

m · log10k(n) = m · logk(n)
(

1±O
( 1

log k

))
in any tournament tree with k fingers, even offline and with persistent fingers.

Proof: The proof is a counting argument. We can encode any sequence of t operations (of the
allowed operations as defined in Definition 1.1) in a tournament tree with k fingers by specifying
for each time step, which of the k fingers we used and which of the 10 possible operations we
executed. Given the sequence of operations and the initial tree, we can uniquely reconstruct the
access sequence A that was served by it (by virtue of the “serve” operations).

In total, there are (10k)t sequences of operations with cost t, from which we can reconstruct at
most (10k)t different access sequences that can be served with cost t; (some encodings represent
an invalid execution and do not correspond to a served access sequence). Note that we can always
add dummy operations to an operations sequence with cost < t to turn it into one of length
exactly t that serves the same access sequence A, so it suffices to count the latter ones.

Since there are nm different access sequences of length m on n keys, we can only serve all
correctly when (10k)t ≥ nm, or when t ≥ m log10k(n). �

This means, the best amortized cost per access to hope for is Θ(logk(n)) (in the worst case).
Our offline algorithm in Section 4 will essentially achieve that. The above proof also shows that
half of all access sequences require cost ≥ m log10k(n/2) etc., so logk(n) is indeed a lower bound
for the average amortized cost, as well.

3.2. Few Fingers
We extend the rotation-based argument by Fredman [13] to account for all possible operations
involving the fingers as defined in Definition 1.1. We first generalize the key lemma from Fredman’s
lower bound [13, Lem. 2].

Lemma 3.2 (Adversarial Permutations): For any n, any sufficiently large b ≤ n and k = o(b)
(as b→∞), we can find a (fixed) “adversarial” permutation π on [1 . . . b] such that for any initial
configuration (T, I,B) of a tree T on [1 . . . n], locations I of k (persistent) fingers, and access
sequence B = a1, . . . , ab of b distinct accesses in T , wither the sequence B itself or the permuted
sequence Bπ = aπ(1), . . . , aπ(b) requires cost at least 0.3b log10k(b), even offline and using k persistent
fingers.

The proof is an extension of Fredman’s argument. We first segment out the fact that candidates
for adversarial permutations can be refuted with small trees.

Lemma 3.3 (Small counterexample trees): For any values b and any value t, if π is a per-
mutation such that there exists a tree T on [n] with n ≥ b and initial positions I ∈ [n]k for k
(persistent) fingers in T , as well as an access sequence B = a1, . . . , ab such that both a1, . . . , ab
and Bπ = aπ(1), . . . , aπ(b) can be served starting from (T, I) with cost at most t, then there exists
a tree T ′ over N ⊆ [n] containing 1, . . . , b on at most t′ = |N | ≤ 2t vertices so that both a1, . . . , ab
and aπ(1), . . . , aπ(b) can be served starting from (T ′, I) with total cost at most t.
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Proof: The proof is analogous to the second part of Fredman’s proof, but with the role of root
replaced by the fingers: In short, an operation sequences of cost t can touch at most t vertices on
top of the accessed nodes a1, . . . , ab, so we cannot see more than a limited neighborhood of these
nodes.

More specifically, both the operations sequence S1, serving B, and S2, serving Bπ, can each
visit a portion of the tree of size at most t, and that portion must contain the initial positions of
all fingers and a1, . . . , ab. With persistent fingers, we allow a search to start at any finger (instead
of the root), so the visited region is potentially disconnected, but for each execution sequence,
it consists of the union of k subtrees, since the region explored by one finger (before potentially
jumping to the location of another finger) is a connected region.

We now consider (induced subtree of) the union N of the nodes in these 2k regions. If the
result is not a connected graph, we arbitrarily connect the components (attaching one component
as the child of any leaf of another), forming a single connected binary tree T ′ over t′ ≤ 2t nodes. S1
and S2 are still valid executions when starting with (T ′, I) instead of (T, I), proving the claim. �

We now perform a counting argument similar to the first part of Fredman’s proof [13], but
taking into account the locations of fingers as well.

Proof of Lemma 3.2: Our goal will be to enumerate and count all possible witnesses (T, I,B)
to the “tameness” of a some permutation π over [b], i.e., initial configurations such that when
starting with tree T and fingers at I, both B and Bπ require at most t operations to serve. Since
each witness can eliminate at most one candidate for the adversarial permutation, having fewer
than b! witnesses implies the claimed existence of π; we will show that for t bounded as in the
lemma, this is indeed true.

By definition, for any witness (T, I,B) to the tameness of π, there are two operation sequences
S1 and S2, both of length at most t, so that S1 serves B and S2 serves Bπ. Moreover, we can
recover both B and Bπ, and hence π itself, from (T, I, S1, S2). We therefore obtain a (crude)
over-approximation of the set of witnesses by counting all such quadruples. Now, by Lemma 3.3
we can restrict our attention to trees T over 2t nodes, and there are no more than 42t such; there
are (2t)k choices for the initial positions of k pointers, and (10k)t options for S1 and S2, for a
total of

W (t) = 24t · (2t)k · (10k)2t

witness candidates. (The actual number of witnesses is lower because not all of these quadruples
encode a valid witness.) We will now show that for t = (1− ε)cb log10k(b) with ε > 0 fixed and
c = (2 + 4/ lg 10)−1 ≈ 0.3121, we have that lgW (t) < (1− ε)b lg b for large enough b, and hence
eventually also W (t) < b!:

lgW (t) = 4t+ k(lg(t) + 1) + 2t lg(10k)
=

[k = o(b)]
2t lg(10k) + 4t+ o(b log(t))

≤
[insert t]

(2 + 4
lg 10)c · b lg(b) + o(b log(b))

= (1− ε)b lg(b) + o(b log(b)).

Thus for t bounded as in the statement and sufficiently large b, we have lgW (t) < b!, so there
are fewer than witnesses to tameness than there are permutations, and hence an adversarial
permutation must exists. �
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Fredman [13] used such a permutation to adaptively construct an adversarial sequence for any
online algorithm. We can readily check that the construction also applies to tournament heaps
with k fingers, and therefore obtain a lower bound for the few-finger case.

Corollary 3.4 (Few Fingers): The competitiveness ratio of tournament heaps with k fingers
is at least Ω(logk n) = Ω( logn

log k ).

This result even holds when the online algorithm has access to k persistent fingers, whereas the
offline algorithm is restricted to a single transient finger.

Proof: We follow Fredman’s proof [13]. Specifically, we assume n = b2 is a square, and let π be an
“adversarial” permutation as given by Lemma 3.2 with length b. W.l.o.g. let the keys in the initial
tree by 1, . . . , n in inorder. Then for any online algorithm Alg, we describe an adversary that
(adaptively) generates a permutation A on which Alg incurs total cost Ω(n logk(n)). For that,
the adversary iteratively considers the b elements in Bi = [(i− 1)b+ 1 . . . ib] = (i− 1)b+ [1 . . . b]
for i = 1, . . . , b, and selects as the next block of requests either Bi itself (i.e., requests in sorted
order) or its permuted copy

Bπ
i = (i− 1)b+ π(1), (i− 1)b+ π(2), . . . , (i− 1)b+ π(b).

Call the ith block of requests Ci. By Lemma 3.2, there is always a choice for the adversary that
makes Alg pay Ω(b logk(b)) = Ω(

√
n logk(n)) on Ci, for a total cost of Ω(n logk(n)) after all

√
n

blocks in A.
It remains to check that the resulting permutation A can be processed in O(n) operations when

known offline, even with a single transient finger. This is to be contrasted with the (potentially)
superconstant number k of (persistent) fingers that the online algorithm was allowed to use.

We again follow Fredman’s proof, but greatly simplify the presentation based on the more
recent understandings of multi-finger search trees [9, 5]: We describe an offline algorithm for two
(transient) fingers instead of a single finger; since we can simulate a fixed, constant number of
fingers with a single one with a constant-factor overhead [9, 5], this yields the desired result.

Our strategy to serve A will be to spend O(n) overhead upon the first access and thereby
transform T into a path with keys sorted by next access. All future accesses can then be served
by simply rotating one edge at the root each. Recall that A is the concatenation of C1, C2, . . . , Cb,
where each Ci is either Bi or Bπ

i . So we start with the tree that is 1, . . . , n = b2 on a path; we
can rearrange any initial tree with O(n) rotations into such a path. It suffices to apply π to the
permuted blocks (in the tree) to obtain a tree from which A can be served in O(n) steps. For this,
we can use two fingers to arrange the trees into an analog of operations on 2-D arrays:

1. We first transform the single chain into a “row major” matrix, that is, each set [(i−1)b+1, ib]
forms a path, and the root has a path containing the roots 1, b+ 1, 2b+ 1, . . . of these block
paths. Figure 1 illustrates this step. Using two fingers, one for “reading” through the path
and the other for appending to the current row, this transformation is easily accomplished
with O(n) operations.

2. Next, extract out all the is for which we have to apply π to obtain Ci. We refer this subset
as Î. In the tree, we rearrange the path containing the heads of the Bis so that all Î-blocks
appears as a prefix; see Figure 2 This task is very similar to a quicksort-style partition on
linked lists. Using one “read finger” and one “write finger” to traverse the list of heads in
parallel, it is achieved with O(b) operations.
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Figure 1: The first step of the transformation, from path to row-major ordered matrix. The shaded
nodes each consist of one or two internal nodes and a leaf with the stored key.
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Figure 2: Step 2 of the transformation: separating permuted and non-permuted blocks. In the
example, the indices of permuted blocks is Î = {2, 3, 5, . . .}.

3. Now we “transpose” this prefix into a “column-major” ordering: there is a path starting
from the root containing all values of 1 ≤ j ≤ b, and all elements of the form [ib + j] for
i ∈ Î are attached to j in a path; see Figure 3 for an example.

4. Now we apply π to the b first path heads, thereby applying π in parallel to all blocks in Î.
The important observation is that it is the same permutation π that has to be applied to all
paths, so we can do it in one shot after the above preparation. An arbitrary permutation
of b nodes can be applied with O(b log b) = O(n) operations (see, e.g., Lemma 3.5 below);
here it would actually be sufficient to simulate, say, bubble sort using two fingers. Figure 4
shows the result.
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Figure 3: Step 3 of the transformation: transposing the Î rows. The transposed part is highlighted;
the other blocks remain unchanged.
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Figure 4: Step 4 of the transformation: Applying π in parallel to all Î-blocks. This step only affects
the first b paths; the other blocks remain unchanged.

5. Reversing the first two operations then “stitches” this transformed sub-permutation back
in the original, and has the overall effect of replacing ib+ j by ib+ π(j) for all i ∈ Î. The
reversal of the transformations can be achieved at the same cost as argued above.



3. Online and Offline Separations 13

In total, we have shown how to serve A in O(n) time offline, even with a single transient finger.
Hence, the competitive ratio of Alg is at least

Ω
(
n logk n

n

)
≥ Ω(logk(n)).

�

One can obviously repeat this process to obtain arbitrarily long access sequences with the
same competitive ratio.

3.3. Many Fingers
A large number of fingers allow us to efficiently implement arbitrary permutations, and hence, an
order-by-next request approach. We consider here the simple case that the input is a permutation
and show that we handle it far more efficiently than the average cost of accessing a node in a tree
with n nodes. This subroutine also forms the basis of our efficient offline algorithm for arbitrary
access sequences in Section 4.

Lemma 3.5 (Permute): Using the operations given in Definition 1.1 on k fingers, any tourna-
ment tree on n keys can be rearranged into a path, with keys ordered by the next-request times,
at a cost of O(n logk(n)).

Proof: We use the k fingers to simulate k-way (external / linked-list based) mergesort [22, §5.4.1],
sorting elements by their target position in the requested permutation.

More specifically, we proceed as follows. Because the tree is binary, we can find edge separators
that break it into pieces (which are also trees) of size O(n/k). Thus, with an overhead of O(n) to
move the fingers to these subtrees, plus recursively calling this arrangement procedure k times on
trees of size O(n/k), we can arrange the tree into k paths attached to the root, each sorted by
next request times.

Then we merge these k paths by advancing k fingers, one along each path: at each step we
simply take the path whose head contains the lowest next request time. This once again incurs an
overhead of O(n), which means the overall cost is bounded by the recurrence

C(n) ≤ kC

(
n

k
+ 1

)
+O(n)

which solves to O(n logk n). �

This says that any access sequence that is a permutation is easy to handle for tournament
heaps, and in turn implies a lower bound on the competitive ratios on the many-fingers case.

Corollary 3.6 (Many fingers): The competitive ratio of tournament heaps with k transient
fingers is at least Ω(log k).

Proof: Since we always start at the root, in any tree with n nodes, there is a node whose cost is
at least Ω(logn). Incorporating Lemma 3.7 gives that the competitive ratio is at least

Ω(logn)
O(logk(n)) = Ω(log k).

�
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3.4. Putting Things Together
We can now put together the bounds shown above to prove our main result.

Proof of Theorem 1.2: Combining Corollaries 3.4 and 3.6 gives that the overall competitive
ratio is at least

Ω
(

max
{ logn

log k , log k
})

,

which is minimized at Θ(
√

logn) for lg k =
√

lgn, or k = 2
√

lgn. �

As a side remark, we note that this bound is different than what one would obtain from
considering the k fingers as k servers on a (static) tree. Specifically, even if we have up to
k = Θ(

√
n) persistent fingers (which remain where they are after each access), the online cost of

accesses is still Ω(logn).

Lemma 3.7 (Online lower bound with persistent fingers): In any binary tree with k per-
sistent fingers, are at least n/2 nodes whose shortest path to a finger has length at least
lgn− lg k − lg 3.

Proof: Because the tournament tree is binary, for any distance d, each finger can reach at most
3 ·2d vertices. So the shortest distance to a finger must satisfy 3k ·2d ≥ n, or d ≥ lgn− lg 3− lg k. �

Thus, the much lower bound of O(logk(n)) comes from the ability to rearrange the tree: this is a
key distinction between finger-based searches on (dynamic) trees and the study of server problems
on a static tree (metric) [28, 1, 4, 25].

4. Bucketed Order by Next Request
By Theorem 3.1 and Lemma 3.5 we can serve any access sequence without repetitions, i.e., any
permutation, offline in optimal Θ(n logk(n)) time. For general access sequences with repetitions
of keys, such a solution seems not at all obvious, but we can achieve almost the same result by an
algorithm which buckets elements on the interval until their next request.

Theorem 4.1 (Efficient Offline Algorithm): Given k transient fingers, we can perform any
sequence of m operations on a tournament tree of size n at cost O(m(logk n+ 2lg∗(n))).

This is just Theorem 1.3 restated, but emphasizing that transient fingers suffice. This cost is
optimal for k = O(n1/(2lg∗(n))), i.e., for for sub-polynomially many fingers.

Proof of Theorem 4.1: On a high level, our algorithm keeps elements in buckets of exponentially
increasing sizes and stores those buckets in a balanced binary tree. Accessing any bucket is then
possible in O(log logn) time. An obvious candidate for defining buckets is the time of the next
access to an element. While this approach is sufficient for the simple array-based data structure
of Appendix A and – in slightly disguised form – also constitutes the mechanism behind the
offline list-update algorithm from [30], it seems hard to (efficiently) maintain buckets based on
next-access times within a binary tree.

Our solution instead uses the concept of recurrence time, the time between two successive
accesses to the same element, to define buckets. To allow the maintenance of buckets in amortized
constant time per access, we have to play a second trick: elements inserted into a bucket are kept
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separately in two buffers that distinguish next accesses in the “near future” from accesses in the
“distant future”. That allows to sort buffers once, without having to deal with insertions into
sorted sequences.

To present the details, we fix some notation. We call t the (global) time(stamp) of the access at.
We define the recurrence time r(t) of the access at at time t to be the number of time steps before
that same element is requested the next time in the future:

r(t) = min{t′ − t : at′ = at, t
′ > t} ∪ {∞}.

(r(t) =∞ if at is the last occurrence of that element in the access sequence.) Similarly, define the
next access time n(x, t) of an access to key x to be the earliest time t′ > t when x is requested:
n(x, t) = min{k : at′ = x, t′ > t} ∪ {∞}. We abbreviate n(t) = n(at, t) = t+ r(t).

Segments of accesses. We assume the access sequence has length m ≥ n. We divide the
accesses into “segments” of length n each, (allowing a potentially incomplete last segment). At
the beginning of each segment, we rearrange the entire tree T , so that elements that are not
requested during this segment are below any elements that will be requested in the segment. (We
put unused elements “out of the way”.) This preprocessing step (a permutation) costs Θ(n logk(n))
per segment, which is an amortized Θ(logk(n)) contribution to the costs for any single access.
We can thus focus on the first segment for the rest of this section. Moreover, we will understand
the recurrence times of accesses to be relative to the segment, i.e., r(t) = ∞ if this is the last
occurrence of at in the first segment.

Buckets for Recurrence Time. We will use b = dlgne “buckets” B1, . . . , Bb to hold elements,
grouped by their current recurrence time: B1 holds elements with recurrence time 1, B2 gets
recurrence times 2 and 3, and in general, Bj holds all elements with recurrence times r in
[2j−1 .. 2j − 1]. Each bucket Bj is a subtree, conceptually divided into three parts: two input
buffers, called “near-future buffer” and “far-future buffer”, and a “sorted queue”.

In a tournament tree, these can be represented by a convention like the one sketched in Figure 5.
Note that in terms of its interface to other buckets, each bucket looks like one big binary node: it
has pointers for a left and a right child. We can therefore form a binary tree of buckets; indeed,
we keep the buckets in a balanced binary tree of height dlgdlgnee ≤ 1 + lg lgn. Navigating to (the
first node of) a bucket thus costs O(log logn).

We think of the buffers and the sorted queue of bucket Bj as having a maximal capacity of
2j−1 elements each. The input buffers are linear lists into which a new node v is inserted by
making the current buffer v’s child and using v as the new root of the buffer. The queue is similar,
but here elements are only consumed by removing the root of the queue.

Moreover, for each bucket Bj , we store an “expiration time” ej (for its sorted queue); this is
the time when the sorted queue will resp. would become “invalid”. The significance of expiration
times will become more clear when we describe insertions into buffers below. The sorted queue
can run empty earlier than its expiration time, but we will prove (Lemma 4.2) that it always does
so the latest at time ej : we do not consume elements past their best-before date. Initially, the
sorted queue is empty and we set ej = 2j−1 − 1.

Sorting elements into buckets. Suppose we serve the access at time t to key x = at. x is
currently stored in some bucket Bj and will be at the front of Bj ’s sorted queue. We remove x
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Figure 5: Sketch of representation of our (conceptual) buckets in the tournament tree, showing the
queue and the two buffers. To the outside, the buckets look like a binary-tree node and
can hence be arranged as a binary tree themselves. The shaded nodes each consist of one
or two internal nodes and a leaf with the stored key.

from the sorted queue of Bj and insert it into a new bucket B`, depending on its recurrence time
r(t), namely so that r(t) ∈ [2`−1 .. 2` − 1]; (i.e., ` is the smallest power of two greater than r(t)).

Now, the buffer inside B` into which x is inserted is selected based on the absolute time of the
next access to x, t′ = n(x, t) = t+ r(t), and the expiration time e` of bucket B`: If t′ > e` + 2`−1,
then we insert x into the far-future buffer, otherwise into the near-future buffer. The overall
procedure is given in Algorithm 1.

Refreshing Buckets. When a bucket Bj is about to expire, it is time to “refresh” it. We will
opt for a lazy refreshing scheme that allows buckets to remain in an expired state, as long as they
are not “touched”. Here, by touching a bucket, we mean visiting it to access (and extract) an
element or to insert an element into it. Upon touching a bucket, we check if it has expired, and if
so, we refresh it before continuing.

Refreshing is comprised of the following steps: We use the current near-future buffer as the
new queue, and sort its elements by their next access time. We also make the current far-future
buffer the new near-future buffer, and create a new, empty far-future buffer. Finally, we advance
bucket Bj ’s expiration time ej by 2j−1, the capacity of Bj .

The above steps describe the usual refreshing procedure, but we have to slightly extend in
in general: A bucket might not have been touched for an arbitrarily long time frame when the
buffers remained empty. Then, we may have to “fast-forward” several 2j−1 steps before catching
up with the current time. Note that in this case, there cannot be any elements in the intermediate
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Repeat for all segments of the access sequence:

1. Sort all elements by first access for this segment and store as sorted queue of B0.

2. Initialize empty buckets B1, . . . , Bb.

3. For each access at in the segment:
a) Let ρ1 be the recurrence time after which at occurred, i.e., the unique number with

r(at−ρ1) = ρ1, or ρ1 := ∞ if element at was never accessed before.

b) j :=
{
blg ρ1c if ρ1 <∞
0 otherwise

and

` :=
{⌊

lg
(
r(at)

)⌋
if r(at) <∞

0 otherwise
.

c) If t > e`, call Refresh(B`).
If t > ej , call Refresh(Bj).

d) Access the first element, at, in the sorted queue of bucket Bj .
e) If n(at) ≤ e` + 2`−1, insert at into the near-future buffer of B`;

otherwise, insert at into the far-future buffer of B`.

The procedure Refresh(Bj) refills the sorted queue:

1. While t > ej repeat:
a) Make the former near-future buffer of Bj the new queue.

(The old sorted queue is guaranteed to be empty at this stage.)
b) Make the former far-future buffer of Bj the new near-future buffer.
c) Initialize the far-future buffer of Bj as empty.
d) Set ej := ej + 2j−1.

2. Sort all elements (if any) in the queue of Bj (forming the new sorted queue).

Algorithm 1.: Our doubly-logarithmic offline algorithm for unordered binary trees.

queue(s), so only the last step actually sorts a nonempty queue. This is reflected in the code in
Algorithm 1.

We initially keep elements in a global sorted queue, sorted by first access (for this segment);
we formally call this the zeroth bucket B0. We build the queue of B0 in the preprocessing step at
the beginning of a segment. We thereby maintain the following invariant:

Lemma 4.2 (Bucket invariant): At any time t ∈ [m], the bucket Bj , j = 1, . . . , b, contains
exactly the elements whose next access (after t) happens after a recurrence time in [2j−1, 2j).
Among those, the sorted queue contains elements with next access at an (absolute) time in
(ej − 2j−1, ej ], sorted by next access time, the near-future buffer contains elements with next
access at a time in (ej , ej + 2j−1], and the far-future buffer those with time in (ej + 2j−1, ej + 2j ].

Proof: The proof is by induction over time t. Initially, buckets are empty and there is no
recurrence time before the first access, so the claim holds. Let us now assume the claim holds up
to time t− 1. At time t there will be a new access, at to be served. If at occurs after a recurrence
time in [2j−1, 2j), we find it in Bj ’s sorted queue. (It is vital here that recurrence times do not
change when we advance t, whereas the time until the next access certainly does.) Moreover,
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unless at is no longer accessed in this segment, it has a new recurrence time r(t) ∈ [2`−1, 2`), for
some `. It then has to be (re-)inserted into B`.

Either of these two buckets might have expired, in which case we refresh it. Assume Bj has
expired, i.e., t > ej . Refresh(Bj) executes p ≥ 1 “promotion rounds”, i.e., p iterations of the
white loop, where p is determined by requiring t ≤ ej + p · 2j−1 < t+ 2j−1.

time (next access) before refresh

t (now)

ej − 2j−1 ej ej + 2j−1 ej + 2j

queue near fut. far fut.
no touches!

after refresh

e′j − 2j−1 e′j e′j + 2j−1 e′j + 2j

queue near fut. far fut.

Figure 6: Illustration of a refresh operation with p = 2 steps. The picture shows the ranges of valid
next-access times for elements in the sorted queue and buffers of Bj before and after
the refresh; dots indicate times at which Bj is touched. Note that Bj cannot have been
touched during the gray period for it would have been refreshed earlier then.

The code in Algorithm 1 only sorts the queue after the last promotion round. This is sufficient
since all temporary queues created in earlier promotion rounds must be empty: Bj cannot have
been touched after its original expiration time ej since it would have been refreshed then, so in
particular, it is not accessed between time ej and t, and hence Bj never contains an element with
access time t′ ∈ (ej , t). Since temporary queues represent time periods before t, they are all empty.

Moreover, in each promotion round, the update of ej exactly undoes the effect of turning
the near-future buffer into the new queue and the far-future buffer into the new near-future
buffer: the queue always contains elements with next access time (ej − 2j−1, ej ], the near-future
buffer contains elements with next access time in (ej , ej + 2j−1], and the far-future buffer those in
(ej + 2j−1, ej + 2j ], maintaining the invariant (see Figure 6).

To serve the access at, we remove it from the sorted queue of Bj . Since that element’s next
access is no longer at time t (after at has been served), this reestablishes the invariant. Moreover,
we note that the sorted queue is explicitly sorted upon a refresh and removing the first element is
the only type of update it ever sees, so it remains in sorted order.

Finally, the element at is (re-)inserted into B`. If n(t) > e` + 2`−1, the element is inserted
into the far-future buffer. Since we just refreshed the touched buckets if they were expired, we
have t ≤ e`. With r(t) < 2`, this implies n(t) = t + r(t) < e` + 2`, so at fulfills the conditions
of the far-future buffer. If n(t) ≤ e` + 2`−1, we insert at into the near-future buffer. It is vital
to show that n(t) > e`, otherwise it would belong into the sorted queue. But since B` expires
after 2`−1 time steps, we have t > e` − 2`−1. With r(t) ≥ 2`−1, the claimed inequality follows:
n(t) = t + r(t) > e` − 2`−1 + 2`−1 = e`. So in all cases, we have reestablished the invariant for
time t. �
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From Lemma 4.2, it immediately follows that our procedure is well-defined: The element at to be
accessed will always be at the top of the sorted queue, readily waiting to be picked up.

Cost analysis. We divide costs into intra-bucket maintenance and the access costs to reach
the buckets in the first place. To serve one access in a segment, we touch two buckets: Bj for
retrieving the element from the sorted queue, and B` for inserting the element; (possibly Bj = B`).
Inside Bj , the requested element is found at the root of the sorted queue, so we only pay constant
extra cost inside Bj . In order to insert the new element into B`, we need to locally modify a
constant number of nodes inside B`. Thus, both operations cause constant additional cost inside
the buckets.

If we need to “refresh” a bucket, we pay constant overhead to promote the buffers. Sorting the
near-future buffer costs at most O(logk(n)) per element (Lemma 3.5). We charge these costs to
the next access of each element. (Every element is sorted only once before it is accessed again, so
we charge each access at most once for sorting.)

Navigating to one bucket requires navigating down a path of O(log logn) nodes each. We access
2 buckets per access. The amortized cost of serving one access then consists of O(1) “intra-bucket
maintenance” costs, O(log logn) to navigate to 2 buckets, and O(logk(n)) sorting costs.

Hyper Buckets. Serving an access consists of two conceptually independent steps: retrieving
buckets (source and target) and modifying those buckets appropriately. The intra-bucket part
already has optimal amortized cost, but finding the buckets incurred a O(log logn) penalty for
navigating in a binary tree of b = dlgne objects, which is significant for large k. We can improve
this by observing that the accesses to the buckets are themselves an instance of our original
problem!

We (conceptually) contract the buckets into single nodes (cf. Figure 5) and assign them ids
from [b]. Then, executing our doubly-logarithmic algorithm to serve an access sequence a1, . . . , am
generates a bucket access sequence a′1, . . . , a′m′ ∈ {B1, . . . , Bb} of length m′ ≤ 2m, but over a
universe of only n′ = b = dlgne different objects. We recursively apply our offline algorithm
on a′1, . . . , a

′
m′ , breaking it into segments of n′ accesses each, and placing objects into one of

b′ = dlg be ≤ lg lgn+ 1 buckets.
Iterating this d ≥ 1 times results in a “hyper-bucket” access sequence of length m(d) ≤ 2dm

over n(d) ≤ lg(d)(n) + 1 different objects, where lg(d) denotes the d-times iterated logarithm.
Serving this last sequence by keeping the hyper buckets in a static, balanced tree yields total
cost O(2dm · lg(d+1)(n)). Moreover, we accumulate constant amortized cost over the d levels of
recursion (for maintaining buckets there), giving a total cost of O(logk(n) + dm+ 2dm lg(d+1)(n)).
To roughly balance the two factors involving d in the third summand, we set d = lg∗ n, yielding
total costs in O(logk(n)+m ·2lg∗(n)). Note that sorting costs beyond the topmost level of recursion
are entirely dominated by the sorting costs for topmost buckets and for the preprocessing at the
beginning of a segment. This completes the proof of Theorem 4.1. �

5. Conclusion
In this paper, we investigate models of self-adjusting heaps, specifically, we study tournament trees.
In the spirit of earlier work on the list-update problem [29, 30], we point out the importance of
the allowed primitive operations for rearranging the data structure. We claim that our model of k
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(transient) fingers, where k is a parameter, is a natural choice that allows us to study the continuum
between purely local rearrangement operations and overly powerful global rearrangement. The
influence of different rearrangement primitives is a new facet for the study of dynamic optimality
that is not present for binary search trees, but enters the game for any type of general heap data
structure (not only for tournament trees). Does the additional freedom in rearrangements give
offline algorithms an insurmountable advantage? Or is there a way to make better use of it also in
an online setting (in another model of heaps)?

We show that tournament-tree-based heaps that use a decrease-key operation cannot be
dynamically optimal, totally irrespective of the number of fingers we choose to allow. Our result
invites to try two modifications for getting around the strong separation. First, one might be
willing to sacrifice the ability to modify keys, and allow only insert and extract-min operations.
However, this seems unlikely to defy arguments along the lines given above if suitably adapted.

A second, more promising route is to abandon tournament trees altogether. We believe
that investigating other models of heaps, especially ones with a less stringent requirement for
rearranging paths, is a highly interesting question; heap-ordered binary trees and unbounded
degree forests immediately come to mind. We leave their study for future work.

A natural open problem posed by our algorithm is whether the optimal O(logk(n)) amortized
access cost is attainable in the tournament-tree model with k fingers for any input, or if there is
an intrinsic cost of insisting on a (binary)-tree-based data structure (as opposed to random-access
memory).

More generally, we also believe that separation between online and offline algorithms is a far
more widespread phenomenon. The current best running times for offline and online algorithms
differ in a multitude of problems related to dynamic graph data structures [11, 31, 17, 21, 6].
Formulating and investigating this separation is an intriguing task that is significantly beyond the
scope of this paper.
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A. Offline Algorithms Are Boring With Random Access
As a side comment, we will consider the power of offline algorithms when they are not restricted
by the way in which they store the objects. We show that we can serve any access sequence offline
in linear time (and thus, optimally) using an array.

Lemma A.1: Any access sequence on n elements can be served by a data structure with n
persistent pointers in O(1) time per access.

Proof: We divide A into segments A0, A1, A2 . . . of n accesses each, i.e., Ak = ak·n+1, . . . , ak·n+n
for all k (except possibly an incomplete last round). At the beginning of each segment, we create
an empty array R[1..n] holding (pointers to) the stored objects. Iterating over all objects x, we
insert x into R[n(x, k · n) − k · n] if n(x, k · n) − k · n ≤ n, otherwise x remains inactive in this
round. We are now ready to start serving accesses. The tth request of this segment, ak·n+t = x is
found in R[t], so we can return R[t] to serve this access. Moreover, with j = n(k · n+ t), the next
access time to x, we update the array: if j − k · n ≤ n, we insert a pointer to x into R[j − k · n],
otherwise x becomes inactive for the rest of this round. We now continue in the same way with the
remaining accesses of Ak. Since we reinsert all elements that are accessed in this round again, any
access can be served by the reference from R, which takes constant time each. The preprocessing
at the beginning of a round takes Θ(n) time, and can thus be amortized over the next n accesses
of the round. We can thus serve any sequence of accesses in optimal constant amortized time.�

B. From Keys in Internal Nodes to Keys in Leaves – And Back
In this appendix, we show that from the perspective of dynamic optimality, standard BSTs and
leaf-oriented BSTs are essentially equivalent.

x

L R

standard BST
(keys in all nodes)

 
x

RL

leaf-oriented tree

Figure 7: Transformation from standard BSTs to leaf-oriented trees (for a node with nonempty
subtrees). When L and/or R are empty, special rules apply: If x is a leaf (both L and R
are empty), it is mapped to a leaf with key x. If x is a unary node, it is mapped to a single
internal node with x and its nonempty subtree attached (in correct order).

First of all, we can associate a leaf-oriented tree T ′ = `(T ) to any standard BST T by applying
the replacement rule shown in Figure 7 individually to all nodes in T . Since the transformation is
entirely local (it keeps the structure of T intact within T ′), and replaces each node in T by at
most 3 nodes in T ′, we immediately obtain the following lemma.

Lemma B.1: Let Vj be an arbitrary top-subtree of T . Then there is a top-subtree V ′j of T ′ = `(T )
containing (the leaves with) all the keys in Vj that satisfies |V ′j | ≤ 3|Vj |. Moreover, let U result
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from T by replacing Vj by another binary tree over the same nodes. Then U ′ = `(U) can be
obtained from T ′ = `(T ) by only modifying V ′j in T ′.

We can thus simulate a sequence of BST restructuring operations for T in the leaf-oriented
model by replacing V ′j with the leaf-oriented tree corresponding to the new top-subtree in T . By
Lemma B.1, a leaf-oriented BST can thus simulate any BST algorithm with a constant-factor
overhead.

The inverse direction is a bit more tricky since not all leaf-oriented BSTs can be translated
back by a purely local transformation: In a standard BST, we always need a key in the root,
whereas there are leaf-oriented tree with all leaves at depths Θ(logn). However, the following
top-down procedure is sufficient for our purposes. Given a leaf-oriented tree T ′, we define the
standard BST T = s(T ′) recursively (see also Figure 8): If T ′ is a single leaf, create a single node
with that key. Otherwise, the root of T ′ is an internal node (without a key). Let x be the key
in the leftmost leaf of the right subtree of the root of T ′. x will become the root of T and the
subtrees are translated recursively, with the leftmost leaf in the right subtree removed

L R

x

leaf-oriented tree

 
x

s(R)s(L)

standard BST
(keys in all nodes)

Figure 8: Transformation from leaf-oriented trees to standard BSTs. x is the leftmost leaf in the
right subtree of the root, which is removed from the recursive call s(R).

Lemma B.2: Let V ′j be any top-subtree in T ′, containing the set of (leaves with) keys Kj . Then,
there is a top-subtree Vj in T = s(T ′) that contains all keys Kj and satisfies |Vj | ≤ |V ′j |. Moreover,
let U ′ result from T ′ by replacing V ′j by another binary tree over the same nodes. Then U = s(U ′)
can be obtained from T = s(T ′) by only modifying Vj in T .

Proof: Consider applying s to T ′, but stopping the recursion whenever we reach a subtree that
does not contain any node from V ′j . The resulting tree Vj will have at most |V ′j | nodes since each
recursive step removes at least one node of V ′j from further consideration, and adds one node to
Vj . Moreover, all keys in Kj are mapped to nodes with these keys, so they are contained in Vj .
This proves the first part of the claim.

For the second part, we first observe that removing V ′j from T ′ disconnects the tree, leaving a
sequence of subtrees S′1, . . . , S′k behind. Similarly, removing Vj (as defined above) from T , leaves
the subtrees S1, . . . , Sk behind. The Si are obtained as follows. Unless all keys in S′i are smaller
than all keys in Kj , remove the leftmost leaf from S′i. Then apply s to the resulting tree. Note that
this leaves some Si empty when S′i consisted of a single leaf. Since we only change V ′j when going
from T ′ to U ′, removing the transformed top-subtree in U ′ yields the same subtrees S′1, . . . , S′k. It
follows that s(U ′) can be obtained by starting at T and only changing Vj , as claimed. �

We can hence also simulate any leaf-oriented tree algorithm in a standard BST, with at most the
same cost. This constant-overhead bi-simulation result means that (a) any constant-competitive
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online algorithm for (standard) BSTs also yields such an algorithm for leaf-oriented BSTs, and
vice versa, and (b) any lower bounds for one model imply the same lower bound up to constant
factors for the other model.
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