
Dual-Pivot Quicksort and Beyond:
Analysis of Multiway Partitioning

and Its Practical Potential

Vom Fachbereich Informatik der
Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte

Dissertation
von

Sebastian Wild

Datum der wissenschaftlichen Aussprache: 8. Juli 2016

Dekan: Prof. Dr. Klaus Schneider

Berichterstatter: Prof. Dr. Markus Nebel,
Prof. Robert Sedgewick und
Prof. Dr. Martin Dietzfelbinger

D 386

Version: 2018-05-09

To Lydia

Abstract

i

Abstract

Multiway Quicksort, i.e., partitioning the input in one step around several pivots, has
received much attention since Java 7’s runtime library uses a new dual-pivot method that
outperforms by far the old Quicksort implementation. The success of dual-pivot Quicksort
is most likely due to more efficient usage of the memory hierarchy, which gives reason to
believe that further improvements are possible with multiway Quicksort.

In this dissertation, I conduct a mathematical average-case analysis of multiway Quick-
sort including the important optimization to choose pivots from a sample of the input.
I propose a parametric template algorithm that covers all practically relevant partitioning
methods as special cases, and analyze this method in full generality. This allows me to
analytically investigate in depth what effect the parameters of the generic Quicksort have
on its performance. To model the memory-hierarchy costs, I also analyze the expected
number of scanned elements, a measure for the amount of data transferred from memory
that is known to also approximate the number of cache misses very well. The analysis
unifies previous analyses of particular Quicksort variants under particular cost measures
in one generic framework.

A main result is that multiway partitioning can reduce the number of scanned elements
significantly, while it does not save many key comparisons; this explains why the earlier
studies of multiway Quicksort did not find it promising. A highlight of this dissertation is
the extension of the analysis to inputs with equal keys. I give the first analysis of Quicksort
with pivot sampling and multiway partitioning on an input model with equal keys.

0

ii

Zusammenfassung

Seit in Version 7 der Java runtime library ein neuer dual-pivot Quicksort zum Einsatz
kommt, der deutlich schneller als die vorherige Implementierung arbeitet, hat multiway
Quicksort, also das Partitionierung bzgl. mehrerer Pivotelemente zugleich, einige Aufmerk-
samkeit auf sich gezogen. Der Erfolg von dual-pivot Quicksort ist höchstwahrscheinlich
auf eine effizientere Verwendung der Speicherhierarchie zurückzuführen, was Grund zu
der Annahme gibt, dass weitere Verbesserungen mit multiway Quicksort möglich sind.

In dieser Dissertation wird die mathematische Average-Case-Analyse von multiway
Quicksort beschrieben, wobei ausdrücklich die wichtige Optimierung, die Pivotelemente
aus einem Sample der Eingabe zu ziehen, das sogenannte pivot sampling, berücksichtigt
wird. Dazu wird ein parametrischer Algorithmus vorgestellt und symbolisch in seinen
Parametern analysiert, der alle in der Praxis relevanten Partitionierungsmethoden als Spe-
zialfall abdeckt. Das ermöglicht eine detaillierte analytische Untersuchung des Effekts,
den die Wahl der verschiedenen Parameter auf die Effizienz des Verfahrens hat. Um Kos-
ten bzgl. der Speicherhierarchie zu modellieren, wird das Kostenmaß “scanned elements”
verwendet, dem die mit dem Hauptspeicher ausgetauschte Datenmenge zugrunde liegt,
und das bekanntermaßen die Anzahl an cache misses gut approximiert. Die Analyse in
dieser Arbeit vereinheitlicht frühere Untersuchungen konkreter Partitionierungsmethoden
bzgl. bestimmter Kostenmaße unter dem Dach einer vereinheitlichten Theorie.

Ein Ergebnis dieser Arbeit ist, dass multiway Quicksort deutliche Vorteile bzgl. des
Kostenmaßes scanned elements bringen kann, während die Anzahl Schlüsselvergleiche
nicht wesentlich verbessert wird. Das ist eine mögliche Erklärung, warum multiway Quick-
sort nicht schon in der Vergangenheit als vielversprechende Variante angesehen wurde.

Darüber hinaus gelang in dieser Dissertation erstmals die Verallgemeinerung der Ana-
lyse von Quicksort mit multiway partitioning und pivot sampling auf Eingaben mit glei-
chen Schlüsseln.

iii

Contents

Preface ix

Curriculum Vitae xv

0 Appetizer 1

1 Introduction 3
1.1 History . 4
1.2 Little Glossary of Quicksort Terms . 5
1.3 Recent Developments . 7
1.4 The Memory Wall . 8
1.5 Multiway Quicksort . 9
1.6 Aim and Scope of this Dissertation . 10
1.7 Related Work . 13

2 Mathematical Tools 37
2.1 Continuous Basics . 41
2.2 Discrete Basics . 55
2.3 Generating Functions . 60
2.4 Random Basics . 66
2.5 Discrete Entropy . 89
2.6 A Master Theorem for Distributional Recurrences 100

3 Models and Assumptions 119
3.1 Models of Input Distributions . 120
3.2 Cost Models . 123

4 Quicksort 133
4.1 From Partitioning to Sorting . 134
4.2 Famous Quicksort Variants . 136
4.3 Generic One-Pass Partitioning . 148
4.4 Choosing Pivots From a Sample . 158
4.5 Randomness Preservation in the Presence of Pivot Sampling 160
4.6 Other Partitioning Methods . 161

0

iv

5 Analysis of Generic Partitioning 165
5.1 Toll-Function Notation . 166
5.2 Stochastic Description of Partitioning Under Pivot Sampling 166
5.3 Generic Model: Element-wise Charging Schemes 169
5.4 Charging Schemes for Our Cost Measures . 174
5.5 Execution Frequencies of Inner Loops . 178
5.6 Class-State Co-Occurrences . 184
5.7 Comparison-Optimal Partitioning . 185
5.8 Branch Misses . 188

6 The Quicksort Recurrence 195
6.1 Recursive Description of Costs . 197
6.2 Back-of-the-Envelope Approaches . 201
6.3 Solution with the Distributional Master Theorem 207
6.4 Random-Parameter Pivot Sampling . 210
6.5 Solution with Generating Functions . 212

7 Results and Discussion 221
7.1 Average Costs . 222
7.2 Disclaimer . 225
7.3 Simulating Multiway Partitioning by Binary Partitioning 226
7.4 The Optimal Meeting Point for Indices . 230
7.5 Optimal Pivot Sampling . 235
7.6 The Optimal Number of Pivots . 246
7.7 Optimal Comparison Trees . 261
7.8 Interactions between Parameters: The Jellyfish Paradox 279

8 Equal Keys 285
8.1 Introduction . 286
8.2 Input Models with Equal Keys . 288
8.3 Related Work . 290
8.4 Fat-Pivot Partitioning . 294
8.5 Partitioning Costs . 300
8.6 Recurrence for Expected-Profile Inputs . 305
8.7 Quicksort Recursion Trees . 308
8.8 Quicksort Under Stateless Cost Measures . 322
8.9 Discussion . 333

9 Conclusion 337
9.1 The Optimal Quicksort? . 338
9.2 Open Problems and Future Work . 339

A Index of Notation 341
A.1 Generic Mathematical Notation . 341

Contents

v

A.2 Stochastics-related Notation . 342
A.3 Input to the Algorithm . 343
A.4 Notation for the Algorithm . 343
A.5 Notation Specific to the Analysis (Uniform Model) 345
A.6 Notation for the Analysis with Equal Keys . 346

B Bibliography 349

vi

vii

Foreword

In some sense, sorting is the Drosophila of computer science: On one hand, the task of
rearranging elements into sorted order is simple enough to allow a focused and confined
treatment. It thus is an ideal example to teach undergraduates the design and analysis
of algorithms. On the other hand, sorting still motivates challenging algorithmic and
mathematical research problems. One such problem is covered by the present book.

The underlying research started when we were working on our tool MaLiJan which
aims at a semi-automated average-case analysis of algorithms. After we were able to
rediscover well-known results like, e.g., the expected number of comparisons performed
by the classic Quicksort algorithm on random permutations, we were looking for similar
yet unsolved problems in order to tackle them by using our tool. It was then that we
became aware of a new Quicksort variant that was about to replace the sorting algorithm
in Sun’s Java library.

The new algorithm has experimentally shown a superior runtime behavior. However,
it surprisingly makes use of a well-known idea—using several pivots—that in theoretical
investigations had proven to be of no advantage. This of course attracted our attention
and a new research question was born: why is Java’s dual-pivot Quicksort faster than
former single-pivot implementations? The problem became the subject of the master and
doctoral thesis of my former student Sebastian Wild. I vividly remember our first related
discussion on a plane in 2012—years of inspiring work were to follow.

Over the years other researchers joined our quest to answer this question and various
parameters like the number of comparisons, memory accesses, branch misses etc. were
studied. Finally the memory hierarchy (caches) of modern computers was identified to be
responsible. The present book derives from Sebastian’s thesis and summarizes the related
research. It generalizes our early findings to a parameterized Quicksort algorithm that,
e.g., uses an arbitrary number of pivots. Choosing the parameters properly allows to
apply the presented results to any of the Quicksort variants that have gained attention in
the past. This book is thus one of the most general treatments of Quicksort available. It
furthermore draws a nice picture of many state-of-the-art methods for the average-case
analysis of algorithms and the beautiful mathematical patterns they create.

Markus E. Nebel

viii

ix

Preface

Dear Reader,

By the time you are reading these words, I may call myself doctor rerum naturalium on
the basis of the present dissertation, and of course this was a primary objective for me to
write this work. However, I tried hard to make it useful beyond that.

Purpose of this Book. I believe that when one computational method is significantly faster
than another, there must be an intrinsic reason for that, one that persists in a simplified
model that we can analyze mathematically. And I believe that we make progress in under-
standing what makes one algorithm faster than another from exactly such analyses.

The goal of my research hence is to rigorously derive mathematical theorems about
the performance of practical algorithms in a realistic, but clean and well-defined model
of reality. When a generic analysis of a parametric template algorithm is possible, we
can then reason analytically about good choices for the parameters and obtain a solid
machine-independent basis for tuning practical implementations.

In this work I present a unified analysis of multiway Quicksort and give tentative
advise on which Quicksort variants to use in practice (Chapters 7 and 9). In particu-
lar, I demonstrate that there is genuine potential in multiway partitioning to speed up
Quicksort w.r.t. efficient use of memory references that cannot easily be obtained by other
optimizations.

Apart from those results on Quicksort many of which did not appear in the literature
before, this book also serves as a reference for mathematical tools and techniques used
in obtaining these results. It naturally happened that my analysis makes use of several
mathematical techniques and facts. I found that—once things are viewed from the right
angle—I could replace more and more specific own arguments by general properties of
existing notions, from discrete math to real analysis, a bit of complex analysis and a good
deal of stochastics. That way Chapter 2 which introduces the mathematical preliminaries
grew by itself to its 80-odd pages.

While there are good books with comprehensive surveys on techniques for the analysis
of algorithms, e.g., references [165, 64, 103, 73, 97], and others focusing on the analysis of

0

x

a specific class of algorithms or data structures, e.g., [112, 113, 47], I know only a single
source that discusses in breadth and depth analytical tools to analyze Quicksort: Robert
Sedgewick’s dissertation [162], finished 1975.

I tried to continue the story of the analysis of Quicksort in Sedgewick’s spirit: eternal
truths derived in a clear model of reality using techniques thoroughly introduced from the
basics; and not forgetting to discuss their practical implications. The techniques are math,
the subject is computer science.

I can merely tell one further chapter of the story—a lot has happened since 1975—but
I tried to give a broader overview of the field in Section 1.7.

Intended Audience. The imaginary reader I had in mind when writing this book is a
mathematically inclined computer scientist who knows about basic algorithms and data
structures covered in a typical introductory course and has some proficiency in real analy-
sis and elementary math, but who is not an expert in the analysis of algorithms.

Concepts from complex analysis and stochastics appear in this work, but an intuitive
understanding suffices to follow the presentation. I try to give these intuitions and indeed
the arguments used in this work are mostly elementary.

Chapter 2 collects all (mathematical) facts used in this work that are not derived on the
spot. Instead of reproducing formal proofs of these statements I mostly refer to external
sources; I rather devote the space to share an intuition why a statement holds and how
it relates to the analysis of Quicksort or other mathematical results. I sorely missed such
comments escaping the tight corset of definition-theorem-proof purism from many math
textbooks and lectures, so I put special effort in providing them in my own work.

My Highlights. I would like to point out my two favorite results in this book: Section 7.3
shows how to compute for any multi-pivot sampling scheme an equivalent one for single-
pivot Quicksort that produces pivots of the “same quality” (it is made precise there what
I mean by this). This allows us to separate savings that are truly coming from multiway
partitioning from those that are merely a consequence of better pivots. I have long had
this in mind as a vague concept, but only the generic setup in this work finally made it
possible to formalize the idea.

My second highlight is the analysis of Quicksort with equal keys (Chapter 8). Al-
though there are some technical nuisances left, the simplicity and elegance of the final
result (Theorem 8.17) is very pleasing. Shortly after finishing this dissertation, I could
generalize the result for single-pivot Quicksort to any expected-profile input [183], thus
confirming Conjecture 8.5 of Sedgewick and Bentley. The foundations for that are laid in
Chapter 8 of this work.

A Remark on Style. I tried to keep the style of writing as formal as appropriate for a
dissertation, but as vivid and flowery as possible whenever when I felt this would help
conveying the facts at hand more clearly and effectively.

Preface

xi

Wherever possible I try to “look into the box” of used techniques and results: provide
an idea for why they hold instead of using them as a black box.

Digressions. I found that interesting connections to other areas suggested themselves
quite insistently during the preparation of this material. Unlike the look-into-the-box
comments, such connections had no direct contribution to the purpose of this work. The
same is true for the historical contexts, discussions about notations and names, and blind
alleys of thought I spend quite some of my time on. Yet these side paths were among the
most rewarding parts for me and I felt reluctant doing away with them altogether.

I finally settled for a compromise: I would keep digressions like this one, but typeset
them separately from the main text; the latter is written so that digressions may be skipped
without disturbing the main line of thought. I hope the reader will find my digressions
helpful; but if not, they are at least easy enough to spot and skip.

For these reasons many parts are longer than ultimately necessary, but I think it made
them much better, too—in terms of the content they present and in terms of efficiency
of reading: I am convinced that a slightly longer text will guide the reader in less time
through a complicated argument than a shorter one that leaves parts unclear or implicit.

Elegant Proofs. This is especially true for mathematical proofs. Like many mathemati-
cians I find elegance in a proof that is short, but sometimes brevity of the presentation is
mistaken for elegance of the argument. E. W. Dijkstra suspected that this might even be
done on purpose: “I should point out that my ideal of crisp clarity is not universally shared.
Some consider the puzzles that are created by their omissions as spicy challenges, without which
their texts would be boring; others shun clarity lest their work is considered trivial.” ([45], p. 1).

It might not be far-fetched to assume that someone who mistakes brevity for clarity
also mixes up confusing presentation with depth of a topic.

If the proofs in this work are found trivial to understand, I will take it as the greatest
compliment: it means I succeeded in presenting my thesis the way I intended to.

History of this Work. I started working on the analysis of Quicksort almost five years
ago, when I was in my last year as computer science student. Quite coincidentally I got to
know of the success of a new dual-pivot Quicksort implementation in Java 7, and I started
digging through the immense literature on Quicksort . . . but no theoretical analysis of this
algorithm was known! Since I had already been working regularly as „Hiwi“ (student
research assistant) in the group of my later advisor Markus Nebel, I discussed this topic
with him and we decided to make it my master’s thesis project. Since the initial analysis
of YBB Quicksort was so well received in the algorithms community, I stuck to the topic
for further research towards my Doktor (Ph.D.).

The articles I coauthored in that time extended the analysis in various directions, but
mostly dealt with YBB Quicksort only. The analytical tools however extend naturally to a
whole class of algorithms, and for my dissertation I finally tackled the unified analysis of a

0

xii

very general class of Quicksort variants, covering all practically relevant implementations.
My work has taken this transition from concrete to general in several respects:

I from very concrete algorithms (even assembly implementations)
to generic, parametric templates,

I from counting comparisons and swaps
to analyzing a generic class of cost measures,

I from specific methods to solve particular recurrences exactly
to methods for asymptotic approximations of sweeping generality,

I from counting configurations combinatorially
to stochastic characterizations of the main mechanisms, and

I from computing specific terms ad hoc
to reusing more and more known results from mathematics.

Since I started analyzing Quicksort almost five years ago, a lot has also changed for
myself. Instead of a student, I am now an employee of the university with teaching duties;
visiting conferences, giving talks and collaborating with other researchers have become
routine. My two kids were born in this time, and the third one will be with us before this
book will be available in print. Priorities have shifted and views have changed.

Although this happened in parallel to and quite independently of my work on Quick-
sort, many happy personal memories will remain entangled with certain stages of this
work. In that sense, Quicksort will always be a part of my life.

Acknowledgments. A lot has happened in the years while I worked towards this dis-
sertation. I wish to thank all my family, friends and colleagues for accompanying and
supporting me in this time.

Without my advisor and mentor, Markus Nebel, I would be nowhere near where I am
today. His open-door policy always invited discussions and digressions and I am deeply
thankful for his continuous support and his professional and personal advice.

I am also much obliged to my two external reviewers, Robert Sedgewick and Martin
Dietzfelbinger, for their rigorous scrutiny of this work and their fair and precise reports.
Martin Dietzfelbinger and Markus Nebel provided me with lists of thoughtful comments
and detailed corrections, which improved this work a lot. I am also very thankful for the
comments of Raphael Reitzig and my wife Lydia who proof-read substantial parts of this
work and contributed numerous corrections and improvements.

I greatly profited from the experience, expertise and advice of my coauthors Ralph
Neininger, Hosam M. Mahmoud and Conrado Martínez. The discussions with Hosam on
language and style had lasting influence on my writing. Many of the ideas underlying
Chapter 7 are synergistic outcomes of extensive whiteboard sessions with Conrado and
Markus, and I am sure our fruitful collaboration will continue.

I also enjoyed the stimulating atmosphere in the “theory hallway” of our group in
Kaiserslautern. With Raphael Reitzig, Ulrich Laube, Frank Weinberg, and Wolfgang

Preface

xiii

Schlauch, we had countless late-afternoon discussions on research, teaching, typography,
politics, technology, history, and psychology. These were not exactly the most productive
moments, but they shaped and sharpened my thinking in many subtle ways. These were
good times that kept me motivated, and I will miss them.

Finally, I am greatly indebted to my family, most importantly my wife Lydia, for her
never-ending support and love, and my kids, Theodor and Aurelia, for their amazing
energy and creativity. I share my time between my passions, research and family, but my
love is fully yours. You are the joy and solid root of my life, this work would never have
been finished without you!

Kaiserslautern, October 2016 Sebastian Wild

xiv

xv

Curriculum Vitae

Contact

Name Sebastian Wild

Date of Birth

Email

Mail Address Building 48, Room 660
Postfach 3049
67663 Kaiserslautern,
Germany

Research

Oct 2012 – Jul 2016 Doctoral candidate and scientific employee
Algorithms and Complexity Group of Prof. Dr. Markus Nebel
Department of Computer Science
University of Kaiserslautern

Mar 2009 – Sep 2012 Research Assistant in Prof. Dr. Markus Nebel’s group

Awards and Scholarships

Jun 2013 Preis des Freundeskreises der TU Kaiserslautern
Best Master’s Thesis of the Department 2012

Sep 2012 Best Paper Award at the European Symposium on Algorithms 2012

Feb 2009 – Apr 2012 Scholarship of German National Academic Foundation

winter term 2009/10 Best Student Tutor Award
of Fachschaft Informatik (Student Council) for lectures in
applied computer science

0

xvi

Teaching

since Oct 2012 Teaching Assistance
for lectures Algorithm Engineering, Computational Biology 1,
Computational Biology 2, Entwurf und Analyse von Algorithmen,
Beweistechniken and Kombinatorische Algorithmen

Oct 2008 – Feb 2011 Student Tutor
for lectures: Softwareentwicklung 1, Softwareentwicklung 3 and
Formale Grundlagen der Programmierung

Education

Oct 2010 – Sep 2012 Master of Science in Computer Science
(major algorithmics, minor math)
at University of Kaiserslautern

Apr 2007 – Sep 2010 Bachelor of Science in Computer Science
(major algorithmics, minor math)
at University of Kaiserslautern

Apr 2006 Abitur
Kurfürst-Ruprecht-Gymnasium
Neustadt a. d. Weinstraße

Curriculum Vitae

xvii

Publications

The following peer-reviewed articles were published while working towards this disserta-
tion. The articles in this list appear in reverse chronological order of (initial) submission,
the order of publication dates differs. Preprints of all papers can be found on my web-
site: wwwagak.cs.uni-kl.de/home/staff/sebastian-wild. As university websites might
cease to exist, all articles that are not freely available from the original publishers are also
deposited in an open-access archive server for perpetual availability.

[137]
I Analysis of Pivot Sampling in Dual-Pivot Quicksort

Markus E. Nebel, Sebastian Wild and Conrado Martínez,
Algorithmica 75, 4, pp 632-683 (August 2016) [117]

I Analysis of Branch Misses in Quicksort
Conrado Martínez, Markus E. Nebel and Sebastian Wild,
Meeting on Analytic Algorithmics and Combinatorics (ANALCO15)
in Sedgewick R., Ward M.D. (eds.) ANALCO15, SIAM, pp 114–128 [136]

I Pivot Sampling in Dual-Pivot Quicksort
Markus E. Nebel and Sebastian Wild,
International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms 2014 (AofA14),
In: Bousquet-Mélou M., Soria M. (eds.): DMTCS-HAL Proceedings Series, vol. BA,
pp 325–338 [187]

I Analysis of Quickselect under Yaroslavskiy’s Dual-Pivoting Algorithm
Sebastian Wild, Markus E. Nebel and Hosam Mahmoud,
Algorithmica 74, 1, pp 485-506 (January 2016) [186]

I Average Case and Distributional Analysis of Dual Pivot Quicksort
Sebastian Wild, Markus E. Nebel and Ralph Neininger,
ACM Transactions on Algorithms 11, 3, Article 22 (January 2015) [185]

I Engineering Java 7’s Dual Pivot Quicksort Using MaLiJAn
Sebastian Wild, Markus E. Nebel, Raphael Reitzig and Ulrich Laube,
SIAM Meeting on Algorithm Engineering and Experiments 2013 (ALENEX13)
in Sanders P., Zeh N. (eds.) ALENEX13, SIAM, pp 55–69 [184]

I Average Case Analysis of Java 7’s Dual Pivot Quicksort
Sebastian Wild and Markus E. Nebel,
European Symposium on Algorithms 2012 (ESA12),
in Epstein L. and Ferragina P. (eds.): ESA 2012, LNCS 7501, Springer, 2012, pp 825–
836.
The article won one of two Best Paper Awards.

http://wwwagak.cs.uni-kl.de/home/staff/sebastian-wild

xviii

1

Appetizer0
A silent revolution has been taking place in sorting: within the last decade, all sorting
methods in Oracle’s widely used Java runtime library have been rewritten entirely; other
libraries are likely to follow. Always concerned about breaking existing client programs,
maintainers of programming libraries are very conservative in adopting new trends; so
how come two youngsters among the sorting algorithms, dual-pivot Quicksort and Tim-
sort, have taken over from the old guard so quickly?

Sorting. Sorting is fundamental to computer science in several respects. Sorting algo-
rithms are widely used to demonstrate techniques and concepts, both in a technical and
an educational sense. The problem is easy to state,

rearrange a list of elements A[1], . . . , A[n] from a totally ordered universe, so
that A[1] 6 · · · 6 A[n],

yet is rich enough to allow for many different solutions with different qualities. Writing a
sorting method is easy enough to be one of the first programming exercises, yet devising
a robust, efficient library implementation still is a challenging task for experts.

Sorting is also fundamental in the sense that it is used as a subroutine in many ap-
plications and more sophisticated algorithms: we sort lists to facilitate searching, both for
humans and computers; we use sorting to solve the togetherness problem, bringing equal
items of one category together; various algorithms rely on sorted inputs to simplify their
invariants and speed up further processing. The extensive use has been fostered by the
ubiquitous availability of good library sorting methods.

Despite the large number of sorting algorithms that most algorithms textbooks dis-
cuss, library implementations use only very few of them: unless a stable sort is required,
in which case Mergesort variants, including Timsort, are preferred, the vast majority of
sorting methods is based on Quicksort.

0 Appetizer

2

The purpose of this work is to deepen our understanding of what makes this sorting
method so efficient, and to guide the development of future library implementations.

Quicksort. In its simplest form Quicksort works as follows. We select an arbitrary el-
ement to act as pivot. The remaining elements are split into two groups: those smaller
than the pivot go to the left, the others to the right. This step is called partitioning. After
partitioning, we can put the pivot element between the two groups; this is its correct posi-
tion in the final sorted output. The two segments left and right of the pivot are sorted by
repeating this procedure, until segments contain at most one element.

This strategy can be realized on a computer as a recursive procedure and is particularly
efficient because the part of the code that is executed most often is extremely short and
fast. Implementing Quicksort is also simple in principle, but the devil is in the details
when it comes to maximum efficiency and robustness against degenerate cases.

Multiway Quicksort. It has long been thought that using more than one pivot, i.e., directly
splitting elements into more than two groups, would not make Quicksort more efficient.
This is true if we count how many comparisons between elements we use. Nevertheless
does Oracle’s Java runtime library nowadays contain a dual-pivot Quicksort that clearly
outperforms single-pivot Quicksort, which raises the following questions:

What makes Java’s dual-pivot Quicksort fast?

What can be gained from multiway partitioning in general?

These are the driving questions behind this thesis. Our method is the mathematical analy-
sis of algorithms; we derive mathematical statements in well-defined models of reality.
By choosing models that are independent of specific hardware, but still reflect common
behavior of modern computers, we derive lasting truths about Quicksort that help settling
the above questions.

3

Introduction1
Contents

1.1 History. 4

1.2 Little Glossary of Quicksort Terms 5

1.3 Recent Developments. 7

1.4 The Memory Wall 8

1.5 Multiway Quicksort 9

1.6 Aim and Scope of this Dissertation 10

1.7 Related Work . 13

1 Introduction

4

Sorting is a very practical task and several sorting algorithms had long been known
and used when the first computers were built [103]. Not so Quicksort. Its recursive
nature makes it inconvenient to execute Quicksort physically by hand. Quicksort was only
discovered in the early 1960s and first published by Hoare [79, 82]; with its fifty-odd years,
it is the youngster among the classic sorting methods—and just about the right age for a
midlife crisis.

1.1 History

Quicksort’s youth was turbulent. A humongous collection of potential improvements to
the basic algorithm have been proposed and tested [162]. A few turned out very successful
and have found their way into basically all productive-use implementations; most notably
choosing pivots from a small sample, e.g., the median-of-three strategy, and using a spe-
cial purpose method for small subproblems. Many others were found to be detrimental
to overall performance, both in experiments and by mathematical analysis. After final
changes to Quicksort in the 1990s, almost all programming libraries used almost identical
versions of the algorithm: classic Quicksort had reached calm waters. Or so it seemed.

One of the variations of Quicksort that used to be deemed not helpful is multiway par-
titioning: splitting the array into more than two parts at once, using several pivot elements.
Sedgewick [162], Hennequin [77] and Tan [173] analyzed this idea; they all discarded it
on the basis of inferior comparison and swap counts. Multiway Quicksort was put in the
dustbin of history.

The Dual-Pivot Era. It was to lie there for almost two decades, until Vladimir Yaroslav-
skiy, software developer at Sun Microsystems at that time, experimented with a dual-pivot
Quicksort variant. Together with Jon Bentley and Joshua Bloch, he developed a Java ver-
sion that was 10 % faster in practice than the state-of-the-art implementation of classic
Quicksort used in the Java runtime library at that time. This finding was so surprising that
fellow developers were initially reluctant to believe it, but the Yaroslavskiy-Bentley-Bloch
(YBB) algorithm was deployed to millions of devices with the release of Java 7 in 2011,
which offers it as the default sorting method for primitive-type arrays.

And Besides . . . I first got to know about the advent of dual-pivot Quicksort from an
article on Java 7 in the German computer magazine c’t [110]. It contains a small paragraph
entitled „Und außerdem . . . “ (“And besides . . . ”) which states that, oh, by the way, Oracle
replaced the Quicksort implementation with a new dual-pivot Quicksort that seems to run
twice as fast on many inputs. Here is the original paragraph of the mentioned German
article:

„Für die Sortierung numerischer Arrays, für die bisher eine optimierte Quicksort-Variante benutzt
wurde, kommt nun der Dual-Pivot-Quicksort-Algorithmus von Vladimir Yaroslavskiy zum Ein-
satz, der in der Regel ungefähr doppelt so schnell ist wie der alte Algorithmus. Auch für den Spezi-
alfall der stabilen Sortierung von Object-Arrays und Collections, für den bisher einfach Mergesort

Little Glossary of Quicksort Terms · 1.2

5

benutzt wurde, gibt es einen neuen, schnelleren Algorithmus namens TimSort, der seine Stärken
insbesondere dann ausspielt, wenn Teile der Eingabedaten bereits vorsortiert sind.“ (Lau [110],
p. 177)

Remarkably, this news did not create a stir among software developers. It might be taken
as sign of a good programming library that users do not have to be interested in its
implementation. For an algorithms researcher, its success is nothing less than a sensation.

Apart from its superior performance in running time studies, little was known about YBB
Quicksort at the time of its deployment in Java 7. How could this substantial improve-
ment to the well-studied Quicksort algorithm have escaped the eyes of generations of
researchers? Why had YBB Quicksort not been discovered much earlier?

I devoted my master’s thesis [182] to a classical average-case analysis of basic variants
of dual-pivot Quicksort. The results seemed conclusive: YBB Quicksort needs 5 % less
comparisons in the asymptotic average than classic single-pivot Quicksort, and also less
than the other dual-pivot partitioning algorithms studied earlier. The savings result from
subtle asymmetries in YBB partitioning. This effect might have been overlooked in the past,
so that using two pivots was discarded because the right partitioning method had not yet
been found; the contribution of Yaroslavskiy, Bentley and Bloch was to finally devise such
a method. This makes a nice, coherent story, but the true reasons for the success of YBB
Quicksort are not that simple.

Results in the second classical cost measure for sorting, the number of element swaps,
clearly favor classic Quicksort: YBB Quicksort needs over one and a half times the number
of swaps of classic Quicksort. Similar results hold for the number of primitive instructions
of typical low-level implementations of the algorithms.

But if the YBB Quicksort actually uses more instructions, how come it is still faster in
practice? And why was this discrepancy between theory and practice not noticed earlier?
In my master’s thesis, I could not settle these questions.

1.2 Little Glossary of Quicksort Terms

At this point, a few remarks are in order about the meaning of certain phrases, some of
which we already used above. Many concepts remain vague here; we put the relevant
ones in more concrete terms later.

Partitioning is the process of splitting a set of elements into the equivalence classes
w.r.t. their relation to the pivot element(s). In a linear arrangement of the ele-
ments, all elements of one class form a segment. How we obtain this rearrange-
ment procedurally is left unspecified for now.

Quicksort means all methods that follow the abstract idea to sort by repeatedly parti-
tioning a sublist around pivot elements. It is unspecified still how partitioning is
achieved, how many pivots are used, how these are chosen, in what order sublists
are processed, and how the bookkeeping for the latter is done.

1 Introduction

6

Pivot Sampling is the process of selecting pivot values from a sample of elements of
the input. We may use any selection scheme that uses only the relative ranking of
the sample elements; most common choices pick pivots as specific order statistics
of the sample. A well-known example is the median-of-three scheme.

Single-pivot / dual-pivot / four-way / multiway Quicksort are all Quicksort variants
with the indicated number of pivots or segments per partitioning step. How
partitioning is achieved and how pivots are selected is unspecified.

Multiway vs. Multi-pivot. Even though k-pivot Quicksort is a coined term in
the Quicksort literature, I will mainly use s-way Quicksort in this work, since the
number of segments is a much more convenient parameter than the number of
pivots for the notation introduced later. The reader might moreover appreciate
the similarity between multiway Quicksort and multiway Mergesort, and the
correspondence of s-way Quicksort to s-ary search trees.

I am not the first researcher to speak of multiway Quicksort; Flajolet [61] used the
same term in a 2001 editorial.

Classic Quicksort is a single-pivot Quicksort with the crossing-pointer partitioning
method of Sedgewick and Hoare as given in Algorithm 2. Classic Quicksort may
or may not be combined with pivot sampling.

YBB Quicksort is a dual-pivot Quicksort with the three-way partitioning method of
Yaroslavskiy, Bentley and Bloch (YBB partitioning) as given in Algorithm 4. The
pivot-sampling strategy is left unspecified.

Java 7’s dual-pivot Quicksort (Java 7 Quicksort) means the concrete code used for
Array.sort(int[]) in version 7 (b147) of Oracle’s Java runtime library. It is
an implementation of YBB Quicksort, but adds further optimizations: pivots are
chosen as tertiles of five elements, sublists with less than 47 elements are sorted by
Insertionsort, inputs consisting of at most 67 runs (correctly ordered subranges)
are sorted with a Mergesort variant instead of Quicksort, and equal pivots are
treated specially, to name the most important ones.

Rectification of Names. Vladimir Yaroslavskiy re-initiated research on Quicksort with
two pivots, and I concluded from the publicly available documentsa that he was also the
main driving force in its development, and hence referred to the partitioning method
simply as Yaroslavskiy’s algorithm in my previous works. Only recently have I learned from
personal communication that the new dual-pivot Quicksort algorithm should rightfully
be attributed to the trio of Vladimir Yaroslavskiy, Jon Bentley and Joshua Bloch, since all
were involved in the development of the algorithm very early on. This is also documented
in the Javadoc of the OpenJDK sources.b

Recent Developments · 1.3

7

In creative projects, a team often develops ideas that none of its members would have
had alone, and separating contributions is hardly possible. By no means was I trying to
do so in using the name Yaroslavskiy’s algorithm, and I wish to replace it by Yaroslavskiy-
Bentley-Bloch (YBB) Quicksort.

One could have used Java 7’s (or JDK/JRE 7’s) dual-pivot Quicksort for the algorith-
mic principle, as well, but I prefer to give credit to the creators of the algorithm instead of
emphasizing the algorithmically irrelevant fact that it was first implemented in Java. It has
been demonstrated independently by several authors that YBB Quicksort performs just as
well if implemented in C/C++ [182, 105, 9], and certainly other programming languages
will follow.

a See in particular the discussions on the OpenJDK mailing list core-libs-dev, archived online:
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html.

bIn class java.util.DualPivotQuicksort, see, e.g., http://grepcode.com/file/repository.
grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java.

1.3 Recent Developments

Together with my advisor Markus Nebel, I continued the study of YBB Quicksort. It
turns out that even for comparisons, the lead of YBB Quicksort evaporates if we take into
consideration how pivots are selected in practice (ninther for classic Quicksort, tertiles-of-
five for dual-pivot Quicksort): YBB Quicksort actually needs more comparisons [136, 137].

After I presented the results of my master’s thesis at the European Symposium on Algo-
rithms (ESA) 2012 [184], the intriguing questions caught the interest of other researchers.
One group from Ilmenau, Germany, around Martin Aumüller and Martin Dietzfelbinger,
has addressed the question of how many comparisons can be saved with any dual-pivot
partitioning method [8].

A Plausible Answer. Another group from Waterloo, Canada, around Alejandro López-
Ortiz and Ian Munro, first suggested a plausible explanation for the success of dual-pivot
Quicksort. They argue that what makes YBB faster is that it incurs fewer cache misses,
see [105]: Kushagra et al. determine 20 % savings over classic Quicksort in the asymptotic
average for the basic versions of the algorithms. Taking pivot sampling into account, the
savings drop to something slightly below 10 %, but this is still a significant improvement
over classic Quicksort [137]. It even matches the observed speedup in running times.

I would like to see the term cache misses being used with caution, as its meaning is
rather narrow and tied to a specific hardware event. But I am confident that Kushagra
et al. are right: the influence of the memory hierarchy makes the difference for dual-pivot
Quicksort. The reason is a long-lasting trend in computer hardware design that has been
referred to, somewhat dramatically, as the “memory wall” — and was predicted 20 years
ago [189, 125].

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java

1 Introduction

8

1.4 The Memory Wall

Since the earliest electronic computers in the middle of the 20th century, processor manu-
facturing techniques have improved dramatically. Moore’s law has become folklore, pre-
dicting a doubling of the number of transistors in integrated circuits roughly every two
years. Net CPU speed increased at a similar rate, and still does, partly because more
transistors can be used, partly because transistors become more efficient individually, and
partly because more sophisticated processor architectures have been invented. Memory
capacity has increased at a similar rate.

Memory Bandwidth. Ample memory to hold data and ample computing power to process
it are both in vain if computation has to wait for data to arrive. Backus [12] called this the
von-Neumann bottleneck, and there is considerable evidence that this bottleneck is tighten-
ing.

Based on the extensive data for the STREAM benchmark [119, 118], CPU speed has
increased with an average annual growth rate of 46 % over the last 25 years, whereas
memory bandwidth, the net amount of data transferable between RAM and CPU in a given
amount of time, has increased by only 37 % per year in the same period. One should not
be too strict about the exact numbers since they are averages over different architectures
and measurements are not evenly distributed over time. Still, processor speed has been
growing considerably faster than memory bandwidth for a long time. Figure 1 shows
how machine balance, the ratio of speed over bandwidth, has developed over time for the
STREAM data.

Figure 1: Development of machine balance, the ra-
tio of CPU speed over memory bandwidth,
in the last 25 years. Each point shows one
reported result of the STREAM benchmark.
Dates are given on the x-axis and machine
balance (peak MFLOPS divided by band-
width in MW/s in the “triad” benchmark)
on the logarithmic y-axis. The fat line
shows the linear regression (on log-scale).

1991 1995 2000 2005 2010 2015

100

101

102

Data. McCalpin [119, 118] describes the STREAM benchmark itself. The machine-balance data is taken from www.cs.
virginia.edu/stream/by_date/Balance.html, accessed on 2015-12-15. Entries from 1991, when STREAM was
first released, have been removed. The reported dates are the dates of submission to the STREAM mailing list, not the
years of construction of the machines. These initial entries could thus skew the picture. Three entries with machines
balance larger than 500 were treated as outliers. They had a measured bandwidth of 0.0, so suitable accuracy cannot
be guaranteed there, so they have likewise been removed.

www.cs.virginia.edu/stream/by_date/Balance.html
www.cs.virginia.edu/stream/by_date/Balance.html

Multiway Quicksort · 1.5

9

A significant increase in imbalance is undeniable. Note that Figure 1 is on a logarith-
mic scale, so the difference between CPU and memory transfer speed grows exponentially.
The linear regression indicates a little over 5 % annual increase in imbalance. Wulf and
McKee [189] warned in 1995 that if this trend continues like this, at some point in the
future any further improvements of CPUs will be futile: the processor is waiting for data
all the time; we hit a “memory wall”. It is debatable if and when this extreme will be
reached [57, 125], and consequences certainly depend on the application. In fact, net
bandwidth has grown much faster than predicted in the mid 1990s [189], but it still does
not keep pace with CPU speed improvements. We bought some time.

Implications for Sorting. Wall or no wall—the relative costs of memory accesses have
increased significantly over the last two decades: in 1993, when Bentley and McIlroy de-
signed the gold standard of classic Quicksort implementations [20], the average machine
balance was still below ten; 20 years later, their implementation has to compete with dual-
pivot Quicksort on machines with balance around 30. The model of computation has
changed.

In this respect it is quite plausible why the improvement of dual-pivot Quicksort went
unnoticed for so many years: it was not there! In the computational model of their time,
the researchers correctly concluded that the use of several pivots does not pay off. What
may now be the most efficient way to sort, was really no good when the aforementioned
studies on dual-pivot Quicksort were conducted. But computers have changed since then,
and so should our algorithms: nowadays it pays off to save memory transfers, even at the
cost of (slightly) increased effort inside the CPU.

Scanned Elements: A Model for Bandwidth. If we compare algorithms for today’s ma-
chines with the yardsticks of yesterday, our conclusions will not be accurate. We should
not expect to find YBB Quicksort outperform classic Quicksort, if we measure efficiency by
comparison and swap counts only. We have to take bandwidth consumption into account.
We need a simple abstract model for that, one that is independent of specific machines
and suitable for the mathematical analysis of algorithms.

Scanned elements can serve this purpose for Quicksort [137]. Scanned elements are
closely related to cache misses for an idealized cache and roughly proportional to the
amount of memory transferred on a typical machine, but defined abstractly as the number
of steps of scanning indices. We discuss this model in depth later.

1.5 Multiway Quicksort

From the observations discussed above, a natural question arises: if dual-pivot Quick-
sort is faster nowadays because of a better balance of CPU costs and memory bandwidth
demands, are more pivots even better?

As mentioned above, the idea of s-way Quicksort, i.e., partitioning the input into s
segments at once (using s− 1 pivots), is not novel at all. Hennequin [77] and Tan [173]

1 Introduction

10

considered such Quicksort variants more than 20 years ago, but their comparison-focused
analysis showed no compelling advantages of using s > 2.

Kushagra et al. [105] revived that question recently. They proposed a three-pivot
Quicksort implementation that indeed uses even less memory transfers than YBB Quick-
sort and performed very well in preliminary running-time studies.

This shows that multiway partitioning is practical nowadays, but it is merely a start.
Do improvements continue if we increase s further? What are good multiway partitioning
algorithms? Should we favor asymmetric partitioning schemes, such as in YBB Quicksort,
over symmetric procedures? How does multiway partitioning interact with tried-and-
tested optimizations of classic Quicksort? The game is afoot—again.

1.6 Aim and Scope of this Dissertation

This work is concerned with practical variants of Quicksort, i.e., methods that could readily
be implemented in a low-level procedural language, and perform reasonably well on real-
istic input sizes. A handful of such Quicksort versions are known for binary partitioning,
and many options are conceivable for multiway Quicksort. Moreover, there are strategies
that can be combined orthogonally with any such partitioning method: choosing better
pivots by sampling, truncating recursion and using a special-purpose sort for small sub-
problems, precautions against rare bad cases, and special handling of equal keys, to name
the most important ones. Among all possible combinations, which are the most efficient
ones? What is it that makes them efficient? And how sensitive is efficiency to (small)
changes of these parameters?

Only analytically can we explore this vast design space in its generality. In the work
at hand, I thus approach answers to these questions by means of mathematical analysis
of algorithms as opposed to doing running time studies. We will derive provably correct
statements about the performance of Quicksort. As traditionally done in the field, the
results will be of an asymptotic kind, i.e., about the limiting behavior for large input sizes.
I do this to keep both calculations and the interpretation of results tractable.

We confine our statements to a well-defined, theoretical model of computation and
consider corresponding measures of cost. For analyzing memory-bandwidth costs in
Quicksort, we will use the number of scanned elements.

We will analyze a parametric template algorithm: The partitioning step divides the
array into s parts and the s− 1 pivots are chosen as order statistics from a sample of k
elements of the input. Some additional degrees of freedom concern how the rearrangement
of elements itself is done. The only fixed part is that partitioning should proceed in one
pass over the array and in place, i.e., using only a constant amount of additional working
memory.

This covers basically all practically relevant partitioning algorithms: Hoare’s original
crossing-pointers scheme [82], later revised by Sedgewick [161], Lomuto’s partitioning [18],
the dual-pivot method studied in Sedgewick’s Ph.D. thesis [162], YBB Quicksort [191, 184]
and the recently proposed Waterloo four-way Quicksort [105]. In this work, we unify

Aim and Scope of this Dissertation · 1.6

11

the analyses of these algorithms, including the option to choose pivots from a sample,
and extend them to the new cost measure of scanned elements. This allows us to reason
analytically about promising candidates for a 21st century Quicksort which will have to
excel both in terms of used CPU cycles as well as required memory transfers.

Most statements concern the random-permutation model, i.e., all permutations of in-
put elements are equally likely, and elements are distinct. But we also go beyond that; we
consider the practically relevant situation of duplicate keys in the input. An early version
of the Unix system sort gained notoriety for its dramatic failure in the presence of dupli-
cates: it had quadratic running time on binary inputs [20]. Under a natural random model
for inputs with many equal keys, we will analyze how much can be gained by collecting
elements equal to pivots during partitioning. Our analysis is the first ever for generalized
Quicksort with equal keys, and we show that the same relative speedup is achieved with
pivot sampling and multiway partitioning as for the random-permutation case.

� � �

For a qualification work, which is what this dissertation is to be after all, it should be clari-
fied what my original contributions are. I extracted the algorithmic core of YBB Quicksort
from the original Java code, and provided the first average-case analysis of the basic YBB
Quicksort without pivot sampling and Insertionsort cutoff in my master’s thesis. New
contributions in this dissertation are

1 the introduction of generic one-pass partitioning as a parametric algorithm template
generalizing all known practical partitioning methods (Chapter 4),

2 the analysis of generic one-pass partitioning with pivot sampling under various
cost measures (Chapter 5), unifying previous analyses in the common framework
of element-wise charging schemes,

3 the precise analysis of branch misses,

4 the systematic computation of expectations involving Dirichlet distributed random
variables arising in the analysis of partitioning using Dirichlet calculus (Chapter 2),

5 the distinction between scanned elements and cache misses (Chapter 3), which allows
us to separate errors from asymptotic approximations from inaccuracies of the cost
model,

6 the resolute use of distributional formulations for recurrences and partitioning costs
throughout this work and

7 the direct extraction of asymptotic approximations of expected costs from the distri-
butional recurrence with the distributional master theorem (DMT) (Chapter 6), a version
of Roura’s continuous master theorem rephrased in distributional terms;

8 the first analysis of Quicksort with pivot sampling and multiway partitioning on
inputs with equal keys (Chapter 8), and

9 a comprehensive discussion of the influence of the parameters of generic one-pass
partitioning on the performance of Quicksort (Chapter 7).

1 Introduction

12

I have always found collaborative research efforts most enjoyable and rewarding on many
levels, and some results are genuine group efforts for which I cannot claim sole authorship:

1 Generic one-pass partitioning was inspired by discussions with Martin Aumüller
and Timo Bingmann at the Dagstuhl seminar 14 091; Martin Aumüller worked indepen-
dently and concurrently on a similar partitioning scheme afterwards. 3 The analysis of
branch misses was done together with Conrado Martínez and Markus Nebel. 5 The idea
to have a clean cost measure to approximate cache misses was mine, but the final defini-
tion and name was formed in extensive discussions with Conrado Martínez and Markus
Nebel. 6 Discussions with Hosam Mahmoud and Ralph Neininger and the elegance
of their work lead to my fondness for distributional formulations. Without their guid-
ance during our cooperative work on the distributional analysis of YBB Quicksort and
Quickselect, I would not have been courageous enough to extensively use distributional
recurrences for my work. 8 The work on equal keys originated in a discussion with
Conrado Martínez, Markus Nebel, Martin Aumüller and Martin Dietzfelbinger. First at-
tempts to obtain E[Aq] were a joint effort with Conrado Martínez, which laid the ground
for the solution now presented in this work. 9 The discussion chapter includes many in-
sights that emerged while exchanging thoughts with numerous researchers, most notably
Conrado Martínez, Markus Nebel and Martin Aumüller. Instead of tracing all these ideas
to their origins, I briefly list what is solely my contribution in that chapter: the optimal-
ity criterion for sampling vectors in the case of finite-size samples, the heuristic rule for
finding good sampling vectors, the optimality criteria for comparison trees based on the
Hu-Tucker algorithm, the considerations regarding the benefit of two comparison trees,
and the discovery of the jellyfish paradox.

� � �

Outline. In the remainder of this first chapter we give a rather comprehensive literature
overview on the analysis of Quicksort. In Chapter 2, I introduce all mathematical tools
used in the analysis. Most techniques and results are well-known, but I made an effort to
collect them all in consistent notation and convey at least the intuition behind the results;
where helpful, I included detailed proofs.

In Chapter 3, we discuss the model assumptions for the analysis: what are the costs
of an execution, and how are random inputs for the average-case analysis drawn. I then
present in Chapter 4 my parametric template algorithm for multiway Quicksort, generic
one-pass partitioning. The main part of this work then is the analysis of this generic algo-
rithm when pivots are chosen from a sample. This is done in two steps. First, we analyze
a single partitioning step in Chapter 5. Then we set up and solve a recurrence equation for
overall costs based on that in Chapter 6.

We obtain the expected costs of Quicksort under generic one-pass partitioning sym-
bolically in the parameters of the algorithm. In Chapter 7, we discuss in detail how to
choose the various parameters wisely.

Related Work · 1.7

13

The main analysis assumes the random-permutation model. In Chapter 8, we leave
this familiar environment and consider inputs with equal keys. We describe Quicksort
versions that take advantage of such inputs, and we give the first ever analysis of Quicksort
on equal keys with pivot sampling and multiway partitioning. Chapter 9 gives concrete
hints for finding sensible Quicksort variants, and lists directions for future research.

In the appendix, you find a comprehensive index of notations and details on biblio-
graphic references.

1.7 Related Work

Some work directly related to YBB Quicksort and the latest twists of Quicksort history have
already been mentioned in the introduction above. This work has been influenced by many
other papers on Quicksort and related topics. We summarize the most important ones in
this section, and how they interface with our work. Likewise, we attempt to put the present
work in a wider context. Much more is known about Quicksort than can be covered in a
sensibly sized section; the collection has to remain selective. The present selection puts a
clear emphasis on the mathematical analysis of Quicksort. We mostly ignore literature on
empirical results on Quicksort and we do not discuss parallel versions, implementations
on specific hardware or specialized variants for certain data types like strings.

1.7.1 Towards Classic Quicksort

The first published version of Quicksort is due to Hoare [80] and appeared in the algo-
rithms columns of the Journal of the ACM in 1961. Hoare also first described the average-
case analysis of the number of comparisons in Quicksort, and anticipated the most relevant
optimizations of the basic algorithm in his 1962 journal article [82]; however, he did not
foresee a reason to partition around several pivot elements (or bounds, as he calls them) at
once. In an independent and concurrent work, Hibbard [78] discussed binary search trees
under the random permutation model. He was the first to note the close correspondence
between them and Quicksort; he solved essentially the same recurrence equation when
analyzing the external path length of binary search trees.

Hoare suggested to choose the median of a small sample as pivot to improve per-
formance. Singleton [170] devised a careful implementation in 1969 that puts this into
practice. It uses the median of three elements, namely the first, the last and the middle
element of the input.

Hoare’s partitioning method works by advancing two pointers outside-in; they start at
opposite ends of the array and move towards each other until they have met—as Knuth
puts it, this is “burning the candle at both ends” ([103], p. 114). Singleton was the first to
note that stopping pointers on elements equal to the pivot prevents quadratic behavior on
inputs with many equal keys.

Bentley [17] proposed a simpler, one-way partitioning method in 1984; Bing-Chao and
Knuth [24] described essentially the same method two years later. They also analyzed it in
detail. Bentley attributes the method to Nico Lomuto, and it is thus referred to as Lomuto

1 Introduction

14

partitioning. In direct competition, Hoare’s crossing pointer method is slightly faster than
Lomuto partitioning, and thus remained the method of choice.

The details of how to implement Hoare’s crossing pointer scheme remained subject
of discussions, until Robert Sedgewick came up with an implementation that unites the
advantages of all previous versions, see Knuth’s digression on Quicksort (pp 287–289)
in his 1974 article [101] on structured programming. We refer to Sedgewick’s code as
Sedgewick-Hoare partitioning, and it is this method that we have in mind when we speak
of classic Quicksort, see Algorithm 2 in this work.

1.7.2 Sedgewick’s Work

Sedgewick devoted his Ph.D. thesis [158], finished in 1975, to the meticulous analysis of
some ten Quicksort variants. A reprint of Sedgewick’s thesis [162] appeared five years
later; when giving page numbers etc. in the following, I always refer to the 1980 publi-
cation. Sedgewick’s thesis is probably the most comprehensive source on Quicksort to
this day, in particular in terms of techniques for its mathematical analysis. We sum up
Sedgewick’s contributions in the following.

Sedgewick derives the precise expected costs of his Quicksort variants, including the
variations

I to truncate recursion and switch to Insertionsort, either directly on each small sub-
problem, or in one pass over the whole array at the very end,

I a generic scheme to select the pivot from a fixed-size sample,

I and to unroll inner loops of the partitioning method.

Moreover, he studies in detail the Samplesort algorithm of Frazer and McKellar [66] and
an adaptive sampling strategy by van Emden [55] which tries to postpone the choice for a
pivot as long as possible.

In passing, Sedgewick extends the mathematical toolbox for the analysis of algorithms.
Even though not all of the following tools are his sole invention, it is his contribution to
give a detailed account on how to apply them to Quicksort.

I Sedgewick describes the solution of the generalized Quicksort recurrence, i.e., with
the pivot chosen from a sample. He uses the differential-operator method for Euler
differential equations; a sketch of this method is also given in the first edition of The
Art of Computer Programming [100] from 1973, see solutions to Exercise 5.2.2–29.

I He also covers the computation of variances from a recurrence for the probability
generating function of the complete distribution.

Sedgewick proposed and discussed a dual-pivot Quicksort: Program 5.1 in [162]. To my
knowledge this is the first ever published implementation of multiway Quicksort, and
probably the most underappreciated contribution of Sedgewick’s work. Sedgewick pro-
moted dual-pivot partitioning mainly as an efficient method to deal with many duplicate

Practical Tweaks in the Nineties · 1.7.3

15

keys; but when he determined the swap cost of his method and found that it needs 140 %
more swaps than single-pivot Quicksort, he deemed it unworthy of further study.

Sedgewick presented parts of his thesis, in more condensed and digested form, in two
journal articles: one focusing on analysis [159] and another dealing with implementation
issues [161]. A third article [160] adds a detailed treatment of inputs with equal keys; we
discuss it in detail in Section 1.7.9.

1.7.3 Practical Tweaks in the Nineties

Bentley and McIlroy [20] made noteworthy progress on the practical side. Besides set-
ting a good example for how to design and evaluate running-time studies, they devised a
practical implementation of fat-pivot partitioning, a method that divides the array into three
segments: elements strictly smaller than the pivot, elements strictly larger than the pivot,
and elements equal to the pivot. At that time, many practical implementations exhibited
quadratic behavior on inputs with many equal keys, although Sedgewick [162] recognized
and discussed this problem in detail, and the method to avoid it by stopping pointers on
equal elements had been known at least since the 1969 implementation of Singleton [170].
Removing elements equal to the pivot had been deemed too costly before, but the method
of Bentley and McIlroy achieves this without excessive overhead in case there are no du-
plicates.

They also introduced ninther sampling, which picks the median of three elements, each
of which is chosen independently as the median of three elements. It took ten years be-
fore Durand published the first rigorous mathematical analysis of Quicksort with ninther
sampling [49].

Introsort. The combination of its ubiquitous use and its quadratic worst-case make
Quicksort a possible target of denial-of-service attacks by making the server sort a worst-
case input. McIlroy describes an elegant method to compute such an adversarial input for
any Quicksort variant [124].

Shuffling inputs before they are sorted protects against this attack; another possibility
is to make Quicksort self-monitoring. With an additional parameter that we decrement in
each recursive call, we can check before partitioning if we are already further down in the
recursion tree than we should ever get in a usual case, e.g., at depth more than 2 ld(n),
and if so, resort to a method with linearithmic worst-case guarantee before things get out
of hand. The idea for this introspective sort is due to Musser [133] and has been widely
adopted in practice; interestingly enough, not in the Java library.

1.7.4 Off-the-Shelf Theorems for Solving Recurrences

Classical master theorems, as presented, e.g., by Cormen et al. [35] can help to analyze
divide-and-conquer algorithms that divide a problem into a fixed number of equal-sized
parts whose size is a fixed fraction of the overall problem size. For Quicksort and similar
algorithms, subproblem sizes are not fixed fractions. Roura [154, 153] derived two gen-

1 Introduction

16

eralized versions of the master theorem which he calls the discrete master theorem and
the continuous master theorem (CMT). The former applies to algorithms that split a prob-
lem into a fixed number of subproblems with fixed relative sizes, but not all subproblems
need to be of the same size. The latter covers algorithms like Quicksort that produce a
fixed number of subproblems, whose relative subproblem sizes are random variables whose
distribution is well approximated by a fixed continuous distribution.

An important contribution of Roura’s is the precise error analysis when the above as-
sumptions hold only in the limit for large n. This makes the theorems widely applicable.
In many cases, Roura’s improved master theorems yield the leading-term coefficient of the
solution instead of only an order-of-growth statement. Martínez and Roura [116] exem-
plify the use of the CMT in a detailed study of different sampling strategies for Quicksort
and Quickselect. We discuss the CMT in detail in Section 2.6.

In a similar vein, Chern et al. [30] derive a general solution for recurrences that corre-
spond to a Cauchy-Euler differential equation for the generating function of the sequences.
The costs in Quicksort are again the prime example for such a sequence. The set of re-
currences to which their solution applies is smaller than for Roura’s theorems, but Chern
et al. can give more precise solutions, in particular if the toll function is relatively small.
For such cases, the overall solution is dominated by contributions of initial values, which
Roura’s theorems ignore completely. Their statement is inherently limited to an order of
growth in such cases. In contrast, Chern et al. explicitly include initial conditions.

Recurrences like the one for costs in Quicksort can be seen as a transformation: given
a sequence of toll costs, e.g., the cost of one partitioning step in Quicksort, the recurrence
transforms this into the sequence of total costs. In fact, for costs of divide-and-conquer
algorithms, this transformation is a linear operator. Fill et al. [60] adopt this view and
transfer it to the realm of generating functions: the recurrence induces a transformation
that turns the generating function of the toll sequence into the generating function of total
costs. For Quicksort-type recurrences, this transformation involves integration and differ-
entiation to solve the Cauchy-Euler differential equation discussed by Chern et al. [30].
Fill et al. [60] then show that these operations, and also the Hadamard product, can be
applied to a singular expansion of the generating function, instead of the function itself,
and then yield a corresponding singular expansion of the generating function for the total
cost. From the latter, one can then extract an asymptotic expansion of the coefficients by
classical singularity analysis [62].

1.7.5 Analysis of Pivot Sampling

In his 1962 article on Quicksort, Hoare already suggested to choose the pivot as “the median
of a small random sample of the items in the segment. [. . .] It is very difficult to estimate the
savings which would be achieved by this” ([82], p. 12). It took almost a decade to approach
these savings analytically; van Emden [55] gave the first derivation of the leading term
of costs of median-of-(2t+ 1) sampling strategy in 1970. He does not rigorously address
error terms in this article, though.

Quicksort and Search Trees · 1.7.6

17

Sedgewick [159] solved the recurrence explicitly for the median-of-three case and gave
an asymptotic approximation for the general case. He used generating-function tech-
niques, namely the operator method to solve the Cauchy-Euler differential equation for
the generating function of costs.

In his Ph.D. thesis [162], Sedgewick also considered the more general case that we
pick the Rth smallest element from a sample of k elements, where R is randomly chosen,
as well, according to a given distribution. For his MIX implementation of Quicksort the
optimal choice among all distributions for R is to deterministically select the median, i.e.,
fix R = bk/2c− 1.

Hennequin [77] extends Sedgewick’s techniques to multiway Quicksort: he analyzes
the generic model that we pick random order statistics from a sample, and shows that it is
optimal w.r.t. comparisons for his multiway Quicksort to deterministically pick pivots as
equidistant quantiles.

The widely used ninther a.k.a. pseudo-median-of-nine proposed by Bentley and McIl-
roy [20] can be seen as a special case of selecting a randomly chosen rank from a sample
of nine elements; but it was only in 2000 that Durand first computed the resulting cost ex-
plicitly in her mémoire de DEA [48] (master’s thesis). She presented the result in an English
article [49] that was published in 2003.

Chern et al. further extended the generating-function based analysis and derived a
general theorem to solve recurrences arising, e.g., in the analysis of pivot sampling, in a
journal article [30] from 2002; we already discussed their work in Section 1.7.4. They apply
their theorem to the generalized remedian strategy: the remedian of order zero is simply
one random element, the remedian of order t+ 1 is the median of three elements, each
of which is a remedian of order t. The cases t = 0, t = 1 and t = 2 thus correspond to
a random pivot, median-of-three resp. ninther sampling. Chern et al. do not give closed
forms for expected costs, but they show that their framework applies, so coefficients can in
principle be given at least for any fixed t. Similarly, Chern et al. briefly discuss alternative
pivot-selection strategies, e.g., using the maximum of a number of minima, each chosen
from a sample.

Chern and Hwang [29] addressed a related question: what happens if we do not
use median-of-three pivots in all partitioning steps, but only for the first k levels of the
recursion, switching back to random pivots after that? They showed that the improvement
is essentially linear in k until k ≈ 12

7 ln(n); for larger k, costs are asymptotically the same
as for median-of-three Quicksort. In a similar vein, they considered a hybrid strategy that
does k levels of Quicksort partitioning before switching to Insertionsort, irrespective of the
current subproblem size.

1.7.6 Quicksort and Search Trees

Hibbard noted the intimate relation between classic Quicksort and binary search trees in
his article [78] on BSTs published in 1962; he had been working concurrently with Hoare
who published his article on Quicksort in the same year, and he immediately saw the

1 Introduction

18

connection to Hoare’s work: averaged over all permutations, the number of comparisons
in Quicksort and the internal path length of a binary search tree are the same.

Fringe-Balanced Trees. The correspondence of Quicksort and BSTs is lost when we con-
sider Quicksort with median-of-three pivot selection, but we can restore it with a modifi-
cation of BSTs that is interesting in its own right: fringe-balancing.

In a fringe-balanced search tree, leaves have buffers that hold up to k elements. If a new
element is to be inserted into a leaf, it is simply added to the buffer. If the buffer becomes
full, the median of the k buffered elements is selected as key for a new internal node which
takes the place of the leaf. Two new leaves with the smaller and larger elements from the
overflown buffer are attached to the new internal node in the tree. This effectively enforces
a local rebalancing of subtrees near the leaves, i.e., at the fringe of the tree.

One Idea, Five Names? Fringe-balanced trees appear under various names in the liter-
ature; the idea seems to have been rediscovered several times. Walker and Wood [176]
traced the origin of fringe-balanced trees to the 1965 dissertation of Bell [16]. They dis-
cussed them under the name k-locally balanced BSTs in 1976. Instead of an explicit leaf
with a buffer, they use binary nodes and keep the k-node subtrees at the fringe balanced
by rotations.

Apparently independently, Greene developed fringe-balanced trees as we introduced
them above in his Ph.D. thesis [74], finished in 1983. Greene calls them diminished trees
and analyzes them in detail.

Concurrently to Greene, Huang and Wong worked on two articles [88, 89] on search
trees whose fringe subtrees must be complete BSTs; their SR trees are fringe-balanced with
k = 3, which they generalized to iR trees, whose parameter i corresponds to k, the leaf
buffer size. Like Walker and Wood [176], Huang and Wong enforce trees at the bottom to
be balanced instead of introducing special leaf nodes.

The name fringe-balanced trees derives from the term fringe analysis that Eisenbarth
et al. coined in an article [52] from 1982. Fringe analysis approximates the evolution
of the shape of a tree by only considering how often a fixed number of small subtrees
occurs at the fringe, i.e., at the leaves, of a tree. One then studies how the multiplicities
of these fringe subtrees change upon random insertions. Yao first used this idea in a 1978
article [190] to study the average number of nodes in 2–3 trees and B-trees; the earliest
appearance of a fringe-analysis idea seems to be in the 1973 edition of Knuth’s book The
Art of Computer Programming [100] in Exercise 6.2.4–10 on a B-tree variant (it became
Exercise 6.2.4–8 in the second edition [103]).

Although initially invented to study balanced trees, fringe analysis is a perfect fit for
the analysis of fringe-balanced trees; Poblete and Munro [145] did that in 1985. They used
the term fringe heuristic to describe local rebalancing rules, but they did not use the term
fringe-balanced tree. The first use of that term I could find was in a paper by Devroye [39]
from 1993 with the title “On the expected height of fringe-balanced trees”; interestingly
Devroye did not use the term fringe-balanced anywhere in the text of the article. In
more recent literature, the name fringe-balanced (binary search) trees has become widely
accepted, see, e.g., Mahmoud [114] and Drmota [47].

Limit Distributions · 1.7.7

19

I think fringe-balanced aptly describes the idea underlying these trees, and I will use this
term throughout this work. Fringe-balancing has the same effect on the internal path
length of a search tree as median-of-k pivot selection has on the comparison count of
Quicksort, see, e.g., Hennequin [77] and Section 8.7 of this work.

It is not per se easier to analyze path lengths of search trees than comparisons in
Quicksort, but some reasoning is more comfortable in one world, and some tricks work
only in the other world; see, e.g., the surprisingly simple derivation of the path length for
BSTs given by Knuth [103] in his Section 6.2.2 (page 430). We will make heavy use of the
connection between Quicksort and search trees in Chapter 8, when we study Quicksort
(and search trees) with equal keys.

Fringe-Balanced Trees: A Natural Model. Devroye and Kruszewski [41] devised methods
to synthesize graphics of naturally looking trees. Their method works by first generating
a random generalized binary search tree, which is then drawn according to certain rules:
internal nodes become branches of the tree whose length, width and branching angle de-
pends mostly on the subtree size that is attached to that node. The trees they generate are
essentially fringe-balanced trees with a second parameter: when a leaf buffer overflows,
we do not necessarily choose the median as value for the new node, but any fixed order
statistic of the sample. They simulate this by their random splitting process using beta
distributed relative subtree sizes.

s-Ary Search Trees. As we can partition into s segments at once instead of only two in
Quicksort, we can have s-way branching nodes instead of only binary search trees. Mah-
moud [112] described the resulting s-ary search trees in detail. Note that in the literature on
search trees, the branching factor s is often called m. Hennequin [77] made the connection
between s-ary search trees and s-way Quicksort explicit.

Random Split Trees. Devroye noted in an article published in 1998 that the analysis of
many random tree variants can be unified in a single framework: random split trees. His
framework covers BSTs, s-ary search trees, fringe-balanced trees, quadtrees and tries, and
under mild assumptions Devroye obtains asymptotic approximations to Dn, the depth of
the last inserted element.

This extension is not directly relevant for Quicksort, but noteworthy in its own right.
Moreover, the result of Devroye’s analysis has technical similarities with our solution of
the Quicksort recurrence: Devroye [40, Theorem 2] shows that E[Dn] =

1
µ lnn where µ

is the expected entropy of his splitter random variable V . We derive a very similar result
using quite different techniques in Chapter 6.

1.7.7 Limit Distributions

Computing the expected costs of Quicksort would be pointless if actual realizations of the
random costs were not likely to be close to it. Deriving statements about the distribution
of Quicksorts cost has hence been an active field of research.

1 Introduction

20

Variance. The distribution of the number of comparisons is characterized by the number
of permutations of size n on which Quicksort needs exactly k comparisons. These numbers
fulfill a recurrence similar to the average number of comparisons. For each n, we get
a different distribution over the number of comparisons whose probability generating
functions Gn(z) =

∑
k pnkz

k fulfill a recurrence similar to that for the expected number
of comparisons: Gn(z) = zn−1

∑n
k=1Gk−1(z)Gn−k(z)/n with G0(z) = 1; see Exercise

6.2.2–8 of Knuth [103]. Taking derivatives and extracting coefficients, Knuth determines
the variance for the number of comparisons in classic Quicksort as 7n2 − 4(n+ 1)2H(2)

n −

2(n+ 1)Hn + 13n.

Concentration. Since the standard deviation is thus bounded by a linear function in n,
we find with Chebyshev’s inequality that for any fixed probability p ∈ (0, 1) and deviation
ε > 0, there is a minimum size n0 such that for n > n0, the costs deviate from the mean by
less than ε percent with probability p. Such an existential guarantee is already reassuring,
but the values of n0 from Chebyshev’s inequality will usually be very large, since the mean
is only by a logarithmic factor larger that the standard deviation. This result is known at
least since the early 1970s.

Exploiting much more of the specific structure in Quicksort, McDiarmid and Hay-
ward [121, 122] showed in 1992 that the probability for large deviations is in fact much
smaller than that. They explicitly included median-of-(2t+ 1) Quicksort in their work.

From a practitioner’s point of view, it is reassuring that not only the average perfor-
mance of Quicksort is good, but also that chances are low to deviate much from it on
every single input, as long as it is a random permutation. The actual distribution of costs
in Quicksort is not as important from a practical point of view, but it has many interesting
features from a mathematical point of view, and its study has fostered the development of
useful methodology.

Existence of a Limit Law. Regnier [148] first showed in 1989 that the normalized num-
ber of comparisons (Cn − E[Cn])/n converges in distribution to a limit distribution. Her
martingale-based proof is not constructive. Hennequin [76, 77] showed that the first twelve
cumulants of the distributions converge for n → ∞, and he formulates a conjecture for all
others. The existence of all cumulants is known to imply that the limit distribution is char-
acterized by cumulants or moments, which extends Regnier’s finding also for Hennequin’s
multiway Quicksort.

The Contraction Method. A relatively new and successful tool for the analysis of algo-
rithms had its premiere in giving the first characterization of the limit distribution of
Quicksort: the contraction method. Rösler [151] showed that the distribution of normalized
costs for sorting an input of size n with Quicksort can be described by a distributional re-
currence that transforms distributions with smaller parameters into the distribution for n.
This mapping of probability distributions is a contraction in the complete metric space of
centered distributions with the minimal `2 metric (a.k.a. Wasserstein metric or Mallow’s

Limit Distributions · 1.7.7

21

metric), so if we iterate the mapping from any starting point, it converges to a unique
fixed-point by Banach’s fixed-point theorem.

The limit law is the unique solution of the fixed-point equation among all centered
distributions, and the normalized cost distribution of Quicksort converges to it in the
`2 metric, which is known to imply convergence in distribution and in first and second
moments. As we do not have a simple, explicit representation for the solution of the
fixed-point equation, the limit distribution is only given implicitly. We can nevertheless
compute, e.g., asymptotic variances directly from the fixed-point equation with much less
computational effort than a direct recurrence for the variance.

Rösler on one hand, and Rachev and Rüschendorf on the other hand independently
developed the general methodology behind this idea in two articles, [152] and [146], that
appeared in 1992 resp. 1995. The name contraction method is due to Rachev and Rüschen-
dorf. In a joint effort, Rösler and Rüschendorf [150] reviewed the method systematically
in 2001, including many examples and the abstraction of weighted branching systems. In the
same year, Neininger [138] extended the method to multivariate random variables, which
allowed him to compute, e.g., covariances between different cost measures; Neininger and
Rüschendorf [140] further developed the contraction method on the basis of Zolotarev
metrics in 2004. This allows them to handle recurrences with a normal limit law, which
usually do not yield a contracting map in the `2 metric.

Non-Uniform Input. Eddy and Schervish [50] describe the remarkable fact that for any
distribution of pivot ranks, i.e., any choice for probabilities q(n)j for the pivot to have rank
j in an array of n elements, one can recursively identify a family of distributions over the
permutations of [1..n], so that classic Quicksort with a deterministic pivot choice has the
given probability to select a pivot of a certain rank. What is more, they show that recursive
calls operate on inputs drawn from the same family of distributions, i.e., randomness is
preserved. This means that, e.g., any pivot-sampling scheme can be simulated by changing
the input distribution accordingly instead.

Since in the recursion we always have segment sizes j− 1 and n− j if the pivot has rank j,
(comparison) costs only depend on q(n)j + q(n)

n−(j−1), and any distribution for which this
equals 2/n implies the same costs as uniformly random permutations. For example, the
distribution q(n)j = 2j

n(n+1) , which at first sight seems to imply unbalanced partitioning,
yields the same distribution of costs as does the random-permutation model.

Limit Density. The characterization of limit distributions as fixed point of a mapping is
still implicit. Eddy and Schervish [50] used the fixed-point equation to numerically ap-
proximate the limit distribution of Quicksort, by successively substituting an initial guess
for the characteristic function, the moment generating function or the density into the
fixed-point equation.

A succinct precise description of, e.g., the density of the Quicksort limit law is still
not known; in fact, even the existence of a density is not obvious a priori. Tan showed

1 Introduction

22

in his Ph.D. thesis [173] in 1993 that the limit distribution of Quicksort indeed has a
positive continuous density with support R>0; he published the result in a joint article
with Hadjicostas [174] in 1995.

Phase Changes. Limit distributions for normalized costs of divide-and-conquer algo-
rithms usually fall into one of only a few classes: they can be normal distributions (with
a certain mean and variance), an otherwise unknown distribution like Quicksort (non-
normal case), or they might not exist at all, e.g., because of fluctuations of the costs in
n. Other well-known distributions do not seem to occur often in such applications. Mah-
moud [113] analyzed many classical sorting algorithms and reports asymptotic normality
for almost all of them. Interestingly, as one varies certain parameters, limit distributions
exhibit a phase transition from one class to another.

Chern and Hwang [29] studied a collection of different cost measures with linear ex-
pectation, e.g., the number of partitioning steps in (generalized) Quicksort or the number
of nodes in m-ary search trees. For such cost measures there is a phase transition from
normality to non-existence as either the number of pivots or the size of the sample for
pivot selection exceed certain thresholds. Chern and Hwang characterize these thresholds.

Another type of phase transition happens when one varies the order of growth of the
toll function in a Quicksort-like recurrence. Hwang and Neininger [91] study limit laws in
the setting of the classic Quicksort. Roughly speaking for tolls smaller than

√
n, limit laws

are normal, for larger tolls they are non-normal.

Limit Law of Multiway Quicksort. The contraction method works for multiway Quicksort
as well as in the single-pivot case; but one has to fix a partitioning method.

Tan shows the existence of a density in his Ph.D. thesis [173] for his multiway Quick-
sort based on iterative binary partitioning; see Section 1.7.8 for details on the algorithm. He
also extends the contraction-method argument for his multiway Quicksort and generalizes
the numerical approximations of Eddy and Schervish [50] for the limit density.

For the normalized number of comparisons in Hennequin’s generalized Quicksort [77],
Chern et al. [30] sketch the derivation of the limit distribution with the method of moments,
using their transfer theorem to asymptotically solve the recurrence for all moments.

For YBB Quicksort, we obtained the limit distribution of the normalized number of
comparisons, swaps, and number of Bytecode instructions with the contraction method
after noting that, conditioned on pivot values, partitioning costs are sufficiently concen-
trated; this was a joint work with Ralph Neininger and Markus Nebel [186].

1.7.8 Multiway Quicksort

Hoare anticipated almost all modifications of his basic algorithm that actually improve its
practical efficiency in his 1962 article on Quicksort [82]; but partitioning around more than
one pivot at the same time was not on his list. In fact until recently, only few researchers
studied multiway Quicksort.

Multiway Quicksort · 1.7.8

23

Sedgewick’s Dual-Pivot Quicksort. To my knowledge, Sedgewick gave the first ever im-
plementation of a multiway Quicksort in his Ph.D. thesis [162] in 1975. His “two-partition”
Quicksort (Program 5.1 on page 150) is a three-way Quicksort, splitting the input around
two pivots. Sedgewick proposed it as a method to efficiently deal with many equal keys,
generalizing from a fat-pivot method with one pivot. He analyzed and discarded it for
its excessive swap count. As we will discuss in this work, Sedgewick’s original dual-pivot
Quicksort needs more comparisons, more swaps, and also more scanned elements, i.e.,
memory bandwidth, than classic Quicksort.

Hennequin’s Generalized Quicksort. Over a decade later, Hennequin studied in detail
a generalized Quicksort with an arbitrary number of pivots chosen from a sample in his
doctoral thesis [77] finished in 1991. He focused on the analysis of comparisons and
left some implementation details of his framework unspecified. Hennequin’s partitioning
method conceptually operates on linked lists, which makes it hard to determine, e.g.,
sensible swap counts; some more details are given in Chapter 4.

His analysis results in slight savings for multiway Quicksort, but they are so small
that Hennequin comes to the following conclusion: “Il apparaît ainsi que l’utilisation de la
médiane apporte asymptotiquement un gain significatif sur les coûts moyens en particulier pour
les premières valeurs t = 1 ou t = 2. Le multipartitionnement semble par contre beaucoup moins
intéressant dans la pratique sauf si on peut réduire de façon significative la valeur de ā(s) (par
exemple par hachage sur les nœuds). On note de plus que la constante Ks,t n’est pas monotone
en s ; les cas s = 3 ou s = 5 sont ainsi moins bons que les multipartitionnements avec s = 2

ou s = 4.” (Hennequin [77], p. 54) (Using the median seems to bring, asymptotically,
a significant gain for the average costs, especially for the first values t = 1 or t = 2.
Multiway partitioning, on the other hand, seems much less interesting in practice unless
one can significantly reduce the value of ā(s) [the leading-term coefficient of partitioning
costs] (for example by hashing nodes). One further notes that the constant Ks,t is not
monotonic in s; the cases s = 3 and s = 5 are thus worse than multiway partitioning with
s = 2 and s = 4, respectively.)

Apart from his French doctoral thesis, Hennequin never published his results on mul-
tiway Quicksort; his 1989 article [76] on the analysis of Quicksort considers the case s = 2
only.

Tan’s Iterative Binary Partitioning Quicksort. A second doctoral thesis, finished two years
after Hennequin’s, also covers the analysis of a multiway Quicksort variant: Tan [173]
considered the cost of iterative binary partitioning: Initially we choose s− 1 pivots, for s a
power of two, and then perform a binary partition of the array around the median of these
s− 1 pivots. Afterwards we partition the left segment using the first quartile of the s− 1
pivots and the right segment likewise around the third quartile, and so on, until we have s
segments after ld(s) levels of partitioning.

With respect to the number of comparison, Tan’s algorithm is equivalent to Hen-
nequin’s generalized Quicksort, but unlike that, iterative binary partitioning clearly works

1 Introduction

24

in-place on an array. Tan reported on a small running time study where his multiway
Quicksort performed slightly better than classic Quicksort; it has to be noted, however,
that he did not use pivot sampling, which might have changed the picture. Tan focused
in his work on the distribution of the number of comparisons; we already discussed his
corresponding results in Section 1.7.7.

Tan published a journal article [174] in 1995 with results from his thesis, wherein he
considers the single-pivot case only—exactly as Hennequin did. This indicates that in the
mid 1990s, the algorithms community still saw multiway Quicksort more as a gimmicky
generalization, a training ground for (graduate) students to exercise and demonstrate their
skills on, rather than as a helpful optimization of practical use.

Dual-Pivot Quicksort in Java. It so happened that the extraordinarily successful revival
of dual-pivot Quicksort in practice remained unnoticed by the algorithms community for
years. Starting in the fall of 2008, Russian Java developer Vladimir Yaroslavskiy started
experimenting with Quicksort variants using two pivots in his free time at Sun Microsys-
tems. Over the course of one year, he refined his sorting program so as to perform well on
many types of inputs. With the help of experienced Java library developer Joshua Bloch
and expert for practical algorithms Jon Bentley, Yaroslavskiy developed a sorting method
that consistently outperformed the existing library implementation. In September 2009,
Yaroslavskiy announced to the Java mailing list that the Yaroslavskiy-Bentley-Bloch (YBB)
Quicksort was to be included in the OpenJDK sources [94].

Shortcomings in Early Analyses of YBB Quicksort. While otherwise relying entirely on
running time experiments, Yaroslavskiy’s announcement [94] also contains a mathemati-
cal analysis of YBB Quicksort (without sampling); he also gave this analysis as part of an
article [191] that he posted on his personal website. Unfortunately, the presented analy-
sis is based on overly simplistic assumptions and so does not give the correct results.
Concerning the number of comparisons during partitioning, Yaroslavskiy assumed the
following: “for elements from left part (one comparison), center and right parts (2 comparisons)”
([191], p. 4); in other words, elements are always compared to the small pivot first. This is
actually not the case in YBB Quicksort [184], so they erroneously obtain the same number
of comparisons as for classic Quicksort.

In terms of swaps, Yaroslavskiy wrote about classic Quicksort: “We assume that average
number of swaps during one iteration is 1/2 ∗ (n− 1). It means that in average one half of elements
is swapped only.” ([191], p. 4) This is far too pessimistic; it is known that on average,
only every sixth comparison is followed by a swap; see, e.g., Knuth [103], p. 121. So
the obtained result is roughly thrice the actual swap count. Similarly, the number of
swaps in one dual-pivot partitioning round is assumed to be 2

3(n− 2), which is the swap
count for Sedgewick’s dual-pivot Quicksort; YBB Quicksort needs only about 12n swaps
per partitioning step [184].

Multiway Quicksort · 1.7.8

25

Iliopoulos and Penman [92] published a paper on dual-pivot Quicksort concurrently to
my analysis of YBB Quicksort. They claim to analyze Sedgewick’s dual-pivot Quicksort,
but without commenting on the important difference, they actually count comparisons
under the same simplistic scheme that Yaroslavskiy [191] assumed: Small elements “only
need to be compared with one of the pivots. However if an element is greater than i then it needs
to be compared with the other pivot as well, to determine whether or not it is greater than j. We
refer to Sedgewick [4] for code for a version of this scheme.” (Iliopoulos and Penman [92], p. 3)
For the number of swaps they reproduce Sedgewick’s analysis of his dual-pivot Quicksort.
Later they refer to running time studies of the dual-pivot Quicksort in Java, which does
not fit their analysis, though.

Waterloo Four-Way Quicksort. Kushagra et al., a group of four researchers from Wa-
terloo, Canada, analyzed multiway Quicksort variants with respect to caches misses; we
discuss this part of their work in Section 1.7.11. They note that Tan’s iterative binary par-
titioning is suboptimal w.r.t. cache misses, and they propose an alternative partitioning
scheme that works in one pass over the array with a similar invariant as Sedgewick’s dual-
pivot Quicksort. It is worth noting that the number of comparisons coincides with both
Hennequin’s and Tan’s algorithms for three pivots, but the number of scanned elements is
substantially smaller.

Swaps in Tan’s and Waterloo Quicksort. In terms of swaps, Tan’s method is very efficient.
Its first pass partitions into two segments around a pivot chosen as median of three. This
entails n5 ±O(1) swaps in expectation [159]. The second pass subdivides both ranges into
two segments each, using a pivot that is distributed randomly among its segment. The
second pass then needs another n

6 ±O(1) swaps. This makes an overall leading-term
coefficient of 2265 ≈ 0.338462, which compares quite favorably to the coefficient 13 of classic
Quicksort. The leading-term coefficient for Waterloo partitioning is 4265 ≈ 0.646154, almost
twice as much.

Note that there is a mistake in the analysis of Kushagra et al. [105]: They count only
n−2
6 swaps for the crossing-pointer part of their algorithm, since the “swaps made during

partitioning using single pivot was analysed by Sedgewick in 1977 [6] and their number is given
by n−26 ” ([105], p. 49). It apparently escaped their notice that the pivot here has a different
distribution, so this result is not applicable. As in the first pass of Tan’s method, the
pivot is effectively chosen as the median of the three pivots, and the correct number of
crossing-pointer swaps is thus n−45 .

Generic k-Pivot Quicksort of Aumüller et al. Aumüller studied a generic multiway Quick-
sort implementation under different cost models, both mathematically and experimentally,
in his doctoral thesis [7] finished in 2015. His work emerged independently of my thesis
and some parts are similar. We discuss the differences in detail in Section 4.6.4. Aumüller’s
algorithmic framework is a subclass of generic one-pass partitioning considered herein.

1 Introduction

26

1.7.9 Equal Keys

By equal keys, we mean the possibility to have duplicate elements in the input. In appli-
cations, these might actually be keys for whole records of data, so that equal keys not
necessarily means equal records. When I started my thesis, surprisingly little was known
about Quicksort’s performance under input models with duplicates, and some of the re-
sults are not very well known; to the best of my knowledge, this section lists all relevant
works on Quicksort with equal keys. We give a brief summary of them here; Chapter 8
contains a more detailed discussion.

Burge [27] first analyzed binary search trees under a model with equal keys in 1976.
He inspired Sedgewick to his seminal article [160] on Quicksort with equal keys in 1977.
Sedgewick derived bounds on the performance of Quicksort programs in the exact-profile
model, where the multiplicities of all keys are fixed and all orderings are equally likely,
and the random-u-ary-word model, where keys are chosen i. i.d. uniformly from the universe
{1, . . . ,u}. He analyzed three concrete implementations in detail; the winner of his com-
petition was the classic Quicksort that stops scanning on equal elements. This algorithm’s
performance on random permutations is good and it does degrade in the presence of
duplicates.

If we consider only the number of comparisons, we should actually be able to take
advantage of duplicates: there are less than n! different orderings, so from an information-
theoretic perspective, finding the right one is an easier problem than for n distinct elements.
In an article [178] from 1985, Wegner proposed several Quicksort variants intended to
do so. Unfortunately, he only partly analyzed his algorithms, and did not give detailed
implementations.

Only with the engineering article of Bentley and McIlroy [20] eight years later has
a fat-pivot partitioning method found widespread use in practice. Sedgewick and Bent-
ley [163, 164] reported on the detailed analysis of this algorithm in the exact-profile model
in two talks given in 1999 and 2002; they apparently never published these results in an
article. They show that fat-pivot Quicksort is optimal in the sense that it achieves an
information-theoretic lower bound up to constant factors; the analysis only applies to a
randomly chosen single pivot. Sedgewick and Bentley uttered the conjecture that this con-
stant approaches one as k → ∞ when the pivot is chosen as median of k. The same duo
previously adapted fat-pivot Quicksort to obtain an efficient string sorting algorithm [21].

On the analytical side, Kemp [98] studied binary search trees from inputs with du-
plicates in much more detail. He considered BSTs built by successively inserting inputs
under the exact-profile model and derives expected values for typical measures of the
trees. Kemp transfers these results to the expected-profile model, where keys are chosen i. i.d.
from a given discrete distribution. Archibald and Clément [3] extend this work by deriving
variances.

Notably, all these results on equal keys concern single-pivot Quicksort without pivot
sampling, and the used methodology seems hard to generalize. In Chapter 8, we will
hence seek a new way to analyze Quicksort on inputs with duplicates, one that allows us
to handle multiway partitioning and pivot sampling.

Bit Complexity and Symbol Comparisons · 1.7.10

27

1.7.10 Bit Complexity and Symbol Comparisons

The efficiency of Quicksort in the comparison model is well understood, but how does
Quicksort compete with, e.g., Radixsort? This is essentially a question of models. To
determine the relative order of two elements, Radixsort uses several symbol comparisons
and effectively treats elements as strings over some alphabet with lexicographic order. For
Quicksort, we usually assume that key comparisons are atomic operations, and count each
of these comparisons as one unit of cost. When sorting strings, the cost of one comparisons
is no longer constant.

The word-RAM model offers a way to smoothly transition from uniform operation
costs to logarithmic operation costs: The usual arithmetic and bitwise operations on words
of w bits can be done in constant time, larger numbers have to be treated as strings of
words. By letting w be a function of n, the number of elements, we obtain different
classical models as special cases: a constant w corresponds to logarithmic operation costs,
and with a word size large enough to hold all occurring numbers, we obtain the uniform
cost model.

In other words, the comparison model corresponds to sorting single words; as we
assume n distinct elements, w must be at least ld(n) in this case. For Radixsort, one
usually assumes a smaller, typically constant, word size w; how would Quicksort perform
with such word sizes?

Analysis of Fill and Janson. Fill and Janson first addressed this question in a conference
paper [58] in 2004; in 2012 they published a more comprehensive full version [59] of it. In
their setting, we draw input elements i. i.d. from a continuous distribution over the unit
interval, and interpret them as infinite bit-strings given by their binary representation.
Comparing two such elements proceeds bitwise from the beginning of the two strings,
and continues until the first differing bit is found. The cost measure is the number of bit
comparisons needed.

For a uniform distribution, Fill and Janson reported an expected value of asymptot-
ically n ln(n) ld(n) bit comparisons, which means that a single key comparison inspects
ld(n)/2 = ld(

√
n) bits on average. For this case they proceeded in two steps: First they

derived the precise expectation by summing over all pairs (i, j) of indices the probability
that the ith and jth smallest elements are directly compared, times the expected number
of leading bits these numbers have in common. This is an extension of the well-known
technique for counting comparisons without solving recurrences; see, e.g., Section 7.4.2 of
Cormen et al. [35]. The exact result is

2

n∑

k=2

(−1)k
(
n

k

)
1

k(k− 1)(1− 2−(k−1))
.

They then applied Rice’s method [63] to the exact expression to obtain an asymptotic
expansion.

For non-uniform distributions whose density fulfills a certain condition, Fill and Jan-
son determined the expected number of bit comparisons. Here, they took a different route,

1 Introduction

28

which I will call prefix-wise analysis: For any fixed common prefix of bit strings, the number
of times the rightmost bit of this prefix is compared and found equal in two keys is the
overall number of key comparisons between two keys with this given prefix. To get the
total number of bit comparisons, Fill and Janson thus summed this, i.e., the expected num-
ber of key comparisons between keys with a given fixed prefix, over all possible prefixes.
To simplify analysis they used the poissonization trick here.

Poissonization. Instead of a fixed size n, we consider an input of random size N, where N
is Poisson distributed. The mean of the distribution is left as parameter and takes the role
of n. It is a well-known property of the Poisson distribution that a random variable that
has a binomial Bin(N,p) marginal distribution conditional onN, has, upon unconditioning,
again a Poisson distribution, with mean pN. For algorithms like Quicksort and data
structures like tries, where subproblem sizes are multinomially distributed, we thus get
Poisson-sized subproblems again.

The big advantage of the Poisson model is that after poissonization, subproblem sizes
are independent of each other. This is what simplifies analysis. To obtain results in the usual
model, with fixed n, there are rules for analytic depoissonization, see Section VIII.5.3 of
Analytic Combinatorics [64].

With Poisson-sized inputs, the number of key comparisons between elements from a given
interval only depends on the probability that elements are drawn from this interval; the
numbers are independent for all prefixes of the same length, so it suffices to determine
this number to sufficient precision. Fill and Janson omit the depoissonization step.

Seidel’s Trie-Argument. Seidel [167] rephrased the prefix-wise analysis of Fill and Janson
in terms of tries. He also assumes infinite strings as input. Although the strings are
infinite, there is only a finite number of common prefixes that is shared by at least two
input strings. Since subproblems with a single element entail no key comparisons, we
can restrict our attention to common prefixes shared by at least two elements, of which
we only have finitely many. These prefixes correspond exactly to the internal nodes of
the trie built from the input strings. By proving matching upper and lower bounds on
additive parameters of tries built from uniform memoryless sources, Seidel obtains the
leading term in the uniform case without sophisticated analytical machinery.

Seidel’s analysis extends to any strongly faithful sorting algorithm, i.e., to any algorithm
for which the expected number of key comparison between elements of a given subrange
of the input depends only the number of elements in this range. Subrange here means
the set of elements of ranks i, i+ 1, . . . , j for some 1 6 i 6 j 6 n. Quicksort’s faithfulness
follows from the well-known fact that it directly compares the elements of rank i and jwith
probability 2

j−i+1 , namely if and only if one of these two elements is the first element from
the corresponding subrange that is chosen as pivot. Since pivots are chosen uniformly at
random, this probability depends only on the difference j− i, not on i or j itself.

Memory Hierarchy · 1.7.11

29

Unfaithful Sampling. The bit complexity of Quicksort with pivot sampling is still an open
question. Simple analyses in the style of Seidel [167] are not possible; single-pivot Quick-
sort with median-of-three is already not strongly faithful in the sense of Seidel: when sorting
all 6! permutations of {1, . . . , 6}, we in total do 3432 key comparisons among keys {1, 2, 3, 4},
but slightly more, namely 3456, comparisons among the keys {2, 3, 4, 5}. This means that
the average number of key comparisons in subranges of the input depends not only on
the size of the subrange, but also on its location in the input. Therefore Quicksort with
pivot sampling is not strongly faithful.

Note that the analysis of Clément et al. [31] sketched below does not rely on faithful-
ness, so there is still hope.

Dynamical Sources. Vallée et al. [175] extend the results of Fill and Janson [59] to a wider
class of input models, namely suitably tamed dynamical sources; the n input strings are
still drawn i.i.d., but the next symbols of a single string can depend on the already gener-
ated prefix almost arbitrarily. The analysis is given in more detail by Clément et al. [32],
an extended article for which the authors were joined by Nguyen Thi. They essentially
follow the analysis of Fill and Janson [58], but generalize it in two ways: for the algorithm
under consideration, they only need the expected number of key comparisons performed
between elements from specific ranges of the universe; for the source, some analytical tame-
ness property is required. They also include Insertionsort and Bubblesort in their analysis,
and the class of sources contains all memoryless and Markov sources.

For Quicksort, the leading term of the number of symbol comparisons is
ln2

H(S)n ln(n) ld(n), where H(S) is the (binary) entropy of the source S. Clément et al.
also extend a lower bound argument of Seidel [167] to find that any sorting algorithm that
does not make use of the fact that we are sorting strings needs at least 1

2H(S)n ln(n) ld(n)
symbol comparisons in the asymptotic average to sort n i. i.d. strings emitted by the source
S. Exactly as for ordinary key comparisons on random permutations, and as in the case of
equal keys, Quicksort uses only 2 ln 2 ≈ 1.38629 times the number of symbol comparisons
required by any comparison-based sorting algorithm.

1.7.11 Memory Hierarchy

The growing influence of the memory hierarchy on the design of algorithms has been
known for a long time; since Aggarwal and Vitter [1] proposed the external-memory
model (EMM) at ICALP 1987, many researchers studied classic algorithmic problems in
the context of memory hierarchies. Meyer et al. [129] edited a monograph on the topic.

In the context of sorting, LaMarca conducted a systematic study in his Ph.D. the-
sis [108] in 1996; extended versions are published as joint work with Ladner [106, 107].
LaMarca proposed memory-tuned versions of most classical sorting algorithms and
demonstrates that they often run faster than versions classically optimized for CPU ef-
ficiency only. He also derived the number of cache miss counts of his algorithms in a

1 Introduction

30

simplified model; he argued that in the context of such analyses, one can assume a direct-
mapped cache without degrading prediction accuracy considerably.

For classic Quicksort, LaMarca and Ladner [107] reported approximately

2n

B
ln
(
n

M

)
+
5n

8B
+
3M

8B

cache misses for a cache that can hold M keys and works with blocks of B keys. According
to their measurements, this was very accurate in predicting the number of cache misses in
their setup, but some parts of their analysis are heuristic.

Their optimization of Quicksort chooses a linear number of pivots and a linked-list
based multiway partitioning implementation to split up the input in one step into segments
that fit into the cache with high probability. While this increased the number of executed
instructions, it significantly reduced the number of cache misses according to LaMarca
and Ladner; overall running times were slightly better, as well. They note that since classic
Quicksort already has decent cache behavior, the “improvements in overall performance for
heapsort and mergesort are significant, while the improvement for quicksort is modest.” ([107],
p. 67).

Their core idea to memory-tune Quicksort was to use multiway partitioning. Since
they used a very large number of pivots, partitioning became much more expensive and
was no longer sensibly doable in place. Interestingly, the idea to partition (repeatedly) into
a moderate fixed number of segments, but one that is also larger than two, seems not to
have been considered promising.

Multiway Quicksort. Kushagra et al. [105] apparently were the first to recognize the po-
tential of multiway Quicksort with a modest number of pivots in reducing memory ac-
cesses and cache misses. In their 2014 article, they determined, in a manner similar to
LaMarca and Ladner [107], the approximate number of cache misses of YBB Quicksort
and a natural new four-way Quicksort implementation, see Section 1.7.8 for details on the
Waterloo four-way Quicksort.

They reported that the expected number of cache misses in classic, YBB and Wa-
terloo Quicksort are at most an+1N ln

(
n+1
M+2

)
±O

(
n
B

)
, where a = 2, a = 8

5 = 1.6 resp.
a = 18

13 ≈ 1.38, so significant savings result from using three- or four-way partitioning. Ac-
cording to their experiments, these savings seemed to directly translate into running-time
improvements if compiler optimizations are turned off.

Aumüller and Dietzfelbinger [9] conducted extensive running-time experiments, in-
cluding hardware performance counter measurements for cache misses with several
Quicksort variants including YBB and Waterloo Quicksort. Their results confirmed earlier
findings of running-time speedups: Waterloo four-way Quicksort and YBB Quicksort are
fastest and have essentially the same running time, whereas classic Quicksort is roughly
10 % slower. They also found that scanned elements are in very good accordance with L1
cache misses. However, in their experiments, Waterloo Quicksort needed less instructions
and incurred less cache misses than any of the other algorithms they tested, in particu-
lar significantly less than YBB Quicksort; but still was YBB Quicksort as fast as Waterloo

Branch Misses · 1.7.12

31

Quicksort, even faster in some runs. They thus conclude: “in the light of our experiments,
neither the average number of instructions nor the average number of cache misses can fully explain
empirical running time.” (Aumüller and Dietzfelbinger [9], p. 25)

All works discussed above only consider random pivots in the analysis; my joint article
with Conrado Martínez and Markus Nebel seems to be the first to cover the influence of
pivot sampling in the analysis of caching behavior [137]. In that article, we focused on
YBB Quicksort, but the methodology is not limited to that; I will extend these results to
generic one-pass partitioning in this work.

1.7.12 Branch Misses

Pipelined execution leads to enormous speedups for programs that are computation-
intensive. Conditional branches interfere with that, since the next instruction to be ex-
ecuted becomes known only after the branching condition has been evaluated. CPUs thus
try to predict the outcome of branches; if the predictor errs, we have a branch miss, which
is a costly event.

As an extreme example, in 2006 Kaligosi and Sanders [96] observed on a CPU with
a long pipeline and thus high branch miss costs that a very skewed pivot choice out-
performed the typically optimal median pivot, even though the latter leads to much less
executed instructions in total. The reason is that a skewed pivot makes the inner loop
branches much more predictable. Kaligosi and Sanders also derive upper bounds on the
number of branch misses. Note that their results for the 2-bit predictor are not tight [117].

Two years later, Biggar et al. [23] conducted an extensive study of branch prediction in
typical sorting algorithms, paralleling the study of LaMarca and Ladner [107] for caching.
They could not reproduce the extreme behavior of Quicksort observed by Kaligosi and
Sanders on another processor; in fact, in their study, classic Quicksort was faster than the
multiway Quicksort of LaMarca and Ladner [107] and their variants optimized for branch
misses. Biggar et al. reported from experiments that choosing the pivot as median of a
sample raises the overall number of branch misses, even though at the same time the
number of executed branches significantly drops. The reason is that a pivot closer to the
median makes branches less predictable.

The analyses of Kaligosi and Sanders [96] and Biggar et al. [23] are both based on
the heuristic assumption that there is a fixed branching probability if the rank of the pivot
is fixed. They then used this probability in the steady-state distribution of the branch-
prediction automata to obtain average misprediction rates. By conditioning on pivot values
instead of ranks, we could make this argument rigorous [117].

Brodal and Moruz [26] showed that there is a general trade-off in comparison-based
sorting: One can only save comparisons at the price of additional branch misses, this is
unless one can avoid the conditional branch altogether.

The latter is always possible [53], but only at a large penalty in terms of executed
instructions in general. Elmasry et al. [54] noted that in this respect, Lomuto’s partitioning
scheme is superior to Hoare’s classic crossing-pointers technique, since one can easily

1 Introduction

32

make the conditional swap in Lomuto’s method a predicated move instruction, thereby
eliminate the branch.

1.7.13 Academic Quicksort Variants

Although successful in practice, many variants of Quicksort do not meet all criteria for a
theoretically optimal sorting method: they do not achieve lower bounds, e.g., in terms of
time and space. Researchers have been trying to answer the question if such shortcomings
are inherent limitations of the Quicksort idea or if they can be circumvented. The resulting
algorithms are often of mostly academic interest.

Some sorting algorithms have been inspired by Quicksort, but the final algorithm
does not really feel Quicksortish any more; e.g., Cantone and Cincotti [28] presented the
QuickHeapsort algorithm, which mixes a partitioning step and Heapsort. We will not
discuss these derivatives and distant relatives here.

Worst-Case Efficiency. Quadratic worst-case complexity is a well-known shortcoming of
classic Quicksort. We can obtain linearithmic worst-case complexity without affecting
average performance by much using introspective sorting [133]; see Section 1.7.3. One
might argue though that Introsort is no longer a true Quicksort, since it passes control to
an entirely different algorithm for hard inputs. Quadratic worst cases can also be avoided
in a more Quicksortish way by selecting pivots as exact medians using a worst-case linear-
time selection algorithm. This approach is much slower than classic Quicksort except for
very few inputs, but we can say that Quicksort is not inherently quadratic in the worst-
case.

Stable Sorting. In the presence of equal keys, the issue of stability arises: with a stable
sorting method, elements with equal keys appear in the output in the same relative order
as they did in the input. Without trickery, Quicksort on arrays is not stable. Motzkin [130]
and Wegner [177] concurrently presented a simple and stable implementation of Quicksort
based on linked lists. So Quicksort is not unstable per se, but all efficient array-based
implementations are.

Constant Extra Space. Wegner [179] demonstrated that Quicksort can be implemented
stack-less, i.e., with O(1) additional memory. He described a clever trick to remember
boundaries of segments in the array using an element that we put temporarily out of
order. The algorithm strictly operates from left to right, always sorting left subproblems
first, so that we only need to detect the right boundary of subproblems. To do so, we put
the largest element of the subproblem preceding the current subproblem at the right end of
the current subproblem; this element is smaller than all elements in the current subarray,
and was smaller than the pivot in the previous partitioning phase. We then continue
partitioning, until we find the first element that is (weakly) smaller than the element one
position left of the beginning of the current subarray, which is the pivot of the previous

My Previous Work · 1.7.14

33

partitioning phase; this element must hence be the boundary of this subproblem. Since it
was the largest element of its subproblem, we can easily put it back in place.

Bing-Chao and Knuth [24] presented a simpler version of this idea one year earlier.
They used negation of integers to mark boundaries, which allows only inputs with positive
keys. Bing-Chao and Knuth precisely analyzed their algorithm and found it to be 60 %
slower than classic Quicksort in terms of MIX instructions.

Asymptotically Comparison-Optimal Quicksort. It is a fundamental open question of the-
oretical computer science whether it is possible to sort any permutation with at most
dld(n!)e comparisons, the information-theoretic lower bound (Knuth [103], Section 5.3.1).
A much simpler task is to achieve this asymptotically, i.e., to sort with ∼ ld(n!) ∼ n ld(n)
comparisons as n→∞; Mergesort attains this bound for example.

Classic Quicksort is quite far away from this; even the expected number on random
permutations is ∼ 2n ln(n) ≈ 1.38629n ld(n), i.e., almost 40 % more than the lower bound.
This number can be made smaller using median-of-k pivots, and if k grows with n, i.e.,
k = ω(1) and k = o(n) as n→∞, Quicksort needs ∼ n ld(n) comparisons [123, 116].

Comparison-Optimal Multiway Partitioning. Asymmetries allow YBB Quicksort to save
comparisons; Aumüller and Dietzfelbinger [8, 9] addressed the question how much can
be saved by this with any conceivable dual-pivot partitioning method. They prove a lower
bound and also devise schemes to attain this bound asymptotically. Very recently, they
analyzed their algorithms precisely in a joint work [11] with Clemens Heuberger, Daniel
Krenn, and Helmut Prodinger.

Aumüller extended the comparison-optimal partitioning schemes to any number of
pivots in his doctoral thesis [7] finished in 2015; the results also appear in a recent pre-
print [10] written with his advisor Martin Dietzfelbinger. They found diminishing returns
as the number of pivots k gets larger; in fact, they reported that classic Quicksort with
median-of-k pivots has a very similar expected comparisons count as the comparison-
optimal classification scheme for k pivots. They did however not consider the case of
choosing these k pivots from a sample, as well.

1.7.14 My Previous Work

I mentioned some of my work on Quicksort in the introduction, but did not give a system-
atic summary; this section does so.

Analysis of YBB Quicksort. When I noticed the discrepancies between existing analyses
and the JDK code mentioned in Section 1.7.8 in the spring of 2012, I set out to redo the
analysis as part of my master’s thesis [182], which I finished in the summer of 2012.
The analysis revealed important differences between Sedgewick’s dual-pivot Quicksort
and YBB Quicksort; in particular, the latter outperforms the former w.r.t. comparisons
and swaps. YBB Quicksort even saves a few comparisons over classic Quicksort using a
strategy that was apparently not widely understood at that time: which pivot we compare

1 Introduction

34

an element first with depends on whether it is reached by the left-bound or the right-
bound scanning index. Since the distance traveled by each of these pointers depends on
the pivot rank, YBB partitioning introduces a positive correlation between the event of a
cheap classification (only one comparison), and the event that more elements are reached
by this index than by the other one. This reduces the overall expectation.

Apart from the operation counts, my thesis contains a running time study that con-
firms the roughly 10 % speedup observed between the Java 6 and Java 7 libraries. The
speedup remains of the same order for basic versions of the algorithms (instead of the
tuned library implementations), and for C++ ports of the Java code. I computed the pre-
cise number of executed instructions for implementations in Java Bytecode and MMIX
assembly; in both cases, classic Quicksort needs fewer instructions. I also included a pre-
liminary treatment of pivot sampling, but could only obtain results for a few concrete
values for the sample size.

With Markus Nebel, my advisor for both my master’s thesis and this dissertation, I
presented the operation counts at the European Symposium on Algorithms 2012 [184]. We
added the use of Insertionsort for small subproblems in an extended journal version [186]
written with Ralph Neininger, who obtained a characterization of the limit distribution of
costs.

The instruction counts with pivot sampling suggest that the tertiles-of-five scheme
used in Java 7 entails more executed instructions on random permutations than using the
first and third smallest elements of a sample of five as pivots instead. With Raphael Reitzig
and Ulrich Laube, we experimentally investigated whether this translates into faster Java
code [185]. However, any anticipated advantage of the asymmetric sampling scheme is
dwarfed by another, quite peculiar effect: as the experiments clearly indicate, it depends
on the input how Oracle’s just-in-time compiler (JIT) translates Java Bytecode to machine
code: it either produces a fast version, or a slow version. The JIT chooses code optimiza-
tions based on profiling data from early executions, and the choice of the pivot-sampling
scheme influences those. The running time for the same input changes dramatically, de-
pending on which input was used during the JIT warmup phase to trigger compilation.

While we could not give a convincing explanation of what caused these differences,
we succeeded with the mathematical analysis of pivot-sampling in YBB Quicksort: we
computed expected comparison, swap and Bytecode instruction counts as functions of the
pivot-sampling parameter t [136].

Scanned Elements. We introduced the cost measure of scanned elements in a joint work
with Martínez [137], extending our conference article [136]. The number of scanned el-
ements serves as an intermediate, abstract measure that approximates the number of
cache misses, but can be precisely defined and analyzed mathematically and is hardware-
independent. Both LaMarca and Ladner [107] and Kushagra et al. [105] determine es-
sentially the number of scanned elements in their analyses of the caching behavior of
Quicksort, but do not make the distinction between scanned elements and cache misses:
they mix exact mathematical parts with heuristic simplifications in their analyses, making

My Previous Work · 1.7.14

35

it impossible to tell for sure if observed differences in measurements are due to differences
in the algorithms or due to inaccuracies of their model.

By distinguishing scanned elements and cache misses, and counting both in experi-
ments, we can separately account for two sources of discrepancies between measurements
and analytical results:

I we measure the analysis error that comes from asymptotic approximations by com-
paring scanned element counts from experiments with the analysis results;

I we determine the modeling error by comparing measured scanned element and cache
miss counts.

We showed for an idealized LRU cache that indeed the analysis error is often larger than
the modeling error [137]. To within the predictive quality of our asymptotic analysis, we
can thus safely compare Quicksort variants by their scanned elements counts instead of
actual cache miss counts.

YBB Quickselect. We can use three-way partitioning also as basis for a dual-pivot
Quickselect. In a joint project with Hosam Mahmoud, we analyzed this idea [187]: we
determined expectation and limit distribution of the number of comparisons needed by
YBB Quickselect to find an element of random rank (a.k.a. grand average). In terms of
key comparisons, dual-pivot Quickselect is clearly worse than the traditional single-pivot
method.

Quickselect and Scanned Elements. As discussed in the introduction, there is compelling
evidence for a shift in computational models. Since memory bandwidth has not grown
as quickly as processing speed, a reduction in scanned elements can outweigh an increase
in the number of executed instructions. Unfortunately, the Quickselect article was pub-
lished before I became aware of this; in terms of scanned elements, dual-pivoting actually
improves Quickselect in the grand average by 12.5 %!

According to my preliminary tests, however, there is no measurable difference be-
tween YBB Quickselect and classic Quickselect in terms of running time; if anything, clas-
sic Quickselect is very slightly faster. The reduction in scanned elements of 12.5 % might
just be too little to compensate for the increase in the number of swaps and comparisons,
and instructions in general. Recall that for sorting, the savings in terms of scanned el-
ements are twice as big and the difference in other measures is smaller, which might
explain why Quicksort profits from YBB partitioning but Quickselect does not.

Branch Misses. Memory bandwidth can become a bottleneck of execution speed, but
branch mispredictions can also slow down execution as they thwart the efficient use of
instruction pipelines. As discussed in Section 1.7.12, this can be a significant factor for
running time in certain scenarios. Interestingly, the expected number of branch misses
in Quicksort was not known even for classic Quicksort with median-of-three pivot. The
analysis of classic and YBB Quicksort including pivot sampling was again a cooperation

1 Introduction

36

with Conrado Martínez [117]. It turned out that classic and YBB Quicksort perform almost
exactly the same in this respect; this eliminates expected branch miss counts from the list
of plausible causes for the systematic running-time advantage of dual-pivot Quicksort.

37

Mathematical Tools2
Contents

2.1 Continuous Basics 41

2.2 Discrete Basics . 55

2.3 Generating Functions 60

2.4 Random Basics . 66

2.5 Discrete Entropy . 89

2.6 A Master Theorem for Distributional Recurrences. 100

2 Mathematical Tools

38

We collect in this chapter the mathematical tools we use later on in this work. The
first four sections serve mainly as a formulary, a collection of statements given here once
in consistent notation for later reference. Most are basic facts that appear or could appear
in textbooks, but since they come from a variety of fields, not every reader will be familiar
with all results. I made an effort to provide appropriate references for all results. Readers
who are familiar with this kind of mathematics may skip Sections 2.1 – 2.4 and only consult
them on demand.

Section 2.4 contains some results on the Dirichlet distribution often not covered in
standard references, in particular the rules of Dirichlet-calculus introduced in Section 2.4.5.

The last two sections present some original material. We will use them in our analysis
of Quicksort, but the results therein are to a good extent independent of Quicksort and
thus given in this chapter. Section 2.5 considers the discrete entropy, the function that
appears in the leading-term coefficient of the solution of the Quicksort recurrence. It has
intuitive meaning and properties that are not directly tied to Quicksort and could be of
independent interest.

In Section 2.6, we translate the conditions for Roura’s Continuous Master Theorem
(CMT) [154] to the language of probability. I found it often more natural to set up a
distributional recurrence instead of expressing the expectation recursively, even if when I
was only interested in the latter. With the presented master theorems for distributional
recurrences one can conveniently obtain an asymptotic approximation for the expectation
directly from the distributional recurrence.

A Note on Notation. This chapter also serves the purpose to fix notations for the presented
mathematical tools. A respectable body of notation is built up successively throughout this
chapter, and in fact also the next two chapters. Please note that we collect all introduced
notation in Appendix A in one place.

I tried hard to choose memorizable notations, and to explain underlying mnemonics
upon definition (watch out for underlines!), but I gave preference to consistency with
existing literature, whenever possible and applicable.

Vectorized Notation. A valuable convention for concise notation is to work with vectors
and apply operations element-wise by default. To avoid confusion, we always write vectors
in bold font: x = (x1, . . . , xn). Element-wise application then means that we understand
x+ 5 to mean the vector (x1 + 5, . . . , xn + 5), i.e., we have applied the operation add five to
each component of the vector. If we have a second vector y of same dimension, we write
x− y for (x1 − y1, . . . xn − yn). We have applied the binary operation difference element-
wise to the vectors. For a scalar α ∈ R, the usual scalar multiplication notation αx is
simply a special case.

The same convention is also used for relations, which we require to hold for all com-
ponents. x > 0 means all components are at least zero, x = 0 means x = (0, . . . , 0),
x < y means xi < yi for all i etc. Some authors use relations on vectors with existential
semantics; this is never done in this work.

Mathematical Tools

39

There is one problem with this conventions: most mathematically inclined readers will
understand an expression x ·y as the dot product of x and y (a.k.a. the scalar product or
inner product). Fortunately, there is no need for element-wise products in this work, so we
define that products of vectors are not meant element-wise; to the contrary, we will occasionally
use dot products for concise notation. To avoid confusion with an element-wise product,
we always write xTy instead of x · y when we mean

∑n
i=1 xiyi. By convention, all our

vectors are column vectors, even though we write their components in a row for brevity; the
inner product is the only place in this work where the orientation of vectors is relevant.

Dot products remain the only exception to our rule of element-wise application.

Vectorized Notation in Programming Languages. The idea of vectorized notation has been
used in programming languages for scientific programming for a long time. Unlike for
mathematical formulas, the notion of types of variables is widely accepted and understood
by programmers, which helps to clarify the semantics of the vectorized syntax.

Matlab is probably the language that follows this convention most rigorously. Other
tools have mimicked the syntax, e.g., the numpy package for Python. In Mathematica, most
built-in functions are defined to automatically thread over lists, by having the Listable
attribute. I have come to like this notation a lot.

It is interesting to note that all the above examples use the ordinary multiplication
operator for the element-wise product (remember: unlike the notation of this work). For
inner products a.k.a. dot products, they usually define another operator or function.

We will regularly refer to the total of a vector x = (x1, . . . , xn), which we write as

Σx =

n∑

i=1

xi. (2.1)

Once we are accustomed to this, the multiplicative version naturally suggests itself; we
write

Πx =

n∏

i=1

xi. (2.2)

Iverson Bracket. For any boolean expression, i.e., any statement P, we write

[P] =

{
1, if P is true;

0, if P is false.
(2.3)

This often avoids the need to address several special cases separately and also clearly
shows in which part of a formula the cases differ.

Sets. We reserve N for the natural numbers without zero, and write N0 when it is in-
cluded. More generally, we attach predicate expressions in the subscript of sets to denote
the restricted sets, e.g., R>5 denotes (5,∞), the reals strictly greater five. Closed intervals

2 Mathematical Tools

40

are written as [0, 1] = R>0 ∩R61. Occasionally, we use the open resp. closed neighbor-
hoods or balls B<ε(x) = {y : |y− x| < ε} and B6ε(x) = {y : |y− x| 6 ε}.

We write [m..n] for the integer interval {m,m + 1, . . . ,n} and [n] = [1..n]. We use
element-wise notation also for sets, e.g., 2N means the set of even numbers {2, 4, 6, 8, . . .}
and [3..6] + 1

2 is {3.5, 4.5, 5.5, 6.5}.
We denote by 1(n)

I the characteristic vector of a subset I ⊆ [n], i.e.,

1I = 1(n)
I =

(
[1 ∈ I], . . . , [n ∈ I]

)
. (2.4)

If n is clear from the context, we drop the superscript.

Weakly Increasing. If x 6 y < z, we say x is weakly smaller than y and y is strictly smaller
than z. Similarly, a number x > 0 is weakly positive, whereas y > 0 is said to be strictly
positive or just positive. Similarly we call a function f weakly (or strictly) increasing if x < y
implies f(x) 6 f(y) (resp. f(x) < f(y)).

More generally, we use the qualifiers weakly and strictly to refine any property that
has a less-or-equal flavor: A is a strict/weak subset of B, ≺ is a strictly/weakly partial
order, a1 6 a2 6 a3 is a weakly sorted (ascendingly), etc.

What is nondecreasing? Instead of saying that x is weakly smaller than y, it has become
customary in mathematics to say that x is not larger than y. (The only established alterna-
tive I know is to say x is less than or equal to y, which is quite verbose.) While logically
fine, this tradition of using negated notations makes reading much harder than necessary.
x 6 y is a really fundamental statement, and we should have a first-class expression for it,
instead of forcing readers to mentally undo the negation.

However, x is not larger than y is at least unambiguous, and people have become
used to it, so is it worth breaking a tradition? Well, first of all, x is not larger than y is
not unambiguous at all, as soon as we deal with an order relation that is strictly partial! It
might then mean that either x < y or x and y are incomparable.

Similarly, what exactly is a nondecreasing function? One that is not (strictly/weakly)
decreasing? Of course not; think of sin(x) for example. Rather, we have to move the
negation behind the quantifier: strictly decreasing means ∀x < y : f(x) > f(y), and non-
decreasing means ∀x < y : ¬f(x) > f(y), which is a different thing than not decreasing
¬∀x < y : f(x) > f(y). We have become used to the term, but it is really a bad notation; on
top of the needless negation, the literal meaning is misleading as it does not say where to
put the negation.

Weakly increasing in contrast is positive and naturally suggests to transfer the less-
or-equal flavor from an order relation to the function: a function is weakly increasing if
and only if the values of the function get weakly larger.

I was convinced to convert to positive notation by a post on math.stackexchange.com,
and I’d like to quote the nicely written answer there: “if you want to be precise, it is better
to say what you mean rather than to say what you don’t mean (or even to not say what you are
nonmeaning)” (van Leeuwen [111])

http://math.stackexchange.com/questions/115912/why-do-we-use-non-increasing-instead-of-decreasing/115951#115951

Continuous Basics · 2.1

41

2.1 Continuous Basics

In this section, we collect basics from (real) analysis and properties of special functions.

2.1.1 Asymptotic Notation

Landau notation, in particular the “Big-Oh” notation is very widely used in computer sci-
ence nowadays to describe asymptotic bounds on a term. Despite being in widespread
use—or is it because of that?—there has been considerable dissension about proper defi-
nitions and recommended syntax for Big-Oh and its relatives.

Big Uh-Oh. Let us briefly recapitulate the story with its most recent twists. Knuth [102]
traces the origins of the O-notation to works on number theory around 1900, more pre-
cisely to the German mathematicians Edmund Landau and Paul Bachmann. Landau [109,
p. 59] defines f(x) = O(g(x)) as abbreviation for

lim sup
x→∞

|f(x)|

g(x)
< ∞,

requiring g to be (asymptotically) positive. He also defines f(x) = o(g(x)) to mean
limx→∞ f(x)/g(x) = 0. If the above limit is 1 instead, Landau writes f(x) ∼ g(x).

Knuth bemoans the widespread abuse of O when actually a lower bound on the order
of growth is meant—a bad habit that has been resisting all attempts to eradicate it to
this day. A notation expressing lower bounds does not appear in the works of Landau
and Bachmann; according to Knuth [102], the symbol Ω first appeared in a work of G. H.
Hardy and J. E. Littlewood, but they used it with the meaning that a function is larger
than another infinitely often. Knuth advocates the use of Ω in the sense of all but finitely
often, symmetrical to O, and proposes to use Θ if both O and Ω hold.

It is interesting that Knuth’s formal definition is, however, not symmetric; Knuth [102]
defines O as upper bound on the growth rate of the absolute value of a function, but
introduces Ω without absolute values. In his sense, we would have −n2 6= Ω(n) and
−n2 = Ω(−n3). I welcome the fact that these asymmetric versions have not won through.

Modern textbooks on algorithms, e.g., the classic by Cormen et al. [35], restrict Big-
Oh definitions to weakly positive functions; with the justification that in the analysis of
algorithms, the resource counts are never negative. This effectively precludes us from
using O to bound error terms in truncated asymptotic expansions, as those may well be
negative or oscillating around 0, even when the overall function is positive. In line with
Landau’s original context, I consider the use of O for error terms very appropriate—even
more important than overall bounds—so negative functions definitely have to be handled
sensibly by bounding the absolute value.

One persisting bone of contention is whether statements of the form “f(n) = O(g(n))”
are to be discouraged in favor of “f(n) ∈ O(g(n)).” Brassard [25] argues vigorously for the
proper set-theoretic notation, as formal definitions of O consider sets of functions. Knuth
says w.r.t. this discussion that his “feeling is that we should continue to use one-way equality
together with O-notations, since it has been common practice of thousands of mathematicians for so
many years now, and since we understand the meaning of our existing notation sufficiently well.”
([102], p. 20) I am in line with Knuth, and stick to one-way equalities in this work.

2 Mathematical Tools

42

Gurevich [75] even argues that “O(f(n)n)” could be seen as a “common name,” an
abstract representative for a class of functions with some common property. In his sense,
“O(n) = O(n2).” should be seen as analog to the statement “a square is a rectangle,”
making O(f(n)) a first-class object. Gurevich draws a parallel to the widely accepted use
of indefinite integrals

∫
f(x)dx, omitting the constant of integration in antiderivatives.

Howell [85] demonstrates that one has to be very careful in usingO-terms with several
variables. He generalizes a few natural desirable properties for Big-Oh to that case—and
shows them to be contradictory! Rutanen et al. [155] recently proposed an axiomatization
of asymptotic notation with a list of properties the notion should have. It builds on
Howell’s work. The main property that notions like the original one by Landau [109] fail
to fulfill is what Rutanen et al. call sub-composability: It requires g(n) ∈ O(f(n)) to imply
g(h(n)) = O

(
f(h(n))

)
for all functions h.

It is clear that sub-composability cannot hold if we ignore behavior for small n, i.e., for
all n 6 n0, where n0 is a constant: function h might concentrate attention to exactly this
disregarded region that we know nothing about; say h(n) = 0 for the most extreme case.
To resolve this issue Rutanen et al. propose to define O based on “linear dominance,” i.e.,
requiring f(n) 6 cg(n) for all n. Howell suggests to use a more complicated definition
that takes maximal function values into account.

Expecting an asymptotic bound to continue to hold after inserting constant values for n
does not seem natural to me. Howell and Rutanen et al. both argue that sub-composability
is especially desirable for O-terms involving functions in several variables. Composition
might there hold only one parameter constant, while another keeps growing.

Asymptotics with several variables are delicate, the proposed solutions feel like
throwing the baby out with the bathwater. They propose to take the asymptotics out
of asymptotic notation! It would make O quite cumbersome to use; if we fail to show lin-
ear dominance right away, we would have to explicitly restrict the domain of our functions
first.

Bounds that are valid everywhere are certainly desirable, but neither is their statement
an asymptotic notation, nor will their proof be truly asymptotic in nature. (Proofs via limits
of quotients are possible if the function in the O-term is never zero, cf. Theorem 9.13
of Rutanen et al. [155, v22]. This latter requirement does not feel “asymptotic” to me.)
Having a concise notation to express linear dominance might be beneficial; replacing Big-
Oh by it is something I would disapprove of.

In light of this ongoing dispute, I reached the conclusion that it should become best prac-
tice to briefly state which flavor of Big-Oh is used in any piece of work; of course, I should
set a good example here.

Definition of O used in this work. We use the notations O, o, Ω ω, Θ and ∼ as they are
defined by Flajolet and Sedgewick [64], i.e., we require the ratio of absolute values to stay
bounded resp. converge to 0, except for ∼, where we require the ratio to converge to 1
without taking absolute values. For convenience, here is their definition.

Definition 2.1 (Asymptotic Notation, Section A.2 of Analytic Combinatorics [64]):
Let X be a set and x0 ∈ X a particular element of X. We assume a notion of neighborhood
to exist on X. Examples are X = N ∪ {+∞} with x0 = +∞, X = R with x0 any point

Asymptotic Notation · 2.1.1

43

in R; X = C or a subset of C of C with x0 = 0, and so on.
For two functions f and g from X \ {x0} to R or C, we write

I f(x) = O(g(x)) as x→ x0,
if there is a neighborhood N of x0 and a constant C > 0, such that for all x ∈ N
except x = x0 holds |f(x)| 6 C|g(x)|;

I f(x) = o(g(x)) as x→ x0,
if for any ε > 0 there is a neighborhood N of x0, such that for all x ∈ N except x = x0
holds |f(x)| 6 ε|g(x)|;

I f(x) ∼ g(x) as x→ x0,
if limx→x0 f(x)/g(x) = 1;

I f(x) = Ω(g(x)) as x→ x0,
if there is a neighborhood N of x0 and a constant C > 0, such that for all x ∈ N
except x = x0 holds |f(x)| > C|g(x)|;

I f(x) = Θ(g(x)) as x→ x0,
if f(x) = O(g(x)) and f(x) = Ω(g(x)) as x→ x0. J

We allow ourselves to write f(n) = O(g(n)), but formally think of O(g(n)) etc. as sets of
functions. If O(g(n)) appears in the middle of an expression, that term stands for the set
of functions obtained by inserting any function f(n) ∈ O(g(n)) in place of O(g(n)).

Positive Errors. Error terms are customarily written as +O(h). A positive attitude towards
errors should be welcomed, but I would like to syntactically emphasize that the sign in
error terms is really not specified, therefore I write f(n) = g(n)±O(h(n)). The error bound
might be positive, negative, zero, or any mixture. We only bound its absolute value.

Even though it deviates from established notation, this change is harmless, in that it
can hardly be misunderstood, whereas +O(h(n)) might be mistaken for a positive quantity
where it is not.

Uniform Big-Oh Bounds. According to the definition above, bounds expressed by Big-
Oh only hold in the limit: if we write f(x) = O(x−1) as x → 0, we mean that there is a
neighborhood around the limit point, x = 0, and a constant C so that |f(x)| 6 C|x−1| for all x
in that neighborhood. Usually this is what we have in mind for an asymptotic notation.

However, some authors use Big-Oh also in a wider meaning (equivalent to linear dom-
inance): the statement “f(x) = O(x−1) uniformly for |x| < 1” is to be understood as there is
a constant C such that for all x with |x| < 1 holds |f(x)| 6 C|x−1|. Again: for all such x. This
extended use is advocated, e.g., by Graham et al. [72, Section 9.2]; when they write

f(x) = O(x−1), |x| < 1, (2.5)

they mean the above statement.
I find this syntax unfortunate since it can be mistaken to mean only the usual in-the-

limit bound. When we use Big-Oh in the meaning of such a uniform bound, we explicitly
put the keyword uniformly, to emphasize the extended scope.

2 Mathematical Tools

44

Similarly, we say that f(x,y) = O(g(x,y)) as x → x0 holds uniformly in y ∈ Y if the
constants in the O-term do not depend on y.

Multivariate Big-Oh. We will mostly work with univariate asymptotics, but in Chapter 8,
we use bivariate Big-Oh as well. As discussed in the digression above, multivariate asymp-
totics can be dangerous, so we had better state formally what we mean by it.

Definition 2.2 (Multivariate Big-Oh): As before, let X and Y be two sets with a notion of
neighborhood, and let x0 ∈ X and y0 ∈ Y. We say that

f(x,y) = O(g(x,y)) as x→ x0 and y→ y0,

if for all functions x : R→ X and y : R→ Y with x(z)→ x0 and y(z)→ y0 as z→∞ holds

f
(
x(z),y(z)

)
= O

(
g(x(z),y(z))

)
as z→∞. J

This definition reduces the question to univariate asymptotics by introducing a hidden
variable z that drives the limiting process; both variables have to converge to their limit,
but the relative speed of convergence is not restricted.

This definition makes it easy to incorporate side conditions on the relative growth of
the variables, and we will always add such restrictions explicitly to our statements. The
formal meaning is that we require the side conditions to hold for the functions x(z) and
y(z) from Definition 2.2; let us consider an example to make this clear.

Example. Running time complexities of graph algorithms typically depend on the num-
ber of nodes n and the number of edges m, and both go to infinity. If the graph is simple
and connected, we have the restrictions m = Ω(n) and m = O(n2) as n → ∞. We then
write

f(n,m) = O(g(n,m)) as n→∞ with m = Ω(n) and m = O(n2) (2.6)

to mean that for all functions n : R → N and m : R → N with n(z) → ∞ and m(z) =

Ω(n(z)) and m(z) = O(n2(z)) as z→∞ holds

f
(
n(z),m(z)

)
= O

(
g(n(z),m(z))

)
as z→∞. (2.7)

2.1.2 Special Functions

The Gamma Function. The gamma function Γ(z) is defined by

Γ(z) =

∫∞

0

e−ttz−1 dt, <z > 0, (2.8)

and elsewhere by analytic continuation; it has poles at z ∈ Z60. It is a continuous exten-
sion of the factorial function n! = 1 · 2 · 3 · · ·n to any real (in fact complex) number z; we
have

Γ(n+ 1) = n!, n ∈N0, (2.9)

see Equation (5.4.1) of the DLMF [46].

http://dlmf.nist.gov/5.4.E1

Special Functions · 2.1.2

45

The NIST Digital Library of Mathematical Functions (DLMF). The digital library of math-
ematical functions (DLMF) is the online version of the successor of “the Abramowitz and
Stegun,” i.e., the Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables first published in 1964. The handbook had since become the standard
reference for facts on special functions, widely referred to by naming its two editors Mil-
ton Abramowitz and Irene A. Stegun. In 2010, its successor was published, both as a
traditional printed handbook [143] and as a freely accessible website, the DLMF [46]. Ref-
erences in this work will refer to the online version but equation numbers are the same in
the printed version. In the PDF-version of this work, equation and section numbers from
the DLMF are clickable links that point directly to the referenced part on the website.

It is in fact easy to see by partial integration that Γ(z+ 1) = zΓ(z), so we have (by induction)
the relation

zn =
Γ(z+n)

Γ(z)
, n ∈N0 and z /∈ Z60, (2.10)

where zn is the nth rising factorial power of z, see Section 2.2. We can give a handy
asymptotic expansion for such quotients, where we assume that z is real:

Γ(z+ a)

Γ(z+ b)
= za−b ±O(za−b−1), (z→∞). (2.11)

This follows from Equation (5.11.13) of the DLMF [46]. In fact, a full asymptotic expansion
is given there, but for our purposes the simple form in Equation (2.11) suffices.

The Digamma Function. A close relative of the gamma function is the digamma function
ψ(z) defined via

ψ(z) =
Γ ′(z)
Γ(z)

=
d

dz
ln(Γ(z)). (2.12)

Many multiplicative properties of Γ(z) have additive analogs for ψ(z), for example the
fundamental equation

ψ(z+ 1) = ψ(z) +
1

z
, z /∈ Z60 , (2.13)

which is Equation (5.5.2) of the DLMF [46]. (It also follows directly from the definition
upon inserting Γ(z+ 1) = zΓ(z).) Iterating Equation (2.13), we find that what Γ(z) is to n!,
is ψ(z) to Hn = 1

1 +
1
2 + · · ·+

1
n , the harmonic numbers (see Section 2.2.2):

ψ(n+ 1) = Hn − γ, n ∈N0, (2.14)

where

γ ≈ 0.57721 56649 01532 86061 (2.15)

is the Euler-Mascheroni constant a.k.a. Euler-gamma.

http://dlmf.nist.gov/5.11#E13
http://dlmf.nist.gov/5.5.E2

2 Mathematical Tools

46

Order of Growth Check At first sight, this connection might be a bit obscure and seem-
ingly appears out of thin air. The following back-of-the-envelope computation immedi-
ately shows that the order of growth checks out: ln(Γ(n+ 1)) = ln(n!) ∼ n lnn, and the
derivative of that is lnn±O(1) ∼ Hn.

The Beta Function. The beta function is usually defined with two parameters as B(α,β) =∫1
0 z
α−1(1 − z)β−1dz for α,β > 0. For our application, in particular for the Dirichlet

distribution, it is more convenient to directly work with the d-dimensional beta function
B(α1, . . . ,αd). To conveniently express it, we let ∆d for d ∈ N>2 denote the standard
(d− 1)-dimensional open simplex, i.e.,

∆d :=
{
x ∈ Rd−1 : x > 0 ∧ Σx < 1

}
⊆ (0, 1)d−1. (2.16)

Note the (deliberate) mismatch in dimension: ∆d has dimension d− 1. For convenience
and to allow symmetric notation, we formally write

∫
∆d
f(x)dx for an integrable function

f : Rd → R to mean the integral

∫

∆d

f(x1, . . . , xd)dx :=

∫

∆d

f

(
x1, . . . , xd−1, 1−

d−1∑

i=1

xi

)
d(x1, . . . , xd−1) (2.17)

=

1∫

0

1−x1∫

0

· · ·
1−
∑d−2
i=1 xi∫

0

f

(
x1, . . . , xd−1, 1−

d−1∑

i=1

xi

)
dxd−1 · · ·dx2 dx1 .

(2.18)

Simplex: Open or Closed? Two different sets are known under the name standard simplex.
Both describe the set of stochastic vectors in Rd, i.e., vectors with positive entries that
sum to one. The first one is our ∆d, the open simplex. It describes stochastic vectors
by leaving out the last component xd, which is indirectly given by the others as xd =

1− x1 − · · ·− xd−1 anyway. For example, ∆2 = (0, 1). It is clear that the set of stochastic
vectors has dimension d − 1, so representing it by a subset of Rd−1 instead of Rd is
natural.

However, the choice of leaving out xd is arbitrary; we could eliminate any other
component instead. This introduces asymmetry in the notation, which can be avoided
using the closed simplex Nd = {x ∈ Rd : x > 0∧ Σx = 1} instead. For example, N2 =

{(t, 1− t) : t ∈ (0, 1)}. Nd is formally a subset of Rd, but it has dimension d− 1. This
makes it very inconvenient for integration: it has measure zero.

Our convention from above tries to combine the best of both worlds: by introduc-
ing the syntactic abbreviation xd for 1 − x1 − · · · − xd−1, we can write integrals in the
symmetric form as if they were taken over Nd, but we compute them by separating the
components of ∆d as in Equation (2.18).

We adopt here the naming convention of Ng et al. [141]; it is a bit unfortunate since
as a subset of Rd, Nd is neither open nor closed in the topological sense, and is indeed
an open subset of the containing (d− 1)-dimensional affine subspace of Rd. ∆d is some-

Special Functions · 2.1.2

47

times also called standard (open) orthogonal simplex, or corner of the (d− 1)-dimensional
hypercube.

With this convention, we define the beta function by the integral

B(α) = B(α1, . . . ,αd) :=

∫

∆d

xα1−11 · · · xαd−1d dx, α > 0. (2.19)

The beta function can be written in terms of the gamma function as

B(α1, . . . ,αd) =
Γ(α1) · · · Γ(αd)
Γ(α1 + · · ·+αd)

, (2.20)

see Equation (5.12.1) of the DLMF [46] for d = 2, and Equation (2.3) of Ng et al. [141]
for the general case. If we take the case d = 2 for granted, the generalization follows by
induction:

Proof of (2.20): Assume d > 3. Writing the integral for B(α) in the form of Equation (2.18),
we have as innermost integral

∫1−x1−···−xd−2
xd−1=0

x
αd−1−1
d−1 (1− x1 − · · ·− xd−2 − xd−1)αd−1 dxd−1. (2.21)

This is iαd−1,αd(x1 + · · ·+ xd−2) when we abbreviate

ia,b(z) :=

∫1−z

x=0
xa−1(1− z− x)b−1 dx . (2.22)

This can be rewritten with the substitution y = x/(1− z), i.e., x = y(1− z) as

= (1− z)a+b−1
∫1

y=0
ya−1(1− y)b−1 dy (2.23)

= (1− z)a+b−1B(a,b). (2.24)

We thus have

B(α) = B(αd−1,αd) · B(α1, . . . ,αd−2,αd−1 +αd), (2.25)

and using the induction hypothesis on both yields

=
Γ(α1) · · · Γ(αd)
Γ(α1 + · · ·+αd)

. (2.26)
�

Incomplete Beta Function. For the binary case d = 2 we also use the regularized incomplete
beta function where the limits of integration are variable:

Ix,y(α,β) =
1

B(α,β)

∫y

x

tα−1(1− t)β−1 dt. (2.27)

http://dlmf.nist.gov/5.12.E1

2 Mathematical Tools

48

If the parameters α and β are integers, we can express the incomplete beta function more
explicitly. With Equation (8.17.5) of the DLMF [46] we find the form

Ix,y(α,β) =

β−1∑

b=0

(
α− 1+ b

α− 1

)(
yα(1− y)b − xα(1− x)b

)
,

α,β ∈N and α > β,
0 6 x,y < 1 .

(2.28)

If we need β > α, we can exploit the symmetry of beta integrals:

Ix,y(α,β) = I1−y,1−x(β,α), α,β > 0 and 0 6 x,y < 1. (2.29)

A Logarithmic Beta Integral.
∫1

0

za−1(1− z)b−1 ln(z)dz = B(a,b)
(
ψ(a) −ψ(a+ b)

)
, a,b > 0. (2.30)

This is a special case of Equation (4.253-1), p. 540, of Gradshteyn and Ryzhik [71] with
r = 1, but there is also a nice direct argument.

Proof of (2.30): A simple computation shows that

∂

∂a
B(a,b) = B(a,b)

(
Γ ′(a)
Γ(a)

−
Γ ′(a+ b)
Γ(a+ b)

)
(2.31)

= B(a,b)
(
ψ(a) −ψ(a+ b)

)
. (2.32)

On the other hand, using Leibniz’s rule for differentiation under the integral sign, we have

∂

∂a
B(a,b) =

∫1

0

(1− x)b−1
∂

∂a
xa−1 dx (2.33)

=

∫1

0

(1− x)b−1xa−1 ln(x)dx. (2.34)
�

2.1.3 Convexity

The unrestricted set of (real) functions contains many hideous creatures, traditionally used
in introductory math courses to tame students’ tendencies to eagerly jump to general
conclusions that seem intuitive, since they are true for typical examples. Most functions in
this work are, however, really harmless. It is then desirable to tame the class of functions
instead, so that intuitive statements hold. Restricting attention to continuous functions
already saves some of them as in the intermediate value theorem; for other properties
continuity alone is not sufficient, e.g., the existence of a derivative.

In the next two section, we will consider two constrained classes of functions whose
properties are often helpful in our analyses. We consider definitions and properties only
in so far as we need them; most results have been generalized further. This section con-
siders convex functions. They fulfill a few fundamental inequalities that we state here for
reference.

http://dlmf.nist.gov/8.17.E5

Convexity · 2.1.3

49

Definition 2.3 (Convex Function): Let I ⊆ R be an interval and f : I → R a function. f is
called convex if

∀x,y ∈ I ∀µ ∈ (0, 1) : f
(
µx+ (1− µ)y

)
6 µf(x) + (1− µ)f(y).

If the inequality is strict for all x 6= y, f is said to be strictly convex.
Likewise, f is (strictly) concave if we have > (resp. >) in the inequality instead. J

Geometrically speaking, a convex function lies below its chords, a concave one lies above.
Note that f is concave if and only if −f is convex, so most properties of convex functions
directly carry over to concave ones. We hence only need to discuss them for the convex
case. In the following, I denotes a real interval.

The most convenient way to check convexity is usually via the following characteriza-
tion.

Proposition 2.4 (Convexity via Derivatives, Thms. 12B,C of Roberts and Varberg [149]):

Let f : I→ R be a function.

(a) Suppose f ′ exists in the interior of I.
Then f is (strictly) convex if and only if f ′ is (strictly) increasing.

(b) Suppose f ′′ exists in the interior of I.
Then f is convex if and only if f ′′(x) > 0 for all x inside I.
If even f ′′(x) > 0 for all such x, then f is strictly convex. �

For differentiable convex functions, we have the tangent inequality: a convex function lies
above all its tangents.

Lemma 2.5 (Tangent Inequality, Theorem 12E of Roberts and Varberg [149]):
Let f : I→ R be a convex function and x0 ∈ I a point where f ′(x0) exists. Then

∀x ∈ I : f(x) > f(x0) + f
′(x0)(x− x0) .

If f ′ exists on all of I and f is strictly convex, equality holds only for x = x0. �

While a convex functions lies above its tangents, it lies below its chords. If we extend a
chord to a secant, the function lies below the secant between the two points, but above the
secant elsewhere:

Lemma 2.6 (Secant Inequalities):
Let f : I→ R be convex and x,y ∈ I be two points x 6= y. Then

(a) f
(
µx+ (1− µ)y

)
6 µf(x) + (1− µ)f(y) for µ ∈ [0, 1] and

(b) f
(
µx+ (1− µ)y

)
> µf(x) + (1− µ)f(y) for µ /∈ [0, 1].

If f is strictly convex, the inequality is strict. J

2 Mathematical Tools

50

Proof: The first part is the definition of convexity, the second follows directly from the
three chords lemma, see, e.g., Proposition 6.7.3 of Sohrab [171]. �
A classic inequality follows by iteratively using the definition of convexity.

Lemma 2.7 (Jensen’s Inequality, Proposition 6.7.2 of Sohrab [171]):
Let f : I → R be convex and n points x1, . . . , xn ∈ I be given. For any µ1, . . . ,µn > 0

with µ1 + · · ·+ µn = 1 holds

f

(n∑

i=1

µixi

)
6

n∑

i=1

µif(xi).
�

2.1.4 Lipschitz- and Hölder-Continuity

Continuity alone is not enough for many intuitive properties of nice functions, as this
notion of smoothness is too localized. In this section we consider more restrictive forms of
continuity that guarantee us some handy properties, collected in Proposition 2.12 below.

Figure 2: Illustration of Lipschitz continuity. A func-
tion f (here f(x) = sin(x)) is Lipschitz-
continuous if its graph lies “within any
bow tie ./” centered at a point of the
graph; in the picture, the function may not
enter the red area. The slope of the bow
ties is the Lipschitz constant. 0 2 4 6

−1

0

1

Figure 3: Illustration of Hölder continuity. A func-
tion f (here f(x) =

√
1− |x|) is Hölder-

continuous if its graph lies “within any di-
abolo⊃⊂” centered at a point of the graph.
The Hölder-exponent and constant control
the shape of the diabolo. −1 −0.5 0 0.5 1

0

0.5

1

Definition 2.8 (Lipschitz- and Hölder-continuity): Let I be a real interval, f : I → R be a
function and 0 < α 6 1. f is Hölder-continuous with exponent αwhen

∃C ∀x,y ∈ I :
∣∣f(x) − f(y)

∣∣ 6 C|x− y|α.

If α = 1, then f is called Lipschitz-continuous. J

Lipschitz- and Hölder-Continuity · 2.1.4

51

Hölder-continuity is also called Lipschitz of order α by some authors, e.g., Sohrab [171,
Definition 4.6.9]. Figures 2 and 3 illustrate the notations.

The Unspeakable. With these pictures in mind, I was strongly tempted to refer to
Lipschitz-continuity as ./-continuity and likewise to Hölder-continuity as ⊃⊂-continuity;
but in the end I did not dare to deprive Rudolf Lipschitz and Otto Hölder of their right to
give their name to these important concepts.

Moreover, while ./- and ⊃⊂-continuous is somewhat pleasing to write, the spoken
versions, bow-tie-continuous resp. diabolo-continuous, sounded a bit too much like a chil-
dren’s birthday party. The picture, however, got stuck in my mind.

Note that Hölder- and Lipschitz-continuity are global properties: the inequality in Defini-
tion 2.8 has to hold for any pair of values from the domain. This leads to some peculiar
properties on unbounded domains: the function x 7→ xα, α ∈ (0, 1] is Hölder-continuous
with exponent α on [0,∞), but not for any other exponent, so each exponent defines its
own class of Hölder-continuous functions.

We will mostly work with bounded domains, and there the exponent can be seen as the
lower bound on the degree of smoothness: we can shrink the exponent without affecting
continuity. This is formally stated in the following proposition.

Proposition 2.9 (Lipschitz implies Hölder on Bounded Domains): Let I be bounded. If
f : I → R is Lipschitz-continuous on I, it is also Hölder-continuous on I for any exponent
0 < α 6 1. If f is Hölder-continuous on Iwith exponent α, then it is also Hölder-continuous
for any exponent α ′ ∈ (0,α]. J

Proof: We only prove the second claim; it implies the first with α = 1. We have xα
′ > xα

for x ∈ [0, 1] and 0 < α ′ 6 α 6 1. Now let f be Hölder-continuous with constant C and
exponent α, then we have for x,y ∈ I that |x− y| 6 |I| and |x−y|

|I| 6 1. Then

|f(x) − f(y)| 6 C|x− y|α (2.35)

= C|I|α ·
(
|x− y|

|I|

)α
(2.36)

6 C|I|α ·
(
|x− y|

|I|

)α ′
(2.37)

6 C|I|α−α
′ · |x− y|α ′ . (2.38)

Hence, f is Hölder-continuous with constant C|I|α−α
′

and exponent α ′. �

The following simple observation is usually the most convenient way to prove Lipschitz-
continuity.

Proposition 2.10 (Bounded Derivative Implies Lipschitz): A differentiable function f :

I → R is Lipschitz-continuous on I if f ′ is bounded on I. In particular if I is compact,
f is Lipschitz if f ′ is continuous on I. The Lipschitz constant is supx∈I f

′(x). J

2 Mathematical Tools

52

Proof: Let C = supx∈I f
′(x). Assume there were x,y ∈ I with |f(x) − f(y)| > C|x−y|. Then

the secant connecting (x, f(x)) and (y, f(y)) has slope C ′ = |f(x) − f(y)|/|x− y| > C. By the
mean-value theorem, there would be a z in between with f ′(z) = C ′ > C, a contradiction
to the choice of C. �

Hölder-continuity is maintained by many operations.

Lemma 2.11 (Stability of Hölder-Continuity, Theorem 4.6.14 of Sohrab [171]):

(a) Linear combinations of (finitely many) Hölder-continuous functions, all with the same
exponent α, are again Hölder-continuous with exponent α.

(b) The product of (finitely many) bounded-domain Hölder-continuous functions, all with
the same exponent α, is again Hölder-continuous with exponent α.

(c) The composition of two Hölder-continuous functions is again Hölder-continuous,
where the exponents multiply. �

In the following proposition, we collect for reference a few consequences of Hölder-
continuity, in particular guarantees on the convergence speed of the Riemann sum for
the integral. We will regularly use these facts.

Proposition 2.12 (Hölder Error Bounds):
Let f(z) be Hölder-continuous with exponent α on [a,b].

(a) Then holds uniformly for z ∈ [a,b] with z+ ε ∈ [a,b] the approximation

f(z+ ε) = f(z) ± O(εα), (ε→ 0). (2.39)

(b) Moreover we have for fixed limits a and b the approximation

∫b

a

f(z)dz =
b− a

n

n−1∑

i=0

f
(
(1− i

n)a+
i
nb
)
± O(n−α), (n→∞), (2.40)

(c) and a similar relation for thin integrals

n ·
∫a+ 1

n

a

f(z)dz = f(a) ± O(n−α), (n→∞). (2.41)
J

Although a trivial consequence, let us remark once more that for Lipschitz-continuous
functions the above statements hold with α = 1.

Proof: The first statement follows directly from the definition with x = z+ ε and y = z. It
holds in fact without restriction on ε, as long as we do not leave the domain of f.

The integral exists as f is continuous on the compact interval. We split the integral at
the equidistant points a = a0,a1,a2, . . . ,an = b with ai = (1− i

n)a+ i
nb for 0 6 i 6 n,

Lipschitz- and Hölder-Continuity · 2.1.4

53

and use the Hölder condition on each of the integral slices:
∣∣∣∣∣

∫ai+1
ai

f(z)dz −
b− a

n
f(ai)

∣∣∣∣∣ =

∫ai+1
ai

∣∣f(z) − f(ai)
∣∣dz (2.42)

6
∫ai+1
ai

C|z− ai|
αdz (2.43)

=
C

1+α
·
(
b− a

n

)1+α
. (2.44)

Summing this inequality over all i yields the second claim, since for fixed a and b, we have
n · C

1+α

(
b−a
n

)1+α
= O(n−α).

The last claim follows from Equation (2.44) for i = 0, upon setting n = 1 and b = a+ 1
ñ ;

then the error term is C
1+α

(
1
ñ

)
1+α = O(ñ−1−α). Multiplying by ñ yields the claim in the

given form. �

� � �

Most applications in this work refer to bounded intervals and list Hölder-continuity as the
minimal requirement for the given proofs. When actually using the statement it will in
most cases be sufficient to show Lipschitz-continuity with Proposition 2.10 and then apply
Proposition 2.9.

There is one case however, where we actually need the flexibility since some functions
are Hölder-, but not Lipschitz-continuous:

Lemma 2.13: f : [0, 1] → R with f(x) = x ln(1/x) is Hölder-continuous for any exponent
α ∈ (0, 1), but not Lipschitz-continuous. J

Proof: Intuitively, the derivative f ′(x) = ln(1/x) − 1 of f approaches infinity as x → 0, so
there is no constant bound for the steepness and f cannot be Lipschitz. But the growth is
only logarithmic, so it is smaller than xα for α < 1 as x → 0, so it is Hölder-continuous.
The formal argument uses Hölder’s inequality and seems to be folklore, but I could not
find a formal proof to cite; so here are the details.

We start by showing that for any q > 1, the following improper integral exists:
∫1

0

∣∣ln(x) + 1
∣∣q dx =

∫1/e

0

(
− ln(x) − 1

)q
dx +

∫1

1/e

(
ln(x) + 1

)q
dx . (2.45)

The second integral is bounded since log(x) + 1 6 1 in that range. For the range of the
first one, there is an antiderivative; using ∂

∂zΓ(a, z) = −za−1e−z (Equation (8.8.13) of the
DLMF [46]), where Γ(a, z) =

∫∞
z t

a−1e−t dt is the incomplete gamma function:

∂

∂x

Γ(q+ 1,− ln(x) − 1)
e

=
(
− ln(x) − 1

)q. (2.46)

Thereby, we find
∫1/e

0

(
− ln(x) − 1

)q
dx =

Γ(q+ 1)

e
. (2.47)

http://dlmf.nist.gov/8.8.E13

2 Mathematical Tools

54

We thus know that
∫1

0

∣∣ln(x) + 1
∣∣q dx = C < ∞ , (2.48)

for a constant C depending only on q.

Similarly as above, we can explicitly compute the second integral and thus C:
∫a

1/e

(
ln(x) + 1

)q
dx =

(−1)q

e

(
Γ(q+ 1,−1) − Γ(q+ 1)

)
,

where for q ∈ Z we have Γ(q+ 1,−1) = e ·Dq for Dn = n! ·
(
1− 1

1! +
1
2! − · · ·+

(−1)n

n!
)

the number of derangements of n objects (see Bergeron et al. [22] for the connection to
Γ(n+ 1,−1) and Example II.14 of Flajolet and Sedgewick [64] for the expression for Dn).

The second ingredient to our proof is Hölder’s inequality (Equation (1.7.5) of the
DLMF [46]): For p > 1 and 1

p + 1
q = 1 and two weakly positive functions f and g holds

∫b

a

f(x)g(x)dx 6
(∫b

a

(
f(x)

)p
dx

)1/p
·
(∫b

a

(
g(x)

)q
dx

)1/q
. (2.49)

Now towards proving the Hölder-condition for exponent α ∈ (0, 1), we express the
difference f(x) − f(y) as integral via the fundamental theorem of calculus. Setting p = 1/α

it holds for x,y ∈ [0, 1]

∣∣f(y) − f(x)
∣∣ =

∣∣∣∣
∫y

x

f ′(t)dt

∣∣∣∣ (2.50)

6
∫y

x

1 ·
∣∣ln(1/t) − 1

∣∣dt (2.51)

6
(2.49)

(∫y

x

1p dt

)1/p
·
(∫y

x

∣∣ln(t) + 1
∣∣q dt

)1/q
(2.52)

6 |y− x|1/p ·
(∫1

0

∣∣ln(t) + 1
∣∣q dt

)1/q
(2.53)

=
(2.48)

C1/q · |y− x|α, (2.54)

so f is indeed Hölder-continuous on [0, 1] with exponent α.
To see that f is not Lipschitz-continuous, note that for any constant C > 0, there is a

x ∈ (0, 1] with Cx = f(x) = x ln(1/x), namely x = e−C. This means that Cx is the chord
through points x = 0 and x = e−C, and the strictly concave function f thus lies strictly
above Cx for x ∈ (0, e−C). �

The above proof can be extended to functions f(x) = xa ln(1/x).

Lemma 2.14: Let fa : [0, 1] → R with fa(x) = xa ln(1/x). For a ∈ (0, 1], fa is Hölder-
continuous on [0, 1] for any exponent α ∈ (0,a). For a > 1, fa is even Lipschitz-continuous.J

http://dlmf.nist.gov/1.7.E5

Discrete Basics · 2.2

55

Proof: For a > 1, the claim follows simply from Proposition 2.10 since the derivative
f ′(x) = xa−1(ln(1/x) − 1) then exists for all x ∈ [0, 1]. For a < 1, we proceed as in the proof
of Lemma 2.13, only the integral

∫1
0 |f
′(t)|q dt changes. We have to argue that it exists and

is finite, for suitable values of q; we do so by showing that it is dominated by a convergent
integral.

First observe that given any ε > 0, we can split
∫1

0

|f ′(t)|q dt =

∫ε

0

tq(a−1)
(
ln(1/t) − 1

)q
dt +

∫1

ε

tq(a−1)
∣∣ln(1/t) − 1

∣∣q dt , (2.55)

and the integrand is clearly bounded over the range of the second integral; it is therefore
bounded by a constant depending only on q and a. It thus suffices to find ε so that the
left integral is dominated.

For constants c1, c2 > 0 holds nc1 lnc2 n = O(nc1+δ) for any δ > 0 as n → ∞. Hence,
as long as q(a− 1) > −1, so that we find a δ > 0 with q(a− 1) > −1+ δ, we have

xq(a−1)
(
ln(1/x) − 1

)q
= O(x−1+δ), (x→ 0). (2.56)

Let C and ε > 0 be the constants hidden in O, i.e., for x 6 ε, holds
∣∣∣xq(a−1)

(
ln(1/x) − 1

)q∣∣∣ 6 Cx−1+δ. (2.57)

Then we find for the integral
∫ε

0

tq(a−1)
(
ln(1/t) − 1

)q
dt 6

∫ε

0

Ct−1+δ dt =
C · εδ

δ
< ∞. (2.58)

The condition q(a− 1) > −1 means 1
q > 1− a, and with α = 1

p = 1− 1
q < a, the claim

follows. �

2.2 Discrete Basics

This section forms the counterpart of Section 2.1 for basics of discrete mathematics. Here
we collect useful notations and relations from combinatorics.

2.2.1 Binomial Coefficients

Binomial coefficients are one of the most fundamental quantities of combinatorics, and
they are very well studied.

Definition and Factorial Powers. For z ∈ C and k ∈ Z we denote by zk and zk the rising
and falling factorial powers:

zk =

k−1∏

i=0

(z+ i) , integer k > 0;

−k∏

i=1

1

z− i
, integer k 6 −1;

zk =

k−1∏

i=0

(z− i) , integer k > 0;

−k∏

i=1

1

z+ i
, integer k 6 −1.

(2.59)

2 Mathematical Tools

56

Based on these, we define binomial coefficients as

(
z

k

)
=

zk

k!
, integer k > 0;

0, integer k < 0,
(2.60)

where only integral k are allowed. z may be any complex number.

Relations. Binomial coefficients satisfy a great number of relations; we only need a few
basic ones in this work. The first is the binomial theorem, see, e.g., Equation (5.12)
and (5.13) of Graham et al. [72]:

(x+ y)r =
∑

k

(
r

k

)
xkyr−k,

integer r > 0
or |x/y| < 1;

(2.61)

(1+ z)r =
∑

k

(
r

k

)
zk, |z| < 1. (2.62)

As second useful relation is known as negating the upper index:
(
r

k

)
= (−1)k

(
k− r− 1

k

)
, integer k. (2.63)

This is Equation (5.14) of Graham et al. [72]. Finally, here is the generating function of
binomial coefficients [72, (5.57)]:

zn

(1− z)n+1
=
∑

k>0

(
k

n

)
zk, integer n > 0. (2.64)

Multinomial Coefficients. Let d ∈ N>2, n ∈ N and k1, . . . ,kd ∈ N. Multinomial coeffi-
cients are the multidimensional extension of binomials:

(
n

k1,k2, . . . ,kd

)
:=

n!
k1!k2! · · ·kd!

, if n =

d∑

i=1

ki ;

0, otherwise.

(2.65)

In vector notation, we briefly write
(
n
k

)
for k = (k1, . . . ,kd). Combinatorially,

(
n

k1,...,kd

)

is the number of ways to partition a set of n objects into d subsets of respective sizes
k1, . . . ,kd and thus they appear naturally in the multinomial theorem:

(x1 + · · ·+ xd)n =
∑

i1,...,id∈N
i1+···+id=n

(
n

i1, . . . , id

)
xi11 · · · x

id
d , for n ∈N . (2.66)

Inequalities.

Lemma 2.15: For r ∈ [0, 1] and n ∈N0 holds
(
n+r
n

)
> nr. J

Harmonic Numbers · 2.2.2

57

Proof: We first show the following generalized Bernoulli inequality:

∀r ∈ [0, 1],n ∈N0 : (1+ 1/n)
r 6 1+ r/n. (2.67)

To prove Equation (2.67), we observe that for any n, both terms are 1 for r = 0 and
1 + 1/n for r = 1. The term 1 + r/n describes the straight line connecting these two
points, and thus a secant of the graph of (1+ 1/n)r. The second derivative of the latter
∂2

∂r2
(1+ 1/n)r = ln2(1+ 1/n)(1+ 1/n)r > 0, so r 7→ (1+ 1/n)r is convex on [0, 1]. As convex

functions lie below their chords (Lemma 2.6), this completes the proof of Equation (2.67).
We are now ready to prove the main claim. For r = 0, both terms are constant 1, for

r = 1, we have
(
n+r
n

)
= n+ 1 > n = nr. For the other values of r, we prove by induction on

n that 1+ r/n > (n+ 1)r, where we fix r ∈ (0, 1). The claim then follows as (n+ 1)r > nr.
For the induction basis, consider n = 0; then

(
n+r
n

)
= 1 > 1 = (n+ 1)r.

Now assume that the claim holds for n− 1 > 0, i.e.,
(
n−1+r
n−1

)
> nr. Then

(
n+ r

n

)
=

n+ r

n

(
n+ r− 1

n− 1

)
> (1+ r/n)nr >

(2.67)

(n+ 1

n

)r
nr = (n+ 1)r, (2.68)

which concludes the inductive step and thus the proof. �

2.2.2 Harmonic Numbers

The harmonic numbers are defined as follows:

Hn =

n∑

i=1

1

i
, n ∈N0. (2.69)

It is well-known that this sequence diverges and behaves asymptotically like the natural
logarithm. This relation stems from the fact that Hn is a Riemann-sum-approximation for
the integral

∫n
1
1
t dt = ln(n). By a diligent analysis of the error term for this approximation,

one can derive the following extremely precise approximations for the harmonic numbers
(Equations (6.66) and (9.89) of Graham et al. [72]):

∀n ∈N : ∃ε ∈ (0, 1) : Hn = lnn+ γ+
1

2n
−

1

12n2
+

ε

120n4
, (2.70 .1)

∀n ∈N : ∃ε ∈ (0, 1) : Hn = lnn+ γ+
1

2n
−

1

12n2
+

1

120n4
−

ε

252n6
. (2.70 .2)

Here γ is the Euler-Mascheroni constant, see Equation (2.15). Of course, the order of the
quantifiers in Equation (2.70) is important: ε can have a different value for each n, but it is
restricted to (0, 1). Equation (2.70 .1) nails Hn down to an interval of length 1

120n4
, which

determines H1 to an absolute error of 0.83%. For larger values of n the error becomes
extremely small.

It is often desirable to extend the definition of the harmonic numbers to non-integral
arguments, mostly for technical reasons so that we can apply the machinery of Section 2.1.
By rewriting

Hn =

n∑

i=1

1

i
=

n−1∑

i=0

[
ti+1

i+ 1

]1

0

=

∫1

0

n−1∑

i=0

ti dt =

∫1

0

1− tn

1− t
dt, (2.71)

2 Mathematical Tools

58

where the last step uses the telescoping property (1+ t+ t2 + · · ·+ tn−1)(1− t) = 1− tn,
we have syntactically moved the parameter n from the upper limit of a sum—where
non-integral values are senseless—to an exponent, where non-integral values have a well-
defined meaning. The latter integral is indeed the well-known continuation of the har-
monic numbers (see, e.g., Equations (5.9.16) and (5.4.14) of the DLMF [46]) and we set
herein

Hz =

∫1

0

1− tz

1− t
dt, z ∈ R>0. (2.72)

Of course, the canceling trick from above does not work in general, and computing the
integral becomes quite involved. Figure 4 shows a plot of the values. We can even let z be
complex, but we will not need that in this work.

Figure 4: The harmonic numbers extended to the
weakly positive reals. The plot shows Hx
as defined in Equation (2.72) for x between
0 and 6; integer values of x are shown by
marks. The natural logarithm is shown for
comparison. 0 1 2 3 4 5 6

0

1

2

Hx

ln(x)
ln(x)+γ

The connection between harmonic numbers and the digamma function from Equa-
tion (2.14) is in fact valid for all z:

ψ(z+ 1) = Hz − γ, z ∈ R>0. (2.73)

This is Equation (5.9.16) of the DLMF [46]. Via this fundamental connection, we can
generalize the approximation from Equation (2.70) using known asymptotic expansions
for ψ(z).

Proposition 2.16: With the continuation of Hz from Equation (2.72) holds

∀z ∈ R>0 : ∃ε ∈ [0, 1] : Hz = ln z+ γ+
1

2z
−

1

12z2
+

ε

120z4
, (2.74 .1)

∀z ∈ R>0 : ∃ε ∈ [0, 1] : Hz = ln z+ γ+
1

2z
−

1

12z2
+

1

120z4
−

ε

252z6
. (2.74 .2)

J

Proof: Equation (5.11.2) of the DLMF [46] states the following asymptotic expansion for
the digamma function ψ(z)

ψ(z) ∼ ln z−
1

2z
−

∞∑

k=1

B2k
2kz2k

(2.75)

= ln z−
1

2z
−

1

12z2
+

1

120z4
−

1

252z6
+

1

240
z8 −

1

132z10
+ · · · , (2.76)

http://dlmf.nist.gov/5.9.E16
http://dlmf.nist.gov/5.4.E14
http://dlmf.nist.gov/5.9.E16
http://dlmf.nist.gov/5.11.E2

Harmonic Numbers · 2.2.2

59

where Bn is the nth Bernoulli number. Moreover §5.11 (ii) of the DLMF [46] states that for
real x > 0, “the remainder terms are bounded in magnitude by the first neglected terms and have
the same sign.” We thus get

∀z ∈ R>0 : ∃ε ∈ [0, 1] : ψ(z) = ln z−
1

2z
−

1

12z2
+

ε

120z4
, (2.77 .1)

∀z ∈ R>0 : ∃ε ∈ [0, 1] : ψ(z) = ln z−
1

2z
−

1

12z2
+

1

120z4
−

ε

252z6
. (2.77 .2)

With Equations (2.73) and (2.13) we have for z > 0 that Hz = ψ(z+ 1) + γ = ψ(z) + γ+ 1
z

and so the claim follows. �

We collect here for reference bounds for the difference of two harmonic numbers. They
follow rather straight-forwardly from Proposition 2.16.

Lemma 2.17: For reals x > 1 and y > x+ 1, we have

ln
(
x

y

)
+
1

2

(
1

x
−
1

y

)
−
1

12

(
1

x2
−
1

y2

)
6 Hx −Hy 6 ln

(
x

y

)
+
1

2

(
1

x
−
1

y

)
. J

Remark: The conditions on x and y are vital, but not the only possible versions. We can
trade a smaller difference between x and y for a larger minimal value for x and vice versa.J

Proof: With Equation (2.74 .1) we find

Hx −Hy −

(
ln
(
x

y

)
+
1

2

(
1

x
−
1

y

))
6 −

1

12x2
+

1

120x4
+

1

12y2
(2.78)

6 −
1

12x2
+

1

120x4
+

1

12(x+ 1)2
. (2.79)

The latter function has only one real root, namely at x ≈ 0.33, it is clearly continuous on
R>0 and converges to 0 as x → ∞. Moreover, it is negative at, e.g., x = 1. Therefore, we
must have − 1

12x2
+ 1
120x4

+ 1
12(x+1)2

6 0 for all x > 0.33 by the intermediate value theorem.
This proves the second inequality.

For the first inequality, we use Equation (2.74 .2) to find

Hx −Hy −

(
ln
(
x

y

)
+
1

2

(
1

x
−
1

y

)
−
1

12

(
1

x2
−
1

y2

))
> 1

120x4
−

1

252x6
−

1

120y4

(2.80)

> 1

120x4
−

1

252x6
−

1

120(x+ 1)4

(2.81)

> 0, (2.82)

where the last step follows similarly as above, noting that 1
120x4

− 1
252x6

− 1
120(x+1)4

has
its only real root at x ≈ 0.70 and is positive for x = 1. �

http://dlmf.nist.gov/5.11.ii

2 Mathematical Tools

60

Generalized Harmonic Numbers. We occasionally also use generalized harmonic num-
bers

H(r)
n =

n∑

i=1

1

ir
, n ∈N0, r ∈ Z. (2.83)

r = 1 corresponds to the ordinary harmonics. Unlike those, H(2)
n converges to a finite limit,

namely

lim
n→∞

H(2)
n = ζ(2) =

π2

6
, (2.84)

where ζ(z) is the Riemann zeta function, whose value at z = 2 is given in Equation (25.6.1)
of the DLMF [46]. We can extend them to any real (even complex) argument setting

H(2)
x =

π2

6
−ψ ′(x+ 1) =

∞∑

k=1

1

k2
−

∞∑

k=1

1

(k+ z)2
, x ∈ R>0, (2.85)

which coincides with Equation (2.83) for x ∈N.

2.3 Generating Functions

Generating functions are the ubiquitous tool of analytic combinatorics, the study of as-
ymptotic properties of combinatorial classes. They provide the link between recursively
defined quantities and tools from complex analysis to obtain asymptotic estimates. For
this work, we only need the basic tools described below. Flajolet and Sedgewick [64] give
a comprehensive treatment of the field.

For a sequence of real or complex numbers (an)n∈N0
= a0,a1, . . ., we define its gener-

ating function A(z) by the power series

A(z) =

∞∑

n=0

anz
n. (2.86)

By [zn]A(z) we denote the inverse operation, extracting the coefficient at zn, i.e., we have
an = [zn]A(z) for all n. If understood as complex function, the power series defines
an analytic function inside its circle of convergence. Then we can extract coefficients by
Taylor’s theorem: [zn]A(z) = A(n)(0)/n! .

Since they are analytic functions, we can differentiate and integrate generating func-
tions term-wise, we can add or multiply them, take powers, etc. All these operations in
the generating-function world have corresponding counterparts in the world of sequences.

Often a complicated sequence results from a simpler sequence by applying such op-
erations, that are conveniently expressed on the generating functions, but not on the se-
quences. For our application the complicated sequence is the total cost of Quicksort on
inputs of size n. It can be expressed as a transformation of the corresponding cost sequence
for a single partitioning step (see Chapter 6).

http://dlmf.nist.gov/25.6.E1

Singularity Analysis · 2.3.1

61

In fortunate cases, we can translate back from generating function to coefficients pre-
cisely, but even if we cannot, not all hope is lost. Researchers of the analysis-of-algorithms
community have developed techniques for extracting coefficient asymptotics directly from
generating functions, allowing intermediate approximations already in the world of gen-
erating functions. We will use one such technique to solve the Quicksort recurrence, which
we sketch in the following: singularity analysis.

2.3.1 Singularity Analysis

Seen as complex functions, the power series in Equation (2.86) often has a finite radius of
convergence. This means that there is a singular point on the circle of convergence, and it
is known that the coefficient growth rate is determined by the behavior of A(z) near such
singularities. We can thus approximate A(z) with an expression capturing its behavior
only there and extract coefficients from this much simpler function.

The technical condition of ∆-analyticity guarantees that we have only a single, isolated
singularity on the circle of convergence. This is sufficient for this work.

Definition 2.18 (∆-Analyticity): A function f is ∆-analytic, if there are r > 1 and φ ∈ (0, π2)
such that f is analytic for all (complex) z in the ∆-domain

{
z : |z| < r

} ∖ {
z : | arg(z− 1)| 6 φ

}
. (2.87)

(We set arg(0) = 0, so in particular z = 1 is excluded.) J

A singular expansion of a ∆-analytic function f is an asymptotic approximation of the form

f(z) = g(z) ± O(h(z)), (z→ 1), (2.88)

that is valid in the intersection of a neighborhood of 1 and a ∆-domain. If we can prove
such an expansion with g and h from the standard function scale

S =
{
(1− z)−α

(
1
z ln

(
1
1−z

))β
: α,β ∈ C

}
, (2.89)

we directly know the coefficient asymptotics by the following theorem.

Theorem 2.19 (Singularity Analysis, Theorem VI.4 of Flajolet and Sedgewick [64]):
Assume f(z) is ∆-analytic and admits the singular expansion

f(z) = g(z) ± O
(
(1− z)−α

)
, (z→ 1), (2.90)

Then

[zn]f(z) = [zn]g(z) ± O
(
n<α−1

)
, (n→∞). (2.91)

2 Mathematical Tools

62

The coefficients in the standard function scale g(z) = (1− z)−α
(
1
z ln

(
1
1−z

))β
are given

by

[zn]g(z) =

nα−1

Γ(α)
± O

(
nα−2

)
, for α /∈ Z60 and β = 0;

nα−1

Γ(α)
lnβ(n) ± O

(
nα−1 logβ−1(n)

)
, for α /∈ Z60 and β 6= 0.

(2.92)
J

This is a simplified form of the theorem of Flajolet and Sedgewick; the error term may
also contain logarithmic factors, and coefficients for the standard scale are known as full
asymptotic expansion, see their Theorems VI.1 and VI.2. For simple cases, we can even
give exact expressions for the coefficients:

[zn]
1

(1− z)m+1
=

(
n+m

n

)
, m ∈N0, (2.93)

[zn]
ln
(
1
1−z

)

(1− z)m+1
= (Hn+m −Hm)

(
n+m

n

)
, m ∈N0. (2.94)

The first is merely Equation (2.64), the second is Equation (7.43) from Table 352 of Graham
et al. [72].

Manipulation of Singular Expansions. If we extract coefficients only asymptotically any-
way, we would like to truncate precision also on the level of generating functions as early
as possible in the process. The only missing piece of the puzzle is which transformations
are valid on a singular expansion of a generating function.

By the standard calculus of error terms, sums and products are fine; and in fact,
many other operations are as well: Flajolet and Sedgewick [64] add inverse functions,
polylogarithms, compositions, derivatives, antiderivatives and Hadamard products to the
list, see their Sections VI.7 – VI.10. We only need the calculus operations, for which we cite
the corresponding result.

Proposition 2.20 (Singular Differentiation and Integration, Thms. VI.8 and VI.9 of [64]):
Let f be ∆-analytic with the singular expansion

f(z) = c1(1− z)
α1 + · · ·+ ck(1− z)αk ± O

(
(1− z)γ

)
, (z→ 1). (2.95)

Then we have that

(a) f ′(z) is ∆-analytic and its singular expansion results from term-wise differentiation of
Equation (2.95), and

(b)
∫
f(z)dz is ∆-analytic, as well. If γ 6= −1, its singular expansion results from term-wise

integration of Equation (2.95). �

Euler Differential Equations and the Operator Method · 2.3.2

63

Remark (Uniform Error Bounds in Singular Expansions): In their original formulation
of Proposition 2.20, Fill et al. [60] require the error term in the singular expansion to hold
uniformly in the whole ∆-domain. With our error term O

(
(1− z)−α

)
, it suffices to require

the error bound in a neighborhood of 1, since we can always extend it to hold uniformly
in a ∆-domain:

Assume the error bound holds in the intersection of the ∆-domain and an ε-ball
around 1. First, we can always shrink a ∆-domain a bit by decreasing r and increasing
φ slightly, and obtain another ∆-domain. We can also add the boundary to that smaller
domain, except for the point z = 1, and are still completely within the original ∆-domain.

If we subtract from such a smaller, closed ∆-domain the ε-ball around 1, we obtain
a bona fide closed domain G. Our function is analytic in G, hence continuous, and thus
bounded from above in absolute value. Since (1− z)−α is never 0 in G, the ratio of the
function and (1− z)−α remains bounded (in absolute value) in the whole of G. Combining
the error bounds in G and the ε-ball around 1, we find that the O

(
(1 − z)−α

)
bound

actually holds uniformly in a ∆-domain. J

2.3.2 Euler Differential Equations and the Operator Method

The Quicksort recurrence transforms the sequence of toll costs into the sequence of sorting
costs. On the corresponding generating functions, this transformation turns out to be a
special form of differential equation, one that is luckily easy to solve.

Cauchy-Euler differential equation are linear ordinary differential equations with vari-
able coefficients, where the latter follow a specific pattern:

cmx
mf(m)(x) + cm−1x

m−1f(m−1)(x) + · · ·+ c0f(x) = R(x). (2.96)

Such equations are also known as equidimensional equations, because the exponent of x
and the order of the derivatives are equal in each term. They can be solved systematically
by the operator method we discuss below. The operator method and possible alternatives
are described, e.g., by Ince [93] in his Section 6.31. Chern et al. [30] provide a shortcut to
directly obtain knowledge about the coefficients of a generating function, but it is a little
too specialized for our goal; we have to go the long way.

The Operator Method. Let the differential operator Θ be defined by

Θf(x) = x d
dxf(x) . (2.97)

We trivially have Θ[f(x) + g(x)] = Θf(x) +Θg(x) and Θ[αf(x)] = α Θf(x) for α ∈ C, so Θ
is a linear operator. Denoting by Θ0 f(x) = f(x) and Θi+1 f(x) = Θ

[
Θi f(x)

]
successive appli-

cations of the operator, we can extend the definition to P(Θ)[f(x)] for arbitrary polynomials
P in Θ. As easily shown by induction, we have

(
Θ

k

)
f(x) =

1

k!
Θ(Θ− 1) · · · (Θ− k+ 1)f(x) =

xkf(k)(x)

k!
. (2.98)

1An electronic version is available in the public domain:
http://archive.org/stream/ordinarydifferen029666mbp#page/n148

http://archive.org/stream/ordinarydifferen029666mbp#page/n148

2 Mathematical Tools

64

Proposition 2.21: Let P be a polynomial and Θ the operator defined via Equation (2.97).
We have P(Θ)xβ = P(β)xβ. J

Proof: The proof is by induction over the degree of P. If P is a constant P(y) = c, then the
claim holds trivially. If P has degree at least one, it has a root α ∈ C and can be written as
P(y) = (y− α)Q(y). As Q has degree one less than P, we get by the inductive hypothesis
that Q(Θ)xβ = Q(β)xβ. Putting everything together we have

P(Θ)xβ = (Θ−α)Q(β)xβ (2.99)

= Q(β)
(
x ddxx

β −αxβ
)

(2.100)

= Q(β)
(
(β−α)xβ

)
(2.101)

= P(β)xβ. (2.102)
�

Explicit Solution With Differential Operator. Let us first consider the effect of a single
factor (Θ− α). We are only interested in the behavior of generating functions near 1, the
dominant singularity. We thus directly work on singular expansions instead of the function
itself, hiding irrelevant detail as early as possible in the computation. Proposition 2.20
guarantees us that we can work on singular expansions term-wise, only requiring that the
involved functions be ∆-analytic.

Hennequin [77] does not make this point very clear. He considers the solution of
the differential equation for an explicitly given function in his Proposition III.4, and gives
the case with an asymptotic approximation on the right-hand side as corollary; he states:
“Le principe de la preuve et les propriétés de l’intégration vis-à-vis de O(), o() et ∼ donnent le
corollaire suivant” ([77], p. 43). (The principle of the proof and the properties of integration
with respect to O(), o() and ∼ give the following corollary.) Let us state the needed side
conditions explicit, in particular regarding the domain of validity of error terms in singular
expansions.

Following Hennequin, we make a change of variables x = 1− z in the generating func-
tions while solving the differential equations. This allows us to directly use the classical
choice of Θ; working with ϑ f(z) = (1− z) ddzf(z) is also possible, but introduces annoying
powers of −1.

Lemma 2.22: Let Θ the operator defined via Equation (2.97) and let c 6= 0 and α be complex
constant and γ ∈ R with γ 6= <(α). Let R(z) be a ∆-analytic function.

(a) Let f(x) be given by the ordinary first-order differential equation

(Θ−α)f(x) = R(1− x) = cxβ ± O(xγ), (2.103)

where R(z) admits the given singular expansion as z→ 1, i.e., for x→ 0. Then f(1− z)
is ∆-analytic and also admits a singular expansion as z → 1, i.e., for x → 0, of the

Euler Differential Equations and the Operator Method · 2.3.2

65

form

f(x) =

c

β−α
xβ + λxα ± O(xγ), for α 6= β;

c xβ ln(x) + λxα ± O(xγ), for α = β,
(2.104)

where λ is a constant determined by initial conditions.

(b) Assume α 6= β and let f(x) be given by the ordinary first-order differential equation

(Θ−α)f(x) = R(1− x) = cxβ ln(x) ± O(xγ) , (x→ 0), (2.105)

where R(z) admits the given singular expansion as z→ 1, i.e., for x→ 0. Then f(1− z)
is ∆-analytic and also admits a singular expansion as z → 1, i.e., for x → 0, of the
form

f(x) =
c

β−α
xβ ln(x) −

c

(β−α)2
xβ + λxα ± O(xγ), (2.106)

with constant λ determined by initial conditions. J

Proof: Apart from checking the formal conditions to integrate singular expansions, the
proof is an exercise in calculus of moderate complexity. As the functions on the right are
∆-analytic by assumption, we can apply Proposition 2.20 with the substitution x = 1− z.
The resulting functions are then again ∆-analytic and their expansions are obtained by
term-wise integration of the expansion of the right-hand sides. We start with the proof of
the first part. Using the integrating factor x−α, we compute

d

dx
x−αf(x) = x−αf ′(x) −αx−α−1f(x) (2.107)

= x−α−1
(
(Θ−α)f(x)

)
(2.108)

= x−α−1
(
cxβ ± O(xγ)

)
(2.109)

= cxβ−α−1 ± O(xγ−<(α)−1), (2.110)

whence integrating using γ 6= <(α) yields

f(x) = cxα
∫
tβ−α−1 dt ± xα

∫
O(tγ−<(α)−1)dt (2.111)

=

c

β−α
xβ + λxα ± O(xγ) , for α 6= β ;

c xβ ln(x) + λxα ± O(xγ) , for α = β ,
(2.112)

which proves the first statement. For the second part of the claim, the same approach
gives

d

dx
x−αg(x) = cxβ−<(α)−1 ln(x) ± O(xγ−α−1), (2.113)

2 Mathematical Tools

66

which we integrate under β 6= α and γ 6= <(α) to

g(x) = cxα
∫
tβ−<(α)−1 ln(t)dt ± xα

∫
O(tγ−<(α)−1)dt (2.114)

=
c

β−α
xβ ln(x) −

c

(β−α)2
xβ + λxα ± O(xγ). (2.115)

�
Now that we know how a single factor of the operator polynomial transforms a singular
expansion, we can easily iterate that process to obtain an explicit solution.

Theorem 2.23:
Let Θ be the operator defined via Equation (2.97), α, β, and c be complex constants
and γ ∈ R with γ 6= <(α). Assume that R(z) is a ∆-analytic function with the expansion

R(z) = c(1− z)β ± O((1− z)γ) (2.116)

as z → 1. Let further Q be a polynomial with Q(α) 6= 0, and let f(x) be given by the
Euler differential equation

Q(Θ)(Θ−α)f(x) = R(1− x). (2.117)

Then f(1− z) is ∆-analytic and admits a singular expansion as z → 1, i.e., as x → 0 of
the form

f(x) =

c

Q(α)
xβ + λxα ± O(xγ), for α 6= β;

c

Q(α)
xβ ln(x) + λxα ± O(xγ), for α = β.

(2.118)
J

Proof: An induction over the degree of Q, using Lemma 2.22 to solve the first-order equa-
tions, yields the claim. �

2.4 Random Basics

In this section we recapitulate a few basic results from stochastics. We also introduce a
handful (or two) of more and some less widely used probability distributions that will
arise at various points in our analysis of s-way Quicksort. Many nontrivial, but well-
studied properties of these distributions can be put to good use in the analysis. We then
profit twice from these basics of stochastics: we can apply known results, and we get
acquainted to the random face of Quicksort.

Taking Appropriate Measures. I assume familiarity with elementary notions of probabil-
ity, but not more. We will work exclusively with discrete distributions and continuous

Random Basics · 2.4

67

distributions with a Lebesgue-density, there is no reason to use general measure-theoretic
notions and notations. Similarly, we leave the probability spaces our random variables live
in implicit; the usual choices are sufficient: for discrete variables the power-set σ-algebra
of the domain with a density, i.e., probability weights, w.r.t. the counting measure, and
for continuous variables the Borel σ-algebra restricted to the domain with the probability
measure given as density w.r.t. the Lebesgue measure.

Notation. We briefly describe the probability-related notation used in this work. Together
with all other notations, it is summarized in Appendix A.

The probability of an event E is denoted by P[E]. We write 1E for its indicator random
variable, which is 1 if the event occurs and 0 otherwise. If an event E is given by a boolean
expression involving other random variables, e.g., X 6 5, we write E = {X 6 5} for the
induced event.

Iverson Bracket in Stochastics? We could write the indicator variable of an event defined
by a boolean expression also as [X 6 5] instead of 1{X65}, using the Iverson bracket
notation defined in Equation (2.3). This notation seems very uncommon; the Iverson
bracket has not (yet?) entered the stochastics literature. Since the notation 1{X65} is so
common that it will probably be readily understood by most readers, we will stick to it in
this work.

For a random variable X, let E[X] and Var(X) denote its expectation and variance, respec-
tively. As traditionally done in stochastics, random variables are written in uppercase
letters; corresponding lower-case letters usually represent a fix value for the random vari-
able.

By X D= Y we mean that X and Y have the same distribution, i.e., their cumulative
distribution functions (CDF) FX = FY coincide, where FX(x) = P[X 6 x]. Random variable
X ∈ Rd admits a density fX : Rd → R if for any measurable set A ⊆ Rd holds

P[X ∈ A] =

∫

A

fX(x)dx =

∫

Rd
[x ∈ A]fX(x)dx . (2.119)

A stochastic vector is a vector whose components are at least zero and sum to one.

Conditioning. The conditional probability that an event E occurs when we already know
that another event E ′ has occurred is denoted as P[E | E ′], which fulfills P[E and E ′] =

P[E |E ′] ·P[E ′]. Conditioning can often simplify arguments and computations, but one has
to be careful: if P[E ′] = 0, the above equation leaves P[E | E ′] undefined.

Dangers of Conditioning: The Borel-Kolmogorov Paradox. Conditioning can be danger-
ous, if applied to events with zero probability. At first sight one might be tempted to say
that such events are not interesting anyway, but for a continuous random variable X it
is natural to condition another quantity on the event {X = x}. These single-value events
{X = x} have “smaller dimension” than the full probability space and thus probability
zero.

2 Mathematical Tools

68

In many cases, we can still assign proper conditional distributions in such cases, but
we may not let intuition lead us astray in precisely defining what we condition on. This
is illustrated by the Borel-Kolmogorov paradox:

We start with a uniform distribution over the unit sphere, and ask for the conditional
distribution, given that we lie on a given great circle of the sphere, i.e., any circle of
maximal diameter. Intuitively, and by symmetry, we expect a uniform distribution to be
the answer. But this is not the only one!

Say the uniform distribution over the sphere means we specify longitude and latitude
of a point. If the great circle we condition on is the equator w.r.t. these coordinates, i.e.,
latitude is fixed to 0, the longitude is indeed uniformly distributed. If the great circle
is however a line of longitude, say 0, the distribution of the latitude is not uniform, for
larger latitudes near 0 correspond to larger circles than those farther from 0. We obtain
two different conditional distributions, although they really only differ in their coordinate
system, and intuitively, one feels they should be the same by symmetry.

The resolution of the paradox is that this symmetry exists only before we decide for a
coordinate system. Formally, we have to fix a probability space, and we did so by choosing
longitude and latitude as two components of the random point on the sphere. Then the
marginal distribution of the latitude is not uniform in the first place, so why should it
become so after conditioning?

The lesson to be learned is that events we condition on have to be tied to values of
given random variables; we shall not use isolated events of probability zero.

We heavily use conditional expectations of a random variable X, given that a (discrete or
continuous) random variable Y has a fixed value y, written as E[X | Y = y]. In the discrete
case with P[Y = y] > 0, we have E[X | Y = y] =

∑
x∈X x · P[X = x | Y = y]. Since the

event {Y = y} has probability zero when Y is continuous, the elementary definition with
conditional probability does not work, and in light of the Borel-Kolmogorov paradox, we
should state clearly what is meant by E[X | Y = y] then. Assume (X, Y) ∈ X× Y has a joint
density f(x,y), and denote the marginal density of Y by fY(y) =

∫
X f(x,y)dx. Then the

conditional density of X given Y = y is

fX|Y(x | y) =
f(x,y)
fY(y)

(2.120)

for any y with fY(y) > 0. The expectation of X conditional on Y = y is then

E[X | Y = y] =

∫

X

x fX|Y(x | y)dx. (2.121)

In both cases, discrete and continuous, the E[X | Y = y] depends on y, so with the
function g(y) = E[X | Y = y], we obtain the random variable g(Y). This is the conditional
expectation of X given Y, denoted by E[X | Y] = g(Y). Note that still P[Y = y] = 0 for a
continuous distribution, but it suffices for the marginal density to be positive to have a well-
defined conditional expectation. If we take the expectation of E[X | Y], simply plugging in
the definitions shows that we obtain again the unconditional expectation of X:

E
[
E[X | Y]

]
= E[X]. (2.122)

This is known as the law of total expectation.

Categorical Distribution · 2.4.1

69

2.4.1 Categorical Distribution

Let us start with a simple generic discrete distribution. For a stochastic vector p ∈ [0, 1]u

with Σp = 1, the categorical distribution D(p) with u choices is a discrete distribution over
[u] = {1, . . . ,u} with the given weights. For X D= D(p), we have

P[X = x] =

{
px , if x ∈ {1, . . . ,u} ;

0, otherwise.
(2.123)

The categorical distribution with two choices D(p, 1− p) is also called Bernoulli distribu-
tion and written as B(p).

2.4.2 Exponential Distribution

The exponential distribution does not directly arise in the analysis of Quicksort; rather
it appears as building block for the gamma distribution that we will discuss in the next
section. The gamma distribution does not directly arise in Quicksort, either; it enters the
game through a very helpful stochastic characterization of the Dirichlet-distribution, which
we address in Section 2.4.4. The Dirichlet distribution, finally, will be the distribution of
our pivot values, as we discuss in detail in Section 5.2. Some properties of the Dirichlet
distribution seem to hold magically if we look at it as black box, but with the representation
via gamma variables, they follow naturally. A black box remains black until we open it
and let some light in.

A random variable X has an exponential distribution with rate λ > 0 if its cumulative
distribution function is given by

P[X 6 x] =
(
1− e−λx

)
· [x > 0]. (2.124)

We then write X D= Exp(λ). We will mostly use the standard exponential distribution
Exp(1), whose density then simply is e−x.

2.4.3 Gamma Distribution

The gamma distribution arises in the stochastic characterization of the Dirichlet-
distribution discussed below. To exploit this connection, we only need one basic property
of the gamma distribution, Corollary 2.25 below.

X is gamma-distributed with shape parameter k ∈ R>0, X D= Gamma(k), if its cumu-
lative distribution function is given by

P[X 6 x] =
1

Γ(k)

∫x

0

e−ttk−1 dt , (2.125)

which is exactly a regularized lower incomplete gamma function, giving the distribution
its name. Recall that Γ(k) is exactly the integral in Equation (2.125) with x = ∞. The
gamma distribution is usually introduced with a second parameter, the rate λ. We only
need the special case λ = 1.

The core property of the gamma distribution is that sums of i. i.d. gamma variates
follow a gamma distribution again.

2 Mathematical Tools

70

Lemma 2.24: Let X D= Gamma(k) and Y D= Gamma(l) be independent random variables,
then X+ Y D= Gamma(k+ l). J

Proof: The lemma is a simple calculation exercise. It is obvious from Equation (2.125) that
the densities of X and Y are fX(x) = e−xxk−1/Γ(k) and fX(x) = e−xxl−1/Γ(l), respectively.
The density of their sum is, by independence, the convolution of these two.

fX+Y(z) =

∫z

0

fX(x)fY(z− x)dx (2.126)

=
e−z

Γ(k)Γ(l)

∫z

0

xk−1(z− x)l−1 dx, (2.127)

substituting x = zt and using Equation (2.20),

=
e−zzk+l−1

B(k, l)Γ(k+ l)

∫1

0

tk−1(1− t)l−1 dt (2.128)

=
e−zzk+l−1

Γ(k+ l)
, (2.129)

which is the density of the Gamma(k+ l) distribution. �

Iterating Lemma 2.24 immediately generalizes the statement to any finite sum.

Corollary 2.25: Let Gi
D= Gamma(σi) for i = 1, . . . , s be independent random variables,

then G1 + · · ·+Gs D= Gamma(σ1 + · · ·+ σs). �

Corollary 2.25 is useful, because it also applies backwards. With the following simple fact
that k = 1 reduces the gamma distribution to the standard exponential distribution, this
yields the promised connection.

Lemma 2.26: For k ∈ N we have Gamma(k) D= E1 + · · ·+ Ek, where E1, . . . ,Ek are i. i.d.
Exp(1) distributed. J

Proof: It suffices to prove the claim for k = 1, i.e., that Gamma(1) D= Exp(1); the general
claim then follows from Corollary 2.25. So let X D= Gamma(1) and Y D= Exp(1). We have

P[X 6 x] =

∫x

0

e−t dt = 1− e−x = P[Y 6 x], (2.130)

so the distributions are the same. �

2.4.4 Beta and Dirichlet Distributions

Dirichlet-distributed vectors are our key tool to analyzing Quicksort with its pivots chosen
from a sample. Therefore, this section lists a whole collection of properties of this distribu-
tion. In particular, we develop a little Dirichlet-calculus to compute expectations involving
Dirichlet-vectors.

Beta and Dirichlet Distributions · 2.4.4

71

The Dirichlet Distribution. Let d ∈N>2 and α = (α1, . . . ,αd) ∈ R>0. A random variable
X ∈ Rd is said to have the Dirichlet distribution with shape parameter α, abbreviated as
X D= Dir(α), if it has a density given by

fX(x1, . . . , xd−1) :=

1

B(α)
· xα1−11 · · · xαd−1d , if x ∈ ∆d ;

0, otherwise ,
(2.131)

where we write xd = 1 − x1 − · · · − xd−1. Recall that ∆d denotes the open (d − 1)-
dimensional simplex, see Equation (2.16). We allow ourselves to formally include this su-
perfluous component as parameter of the function, so that fX(x) with x ∈ Rd and Σx = 1 is
understood as fX(x1, . . . , xd−1). Courageously using our concise vector notation, we write
Π(xα−1) for xα1−11 · · · xαd−1d , so that the Dirichlet density becomes fX(x) = Π(xα−1)/B(α).

Recall that B, the d-dimensional beta function (Section 2.1.2), is defined as an inte-
gral whose integrand is exactly Π(xα−1), so

∫
fX(x)dx = 1 as needed for a probability

distribution.
The domain of a Dirichlet-variable is ∆d, the set of all d-dimensional stochastic vectors,

or equivalently, all categorical distributions with d choices. An important special case is
then Dir(1, . . . , 1), the uniform distribution over all categorical distributions.

The Beta Distribution. The beta distribution is simply the special case of a Dirichlet distri-
bution with d = 2. It is customary to rename (α1,α2) = (α,β) in this case and to abbreviate
the distribution as Beta(α,β). Usually, a beta-variable is considered a real random variable,
i.e., the redundant xd = x2 is dropped: Beta(α,β) ∈ (0, 1) and has density

f(x) =
xα−1(1− x)β−1

B(α,β)
. (2.132)

Stochastic Representation. There is an insightful stochastic representation for the Dirich-
let distribution that allows us to easily compute expected values.

Theorem 2.27 (Dirichlet via Gamma, Theorem XI-4.1 of Devroye [38]):
Let X = (X1, . . . ,Xd) be Dir(α) distributed with α ∈ Rd>0 and let G1, . . . ,Gd be d
independent gamma-distributed variables with parameters α, i.e., Gi

D= Gamma(αi)
for i = 1, . . . ,d. Further define S = G1 + · · ·+Gd. Then

X
D
=

(
G1
S

, . . . ,
Gd
S

)
.

�

We will fully exploit this representation in the following section to compute expec-
tations. Another application is the relation to spacings that we briefly explore in the
following.

2 Mathematical Tools

72

Relation to Exponential Spacings. Let us assume an integral parameter vector α ∈Ns for
D D= Dir(α). By Theorem 2.27, we have G = (G1, . . . ,Gs) with Gi

D= Gamma(αi) so that

D
D
=

G

ΣG
. (2.133)

Moreover, the s gamma variates are each a sum of i. i.d. standard exponential variables by
Lemma 2.26, i.e., Gi

D= Σ(E(i)), where E(i) = (E(i)1 , . . . ,E(i)αi) with E(i)j
D= Exp(1). Unfolding,

we thus have

D
D
=

(
E(1)1 + · · ·+ E(1)α1 , . . . , E(s)1 + · · ·+ E(s)αs

)

E(1)1 + · · ·+ E(1)α1 + · · ·+ E(s)1 + · · ·+ E(s)αs
. (2.134)

This means that a Dir(α) vector can be obtained, by drawing A = Σα i. i.d. standard
exponential variables, summing them up in s groups of α1 elements, α2 elements and so
on, up to the last αs elements, and dividing them by the sum of all A variables. A Dirichlet
variable corresponding to normalized spacings, i.e., successive differences, of exponential
order statistics.

Even though interesting in its own right as it provides a good model for reasoning
about simplifications, the connection to exponential spacings does not directly fit our
needs. However, it can be translated also to uniform spacings.

Relation to Uniform Order Statistics. It turns out that the normalized vector E/ΣE for E
a vector of k i. i.d. standard exponential variables corresponds to the partition of the unit
interval induced by k− 1 i. i.d. uniform in (0, 1) distributed random variables, see, e.g.,
Theorem V-2.2 of Devroye [38]. Together with the relation to exponential spacings, this
proves the following correspondence.

Proposition 2.28 (Dirichlet as Uniform Spacings, Sect. 6.4 of David and Nagaraja [37]):
Let α ∈ Ns be a vector of positive integers and set k := Σα− 1. Further let V1, . . . ,Vk
be k random variables i. i.d. uniformly in (0, 1) distributed. Denote by V(1) 6 · · · 6 V(k)

their corresponding order statistics. We select some of the order statistics according to α:
for j = 1, . . . , s− 1 define Wj := V(pj), where pj :=

∑j
i=1 αi. Additionally, we set W0 := 0

and Wd := 1.
Then the consecutive distances (or spacings) Dj :=Wj −Wj−1 for j = 1, . . . , s induced by

the selected order statistics W1, . . . ,Ws−1 are Dirichlet distributed with parameter α:

(D1, . . . ,Ds)
D
= Dir(α1, . . . ,αs) . �

So for integral parameters α ∈ Ns, Dir(α) is the distribution of consecutive differences
induced by appropriate order statistics of i. i.d. U(0, 1) variables. This will match our
process to select pivot elements from a sample as detailed in Section 5.2. Therefore, we
consider next some tools to work with expectations over such variables.

Dirichlet-Calculus · 2.4.5

73

Smooth Density. The following lemma states a smoothness condition for the beta density
that simplifies later proofs.

Lemma 2.29: The density of the Beta(α,β) distribution with α,β ∈ {1}∪R>2 is Lipschitz-
continuous (and hence Hölder-continuous with exponent 1) on [0, 1]. J

Proof: Let f be the density of the Beta(α,β) distribution with α,β ∈ {1} ∪R>2. We have
g(x) = B(α,β)f(x) = xα−1(1− x)β−1 whose derivative

g ′(x) = (α− 1)xα−2(1− x)β−1 + (β− 1)xα−1(1− x)β−1 (2.135)

exists for all x ∈ [0, 1] as long as α and β are either 1 or at least 2, and is continuous. So f is
continuously differentiable on the closed unit interval and thus also Lipschitz-continuous
[171, Corollary 6.4.20]. �

2.4.5 Dirichlet-Calculus

In the analysis of s-way partitioning under pivot sampling, we are faced with expectations
involving Dirichlet-variables. The following set of rules, and their mnemonic abbreviations
are indispensable tools for that; they form the “Dirichl-E-Calculus”.

Terms. Dirichlet-calculus operates on terms of the form ED(α)[f(X)], where f : ∆d → R is
a function and α ∈ Rd>0 is a parameter vector. Its meaning or semantic is the expectation of
f(X) when X D= Dir(α); formally we understand ED(α)[f(X)] as the syntactic abbreviation

ED(α)[f(X)] =

∫

∆d

f(x)
Π(xα−1)

B(α)
dx . (2.136)

Here we use the integral-syntax from Equation (2.17) on page 46, and the vector notation
Π(xα−1) = xα1−11 · · · xαd−1d . The variable X is to be understood as a formal parameter, i.e.,
a local, bound variable whose distribution potentially differs between two terms.

One could extend the notation to include vector-valued functions f, but since the ex-
pectation of a vector is simply the vector of expectations of the components, there is no
need to.

Rules. There are rules governing the work with Dirichlet-terms. First we inherit, of
course, the rules

ED(α)[cf(X)] = c ·ED(α)[f(X)], (2.137)

ED(α)[f(X) + g(X)] = ED(α)[f(X)] + ED(α)[g(X)] , (2.138)

by the linearity of the expectation. For the more interesting rules, we profit from our
abbreviations. In that syntax, we can specify the rules of Dirichlet-calculus in very terse
form. For our first nontrivial rule, we give the verbalized form alongside for clarity.

2 Mathematical Tools

74

Lemma 2.30 (“Powers-to-Parameters”-Rule of Dirichlet Calculus):

ED(α)

[
Π(Xm) · f(X)

]
=

Π(αm)

(Σα)Σm
·ED(α+m)[f(X)],

α ∈ Rd>0 ,
m ∈ Zd and m > −α .

(P2P)

Verbalized form: Let X = (X1, . . . ,Xd) ∈ Rd be a Dir(α) distributed random variable with
parameter α = (α1, . . . ,αd). Let further m = (m1, . . . ,md) ∈ Zd be an integer vector with
m > −α (componentwise) and abbreviate the sums A :=

∑d
i=1 αi and M :=

∑d
i=1mi.

Then we have for an arbitrary (real-valued) function f : ∆d → R the identity

E
[
Xm1

1 · · ·X
md

d · f(X)
]

=
αm1

1 · · ·α
md

d

AM
·E
[
f(X̃)

]
,

where X̃ = (X̃1, . . . , X̃d) is Dir(α+m) distributed. J

Proof: Using Γ(z+n)
Γ(z) = zn, see Equation (2.10), we compute

E
[
Xm1

1 · · ·X
md

d · f(X)
]

=

∫

∆d

xm1

1 · · · x
md

d f(x) ·
xα1−11 · · · xαd−1d

B(α)
dx (2.139)

=
B(α+m)

B(α)
·
∫

∆d

f(x) ·
xα1+m1−1
1 · · · xαd+md−1

d

B(α+m)
dx (2.140)

=
B(α1 +m1, . . . ,αd +md)

B(α1, . . . ,αd)
·E
[
f(X̃)

]
(2.141)

=
(2.20)

αm1

1 · · ·α
md

d

AM
·E
[
f(X̃)

]
. (2.142)

�
The powers-to-parameter rule is obvious when writing out the integrals as in the proof
above, but it is helpful to not have to explicitly go this way each time. Despite its simplicity
it is a very handy tool.

Below we give some further rules that are not immediately visible from the integrals,
but exploit the stochastic representation of the Dirichlet distribution in terms of gamma-
distributed variables (Theorem 2.27). An immediate consequence is that we can permute
components.

Corollary 2.31 (“Permutation”-Rule of Dirichlet Calculus):

ED(α)[f(X)] = ED(απ(1),...,απ(d))[f(Xπ(1), . . . ,Xπ(d))], permutation π . (Perm)
�

Even though the permutation rule is almost obvious, the freedom to renumber indices
allows the following more interesting rules to be stated in a concise way. The first one
allows us to aggregate components that we do not distinguish in our term, anyway.

Lemma 2.32 (“Aggregation”-Rule of Dirichlet Calculus):

ED(α)[f(X1, . . . ,Xd−2,Xd−1 +Xd)] = ED(α1,...,αd−2,αd−1+αd)[f(X)], α ∈ Rd>0.
(Agg)

J

Dirichlet-Calculus · 2.4.5

75

Proof: Using Theorem 2.27, we have X D= G/S forG = (G1, . . . ,Gd) withGi
D= Gamma(αi)

for i = 1, . . . ,d and S = G1 + · · ·+Gd.

(X1, . . . ,Xd−2,Xd−1 +Xd)
D
=

(
G1
S

, . . . ,
Gd−2
S

,
Gd−1 +Gd

S

)
(2.143)

D
=

Corollary 2.25

(
G1
S

, . . . ,
Gd−2
S

,
Gamma(αd−1 +αd)

S

)
(2.144)

D
=

Theorem 2.27
Dir(α1, . . . ,αd−2,αd−1 +αd). (2.145)

This shows that the involved terms are in fact equal in distribution, which of course implies
that they are equal in expectation. �

The last rule of Dirichlet-calculus allows us to remove unused components, when we only
consider relative size of some components. The stated rule is the simplest of this kind,
where we only relate two components. It could be generalized further, if needed; for this
work the given zoom rule is sufficient.

Lemma 2.33 (“Zoom”-Rule of Dirichlet Calculus):

ED(α)

[
f

(
X1

X1 +X2

)]
= ED(α1,α2)[f(X1)], α ∈ Rd>0 . (Zoom)

J

Proof: As in the proof of Lemma 2.32, we use Theorem 2.27 to write X D= G/S for G =

(G1, . . . ,Gd) with Gi
D= Gamma(αi) for i = 1, . . . ,d and S = G1+ · · ·+Gd. Then G1/(G1+

G2)
D= Dir(α1,α2) by Theorem 2.27 again. �

� � �

Example. A very simple first example for the use of our Dirichlet-calculus is the compu-
tation of the mean of the Dirichlet distribution.

Fact 2.34 (Mean of Dirichlet Distribution): With X D= Dir(α) with α ∈ Rd>0 holds

E[X] =
α

Σα
. J

Proof: Let X D= Dir(α) with α ∈ Rd>0. Recall that we use 1I for the characteristic vector of
a subset of [s], see Equation (2.4). We compute

E[Xr] = ED(α)[Xr] =
(P2P)

α1r

(Σα)1
·ED(α+1{r})[1] =

αr

Σα
. (2.146)

�

2 Mathematical Tools

76

2.4.6 Binomial and Multinomial Distributions

When we repeatedly draw from a categorical distribution and only keep the class counts,
we obtain the multinomial distribution. If we take the Bernoulli distribution as basis, it
coincides with the more well-known binomial distribution.

Formally, we have p ∈ [0, 1]d such that Σp = 1. A random variable X ∈ Nd
0 is said to

have multinomial distribution with parameters n and p, written shortly as X D= Mult(n,p),
if for any i = (i1, . . . , id) ∈Nd

0 holds

P[X = i] =

(
n

i1, . . . , id

)
pi11 · · ·p

id
d =

(
n

i

)
Π(pi) . (2.147)

The probability weights include multinomial coefficients (recall Equation (2.65)), hence the
name. For d = 2, the binomial distribution, we write X D= Bin(n,p) instead of (X,n−X) D=

Mult(n, (p, 1− p)).

Properties. It is clear form the definition that we can permute indices aggregate compo-
nents of a multinomial variable, if we do likewise on the parameter vector. In particular,
the marginal distribution of Xr for X D= Mult(n,p) is Xr

D= Bin(n,pr). The mean of the
Mult(n,p) distribution is simply n ·p.

It is well-known that binomial variables, which are sums of i. i.d. variables, are highly
concentrated around their mean. This fact is formally expressed in Chernoff bounds,
which provide an exponentially shrinking bound on the probability of large deviations
from the mean. In this work, we only need the most basic variant of Chernoff bounds,
given in the following lemma.

Lemma 2.35 (Chernoff Bound, Theorem 2.1 of McDiarmid [120]):
Let X D= Bin(n,p) and δ > 0. Then

P

[∣∣∣∣
X

n
− p

∣∣∣∣ > δ
]
6 2 exp(−2δ2n). (2.148)

�
In applications, we often encounter terms of the form E[f(Xn)], which we would like to

approximate by f(p) plus some error term. For arbitrary functions f, this is not possible
since f might amplify small variations of X arbitrarily much. But the Chernoff bound is
strong enough to dominate the variations introduced by a large class of sufficiently smooth
functions.

Lemma 2.36: Let s ∈N and p ∈ (0, 1)s, Σp = 1, be fixed, and assume X D= Mult(n,p). Let
f : [0, 1]s → R be a bounded function that is Hölder-continuous with exponent h ∈ (0, 1] in a
neighborhood of p, i.e., there are constants ρ > 0 and C such that |f(y)− f(x)| 6 C‖y−x‖h∞
for all x and ywith ‖x−p‖∞ < ρ and ‖y−p‖∞ < ρ. Then for all fixed ε > 1−h

2 holds

E

[
f

(
X

n

)]
= f(p) ± o(n−1/2+ε).

If f is Hölder-continuous with exponent h over the whole domain [0, 1]s, then the error
bound holds uniformly in p. J

Binomial and Multinomial Distributions · 2.4.6

77

Proof: Using subadditivity, also known as the union bound or Boole’s inequality, we have

P

[∥∥∥∥
X

n
−p

∥∥∥∥
∞
> δ
]

= P

[
s∨

r=1

∣∣∣∣
Xr

n
− pr

∣∣∣∣ > δ
]

(2.149)

6
s∑

r=1

P

[∣∣∣∣
Xr

n
− pr

∣∣∣∣ > δ
]

(2.150)

6
Lemma 2.35

2s exp(−2δ2n). (2.151)

To use this in bounding E
[∣∣f
(
X
n

)
− f(p)

∣∣], we divide the domain [0, 1]s of Xn into the region
of values with ‖ · ‖∞-distance at most δ from p, and all others. So let ε > 1−h

2 be given,
i.e., h = 1− 2ε+ λ for a constant λ > 0. We may further assume ε < 1

2 ; for larger values
the claim is vacuous. Using the boundedness of f and Equation (2.151), we find

E

[∣∣∣∣f
(
X

n

)
− f(p)

∣∣∣∣
]
n1/2−ε (2.152)

6 sup
ξ:‖ξ‖∞<δ

∣∣f(p+ ξ) − f(p)
∣∣n1/2−ε ·

(
1− 2s exp(−2δ2n)

)

+ max
x,y∈[0,1]s

∣∣f(x) − f(y)
∣∣

︸ ︷︷ ︸
A∈R

n1/2−ε · 2s exp(−2δ2n); (2.153)

with any δ = o(1), we have δ < ρ for n large enough, so using Hölder-continuity, this is

6 Cδhn1/2−ε ·
(
1− 2s exp(−2δ2n)

)
+ An1/2−ε · 2s exp(−2δ2n), (2.154)

and choosing δ = ln(n)√
n

= o(1) this is

= C lnh(n)n−λ/2

︸ ︷︷ ︸
→0

·
(
1− 2s exp(−2 ln2(n))︸ ︷︷ ︸

→0

)
+ 2sA exp

(
(12 − ε) ln(n) − 2 ln2(n)

)
︸ ︷︷ ︸

→0
(2.155)

→ 0 (2.156)

for n → ∞, which implies the claim. The error bound is uniform in p if the constant C
from the Hölder-condition applies uniformly for all p. �

� � �

In our application, the multinomial distribution is used on top of a Dirichlet distribution:
We first draw D D= Dir(σ), which is then used as the class probabilities in a multinomial
distribution: I D= Mult(n,D). Formally, this means that the distribution of I depends on
the value of D; conditionally on the event that D = d for a stochastic vector d ∈ [0, 1]s, we
have I D= Mult(n,d). In case we are only interested in the final result I of this process, we
can hide the intermediate variable D. This case is common enough to warrant a name of
its own: the Dirichlet-multinomial distribution.

2 Mathematical Tools

78

2.4.7 Beta-Binomial and Dirichlet-Multinomial Distributions

The Dirichlet-multinomial distribution is a multidimensional discrete distribution. A ran-
dom variable I ∈ Ns

0 has the Dirichlet-multinomial distribution, I D= DirMult(n,σ), with
parameters n ∈N0 and σ ∈ Rs>0, if

P[I = i] =

(
n

i

)
B(σ+ i)

B(σ)
, i ∈Ns

0 . (2.157)

Recall that the multinomial coefficient is zero unless Σi = n. An alternative representation
of the weights is often used:

(
n

i

)
B(σ+ i)

B(σ)
=

(
n

i

)
Γ(Σσ)

Γ(Σ(σ+ i))
·
s∏

r=1

Γ(σr + ir)

Γ(σr)
(2.158)

=

(
n

i

)∏s
r=1 σ

ir
r(

Σσ
)Σi . (2.159)

In the binary case s = 2, the Dirichlet-multinomial distribution I D= DirMult(n;σ) cor-
responds to the beta-binomial distribution: I1

D= BetaBin(n,σ1,σ2). For the special case
σ = (1, 1), we obtain BetaBin(n, 1, 1) D= U[0..n]: for i ∈ [0..n] then holds

P[I1 = i] =

(
n

i

)
1i 1n−i

2n
=

n!
i!(n− i)!

i!(n− i)!
(n+ 1)!

=
1

n+ 1
. (2.160)

Urn Model. The weights of the Dirichlet-multinomial distribution look quite arbitrary at
first sight, but they stem from a very natural urn process if σ ∈ Ns: Assume we have an
urn filled with balls of the s different colors, named 1, . . . , s. Initially, we have σr balls of
color r for r = 1, . . . , s, which makes a total of Σσ balls initially in the urn. In each step, we
uniformly draw one ball from the urn, put it back, and additionally add one new ball of
the same color we have just drawn. If we now denote by Ir the number of balls of color r
added to the urn in n drawings (for r = 1, . . . , s), we have I = (I1, . . . , Is)

D= DirMult(n,σ).
The key observation to see this is that the results of individual drawings are exchange-

able random variables; what this means is best seen in an example. So, pick σ = (2, 1, 5)
and let us determine the probability to draw balls colors 3313231, in that order:

P[color sequence 3313231] =
5

8
· 6
9
· 2
10
· 7
11
· 1
12
· 8
13
· 3
14

=
2 · 3 · 1 · 5 · 6 · 7 · 8

8 · 9 · 10 · 11 · 12 · 13 · 14

=
22 · 11 · 54

87
.

As is obvious from the example, the probability of a color sequence depends only on its
profile, i.e., how often each color occurs, but not on the order. In other words, it only
depends on the final contents of the urn. Since there are

(
n
i

)
different color sequences

with profile i, the probability P[I = i] is as given in Equation (2.159).

Beta-Binomial and Dirichlet-Multinomial Distributions · 2.4.7

79

The above urn model is known as the classical Pólya urn which is the father of a whole
family of generalized models nowadays known as Pólya urns, see, e.g., Mahmoud [114].
The beta-binomial distribution with integral parameters is also called Pólya distribution,
and was studied by Eggenberger and Pólya [51] in 1923. Their urn model, the Pólya-
Eggenberger urns, include as additional parameter how many additional balls are put
into the urn after each drawing. According to Johnson and Kotz [95], Markov already
studied the version with one additional ball in 1906.

For our analysis of Quicksort, Pólya urns are not the most convenient vehicle, al-
though very recently Aumüller et al. [11] used them for the analysis of comparison-optimal
three-way partitioning methods. The following stochastic representation of the Dirichlet-
multinomial distribution as mixed distribution plays the central role in this work.

Stochastic Representation. As hinted at above, there is a second way to obtain Dirichlet-
multinomial distributed random variables: we first draw random probabilitiesD D= Dir(σ)
according to a Dirichlet distribution, and then use this as parameter of a multinomial
distribution, i.e., I D= Mult(n;d) conditional on D = d. In other words, the Dirichlet-
multinomial distribution is a mixed multinomial distribution, using a Dirichlet mixer
D to determine the parameter of the multinomial, written deceptively concisely as
DirMult(n;σ) D= Mult(n; Dir(σ))

It makes a good exercise for Dirichlet-calculus (Section 2.4.5) to verify that the proba-
bility weights of the Dirichlet-multinomial distribution from the stochastic representation,
I D= Mult(n, Dir(σ)) coincide with those in Equation (2.157). We have

P[I = i] = ED
[
P[I = i |D]

]
(2.161)

= ED(σ)[P[I = i |D = X]] (2.162)

=
(2.147)

ED(σ)

[(
n
i

)
Π(Xi)

]
(2.163)

=

(
n

i

)
·ED(σ)

[
Π(Xi)

]
(2.164)

=
(P2P)

(
n

i

)
Π(σi)

(Σσ)Σi
·ED(σ)[1] (2.165)

=

(
n

i

)
Π(σi)

(Σσ)n
. (2.166)

So indeed, the Dirichlet-multinomial distribution is the mixed multinomial distribution,
conditional on a Dirichlet variable.

Permuting and Aggregating. Lemma 2.31 shows that we can permute indices in a Dirich-
let variables, and we obtain the distribution where the same permutation is applied to
the parameter vector. By the stochastic representation, it is clear that we can likewise
permute indices in a Dirichlet-multinomial distribution. The same holds for aggregating
components using Lemma 2.32:

2 Mathematical Tools

80

Lemma 2.37: If I D= DirMult(n,σ) for σ ∈ Rs>0, then

(I1, . . . , Is−2, Is−1 + Is)
D
= DirMult(n;σ1, . . . ,σs−2,σs−1 + σs). �

This implies that the marginal distributions of I D= DirMult(n,σ) are beta-binomial: Ir
D=

BetaBin(n,σr,Σσ− σr).

Mean. The expectation of I D= DirMult(n,σ) with σ ∈ Rs>0 is easily computed using the
stochastic representation. Conditional on D, we have E[I |D] = n ·D, and from Fact 2.34,
we know E[D] = σ/Σσ, so together

E[I] =
n ·σ
Σσ

. (2.167)

A computation in Dirichlet-calculus is also possible, but much more tedious in this case
than the above argument.

Convergence to Beta Distribution. If we normalize a Dirichlet-multinomial variable I by
dividing it by n, we essentially remove the multinomial part, and what remains should
be a Dirichlet variable again: DirMult(n,σ)/n ≈ Dir(σ). If it were not for the random
probabilities D, this would simply be an application of the law of large numbers; but
the convergence holds also with random D. Mahmoud [114] shows that DirMult(n,σ)/n
converges in distribution to Dir(σ) (Theorem 3.2, page 53).

For our application later in this work, convergence in distribution is too weak, and we
can in fact show a stronger statement. We only need the binary case s = 2; but a simi-
lar computation is possible for the multidimensional case. The precise type of stochastic
convergence we use is a little unusual; it is chosen to match the requirement of the distri-
butional master theorem introduced in Section 2.6 below. We call the type of convergence
in this work convergence in density.

Lemma 2.38 (Local Limit Law for Beta-Binomial): Let (I(n))n∈N>1 be a family of random
variables with beta-binomial distribution, I(n) D= BetaBin(n,α,β) where α,β ∈ {1} ∪R>2,
and let fB(z) be the density of the Beta(α,β) distribution. Then as n → ∞, we have
uniformly in z ∈ (0, 1) that

n ·P
[
I = bz(n+ 1)c

]
= fB(z) ± O(n−1), (n→∞).

That is, I(n)/n converges to Beta(α,β) in distribution, and the probability weights converge
uniformly to the limiting density at rate O(n−1). J

Proof: Let z ∈ (0, 1) be arbitrary and write i = i(z) = bz(n+ 1)c ∈ [0..n]. We note for
reference that

∣∣∣∣
i

n
− z

∣∣∣∣
c

< n−c , (c > 0 and n > 1). (2.168)

Beta-Binomial and Dirichlet-Multinomial Distributions · 2.4.7

81

Moreover, we will make use of the asymptotic expansion of quotients of the gamma func-
tion, see Equation (2.11). We compute

P[I(n) = i] =

(
n

i

)
B(i+α,n− i+β)

B(α,β)
(2.169)

=
1

B(α,β)
· Γ(n+ 1)

Γ(i+ 1)Γ(n− i+ 1)
· Γ(α+ i)Γ(β+ (n− i))

Γ(α+β+n)
(2.170)

=
1

B(α,β)
· Γ(n+ 1)

Γ(α+β+n)
· Γ(i+α)
Γ(i+ 1)

· Γ((n− i) +β)

Γ((n− i) + 1)
(2.171)

=
(2.11)

1

B(α,β)
·
(
iα−1 ±O(iα−2)

)(
(n− i)β−1 ±O((n− i)β−2)

)

nα+β−1 ±O(nα+β)
(2.172)

=
1

B(α,β)
·
(
(in)

α−1 ±O
(
iα−2

nα−1

))(
(n−in)β−1 ±O

((n−i)β−2
nβ−1

))

n±O(n2)
, (2.173)

assuming α,β > 2,

=
(2.168)

1

B(α,β)
·
(
zα−1 ±O(n−α+1)

)(
(1− z)β−1 ±O(n−β+1)

)

n±O(n2)
(2.174)

=
zα−1(1− z)β−1

B(α,β)
·
(
n−1 ± O(n−2)

)
. (2.175)

For α = 1, we do not need the error term from Equation (2.168), since the term (in)
α−1 = 1

then, and the same result follows from the error term O
(
iα−2

nα−1

)
= O(n−1) then. The case

for β = 1 is similar. Finally, multiplying the equation above by n yields the claim. �

Convergence Speed: Barry-Esseen Theorems and Local Limit Laws. Regarding the rela-
tion between the beta-binomial and beta distribution, it might be tempting to condition on
the beta variable D. Then we have the conditional distribution I D= Bin(n,D), a much sim-
pler thing to deal with, especially because the law of large numbers immediately implies
(almost sure) convergence I

n → D, and so much is known about this convergence.
The most promising route is using local limit laws, which prove n−1/2 convergence

rates for densities (Laplace’s theorem as given in the Encyclopedia of Mathematics [56],
or in fact, for any sum of i. i.d. variables, Theorem 6, p. 197, of Petrov [144]). However,
this merely transforms a beta-binomial distribution into a beta-normal distribution, i.e., a
mixed normal distribution, where conditional on D, mean and standard deviation are nD
and

√
nD(1−D), respectively. The density of the latter is

f(z) =

∫1

x=0

xα−1(1− x)β−1

B(α,β)
1√

2πnx(1− x)
exp

(
−

(z−nx)2

2nx(1− x)

)
dx

=
1

B(α,β)
√
2πn

∫1

x=0
xα−3/2(1− x)β−3/2 exp

(
−

(z−nx)2

2nx(1− x)

)
dx,

where the integral seems very tough to deal with. (Mathematica does not even solve it for
α = β = 1, the uniform case.)

Even for convergence of CDFs (where the maximal point-wise difference is called
Kolmogorov-Smirnov distance or total variation distance), the route via fixing D does not
allow as strong an error bound as in Lemma 2.38, as the best error bound between a

2 Mathematical Tools

82

binomial and its normal approximation is O(n−1/2), obtained from the classical Berry-
Esseen theorem for i. i.d. variables, whereas for the difference between a normalized beta-
binomial and the corresponding beta distribution, we could show O(n−1) error rate in
Lemma 2.38.

The moral of the story is that even though we excessively use conditioning on the hidden
Dirichlet variable, it is not always the way to go.

� � �

This concludes our review of probability distributions that arise in this work. There is one
last concept related to probability that plays an important role in our analysis: the entropy
function of information theory.

2.4.8 Shannon Entropy

Can one random variable be more random than another? Shannon’s classical information
theory [168] answers this question in the affirmative, and it provides a quantitative mea-
sure for the amount of randomness or surprise: entropy.

For X D= D(p) any finitely supported discrete random variable, p ∈ [0, 1]u and Σp = 1,
we define its base b Shannon entropy, b > 1, as

Hlogb(X) =
∑

x

P[X = x] logb

(
1

P[X = x]

)
= −

u∑

i=1

pi logb(pi) = Hlogb(p). (2.176)

Here we define 0 logb(0) = 0, the smooth continuation of x logb x as x → 0. The entropy
is really a property of the distribution of X, therefore we write also Hlogb(p) instead of
Hlogb(X). We will mostly use b = 2 and b = e, the binary entropy and the natural entropy,
respectively.

For the above definition, it does not make a difference whether X is a vector or a scalar,
we also do not need an order on its values. One can also extend the above definition to
any countable domain, provided the sum in Equation (2.176) converges absolutely.

Usually the Shannon entropy is written without the logb in the subscript, but we
reserve this for the discrete entropy defined below. It is convenient to define a generic
syntax for entropy-like functions.

Definition 2.39 (Entropy-Like Functions): For f : [0, 1] → R a function and p ∈ [0, 1]s

with Σp = 1 we define the f-entropy of p as

Hf(p) = −

s∑

r=1

pr · f(pr).
J

Lower Bounds. It is well-known that the binary entropy Hld(p) is a lower bound for
the number of bits needed on average to transmit the outcome of D(p); see Theorem 9
of Shannon [168] for the formal statement in terms of message transmission. For our

Shannon Entropy · 2.4.8

83

purposes, the following formulation as a classification problem is more adequate, which
is an immediate corollary of Shannon’s theorem.

Fact 2.40 (Entropy Bound for Classification): Let X = {x1, . . . , xu} be a domain with u val-
ues and f : [u]→ X be a bijection. Let further p ∈ [0, 1]u with Σp = 1 be a stochastic vector.
The random variable X = f(I) for I D= D(p) attains the values in X with probabilities p.

A classification algorithm may only use element-queries of the form “X ∈ Y?”, with a
subset Y ⊂ X to find out the value of X. Then any classification algorithm needs at least
Hld(p) queries in expectation to classify X D= f(D(p)). �

Entropy and Interval Bisections. There is a nice graphical intuition behind binary entropy
for finitely supported distributions: If draw the probability weights pi as contiguous seg-
ments of [0, 1] with respective lengths, classifying a randomly drawn element is best done
by binary searching the unit interval, bisecting the remaining range in the middle each
time, until our range of possible values is contained completely in one of the segments.

The number of bisections, i.e., yes-no-questions a.k.a. bits of information, needed to
single out pi, is the number of times we have to halve [0, 1] until the range fits into the
segment for pi, which is at least log1/2 pi = − ldpi times. With I D= D(p) the expected
number of bisections is thus at least E[log1/2(pI)] = Hld(p).

For certain probability weights pi, the number of bisections computed above is ac-
tually achieved, namely if any bisection point lies at a segment boundary. For that
to happen, it is necessary that all pi are multiples of an integer power of 12 , for ex-
ample with p = (12 , 18 , 18 , 14), we need exactly one bisection to identify p1, one more
bisection for p4 and a third one to separate p2 from p3. On average, this makes
1
2 · 1+

1
4 · 2+ 2 ·

1
8 · 3 =

7
4 = Hld(

1
2 , 18 , 18 , 14).

Entropy of Independent Variables. Shannon’s entropy has many noteworthy properties;
see, e.g., the comprehensive introduction by Cover and Thomas [36]. We collect here only
the properties that we need in this work.

Lemma 2.41: Let X1, . . . ,Xn be i. i.d. D(p) distributed and X = (X1, . . . ,Xn). Then holds

Hld(X) = Hld(X1) + · · ·+Hld(Xn) = n ·Hld(p). J

Proof: This follows from the chain rule for conditional entropy , Theorem 2.2.1 of Cover
and Thomas [36], which states Hld(X, Y) = Hld(X) +Hld(Y | X). Here, the latter is the
conditional entropy

Hld(Y |X) = −
∑

x,y

P
[
(X, Y) = (x,y)

]
ld
(
P[Y = y |X = x]

)
. (2.177)

For independent variables X and Y, we have Hld(Y | X) = Hld(Y); knowing X does not
reduce the surprise from the independent Y. The claim follows by iteratively using the
rule. �

2 Mathematical Tools

84

Since the entropy is a continuous function, it changes only slightly if we change the prob-
abilities vector a little bit; this is quantified in following statement.

Proposition 2.42 (Effect of Perturbations on Entropy): Let p,q ∈ [0, 1]s with Σp = Σq =

1 with ‖p−q‖∞ 6 δ. Then for any ε ∈ (0, 1) there is a constant C such that
∣∣Hln(p) −Hln(q)

∣∣ 6 C · sδ1−ε. J

Proof: By Lemma 2.13, the function x ln(x) is Hölder-continuous for any exponent α =

1− ε for ε ∈ (0, 1). Let C be the corresponding Hölder-constant. Then

∣∣Hln(p) −Hln(q)
∣∣ 6

s∑

r=1

∣∣pr ln(pr) − qr ln(qr)
∣∣ (2.178)

6 sC · δ1−ε. (2.179)
�

Inequalities. Gibb’s inequality is an elementary tool for working with Shannon’s entropy.
The proof is elementary, but we include it here because we will transfer Gibb’s inequality
to the discrete entropy in the following section.

Lemma 2.43 (Gibb’s Inequality): Let p,q ∈ [0, 1]s with Σp = 1 and Σq 6 1. Then

Hln(p) = −

s∑

i=1

pi ln(pi) 6 −

s∑

i=1

pi ln(qi) ,

and equality holds only for p = q. J

Proof: Rewrite the difference

−

s∑

i=1

pi ln(qi) +

s∑

i=1

pi ln(pi) = −

s∑

i=1

pi ln(qi/pi). (2.180)

By strict concavity, ln lies below any of its tangents, in particular ln(x) 6 x− 1 for all x > 0,
and equality holds only for x = 1. We thus find

−

s∑

i=1

pi ln(qi/pi) > −

s∑

i=1

pi(qi/pi − 1) = −Σq+ 1 > 0, (2.181)

and equality holds only if qi/pi = 1 for all i ∈ [s], i.e., only for q = p. �
As a simple consequence we can give the maximum of the entropy.

Corollary 2.44 (Maximum of Shannon Entropy): The unique maximum for Hln(p) over
all p ∈ [0, 1]s with Σp = 1 is attained for p = (1s , . . . , 1s) and has value ln(s). J

Proof: Set q = (1s , . . . , 1s) and let p ∈ [0, 1]s with Σp = 1. We have

Hln

(
1

s
, . . . ,

1

s

)
= ln(s) = −

∑
pi ln(qi) > Hln(p), (2.182)

where the last step follows by Lemma 2.43, and equality holds only for p = q. �

Entropy and Binary Search Trees · 2.4.9

85

Schur-convexity. The above proof using Gibb’s inequality is appealingly simple, but we
can actually make a much stronger and more general statement with the machinery of
Schur convexity. For a complete introduction to the theory of Schur-convex functions the
reader is referred to the books of Marshall et al. [115] and Roberts and Varberg [149]; we
only need two definitions and a simple lemma from the theory.

Definition 2.45 (Majorization): For a vector x ∈ Rs, let sort(x) denote the vector with the
components of x in descending order.

We say a vector x ∈ Rs is majorized by another vector y ∈ Rs, written as x 4 y,
if Σx = Σy and for r = 1, . . . , s holds

∑r
i=1

(
sort(x)

)
i
6
∑r
i=1

(
sort(y)

)
i
. J

For example, we have (3, 3, 3) 4 (4, 4, 1); indeed, a vector with all equal components is
majorized by any vector with the same total. We further have (4, 4, 1) 64 (5, 2, 2) and
(5, 2, 2) 64 (4, 4, 1), so some vectors are incomparable w.r.t. majorization.

Geometrically speaking, we have x 4 y if and only if x lies in the convex hull of all
vectors obtained by permuting the coordinates of y.

Note that the majorization relation is in the literature commonly denotes as ≺ instead
of 4. This is unfortunate since majorization clearly has a less-or-equal meaning, so we will
stick to 4 in this work.

Definition 2.46 (Schur-convexity): A function f : Rs → R is called Schur-convex if x 4 y
implies f(x) 6 f(y). f is strictly Schur-convex, if additionally f(x) < f(y) holds for all x 4 y
with sort(x) 6= sort(y). J

The notion of Schur-convexity is a little awkward at first, and one might wonder how to
find Schur-convex functions. For a simple class of functions, we can reduce this question
to ordinary convexity.

Lemma 2.47 (Sums of convex functions, Proposition C.1 of Marshall et al. [115], p. 92):
Let I ⊂ R be an interval and g : I → R be a function. For s ∈ N define f : Is → R

as f(x) =
∑s
r=1 g(xr). Then holds:

(a) If g is convex on I, then f is Schur-convex on Is.

(b) g is strictly convex on I if and only if f is strictly Schur-convex on Is. �

This class of functions covers in particular our entropy-like functions. We therefore obtain
the following corollary that generalizes Corollary 2.44 from above.

Corollary 2.48 (Schur-concavity): Let f : [0, 1] → R be a function so that x 7→ −x · f(x) is a
strictly concave function on [0, 1]. Then Hf(p) = −

∑s
r=1 prf(pr) is a strictly Schur-concave

function on [0, 1]s.
Moreover, Hf(p) attains a strict global maximum of −f(1/s) at p = (1s , . . . , 1s). �

2.4.9 Entropy and Binary Search Trees

Fact 2.40 states a general lower bound for any classification algorithm. One important
family of such classification algorithms is to use a binary search tree, where the possible

2 Mathematical Tools

86

outcomes, the classes, are in the leaves. The entropy lower bound applies in this case, as
well, but since binary search trees are a more restricted class, one might ask whether an
even stronger lower bound holds. In general, this is not the case; in fact we can precisely
characterize, when search trees achieve the entropy bound. The statements in this section
are close to folklore, but we refer often enough to them to properly state them here, once
and for all.

(Extended) Binary Search Trees — Terminology. We assume familiarity with binary search
trees; a suitable introduction is given, e.g., by Mahmoud [113, Section 1.6]. An extended
binary search tree is a binary search tree, where we attach external (leaf) nodes to all nodes
of the BST that do not already have two children; the original BST nodes are called internal
nodes to make the distinction clear. We also call the external nodes simply leaves; after all,
this is what they are. For s ∈ N we denote by Λs set of all these extended binary search
trees over s leaves.

For a fixed s, let q ∈ [0, 1]s with Σq = 1 be the probability weights of a discrete
distribution over [1..s]. Let λ be an extended binary search tree (BST) with the s leaves
1, . . . , s. To be specific, assume the inner nodes of the BST to be labeled with the s − 1
numbers 1.5, 2.5, . . . , s− 0.5.

Figure 5: Example of an extended binary search tree λ ∈ Λs over s =
7 leaves. We draw internal nodes as circle and leaves as
squares. The depth vector is λ = (2, 3, 3, 2, 3, 4, 4). With
q = (0.301, 0.022, 0.267, 0.156, 0.206, 0.028, 0.020), we have
the expected search costs of Cλ(q) = 2.591 comparisons for
finding a random leaf.

3.5

1.5

1 2.5

2 3

4.5

4 5.5

5 6.5

6 7

For a given tree λ ∈ Λ, we write λ(i) for the depth of leaf i, which is the number of
internal nodes on the path from the root to leaf i, or the number of comparisons with keys
in internal nodes to find i in λ. If now I is randomly chosen in [s] with P[I = i] = qi,
i.e., I D= D(q), we call Cλ(q) = E[λ(I)] the expected cost of tree λ under distribution D(q).
Moreover, we write λ = (λ(1), . . . , λ(s)) for the vector of leaf depths; then Cλ(q) = λT · q.
Figure 5 illustrates the definitions.

Proposition 2.49 (Entropy-Bound for Weighted External Path Length):
For any distribution q and any extended binary search tree (BST) λ ∈ Λ holds

Cλ(q) > Hld(q). (2.183)

Equality holds if and only if for every internal node in λ, the probabilities of going left and
right are equal. (We will call such trees entropy-tight.)

Moreover, there is a tree λ∗ ∈ Λwith Cλ∗(q) < Hld(q) + 2. J

Entropy and Binary Search Trees · 2.4.9

87

Proof: Our costs coincide exactly with the cost studied by Knuth [103], see his Equa-
tion (14) in Section 6.2.2. The pi are all zero in our case; our search never stops in internal
nodes. Then our Equation (2.183) follows from Knuth’s Theorem B (page 444), noting that
P = 0. Likewise, the moreover part is a simple consequence of his Theorem M (page 445).

For characterization of entropy-tight trees let λ ∈ Λ be a tree. For any internal node v
of λ, we define p(v) as the sum of the probabilities of leaves in the subtree rooted at v and
H(v) as the base-2 Shannon entropy of these probabilities after dividing them all by p(v).
Let the internal node v have the two children l and r and let pl =

p(l)
p(v) and pr =

p(r)
p(v) .

Then holds

H(v) = Hld
(
pl,pr

)
+ plH(l) + prH(r), (2.184)

i.e., the entropy of the subtree of v is the entropy of the two child subtrees plus the entropy
of the local decision at v, whether to go left or right. This identity is tantamount to Knuth’s
Lemma E (page 444); it is easy to show if we assume the leaves below l have probabilities
qi, . . . ,qk and those below r have qk+1, . . . ,qj. Then

p(v)Hld

(
p(l)

p(v)
,
p(r)

p(v)

)
+ p(l)H(l) + p(r)H(r) (2.185)

= p(l) ld
(
p(v)

p(l)

)
+ p(r) ld

(
p(v)

p(r)

)

+

k∑

r=i

qr ld
(
p(l)

qr

)
+

j∑

r=k+1

qr ld
(
p(r)

qr

)
(2.186)

= p(v)

j∑

r=1

qr

p(v)
ld
(
p(v)

qr

)
(2.187)

= p(v)H(v). (2.188)

Dividing by p(v) yields Equation (2.184).
Now define C(v) as the expected leaf depth in the subtree rooted at v, where depth

means the number of internal nodes on the path from v to the leaf. Using Equation (2.183)
and that the entropy of a binary variable Hld(p, 1− p) is at most 1 and attains 1 only for
p = 1

2 , we find for any internal node v

C(v) = plC(l) + prC(r) + 1 (2.189)

> plH(l) + prH(r) +Hld
(
pl,pr

)
(2.190)

=
(2.184)

H(v), (2.191)

and equality holds if and only if C(l) = H(l), C(r) = H(r) and pl = pr. Unfolding
these conditions shows that the costs of the whole tree are equal to Hld(q) if and only if
pl(v) = pr(v) for all v in λ. �

As noted by Knuth [103], his Theorem B and Lemma E hold for any binary tree. This
property carries over to our Proposition 2.49. The upper bound can be improved slightly
to aC < Hld(q) + 1− q1 − qs + maxqi according to Nagaraj [134, page 12].

2 Mathematical Tools

88

Entropy-tight Trees. The trees that fulfill Equation (2.183) with equality are quite special
creatures. The following simple characterization is indirectly used in the proof above, but
it is helpful enough to make it explicit.

Fact 2.50: A binary tree λ is entropy-tight w.r.t. leaf probabilities q if and only if

qi =
1

2λ(i)
, for i = 1, . . . , s. (2.192)

J

Proof: If λ is entropy-tight, we have equal probability of going left and right in any internal
node by Proposition 2.49. For a leaf at depth i, we thus have halved its probability i times.
If conversely q fulfills Equation (2.192), we have qi ld(1/qi) = qiλ(i) for i = 1, . . . , s;
summing up yields the claim, if we can show that Σq = 1. This is easy to see inductively.
It is certainly true for a tree with only one internal node. In any larger BST, there is
one internal node with two leaves. By collapsing these two leaves into their father and
assigning it the sum of their weights, we do not change the total of q, but have reduced
the number of internal nodes. �

Fact 2.50 implies in particular that q is κ-discretized (in the sense of Definition 2.51 below)
for a κ that is a power of two. It is clear that given a distribution, we can easily construct
the unique entropy-tight BST by recursively picking as root the element that divides the
leaf probabilities exactly in half—or conclude there is no such tree if no such root exists—
see Algorithm 1. Whenever it exists, this tree is the unique optimal tree for the given
distribution.

Algorithm 1: Pseudocode for constructing entropy-tight binary search trees.
The initial call takes the form EntropyTightBST(q, 1, s, 1).

EntropyTightBST(q, i, j,S)

1 if i == j then return Leaf(i) end if
2 sum := 0; k := i

3 repeat
4 sum := sum + qk
5 k := k+ 1

6 until sum > S/2
7 if sum == S/2

8 l := EntropyTightBST(q, i,k,S/2)
9 r := EntropyTightBST(q,k+ 1, j,S/2)
10 return Node(k+ 0.5, l, r)
11 else return “No entropy-tight BST exists.”

Discrete Entropy · 2.5

89

Equation (2.192) can also be used in the converse direction. If we fix a tree λ ∈ Λ,
then Equation (2.192) defines a probability distribution q for which λ is entropy-tight. This
means, for any tree we have a distribution for which the given tree has optimal cost. Note
that this distribution is not in general the distribution under which λ has minimal cost!
The distributions minimizing E[λ(I)] simply put all weight to the highest leaves.

2.5 Discrete Entropy

A special instance of an entropy-like function appears in the analysis of the Quicksort re-
currence. It can be seen as a discrete, combinatorial approximation of the (base e) Shannon
entropy of a distribution that is not only discrete in its domain, but also has discretized
values for the probability weights. The definition below makes this restriction formal. In
this section, we use the same symbols that will later appear in the analysis of generalized
Quicksort, but we do not refer to or rely on their algorithmic meaning here.

Definition 2.51 (κ-discretized): Let τ = (τ1, . . . , τs) be the weights of a discrete probability
distribution. For κ ∈ N, we call a distribution (or its vector of weights) κ-discretized
if κ · τ ∈Ns

0, i.e., τ ∈ 1κNs
0. J

A κ-discretized distribution τ is characterized by the integer vector t = κ · τ− 1, or equiv-
alently by the vector σ = κ · τ. The former is the parameter traditionally used to describe
the sampling process to choose pivots in Quicksort (Section 4.4) and we will stick to pa-
rameter t for consistency with the literature. From the point of view of discretized distri-
butions, σ would have been the more fortunate and convenient choice. τ will represent
the probabilities of an element to belong to a certain recursive call.

Definition 2.52 (Discrete Entropy): For t ∈Ns
0 and k = Σ(t+ 1) − 1 we define the discrete

entropy of t as

H(t) =

s∑

r=1

tr + 1

k+ 1
(Hk+1 −Htr+1) . (2.193)

We simply write H when t is clear from the context. J

In the discrete entropy for the κ-discretized distribution τ = t+1
κ , with Σ(t+ 1) = κ, the

logarithm ln(τr) used in Shannon’s entropy is thus replaced by Hτr·κ −Hκ, the difference
of two harmonic numbers. This term is important enough to deserve a notation of its own:
the harmonic-difference function.

Definition 2.53 (Harmonic-Difference Function):
We define the harmonic-difference function as

hdκ(x) := Hxκ −Hκ, κ, x ∈ R>0. (2.194)
J

2 Mathematical Tools

90

Although not strictly needed for our application in the discrete entropy, it is technically
convenient to define hdκ(x) also for values x where xκ /∈ N. There we understand Hxκ
as the integral in Equation (2.72) which smoothly continues the harmonic numbers. The
same is true for κ itself. Using the notation for generalized entropy-like functions (Defini-
tion 2.39), we may now write

H(t) = Hhdκ(τ). (2.195)

We next show that the discrete entropy arises naturally in the context of Dirichlet-
distributed random vectors, and it is due to this fact that H plays such an important role
in the analysis of Quicksort. The subsequent two sections then collect various helpful
properties of hdκ(x) and Hhdκ(τ).

2.5.1 Entropy of Dirichlet Vectors

As pointed out above, a Dirichlet-distributed random variable D D= Dir(σ) is a stochastic
vector which can be seen as (random) probability weights of a discrete distribution D(D).
We know that the expected value ofD is simply the distribution induced by the parameter
vector σ:

E[D] =
σ

Σσ
= τ. (2.196)

We now show that the expected (Shannon) entropy of D is the discrete entropy of τ.

Proposition 2.54 (Expected Entropy): Let σ ∈ Rs>0 and D D= Dir(σ). Then holds

E
[
Hln(D)

]
= Hhdκ(τ) ,

where κ = Σσ and τ = σ/κ. J

Proof: The proof is simply by computing, using several of the results presented earlier in
this chapter; in particular using the notation of Dirichlet calculus (Section 2.4.5), we find
for r = 1, . . . , s the relation

E[Dr ln(Dr)] = ED(σ)[Xr ln(Xr)] (2.197)

=
(Agg)

ED(σr,κ−σr)[X1 ln(X1)] (2.198)

=
(P2P)

σr

κ
·ED(σr+1,κ−σr)[ln(X1)] (2.199)

=
σr

κ
·
∫1

0

ln(x)
xσr(1− x)κ−σr−1

B(σr + 1, κ− σr)
dx (2.200)

=
(2.30)

σr

κ
·
(
ψ(σr + 1) −ψ(κ+ 1)

)
(2.201)

=
(2.73)

σr

κ
·
(
Hσr −Hκ

)
(2.202)

= τr hdκ(τr) . (2.203)

Summing this up over all r and negating yields the claim. �

Properties of the Harmonic-Difference Function · 2.5.2

91

The discrete entropy thus deserves its name not only because it has the form of an entropy-
like function, but also because it gives the expected entropy of random distributions based
on its argument.

How Much Entropy Should We Expect? For the special case σ = (1, . . . , 1), we have
that D D= Dir(σ) is chosen uniformly among all discrete probability distributions over [s].
Proposition 2.54 tells us that its average entropy is

E[Hln(D)] = Hhds(
1
s , . . . , 1s) = Hs − 1 = ln(s) − (1− γ)︸ ︷︷ ︸

≈0.42278

± O(s−1) ; (2.204)

this is only slightly less than ln(s), the maximal value of Hln(p) for any stochastic vector
p ∈ [0, 1]s. Most distributions thus have high entropy. Bayer [15] made this observation in
his Section 5.0; the same result appears also as Exercise 6.2.2–37 of Knuth [103].

2.5.2 Properties of the Harmonic-Difference Function

The discrete entropy of Definition 2.52 and thus the harmonic-difference function will play
an important role in this work; it therefore pays to study a few of its properties up front.
This is the purpose of this section. Figure 6 shows a plot of hdκ for a few exemplary values
of κ.

0 0.5 1 1.5 2

−2

−1

0

hd1(x)

hd2(x)

hd10(x)

ln(x)

Figure 6: Exemplary plot of the harmonic difference
function hdκ(x), for κ = 1, 2 and 10 in
the range for x from 0 to 2. The plot
also shows ln(x). It is visible that hdκ is
approximates the natural logarithm quite
well when κ is not too small.

Relation to Logarithm. As hinted at above, hdκ(x) can be interpreted as a discrete ap-
proximation to ln x, and indeed, we have the following relation.

Proposition 2.55: Let κ ∈N and x ∈ [1κ , 1− 1
κ]. Then

hdκ(x) = ln(x) +
1

2

(
1

xκ
−
1

κ

)
+ Rx,κ, (2.205)

where

−
1

12

(
1

(xκ)2
−
1

κ2

)
6 Rx,κ 6 0. (2.206)

J

2 Mathematical Tools

92

Proof: We have hdκ(x) = Hxκ −Hκ where xκ > 1 and κ > xκ+ 1, so the claim follows
from Lemma 2.17. �

Corollary 2.56: For any fixed x ∈ (0, 1) holds

hdκ(x) = ln(x) ± O(κ−1), (κ→∞). (2.207)

(Note that the error is not uniformly bounded; the constant in O(κ−1) depends on x!) J

Proof: Let x ∈ (0, 1) be fixed. For κ large enough, we will have x > 1
κ , then the claim

follows from Proposition 2.55. �

hd Algebra. We collect a few elementary properties of the harmonic-difference function
for reference. They all directly follow by unfolding the definition, but it pays to familiar-
ize with their looks in terms of the new—and most likely unfamiliar—notation hdκ(x).
The reader is encouraged to mentally replace hd〈◦〉 by ln and check which properties are
analogs of properties of the logarithm. Note that despite many similarities, qualitative dif-
ferences between the two do exist, most notably, the harmonic-difference function remains
finite for x = 0, whereas ln(0) = −∞. Unless further restrictions are given, the following
relations hold for all x,y, κ ∈ R>0.

hd0(x) = 0 , (2.208)

hdκ(0) = −Hκ , (2.209)

hdκ(1) = 0 , (2.210)

hdκ(x) = −hdxκ(1/x) , x > 0; (2.211)

hdyκ(x/y) = hdκ(x) − hdκ(y) , y > 0; (2.212)

hdκ(x2) = hdxκ(x) + hdκ(x) , (2.213)

hdκ(xn) =

n−1∑

i=0

hdxiκ(x) , n ∈N; (2.214)

hdκ(xy) = hdκ(x{y}) +

byc−1∑

i=0

hdxi+{y}κ(x) , {y} = y− byc. (2.215)

The last two rules show that certain operations are by far not as convenient as for the
logarithm.

Analytic Properties. We have defined hdκ(x) for all x > 0. Indeed hdκ(x) is a smooth
function in x.

Lemma 2.57: hdκ(x) is continuously differentiable w.r.t. x on R>0 with

hd ′κ(x) = κ ·
(
π2

6
−H(2)

xκ

)
. (2.216)

J

Here H(r)
n =

∑n
i=1 n

−r are the generalized harmonic numbers, see Equation (2.83).

Properties of the Harmonic-Difference Function · 2.5.2

93

Proof: The derivative of hdκ(x) w.r.t. x is given by

hd ′κ(x) =
∂

∂x
(Hxκ −Hκ) =

(2.73)

∂

∂x
ψ(xκ+ 1) = κψ ′(xκ+ 1), (2.217)

where ψ(z) = Γ ′(z)/Γ(z) is the digamma function. Using

ψ ′(n+ 1) =
∑

k>0

1

(k+n+ 1)2
=

π2

6
−H(2)

n , (2.218)

which is Equation (5.15.1) of the DLMF [46], we find that hd ′κ(x) = κ(
π2

6 −H(2)
xκ). �

Corollary 2.58: Let κ > 0. Then x 7→ hdκ(x) is strictly concave, monotonically increasing
and Lipschitz-continuous with Lipschitz constant κπ

2

6 on R>0. J

Proof: The harmonic number of second order, H(2)
n are strictly increasing and converge

to H(2)
n → π2

6 as n → ∞. Thus, the derivative hd ′κ(x) = κ
(
π2

6 −H(2)
x

)
is positive and

strictly decreasing. Hence hdκ(x) is strictly concave and increasing in x. As the derivative
is bounded, hdκ is Lipschitz-continuous by Proposition 2.10 and the Lipschitz constant is
maxx>0 hd ′κ(x) = κ

π2

6 . �

Lemma 2.59: Let κ > 0. x 7→ xhdκ(x) is a strictly convex function in [0,∞). J

Proof: We show that the derivative w.r.t. x is strictly increasing (cf. Proposition 2.4). We
have

d

dx
xhdκ(x) = hdκ(x)︸ ︷︷ ︸

strictly increasing

+ xκ

(
π2

6
−H(2)

xκ

)
, (2.219)

so it suffices to show that

z

(
π2

6
−H(2)

z

)
=

(2.218)
zψ ′(z+ 1) (2.220)

is increasing for z ∈ [0,∞). To do so, we will show that its derivate is positive, using two
auxiliary results. The first one is a sandwich bound for ψ ′(z), similar to the ones for ψ(z)
in our Equation (2.70). We reproduce Equation (5) of Merkle [128]:

1

x
+

1

2x2
+

2N∑

k=1

B2k
x2k+1

<

∞∑

k=0

1

(x+ k)2
<

1

x
+

1

2x2
+

2N+1∑

k=1

B2k
x2k+1

,
x ∈ R>0 and
N ∈N>1 .

(2.221)

Here Bk is the kth Bernoulli number. Recall that
∑∞
k=0

1
(x+k)2

= ψ ′(z), this is Equa-
tion (5.15.1) of the DLMF [46], so we obtain our sandwich bound for ψ ′(x). For our needs,
N = 1 is sufficient:

1

x
+

1

2x2
+

1

6x3
−

1

30x5
< ψ ′(x) <

1

x
+

1

2x2
+

1

6x3
−

1

30x5
+

1

42x7
, x ∈ R>0.

(2.222)

http://dlmf.nist.gov/5.15.E1
http://dlmf.nist.gov/5.15.E1
http://dlmf.nist.gov/5.15.E1

2 Mathematical Tools

94

The second auxiliary fact is Equation (1.4) of Batir [14], which for n = 1 yields

ψ ′′(x) > −ψ ′(x)2, x ∈ R>0 ; (2.223)

With these preparations, we proceed to show that zψ ′(z+ 1) is an increasing function. Let
z > 0 be given and consider the derivative:

d

dz
zψ ′(z+ 1) = ψ ′(z+ 1) + zψ ′′(z+ 1) (2.224)

>
(2.223)

ψ ′(z+ 1) + z
(
−ψ ′(z+ 1)2

)
(2.225)

= ψ ′(z+ 1)
(
1− zψ ′(z+ 1)

)
(2.226)

>
(2.222)

(
1

z+ 1
+

1

2(z+ 1)2
+

1

6(z+ 1)3
−

1

30(z+ 1)5

)
·

(
1− z ·

(
1

z+ 1
+

1

2(z+ 1)2
+

1

6(z+ 1)3
−

1

30(z+ 1)5
+

1

42(z+ 1)7

))

(2.227)

=
30z4 + 135z3 + 230z2 + 175z+ 49

30(z+ 1)5
·

105z6 + 700z5 + 1960z4 + 2947z3 + 2499z2 + 1122z+ 210

210(z+ 1)7
(2.228)

> 0, z ∈ R>0 . (2.229)
�

The analytic properties reveal further similarities between hdκ(x) and ln(x): Both are
smooth, increasing and concave functions, and for both the product with x gives a con-
vex function. There are also differences: the logarithm and its derivatives are unbounded
as x → 0, whereas for any finite κ, hdκ(0) and its derivatives are finite, hence hdκ is
Lipschitz-continuous on [0,∞), which ln(x) is not.

Inequalities. For the natural logarithm, we have the well-known bound ln(x) 6 x− 1 for
all x ∈ R>0: the logarithm is a concave function, so it lies below its tangents; and x− 1
is the tangent at x = 1. This bound is at the core of the proof of Gibb’s inequality, our
Lemma 2.43, which is helpful in proving lower bounds for costs of Quicksort in the limit
case of sampling pivots from a very large sample, see Section 7.5. The following lemma
transfers this bound to hdκ(x)—or rather, as much of it as possible.

Lemma 2.60: We have the following upper bound for the harmonic-difference function:

hdκ(x) 6 x− 1, κ ∈N and x ∈ R>0\ (1− 1
κ , 1). (2.230)

(In particular, the bound holds for x ∈ 1κN0.)
Equality holds in Equation (2.230) exactly for x = 1 and x = 1− 1

κ . J

Proof: It is easily checked that hdκ(x) = x− 1 for x = 1 and x = 1− 1
κ , so x− 1 is the

secant of hdκ through x = 1 and x = 1− 1
κ . The secant x− 1 is below a strictly concave

Properties of the Discrete Entropy · 2.5.3

95

function between the two crossing points, so we have hdκ(x) > x− 1 for x ∈ (1− 1
κ , 1).

As the derivative of a concave function is strictly decreasing (Proposition 2.4), the tangent
slopes hd ′κ(1−

1
κ) and hd ′κ(1) satisfy hd ′κ(1−

1
κ) 6 1 6 hd ′κ(1). Hence, the tangent at x = 1

lies below x− 1 for x > 1 and the tangent 1− 1
κ lies below x− 1 for x 6 1− 1

κ . The claim
then follows since hdκ lies below all its tangents by concavity (Lemma 2.5). �

It is explicitly mentioned in the proof, but let us repeat once more: The condition x /∈
(1− 1

κ , 1) in Lemma 2.60 is best possible; for x ∈ (1− 1
κ , 1) the reverse inequality holds. This

idiosyncrasy of hdκ will resurface several times, in disguise: the discrete entropy inherits
many properties from Shannon entropy, but some are disfigured beyond recognition by
the above fact.

Lemma 2.61: Let κ ∈N and x ∈ [0, 1). Then hdκ(x) > ln x. J

Proof: The claim looks innocent, but I could not find a more elegant way than to deal
separately with the three regions [0, 1κ), [

1
κ , 1− 1

κ] and (1− 1
κ , 1). Let first x ∈ [1κ , 1− 1

κ]. For
those x Proposition 2.55 gives

hdκ(x) − ln(x) > 1

2

(
1

xκ
−
1

κ

)
−
1

12

(
1

(xκ)2
−
1

κ2

)
.

The latter is zero for x = 1 and x = 1
6κ−1 and positive in between, and because 1

6κ−1 6
1
κ

for κ > 1
5 this covers the whole range x ∈ [1κ , 1− 1

κ].
Now assume x < 1

κ . The tangent of ln(x) at x = 1/κ is l(x) := ln(1/κ) + (x −
1
κ) ln ′(1/κ) = xκ − ln(κ) − 1. If we can show that hdκ(x) > l(x) for x = 0 and x = 1

κ ,
we have hdκ(x) > l(x) > ln(x) for all x ∈ [0, 1κ); the first inequality follows by concav-
ity of hdκ and the second one by strict concavity of ln and Lemma 2.5. Now, we have
hdκ(0) = −Hκ and l(0) = − ln(κ) − 1. For κ = 1, both are −1. For κ > 2, we have by
Equation (2.74 .1) on page 58

Hκ 6 ln(κ) + γ+
1

2κ
6 ln(κ) + γ+

1

4︸ ︷︷ ︸
≈0.83

< ln(κ) + 1, (2.231)

so hdκ(0) > l(0) for all κ ∈ N. The second point uses the very same computation:
hdκ(1/κ) = −Hκ + 1 > ln(κ) = l(1/κ). Hence hdκ(x) > ln(x) for all κ ∈N and x ∈ [0, 1κ).

Finally, let x ∈ (1− 1
κ , 1). We follow the same lines of argumentation as above, this

time using the tangent of ln(x) at x = 1, which is x− 1. hdκ(1) = 0 and hdκ(1− 1
κ) =

Hκ−1 − Hκ = −1κ , so x − 1 is the chord of hdκ through x = 1 and x = 1 − 1
κ , which

always lie below a strictly concave function. We thus have hdκ(x) > x− 1 > ln(x) also for
x ∈ (1− 1

κ , 1), which concludes the proof. �

2.5.3 Properties of the Discrete Entropy

We collect a few properties of the discrete entropy here for later reference.

Corollary 2.62: For any κ > 0 is Hhdκ(p) a strictly Schur-concave function, and it attains a
unique global maximum of −hdκ(1/s) at p = (1s , . . . , 1s). J

2 Mathematical Tools

96

Proof: By Lemma 2.59, −xhdκ(x) is strictly concave, so the claim follows with Corol-
lary 2.48 (page 85). �

Lemma 2.63 (Bounds on Discrete Entropy): For any κ-discretized distribution τ holds

Hx 7→x−1(τ) 6 Hhdκ(τ) 6 Hln(τ), (2.232)

where equality holds if and only if τi = 1 for some i ∈ [s]. The upper bound Hhdκ(τ) 6
Hln(τ) holds for any κ ∈N and τ ∈ [0, 1)s with Στ = 1. J

Proof: The claim follows by bounding hdκ(x) using Lemma 2.60 resp. Lemma 2.61, where
we assume w.l.o.g. that all τi > 0; otherwise we can drop these components without
affecting the three entropies. If by dropping all zero-entries, only the degenerate vector (1)
is left, we find that all three entropies are 0. �

The bounds above are tight for degenerate distributions, but lie far apart from each other
in general. For large values of κ, the upper bound becomes tight. We can prove that even
in a slightly more general setting.

Lemma 2.64 (Limit of Discrete Entropy): Let (τ(κ)) be a sequence of vectors with τ(κ) ∈
[0, 1]s and Στ(κ) = 1, and assume it converges to a limit vector limκ→∞ τ(κ) = τ∗ ∈ [0, 1]s.
Denote by δ(κ) = ‖τ(κ) − τ∗‖∞ the difference of the κth vector to the limit. Then

Hhdκ(τ
(κ)) = Hln(τ

∗) ± O
(
δ(κ) + κ−1

)
, (κ→∞), (2.233)

so the discrete entropy converges to the base-e Shannon entropy with rate κ−1. J

Proof: As s is finite and fixed, it suffices to consider the summands of the entropy in
isolation. Assume first that τ∗r ∈ (0, 1). By definition of δ = δ(κ) and Lipschitz-continuity
of hdκ (Corollary 2.58) we have

τ(κ)r · hdκ(τ(κ)r) =
(
τ∗r ± O(δ)

)(
hdκ(τ∗r) ± O(δ)

)
(2.234)

= τ∗r · hdκ(τ∗r) ± O(δ) (2.235)

=
Corollary 2.56

τ∗r · ln(τ∗r) ± O(δ+ κ−1). (2.236)

If τ∗r ∈ {0, 1}, we cannot apply Corollary 2.56, but we have τ∗r · ln(τ∗r) = 0 = τ∗r · hdκ(τ∗r). �

Thereby, the upper bound of Hln(τ) cannot be improved in general. For the lower bound,
there is room for improvement, if τ is not degenerate.

Lemma 2.65 (Refined Lower Bound): Let τ be a κ-discretized distribution, where for every
component τi holds

τi 6
− ln(κ)/κ

W0(− ln(κ)/κ)
= exp

(
W0(− ln(κ)/κ)

)
, (2.237)

with W0 the (principal branch of the) Lambert-W-function, a.k.a. the product logarithm.
Then holds

Hhdκ(τ) > Hln(τ) ·
(
1−

1

2 lnκ

)
. (2.238)

J

Properties of the Discrete Entropy · 2.5.3

97

10 20 30

0.2

0.4

0.6

0.8

1

exp
(
W0(− ln(κ)/κ)

)
Figure 7: The upper bound exp

(
W0(− ln(κ)/κ)

)

on the probabilities τi from Lemma 2.65
for κ between 2 and 30. It approaches 1
with increasing κ.

Proof: We first show that for a ∈ [−1e , 0] the equation x ln x = a has two real solutions,
which coincide for a = −1e , and are given by x1 = a

W−1(a)
and x2 = a

W0(a)
.

Recall that W(a) is a number so that wew = a. For a ∈ R there are no real solutions if
a < −1e , two solutions for −1e 6 a < 0, which coincide at a = −1e , and one real solution
for a > 0. By W0(a), we denote the larger real solution (if one exists), and by W−1(a),
we denote the second, smaller real solution (where two solutions exist). For complex a, W
has further branches; see Corless et al. [34] for further information.

Inserting and using ln(W(z)) = ln(z) − W(z), (Equation (3.8) of Corless et al. [34]), we
find

x1,2 ln(x1,2) =
a

W(a)
ln
(a

W(a)

)
(2.239)

=
a

W(a)

(
ln(a) − ln

(
W(a)

))
(2.240)

=
a

W(a)

(
ln(a) − ln(a) + W(a)

)
(2.241)

= a. (2.242)

The alternative form in the claim follows by dividing wew = a by w.
Set W :=

− ln(κ)/κ
W0(− ln(κ)/κ) . By the fact above we have W lnW = 1

κ ln(1κ). (The other,
smaller solution of that equation is of course W = 1

κ .) For the unimodal function
x ln(1/x) = −x ln x, this means

x ln(1/x) > ln(κ)
κ

, for x ∈
[
1
κ ,W

]
. (2.243)

Let x ∈ [1κ ,W]. We have by Proposition 2.55

hdκ(x) 6 ln(x) +
1

2

(
1

xκ
−
1

κ

)
(2.244)

6 ln(x) +
1

2xκ
, (2.245)

2 Mathematical Tools

98

and by dividing by ln(x)
hdκ(x)
ln(x)

> 1 −
1

2κ · x ln(1/x)
(2.246)

>
(2.243)

1 −
1

2 ln(κ)
. (2.247)

Using this in the entropy gives the claim

s∑

r=1

−τr hdκ(τr) >
s∑

r=1

−τr ln(τr) ·
(
1 −

1

2 ln(κ)

)
= Hln(τ) ·

(
1 −

1

2 ln(κ)

)
. (2.248)

�

� � �

We obtain an analog of Gibb’s inequality for hdκ when we restrict the scope to discretized
vectors, in fact, to κ-discretized vectors.

Lemma 2.66 (Gibb’s Inequality for Discrete Entropy):
For p,q ∈ (1κN)s with Σp = 1 and Σq 6 1. We have

−

s∑

i=1

pi hdκ(pi) 6 −

s∑

i=1

pi hdκ(qi) , (2.249)

and equality holds only if p = q. J

Proof: Rewrite the difference

−

s∑

i=1

pi hdκ(qi) +

s∑

i=1

pi hdκ(pi) =
(2.212)

−

s∑

i=1

pi hdpiκ(qi/pi). (2.250)

By assumption, qi is a multiple of 1κ , so qi/pi is a multiple of 1
piκ

and we can apply
Lemma 2.60 to find

−

s∑

i=1

pi hdpiκ(qi/pi) > −

s∑

i=1

pi(qi/pi − 1) = −Σq+ 1 > 0. (2.251)

Equality holds only when qi = pi or qi = pi − 1
κ for all i and Σq = 1, i.e., when q = p. �

Remark: The proof of Gibb’s inequality actually only requires vectors where qi/pi /∈
(1− 1

piκ
, 1) to apply Lemma 2.60, i.e., qi /∈ (pi−

1
κ ,pi) for all i = 1, . . . , s. This is obviously

fulfilled for κ-discretized vectors, but one could generalize the statement a little. J

Properties of the Discrete Entropy · 2.5.3

99

There is another property that the discrete entropy shares with the Shannon entropy:
aggregation preserves entropy. What we mean by this is expressed formally in Lemma E
(page 444) of Knuth [103] for the Shannon entropy. We used Knuth’s Lemma E in our proof
of Proposition 2.49, see Equation (2.184) on page 87; we reproduced the main argument
for its proof there, as well.

We now adapt Knuth’s description for our scenario. Consider a not-necessarily-binary
tree in which the positive reals σ1, . . . ,σs ∈ R>0 have been assigned to the leaves. The
access probability of a leaf is proportional to its weight σr; we only have to normalize σr/κ,
where κ = Σσ for σ = (σ1, . . . ,σs). The branching at each internal node corresponds to
a local probability distribution based on the subtree probabilities, i.e., the sums of leaf
probabilities below each edge. For any such node v, we denote by κ(v) the sum of weights
of leaves in the subtree rooted at v, and by σ(v) the vector of sums of leaf weights for all
its direct children. Clearly Σ(σ(v)) = κ(v), so τ(v) = σ(v)/κ(v) is the local probability
distribution for the branch at v. As usual, we set τ = σ/κ for the global leaf probabilities.

We then have the following analog to Knuth’s Lemma E for discrete entropy.

Lemma 2.67 (Aggregation Preserves Entropy): Let a (not-necessarily-binary) tree T with
leaf weights σ1, . . . ,σs ∈ R>0 be given and let κ(v) and τ(v) be defined as above. Then

∑

v internal
node of T

κ(v)

κ
·Hhdκ(v)

(
τ(v)

)
= Hhdκ(τ). (2.252)

�

We omit a formal inductive proof, and instead consider an example; it is easy to see that
the cancellations in the example generalize to any branching degree and any number of
nodes. Consider the following tree with four leaves.

v2

v1

σ1 σ2

v3

σ3 σ4

Here we have for example σ(v1) = (σ1,σ2), κ(v1) = σ1 + σ2 and thus τ(v1) =(
σ1

σ1+σ2
, σ1
σ1+σ2

)
=
(
τ1

τ1+τ2
, τ1
τ1+τ2

)
. The lemma then asserts that

Hhdκ(τ1, τ2, τ3, τ4) = Hhdκ(τ1 + τ2, τ3 + τ4)

+ (τ1 + τ2)Hhd(τ1+τ2)κ

(
τ1

τ1 + τ2
,

τ2
τ1 + τ2

)

+ (τ3 + τ4)Hhd(τ3+τ4)κ

(
τ3

τ3 + τ4
,

τ4
τ3 + τ4

)
; (2.253)

2 Mathematical Tools

100

and in fact we find by expanding definitions that the right-hand is

− (τ1 + τ2)hdκ(τ1 + τ2) − (τ3 + τ4)hdκ(τ3 + τ4)

− (τ1 + τ2) ·
τ1

τ1 + τ2
hd(τ1+τ2)κ

(
τ1

τ1 + τ2

)

− (τ1 + τ2) ·
τ2

τ1 + τ2
hd(τ1+τ2)κ

(
τ2

τ1 + τ2

)

− (τ3 + τ4) ·
τ3

τ3 + τ4
hd(τ3+τ4)κ

(
τ3

τ3 + τ4

)

− (τ1 + τ2) ·
τ4

τ3 + τ4
hd(τ3+τ4)κ

(
τ4

τ3 + τ4

)
(2.254)

=
(2.212)

−(τ1 + τ2)hdκ(τ1 + τ2) − (τ3 + τ4)hdκ(τ3 + τ4)

− τ1
(
hdκ(τ1) − hdκ(τ1 + τ2)

)

− τ2
(
hdκ(τ2) − hdκ(τ1 + τ2)

)

− τ3
(
hdκ(τ3) − hdκ(τ3 + τ4)

)

− τ4
(
hdκ(τ4) − hdκ(τ3 + τ4)

)
(2.255)

= −

4∑

r=1

τr hdκ(τr) (2.256)

= Hhdκ(τ) (2.257)

as claimed. We will use Lemma 2.67 in the context of Quicksort to show that we can sim-
ulate the effect of multiway partitioning for the Quicksort recurrence using several levels
of binary decisions. This is especially valuable to judge potential benefits of multiway
Quicksort over classic Quicksort with pivot sampling, see Section 7.3.

� � �

We have seen that the discrete entropy arises naturally as the expected entropy of Dirichlet
vectors. We have also seen that the discrete entropy shares many, but not all, of the
properties of the ordinary entropy. In the next section, we will explore how the expected
entropy arises in solutions of recurrence equations.

2.6 A Master Theorem for Distributional Recurrences

Roura’s continuous master theorem (CMT) allows us to asymptotically solve certain full-
history recurrences, typically with explicit leading-term constants, using only elementary
methodology [153, 154]. Such recurrences result when analyzing the average cost of
divide-and-conquer algorithms with random subproblem sizes. Quicksort is of this type,
but there are many more examples [154]. We give Roura’s CMT in Section 2.6.1.

Roura lists such divide-and-conquer scenarios as initial motivation for his master the-
orems; in his final formulations this connection is somewhat concealed. One reason is that
we obtain the most general theorems when we only assume the technical conditions that

The Continuous Master Theorem · 2.6.1

101

are needed for the proof. Roura’s formulations are perfectly sensible for his endeavor to
give improved master theorems, but I have always pitied a lack of user-friendliness in his
formal statements. As a first step, we state simple sufficient conditions for the applicability
of the CMT, see Lemma 2.69 below.

Another reason is that we simply cannot translate the recursive structure of an algo-
rithm directly to a recurrence for its expected costs if the sizes of subproblems are random:
we have to include all possible subproblem sizes in the recurrence in some way. The direct
correspondence between recursive calls in the algorithm and recursive cost terms in the re-
currence equation is thereby lost. We can recover this direct correspondence, if we dare to
set up a recurrence of the full distribution of the cost, instead of its mean only. This is often
not more work, and allows an elegant description of an algorithm’s cost, directly mimick-
ing its recursive nature. Section 2.6.2 discusses usual hurdles of distributional recurrences
and how to overcome them.

In the remainder of this section, we derive a distributional CMT (DMT), which is a refor-
mulation of Roura’s theorem in the language of distributional recurrences. The attribute
distributional here refers to the input, i.e., the recurrence, not to the output. Our theorems
provide a convenient shortcut to compute expected costs directly from the distributional
recurrence.

We do not extend the applicability of Roura’s theorem; but we ease its application. And
we bring back the direct correspondence between a random-subproblem-size recursive
algorithm and the recursive description of its costs. Instead of the weights of the expected-
cost recurrence, we make the distribution of relative subproblem sizes the central object of
study.

2.6.1 The Continuous Master Theorem

We begin by restating Roura’s CMT and presenting a few shortcuts to checking its technical
conditions for relevant special cases.

Theorem 2.68 (Roura’s Continuous Master Theorem (CMT)):
Let Fn be recursively defined by

Fn =

bn , for 0 6 n < N;

tn +

n−1∑

j=0

wn,j Fj, for n > N ,
(2.258)

where tn, the toll function, satisfies tn ∼ Knα logβ(n) as n → ∞ for constants K 6= 0,
α > 0 and β > −1. Assume there exists a function w : [0, 1]→ R>0, the shape function,
with

∫1
0w(z)dz > 1 and

n−1∑

j=0

∣∣∣∣wn,j −

∫ (j+1)/n

j/n

w(z) dz

∣∣∣∣ = O(n−d), (n→∞), (2.259)

2 Mathematical Tools

102

for a constant d > 0. With H := 1−

∫1

0

zαw(z)dz, we have the following cases:

1 If H > 0, then Fn ∼
tn

H
.

2 If H = 0, then Fn ∼
tn lnn
H̃

with H̃ = −(β+ 1)

∫1

0

zα ln(z)w(z)dz.

3 If H < 0, then Fn = O(nc) for the unique c ∈ R with
∫1

0

zcw(z)dz = 1. �

Several similar theorems are called CMT, so a few remarks are in order.

a) Theorem 2.68 is the “reduced form” of the CMT, which appears as Theorem 1.3.2 in
Roura’s doctoral thesis [153], and as Theorem 18 of Martínez and Roura [116]. The
full version (Theorem 3.3 in [154]) allows us to handle sublogarithmic factors in the
toll function, as well, which we do not need here. The ideas below could easily be
extended to the full-power CMT.

b) In Case 3 actually holds Fn = Θ(nc) if either K > 0 and Fn > 0 for all n, or if K < 0
and Fn 6 0. We will not make use of this refinement though.

c) Roura [153, 154] requires for shape functions w(z) additionally that there is µ > 0 so
that also

∫1
0w(z)z

µ dz exists. We understand the conditions involving such integrals
as not fulfilled if the integral does not exist.

To apply the CMT, one first has to identify the so-called shape function w(z) which
smoothly approximates the weights wn,j. A good starting point to try is limn→∞ n ·wn,zn

for w(z). Then one has to verify the condition (2.259). There is a convenient shortcut for
this step if our function is smooth enough. We assume here that wn,zn can be analytically
continued to a real function in z ∈ [0, 1].

Lemma 2.69: Let w(z) be Hölder-continuous on [0, 1] with exponent α ∈ (0, 1] and assume

n ·wn,zn = w(z) ± O(n−δ) (2.260)

uniformly for z ∈ (0, 1) for a constant δ > 0. Then w(z) fulfills Equation (2.259) with
d = min{α, δ}. J

Recall that in particular if w(z) has bounded derivative on [0, 1], it is Lipschitz- and thus
Hölder-continuous with exponent 1 (Proposition 2.10).

Proof of Lemma 2.69: Let z ∈ (0, 1) be fixed and write j = j(n) = bznc ∈ [0..n− 1]. By
Proposition 2.12 we have

n ·
∫ (j+1)/n

j/n

w(z)dz = w(j/n) ± O(n−α), (2.261)

Distributional Recurrences · 2.6.2

103

and by the assumption

w(j/n) = nwn,j ± O(n−δ). (2.262)

Putting both together, dividing by n and summing over all j yields

n−1∑

j=0

∣∣∣∣wn,j −

∫ (j+1)/n

j/n

w(z)dz

∣∣∣∣ = O(n−α +n−δ). (2.263)
�

2.6.2 Distributional Recurrences

In analogy to recursive definitions of ordinary sequences, we can define sequences of
probability distributions recursively, representing one distribution as the result of some
transformation of distributions with smaller indices: a distributional recurrence. This
section is a user’s manual for such distributional recurrences. We discuss technicalities of
the approach and how to cope with them.

In particular, independence assumptions for distributional recurrences are usually
stated in a well-chosen, concise wording. While precise and sufficient for the expert,
details can remain blurry to the untrained eye. We have a little closer look and emphasize
potentially unclear aspects.

Stand-In Random Variables. Here comes a first peculiarity in notation: instead of stating a
recursive relations on the distributions, it is customary to state a distributional recurrence
on a sequence of random variables. This is convenient because the recursive description
usually involves computing a distribution from others. Arithmetic operations are readily
understood on (real) random variables, but for two distributions, it is not a priori clear
what it means to add them up. We could define operations to be lifted from random
variables to distributions, but working with random variables is just as fine.

Recall that a stochastic representation X D= f(Y) of random variable X by a term f(Y)

means that for any event A, we have P[X ∈ A] = EY [P[f(Y) ∈ A]]. We have seen such
representations before, e.g., for Dirichlet-variables. A distributional recurrence is then just
a stochastic representation using other members of the same family.

Joint Distributions. Consider the following simplistic distributional recurrence for the
sequence (Cn)n∈N of random variables:

C1
D
= T1 , (2.264 .1)

Cn
D
= Tn ·Cn−1 , n > 2, (2.264 .2)

where (Tn)n∈N is a family of toll random variables with known distributions. The recurrence
telescopes and Cn is distributed like the product of the first n toll terms, of which we
know the distributions—but only as marginal distributions! We do not know the joint
distribution of (T1, . . . , Tn), and we cannot even say what E[Cn] is in this case.

2 Mathematical Tools

104

Let us make this point explicit. Assume for all Tn holds P[Tn = 0] = 2
3 and P[Tn = 1] = 1

3 .
Cn then also attains values 0 and 1 only. If we assume all variables to be independent, then
P[Cn = 1] =

(
1
3

)n. If, however in the representation of C2
D= T1 ·C1 the joint distribution

of C1 and T1 is given by

P
[
(C1, T1) = (0, 1)

]
= 1

3 , P
[
(C1, T1) = (1, 0)

]
= 1

3 , (2.265 .1)

P
[
(C1, T1) = (0, 0)

]
= 1

3 , P
[
(C1, T1) = (1, 1)

]
= 0, (2.265 .2)

the marginal distributions are the same, but of course P[Cn = 1] = 0 for all n > 2.
Without information about the joint distribution of all involved variables, a stochastic
representation does not identify a distribution uniquely.

It is therefore part of every distributional recurrence to specify the relation of the variables
on the right-hand side.

Quicksort Declaration of Independence. Let us see how joint distributions are stated for
a prototypical divide-and-conquer recurrence: the costs of single-pivot Quicksort on a
random permutation. The algorithm works by splitting an input of size n > 2 into two
parts of random sizes J(n)1 , J(n)2 ∈ [0..n− 1], with J(n)1 + J(n)2 = n− 1. This process incurs
random costs Tn. By analyzing the partitioning algorithm, we obtain the joint distribution
of (J(n)1 , J(n)2 , Tn).

Moreover, we found that, if implemented carefully, partitioning preserves randomness,
i.e., partitioning a random permutation produces subproblems that are themselves ran-
dom permutations of the respective elements. For the costs, this means that if we fix the
subproblem sizes (J(n)1 , J(n)1) = (j1, j2), then the partitioning costs and the costs for sorting
the two subproblems are (mutually) independent.

Mutual Independence. Mutual independence, also called total independence or joint in-
dependence means that probabilities for joint events factor for any finite subset of a given
collection of events. This is a strictly stronger requirement than pairwise independence,
so to make clear that not only the latter is meant, one should always say mutually inde-
pendent. Unless explicitly stated otherwise, we always mean mutually independence.

Unconditionally, they are all dependent because partitioning cost and recursive costs de-
pend on subproblem sizes in general.

With that we can set up the distributional recurrence for the sequence of random
variables (Cn)n∈N0

, the cost of Quicksort:

C0
D
= C1

D
= 0 (2.266 .1)

Cn
D
= Tn + C

(1)
J(n)1

+C
(2)
J(n)2

, n > 2, (2.266 .2)

with the following conditions:

A Simple Distributional Master Theorem · 2.6.3

105

1 (C(1)
n)n∈N0

and (C(2)
n)n∈N0

are independent copies of (Cn)n∈N0
, i.e.,

for all n ∈ N0 holds C(1)
n

D= C(2)
n

D= Cn, and for all i1, i2, i3 ∈ N0 are C(1)
i1

, C(2)
i2

and
Ci3 mutually independent.

2 For fixed subproblem sizes, the remaining variables are conditionally independent, i.e.,
for all j1, j2 ∈ N0 with j1 + j2 = n− 1 holds: if we fix (J(n)1 , J(n)2) = (j1, j2), we have
that Tn, C(1)

j1
and C(2)

j2
are mutually independent.

Similar conditions result for most divide-and-conquer algorithms. The space-economic
formulation of the above conditions is as follows: (C(1)

n)n∈N and (C(2)
n)n∈N are indepen-

dent copies of (Cn)n∈N, which are also independent of (J(n)1 , J(n)2) and Tn.

In Praise Of Distributional Recurrences. The expression for Cn in Equation (2.266 .2) fol-
lows exactly the structure of Quicksort: one partitioning step, a recursive call to the left,
and one to the right. It is much simpler to argue why this distributional recurrence de-
scribes Quicksort than it would be for a direct full-history recurrence for expected costs.
The ordinary recurrence for the expected costs can be derived mechanically from the dis-
tributional recurrence. The same is true for recurrences for the variance or higher mo-
ments [113].

On the other hand, the reader might have the impression that distributional recur-
rences make analyses much more complicated. In general this is true; if for example costs
for recursive calls are not independent, we might still obtain a recurrence for the mean
by linearity of the expectation, whereas a statement about the distribution may be out
of reach. For Quicksort, the distributional analysis mostly makes conditions explicit that
already existed for the average-case analysis. In particular, the property of randomness
preservation is now part of the statement of the recurrence, instead of a side note in a
sub-clause.

2.6.3 A Simple Distributional Master Theorem

Now, starting with the original CMT (Theorem 2.68), the main idea towards a dis-
tributional master theorem is that Equation (2.259) can be rephrased in terms of ran-
dom variables. For that, assume that J is the random vector of subproblem sizes, then
wn,j =

∑
rP[Jr = j]. If we further assume that Jrn converges to a limit variable Z∗r with

density fZ∗r (where the precise sense of stochastic convergence is given below), we expect
w(z) =

∑
r fZ∗r(z), and therefore the above condition will in this case be valid separately

for the r components, i.e., it is sufficient to have for all r that

n−1∑

j=0

∣∣∣∣∣P[Jr = j] −

∫ (j+1)/n

j/n

fZ∗r(z) dz

∣∣∣∣∣ = O(n−d). (2.267)

There might be recurrences where the original CMT applies, but which do not have such
a separable shape. We trade generality for ease of application here.

2 Mathematical Tools

106

The following statement is an immediate corollary of our more general DMT given as
Theorem 2.76 in the following section. The weaker form below is easier to state and to
apply, so it serves as good starting point and is of independent interest.

Theorem 2.70 (Distributional Master Theorem (DMT)):
Let (Cn)n∈N0

be a family of random variables that satisfies the distributional recurrence

Cn
D
= Tn +

s∑

r=1

C
(r)
J(n)r

, (n > n0), (2.268)

where (C(1)
n)n∈N, . . . , (C(s)

n)n∈N are independent copies of (Cn)n∈N, which are also
independent of J(n) = (J(n)1 , . . . , J(n)s) ∈ {0, . . . ,n− 1}s and Tn. Define Z(n) = J(n)/n

and assume that the components Z(n)
r of Z(n) fulfill uniformly for z ∈ (0, 1)

n ·P
[
Z(n)
r ∈ (z− 1

n , z]
]

= fZ∗r(z) ± O(n
−δ), (n→∞), (2.269)

for a constant δ > 0 and a Hölder-continuous function fZ∗r : [0, 1]→ R. Then fZ∗r is the
density of a random variable Z∗r and Z(n)

r
D−→ Z∗r.

Moreover, assume E[Tn] ∼ Knα logβ(n), as n → ∞, for constants K 6= 0, α > 0
and β > −1. Then, with H = 1−

∑s
r=1E[(Z∗r)

α], we have the following cases.

1 If H > 0, then E[Cn] ∼
E[Tn]

H
.

2 If H = 0, then E[Cn] ∼
E[Tn] lnn

H̃
with H̃ = −(β+ 1)

s∑

r=1

E[(Z∗r)
α ln(Z∗r)].

3 If H < 0, then E[Cn] = O(n
c) for the unique c ∈ R with

s∑

r=1

E[(Z∗r)
c] = 1. J

The technical conditions in the theorem might look scary, so a few remarks are in
order:

I The functions z 7→ nP[Zr = z] can be seen as a discrete density of Zr, obtained as the
difference quotient (in contrast with the differential quotient, which would give the
continuous derivative)

nP[Zr = z] = nP
[
Zr ∈ (z− 1

n , z]
]

=
FZr(z) − FZr(z−

1
n)

1/n
, (2.270)

so intuitively, condition (2.269) requires convergence of densities with polynomial speed,
which is a local limit law with a guarantee for the speed of convergence.

I To find fZ∗r , we need a good guess for the distribution of the limit variables Z∗r.
Convergence of the joint distribution Z(n) → Z∗ is sufficient, but not needed, only
the marginal distributions have to converge.

Self-Contained Proof of an Educational DMT · 2.6.4

107

I Recall that a real function f is Hölder-continuous with constant C and exponent h, if
|f(x) − f(y)| 6 C|x− y|h for all x and y in the domain of f. A sufficient condition for
Hölder-continuity on a bounded domain is a continuous derivative; then h = 1 and
the function is called Lipschitz-continuous. These notions of continuity are discussed
in Section 2.1.4.

We will subsequently drop the superscript n from J and Zwhen it is clear from the context.

2.6.4 Self-Contained Proof of an Educational DMT

Some researchers might shy away from using Roura’s theorems, since their proofs are,
although elementary in nature, quite lengthy and thus hard to read. We here give a
self-contained and elementary proof of a restricted version of our DMT; in particular, no
logarithmic factors in the toll function are allowed. This simplifies the arguments. We
directly derive stronger error bounds from stricter assumptions on the toll function; one
can get the same with Roura’s original theorems by applying them twice. We dub the
streamlined version an educational DMT, even though it is still powerful enough to solve
the generalized Quicksort recurrence, see Chapter 6.

Theorem 2.71 (Educational DMT):
We assume the setting of Theorem 2.70, i.e., the assumptions on Cn, Tn, J,Z,Z∗ and fZ∗r
made there. Let c ∈ R be the unique number with

∑s
r=1E[(Z∗r)

c] = 1, and assume the
following additional assumptions hold:

I E[Tn] = Kn
α ±O(nα−ε) for constants α > 0 and ε > 0.

I If c = 0, then α > 0.

I The Hölder-exponent of fZr is ζ ∈ (0, 1].

Then we have for any ε̃ > 0

1 if c < α, then E[Cn] =
K

1−
∑s
r=1E[(Z∗r)α]

nα ±O(nb),

where b = max{c,α− δ+ ε̃,α− ζ+ ε̃,α− ε+ ε̃, ε̃},

2 if c = α, then E[Cn] = −
K∑s

r=1E[(Z∗r)α ln(Z∗r)]
nα lnn±O(nc), and

3 if c > α, then E[Cn] = O(n
c +nε̃). J

The proof is entirely elementary in that we only need basic real analysis; it uses almost
exclusively properties of Hölder-continuous functions, in particular the bounds on the
difference between sums and integrals listed in Proposition 2.12.

Proof: The proof of Theorem 2.71 consists of the following three steps, which we address
in the remainder of this section.

2 Mathematical Tools

108

I First, we study a simple equilibrium equation obtained by replacing in the recurrence
J(n)r by Z∗rn, and canceling all n’s. This equation is simple to solve, and its equilibrium
solutions are candidates for the leading terms of E[Cn].

II Next, we show that the equilibrium solution fulfills the actual recurrence approxi-
mately, i.e., we can explicitly bound the error that results from unfolding the recur-
rence once.

III Finally, we prove a bound on the difference between exact and equilibrium solution
by induction. To do so, we need the error bound obtained in step two.

Notation. With a few preparations we can follow the above route without distractions.
So we collect a few notations and preliminaries first.

As usual, we drop the upper index n for brevity where it is clear from context, in
particular we write Jr = J(n)r in this proof. We also write here Zr instead of Z∗r for the
limit variable since they appear so often; but this collides with the above convention, so
here is the exception: Zr without upper index is the limit variable, whereas Z(n)

r = J(n)r /n,
with the upper index, is a different quantity. It converges to, but is in general not equal to
Zr = Z

∗
r.

As in Theorem 2.70 we assume that all limit densities fZr are Hölder-continuous on
[0, 1]. Since we are on the bounded domain [0, 1], we can use the minimum of all their
Hölder exponents, see Proposition 2.9; let us name this minimum ζ ∈ (0, 1], the common
Hölder-exponent of fZr for r = 1, . . . , s.

The distributional recurrence (2.268) implies the following relation for the expected
value c(n) = E[Cn]:

c(n) = E[Tn] +

s∑

r=1

E[c(J(n)r)], (n > n0). (2.271)

Notation-wise, we keep on the right the s recursive calls with their random sizes J(n)r .

The z Functions. We define the following two functions,

z(a) =

s∑

r=1

E[Zar], and zln(a) =

s∑

r=1

E
[
Zar ln(Zr)

]
, (2.272)

which play an important role in the solution of the recurrence. z(α), with α the exponent of
the toll function, is vital for the growth rate of c(n), and the constant c from the statement
of the theorem is the solution of z(c) = 1. Let us look at z a little closer.

Lemma 2.72: The expectation z(a) =
∑s
r=1E[Zar] exists for all a > 0, and a 7→ z(a) is a

strictly decreasing and weakly positive function in a. J

Proof: Since fZr is (Hölder)-continuous by assumption, fZr(z)z
a is continuous on z ∈ [0, 1]

for any a > 0, hence bounded and integrable.

Self-Contained Proof of an Educational DMT · 2.6.4

109

For any a ∈ (0, 1), the function x 7→ ax is strictly decreasing and positive. Since
Zr ∈ (0, 1) almost surely by Equation (2.269), this means for a < b that Zar > Zbr almost
surely, and so

s∑

r=1

E[Zar] >

s∑

r=1

E[Zbr] > 0. (2.273)
�

Hölder-Continuity and Expectations. The following error estimate is used below; it is
essentially a consequence of Proposition 2.12, which gives an error guarantee for approxi-
mating a sum by an integral over a Hölder-continuous function.

Lemma 2.73: Assume Equation (2.269), the density convergence condition, holds and that
fZr is Hölder-continuous on [0, 1] with exponent ζ. Let further f : [0, 1] → R be a Hölder-
continuous function with exponent φ. Then holds

E

[
f

(
J(n)r

n

)]
= E[f(Zr)] ± O(n−min {δ,ζ,φ}), (n→∞). (2.274)

J

Proof: f and fZr are both Hölder-continuous with exponent min{φ, ζ} by Proposition 2.9;
on the compact interval [0, 1] they are bounded, so their product is Hölder-continuous as
well by Lemma 2.11–(b). We thus have

E[f(Jr/n)] =

n−1∑

j=0

f(j/n) · 1
n
·nP[Jr = j] (2.275)

=
(2.269)

1

n

n−1∑

j=0

f(j/n)
(
fZr(j/n)±O(n

−δ)
)

, (2.276)

and since f is bounded,

=
1

n

n−1∑

j=0

f(j/n)fZr(j/n) ± O(n−δ) (2.277)

=
Proposition 2.12–(b)

∫1

0

f(z)fZr(z)dz ± O(n
−min{φ,ζ}) ± O(n−δ) (2.278)

= E[f(Zr)] ± O(n−min{δ,φ,ζ}). (2.279)
�

With this lemma, we can conveniently approximate expectations over subproblem sizes
that we need later.

Corollary 2.74: For any a > 0 holds with ϕ = min{δ, ζ,a} that

s∑

r=1

E
[
(J(n)r)a

]
= z(a) ·na ±

{
O(na−ϕ), for a > 0;

0, for a = 0.
J

2 Mathematical Tools

110

Proof: The claim is vacuous for a = 0, since the expectation then does not depend on
Jr: z(0) = s =

∑s
r=1E[J0r]. For a > 0, we have that z 7→ za is Hölder-continuous with

exponent min{a, 1}, so we find

E[Jar] = naE
[(
Jr/n

)a] (2.280)

=
Lemma 2.73

na
(

E
[
Zar
]
±O(n−min{δ,ζ,a})

)
(2.281)

= E
[
Zar
]
na ± O(nα−ϕ). (2.282)

Summing over r = 1, . . . , s yields the claim. �

Corollary 2.75: For any a > 0 holds with ϕ = min{δ, ζ,a− ε}, for any ε > 0, that

s∑

r=1

E
[
(J(n)r)a ln(J(n)r)

]
= z(a) ·na ln(n) + zln(a) ·na ± O(na−ϕ logn). (2.283)

J

Proof: By Lemma 2.14, z 7→ za ln(z) is Hölder-continuous with exponent a − ε for any
ε > 0, so we have

E[Jar ln(Jr)] = naE

[(
Jr

n

)a(
ln
(
Jr

n

)
+ ln(n)

)]
(2.284)

=
Lemma 2.73

na
(

E
[
Zar ln(Zr)

]
±O(n−min{δ,ζ,a−ε})

)
+ na ln(n)

(
E
[
Zar
]
±O(n−ϕ)

)

(2.285)

= naE
[
Zar ln(Zr)

]
+ na ln(n)E

[
Zar
]
± O(na−ϕ logn+nε). (2.286)

Summing over all r, we obtain the claim. �

Note that in Corollary 2.75, we had to exclude the case a = 0. In this case the Hölder-
continuity argument breaks down, since ln(z) is not Hölder-continuous; indeed, the con-
venient route we took above seems not to work for this corner case, at all. This is why we
exclude the case α = c = 0 from the statement of the theorem.

With these preparation, we can now put our plan for the proof of Theorem 2.71 into action.

I Equilibrium Solution. The relative subproblem sizes Z(n)
r = J(n)r /n converge to a limit

variable Zr = Z∗r, and for large n, we might get away with simply substituting it for Z(n)
r .

What we obtain from replacing J(n)r by nZr in Equation (2.271) is called the equilibrium
equation. It is given by

c̄(n) = Knα +

s∑

r=1

E[c̄(Zrn)], (n ∈ R>0). (2.287)

We call the function in the equilibrium equation c̄(n), reserving c(n) for solutions of the
original recurrence. Note that unlike c(n), c̄(n) has to be defined for all positive reals,

Self-Contained Proof of an Educational DMT · 2.6.4

111

since nZr can be any number in [0,n]. To be well-defined, we also require c̄(0) to exist.
Note that Equation (2.287) is vacuous for n = 0; but the choice of c̄(0) is also immaterial:
since Zr is strictly positive almost surely, the single value c̄(0) has no influence on c̄(n) for
n > 0. We therefore simply set c̄(0) = 0. With z(a) and zln(a) defined in Equation (2.272),
the solution of the equilibrium equation is for n > 0 given by

c̄(n) =

K

1− z(α)
nα , if z(α) 6= 1;

−
K

zln(α)
nα ln(n) , if z(α) = 1.

(2.288)

To prove this, we simply plug the solution in and check that Equation (2.287) is fulfilled.

z(α) 6= 1 For the first case we have

K

1− z(α)
nα = K ·nα +

K

1− z(α)
nα

s∑

r=1

E[Zαr]

︸ ︷︷ ︸
z(α)

(2.289)

⇐⇒ 1 = (1− z(α)) + z(α). (2.290)

z(α) = 1 In the second case we find

−
K

zln(α)
nα ln(n) = K ·nα −

K

zln(α)

s∑

r=1

E[(Zrn)
α ln(Zrn)] (2.291)

= K ·nα −
K

zln(α)
nα

(
s∑

r=1

E[Zαr ln(Zr)]

︸ ︷︷ ︸
zln(α)

+ ln(n)
s∑

r=1

E[Zαr]

︸ ︷︷ ︸
z(α)=1

)

(2.292)

= −
K

zln(α)
nα ln(n). (2.293)

This shows that c̄(n) fulfills the equilibrium equation for all n ∈ R>0. This equilibrium
solution will be our candidate for an approximation of c(n).

Note that for z(α) > 1 the solution can be spurious, an artifact of passing to the limit:
In that case c̄(n) is negative, if our original sequence c(n) and K are positive. Intuitively,
this tells us that no matter how little (positive) weight we assign to recursive calls, their
contribution exceeds the toll function for large n; equilibrium is only reached for a neg-
ative weight. The equilibrium solution cannot be a valid approximation in this case, and
indeed, we will see below that in this case the approximation error grows faster than the
equilibrium solution.

II Equlibrium Solution Fulfills Recurrence Approximately. We now insert the equilib-
rium solution c̄(j) in the right-hand side of the recurrence for c(n), Equation (2.271). The

2 Mathematical Tools

112

result is c̄(n) up to an error term. To be precise, we claim that for any εν > 0 holds

c̄(n) = E[Tn] +

s∑

r=1

E
[
c̄(J(n)r)

]
± O(nν), (n→∞), (2.294)

where ν is given by

ν =

α− min{δ, ζ, ε}, for z(α) 6= 1;
α− min{δ, ζ, ε}+ εν, for z(α) = 1 and α > 0;

∞, for z(α) = 1 and α = 0.

(2.295)

In the last case, we effectively make no statement.
To prove Equation (2.294), recall that E[Tn] = Knα ± O(nα−ε) with α > 0 by as-

sumption. With the approximation for expectations over J(n)r from above, Corollaries 2.74
and 2.75, this step is simple. We consider again the two cases for c̄(n).

z(α) 6= 1 If we insert c̄(n) = K
1−z(α)n

α in the right-hand side of Equation (2.271), we find
with ϕ = min{δ, ζ, ε}

Knα
(
1±O(n−ε)

)
+

K

1− z(α)

s∑

r=1

E[(J(n)r)α] (2.296)

=
Corollary 2.74

Knα +
K

1− z(α)
z(α)nα ± O(nα−ϕ) (2.297)

=
K

1− z(α)
nα ± O(nα−ϕ) (2.298)

= c̄(n) ± O(nα−ϕ). (2.299)

We get exactly the equilibrium solution, up to an error term; where we can set
ν = α−ϕ in this case.

z(α) = 1

α > 0

As above, we insert the equilibrium solution in the right-hand side of Equa-
tion (2.271). This time we find with ϕ = min{δ, ζ, ε}

Knα
(
1±O(n−ε)

)
−

K

zln(α)

s∑

r=1

E[(J(n)r)α ln(J(n)r)] (2.300)

=
Corollary 2.75

Knα −
K

zln(α)
nα
(
zln(α) + z(α) ln(n)

)
± O(nα−ϕ logn) (2.301)

= −
K

zln(α)
nα ln(n) ± O(nα−ϕ logn) (2.302)

= c̄(n) ± O(nα−ϕ logn). (2.303)

Here, we have to pick a ν > α−ϕ, to get rid of the logarithmic factor.

This concludes the proof of Equation (2.294), and we can proceed to the last step.

Self-Contained Proof of an Educational DMT · 2.6.4

113

III Bounding the Difference. Let us denote by d(n) = |c(n) − c̄(n)| the difference be-
tween the equilibrium solution and the actual sequence. With the results from above, we
find that d(n) fulfills a recurrence of the same shape as our original one, only with a
different toll function: for n > n0 we have

d(n) = |c(n) − c̄(n)| (2.304)

=
(2.271), (2.294)

∣∣∣∣∣
s∑

r=1

(
E[c(J(n)r)] − E

[
c̄(J(n)r)

])
± O(nν)

∣∣∣∣∣ (2.305)

6
s∑

r=1

E
[∣∣c(J(n)r) − c̄(J(n)r)

∣∣
])
± O(nν) (2.306)

=

s∑

r=1

E
[
d(J(n)r)

]
± O(nν), (2.307)

where the constant ν is given by Equation (2.295). We now will show that

d(n) =

{
O(nc), if c > ν and c > 0;

O(nγ), for any positive γ with γ > c and γ > ν.
(2.308)

Let us denote by td the toll function of the recurrence in Equation (2.307), td(n) = d(n) −∑s
r=1E

[
d(J(n)r)

]
= O(nν). We derive an explicit upper bound on d(n) for the two cases.

c > ν

c > 0

For the first case, let γ be a constant with max{0,ν, c − δ, c − ζ} < γ < c, e.g.,
γ =

(
c+ max{0,ν, c− δ, c− ζ}

)
/2. By Corollary 2.74 and the definition of γ, we

find weakly positive constants µ0, µ1 and εγ > 0 so that for all n holds

td(n) +

s∑

r=1

E
[
(J(n)r)c

]
−

s∑

r=1

E
[
(J(n)r)γ

]
6 z(c)nc − z(γ)nγ + µ1n

γ−εγ + µ0.

(2.309)

Recall that by definition, z(c) = 1; by Lemma 2.72 and since γ < c, we have that
ξ = z(γ) − 1 > 0. This means that there is a constant ñ0, so that

µ1n
γ−εγ + µ0 − ξnγ 6 −1, for n > ñ0, (2.310)

since the left-hand side goes to negative infinity as n → ∞. Given this threshold
ñ0, set

c0 = max
n6ñ0

d(n), and c1 = max{c0(s− 1), 1}.

We show by induction that for all n ∈N0 holds d(n) 6 d̂(n) = c1(nc −nν) + c0.

For the base cases n < ñ0 we note that since γ < c, we have for all n ∈ N that
nc > nγ. By the choice of c0, we have d̂(n) = c1(nc−nγ) + c0 > c0 > d(n) for all
n 6 ñ0.

2 Mathematical Tools

114

For the inductive step, we assume for all m 6 n− 1 holds d(m) 6 d̂(m) for an
n > n0. By the choice of c1, we find

d(n) 6
(2.307)

td(n) +

s∑

r=1

E
[
d(J(n)r)

]
(2.311)

6
I.H.

c1

(
td(n) +

s∑

r=1

E
[
(J(n)r)c

]
−

s∑

r=1

E
[
(J(n)r)γ

])
+ c0s (2.312)

6
(2.309)

c1

(
z(c)︸︷︷︸
=1

nc − z(γ)︸︷︷︸
=1+ξ

nγ + µ1n
γ−εγ + µ0

)
+ c0s (2.313)

= c1(n
c −nγ) + c0︸ ︷︷ ︸
=d̂(n)

+ c1

(
µ1n

γ−εγ + µ0 − ξnγ
)

︸ ︷︷ ︸
6−1 since n>ñ0

+ c0(s− 1) (2.314)

6 d̂(n). (2.315)

This completes the inductive step and the proof that d(n) is upper bounded by
d̂(n) = O(nc).

γ > c

γ > ν

γ > 0

We proceed with the second case; it is similar to the above, but we are “on the
opposite side of c”, so the bound is actually slightly simpler. As γ > c, we have
by Lemma 2.72 that ξ = 1− z(γ) > 0.

By Corollary 2.74 with γ > 0 and γ > ν, we find weakly positive constants µ0, µ1
and εγ > 0 so that for all n holds

td(n) +

s∑

r=1

E
[
(J(n)r)γ

]
6 z(γ)nγ + µ1n

γ−εγ + µ0. (2.316)

As γ > 0, there is an ñ0, so that

µ1n
γ−εγ + µ0 − ξnγ 6 −1, for n > ñ0, (2.317)

and as above, we set

c0 = max
n6ñ0

d(n), and c1 = max{c0(s− 1), 1}.

We now show by induction that d(n) 6 d̂(n) = c1nγ + c0 for all n ∈ N0. For the
base cases n < ñ0 we have by the choice of c0 that d̂(n) = c1nγ + c0 > d(n).
For the inductive step, we assume d(m) 6 d̂(m) for all m 6 n− 1 for an n > n0.
Similar as above, we compute

d(n) 6
(2.307)

td(n) +

s∑

r=1

E
[
d(J(n)r)

]
(2.318)

6
I.H.

c1

(
td(n) +

s∑

r=1

E
[
(J(n)r)γ

])
+ c0s (2.319)

The Distributional Master Theorem · 2.6.5

115

6
(2.316)

c1

(
z(γ)nγ︸ ︷︷ ︸
1−ξ

+ µ1n
γ−εγ + µ0

)
+ c0s (2.320)

= c1n
γ + c0︸ ︷︷ ︸

=d̂(n)

+ c1

(
µ1n

γ−εγ + µ0 − ξnγ
)
+ c0(s− 1)

︸ ︷︷ ︸
60 by choice of n0 and c1

(2.321)

6 d̂(n). (2.322)

This completes the induction, and we have for all n that d(n) 6 d̂(n) = O(nγ).

These are the two cases in Equation (2.308), so its proof is complete.

Putting Pieces Together. The statement of Theorem 2.71 follows from Equation (2.308)
rather directly, but we have to sort out the possible cases.

c < α In this case c̄(n) = K
1−z(α)n

α is the leading term; the error bound depends on ν.
If ν < c and c > 0, it is O(nc) by the first case of Equation (2.308), otherwise it is
O(nmax{ν,c}), where ν = α− min{δ, ζ, ε}.

c = α This means z(α) = 1, so we have c̄(n) = − K
zln(α)

nα lnn as the leading term. By
assumption, we then have c = α > 0 and ν < α = c, so the error term is O(nc) by
Equation (2.308).

c > α In this case, c̄(n) = Θ(nα) is dominated by the error term. If c > 0, it is O(nc) by
Equation (2.308), since ν < α < c. If c 6 0, we obtain the bound O(nγ) for any
γ = ε̃ > 0 from the second case of Equation (2.308). �

What can be done with concentration? The technical core of the proof are Corollary 2.74
and Corollary 2.75; we can replace both with a simpler Chernoff-bound argument for the
special case that J(n) D= Mult(n,Z): with Lemma 2.36 (page 76) it directly follows for any
a > 0 and ε > 0 that

E[Jar] = naE[Zar] ± O(na/2+ε), (2.323)

E[Jar ln(Jr)] = naE[Zar ln(Zr)] +na ln(n)E[Zar] ± O(na/2+ε), (2.324)

since both functions are Hölder-continuous with h < a. The resulting error bounds
are slightly weaker, but we can drop the restriction to distributions of Z with a Hölder-
continuous density. For example, Z might be a discrete variable in this case.

2.6.5 The Distributional Master Theorem

Theorem 2.70 has limited scope in that no coefficients in front of the costs of recursive
calls are allowed. A more general setting is amenable to essentially the same methods. We
consider one possible generalization of the distributional master theorem in this section.

Concerning the scope of this work, coefficients are needed in Chapter 8, but they also
appear in the recurrence for the grand average of costs in Quickselect. There, the coefficient

2 Mathematical Tools

116

represents guards or selectors that determine whether a certain recursive call is present or
not. The coefficients will then be indicator random variables.

Theorem 2.76 (Distributional Master Theorem (DMT) with coefficients):
Let (Cn)n∈N0

be a family of random variables that satisfies the distributional recurrence

Cn
D
= Tn +

s∑

r=1

A(n)
r ·C(r)

J(n)r
, (n > n0), (2.325)

where (C(1)
n)n∈N, . . . , (C(s)

n)n∈N are independent copies of (Cn)n∈N, which are also
independent of J(n) = (J(n)1 , . . . , J(n)s) ∈ {0, . . . ,n− 1}s,A(n) = (A(n)

1 , . . . ,A(n)
s) ∈ Rs>0

and Tn. Define Z(n) = J(n)/n and assume that the components Z(n)
r of Z(n) fulfill

uniformly for z ∈ (0, 1)

n ·P
[
Z(n)
r ∈ (z− 1

n , z]
]

= fZ∗r(z) ± O(n
−δ), (n→∞), (2.326)

for a constant δ > 0 and a Hölder-continuous function fZ∗r : [0, 1]→ R. Then fZ∗r is the
density of a random variable Z∗r and Z(n)

r
D−→ Z∗r.

Let further

E
[
A(n)
r

∣∣Z(n)
r ∈ (z− 1

n , z]
]

= ar(z) ± O(n−δ), (n→∞), (2.327)

for a function ar : [0, 1] → R and require that fZ∗r(z) · ar(z) is also Hölder-continuous
on [0, 1]. Moreover, assume E[Tn] ∼ Knα logβ(n), as n→∞, for constants K 6= 0, α > 0
and β > −1. Then, with H = 1−

∑s
r=1E[(Z∗r)

αar(Z
∗
r)], we have the following cases.

1 If H > 0, then E[Cn] ∼
E[Tn]

H
.

2 If H = 0, then E[Cn] ∼
E[Tn] lnn

H̃
with H̃ = −(β+ 1)

s∑

r=1

E[(Z∗r)
αar(Z

∗
r) ln(Z∗r)].

3 If H < 0, then E[Cn] = O(n
c) for the c ∈ R with

s∑

r=1

E[(Z∗r)
car(Z

∗
r)] = 1. J

Proof of Theorem 2.76: We start by conditioning on J in the right-hand side of Equa-
tion (2.325) and then taking expectations on both sides. Exploiting independence and
equality in distribution, we obtain

E[Cn] = E[Tn] +

n−1∑

j=0

wn,jE[Cj] , (2.328)

The Distributional Master Theorem · 2.6.5

117

with weights wn,j :=
∑s
r=1w

(r)
n,j, where w(r)

n,j := P[Jr = j] ·E[A(n)
r | Jr = j]. This is precisely

the form (2.258) required for the CMT. In order to apply it, it remains to show that the
condition (2.259) holds.

Let r ∈ [s] and z ∈ (0, 1) be fixed. For j = bznc the unique integer in (zn− 1, zn], we
have

J(n)r = j ⇐⇒ J(n)r ∈ (zn− 1, zn] ⇐⇒ Z(n)
r = (z− 1

n , z], (2.329)

and so Equations (2.326) and (2.327) imply

nw(r)
n,j = n ·P

[
Z(n)
r ∈ (j−1n , jn]

]
·E
[
A(n)
r

∣∣Z(n)
r ∈ (j−1n , jn]

]

= wr(j/n) ± O(n−δ), (2.330)

where wr(z) := fZ∗r(z) · ar(z). The function w(z) =
∑s
r=1wr(z) is Hölder-continuous

since wr(z) are so by assumption. Summing Equation (2.330) over r = 1, . . . , s yields
Equation (2.260), so Equation (2.259) holds by Lemma 2.69. This shows that the recurrence
(2.328) for E[Cn] is in fact a continuous recurrence in the sense of the CMT with shape
function w(z) =

∑s
r=1 fZ∗r(z) · ar(z).

Next, we briefly check that fZ∗r is in fact a density function, so that we can speak of
the limit random variable Z∗r defined by fZ∗r . First, fZ∗r(z) is weakly positive for z ∈ [0, 1];
otherwise Equation (2.326) implied P[Z(n)

r ∈ (z − 1
n , z]] < 0 for large n. Moreover, fZ∗r

is Hölder-continuous by assumption and thus clearly integrable. It remains to check that∫1
0 fZ∗r(z)dz = 1. This follows from the following more general statement by taking u→ 1.

As fZ∗r is Hölder-continuous with exponent h, say, for any u ∈ (0, 1) we find

P
[
Z(n)
r 6 u

]
=

bunc∑

j=0

P
[
Z(n)
r ∈ (j−1n , jn]

]
(2.331)

=
(2.326)

bunc∑

j=0

fZ∗r(j/n) ± O(n−δ) (2.332)

=
Proposition 2.12

∫u

0

fZ∗r(z)dz ± O(n−h)±O(n−δ). (2.333)

This shows that the cumulative distribution functions (CDFs) converge point-wise—in fact
even uniformly with guaranteed speed—and so Z(n)

r
D−→ Z∗r, as claimed.

The rest of the theorem is exactly the result of applying the CMT to Equation (2.328),
where the various “entropies,” i.e., integrals

∫1
0 g(z)w(z)dz, have been rewritten as expec-

tations:
∫1

0

g(z)w(z)dz =

∫1

0

g(z)
∑

r=1

swr(z)dz (2.334)

=

s∑

r=1

∫1

0

g(z) · ar(z)fZ∗r(z)dz (2.335)

=

s∑

r=1

E[g(Z∗r) · ar(Z∗r)]. (2.336)

2 Mathematical Tools

118

This concludes the proof of the distributional master theorem. �

� � �

With the distributional master theorem, we close this chapter on mathematical tools. The
ground is now prepared to turn to the main topic of this work: sorting. The mathematical
tools of this chapter can only be applied in a formal mathematical model of reality. Before
we describe in detail the sorting algorithms that we consider for analysis, the next chapter
therefore introduces our models.

119

Models and Assumptions3
Contents

3.1 Models of Input Distributions 120

3.2 Cost Models . 123

3 Models and Assumptions

120

The academic discipline of computer science, in particular the field of algorithmics, lives
in the intersection of mathematics and engineering. The bridge between these two worlds
form models. Mathematical statements only apply to well-defined models of reality. Usu-
ally, the simpler and more elegant the model, the stronger statements can be derived. The
engineer on the other hand has to base design decisions on these statements that work in
the real world. Usually, the more aspects of real world behavior a model reflects, the closer
its predictions will be to what can be observed. Good models are compromises between
these requirements, they are tractable and expressive; as simple as possible, but no simpler.

In the natural sciences, researchers are painfully aware of the imperfection of their
models. History is full of findings that lead to the rejection of previously established
theories. As computer scientists, we are in fact a slight bit better off: computers are built
by humans after all; we know their operating principles. Nevertheless have our machines
reached a level of complexity that escapes detailed understanding. We have stacked many
layers on top of each other, each of which is of manageable complexity in isolation, but we
have lost intellectual control of the result as a whole.

I thus consider it unlikely that a single unifying model exists that is able to predict
the running time of a program to sensible accuracy, and that is at the same time of man-
ageable complexity for a mathematical analysis. However, we can capture certain aspects
of execution in specialized models of cost; we discuss such models in Section 3.2. How
different cost measures relate to each other is hard to predict and depends on the machine,
but an expert can compare algorithms by looking at their costs w.r.t. different models and
choose one that is a good mix.

Our analysis will consider the expected costs of different Quicksort variants. Besides
measures of cost, we thus also need a model for input distributions. For the most part
of this work, we confine ourselves to the random-permutation model discussed in Sec-
tion 3.1.1. We also consider, but in much less detail, the expected-profile model, a natural
model for inputs with equal keys. We briefly describe the model in Section 3.1.2.

3.1 Models of Input Distributions

Our input consists of n elements U1, . . . ,Un from a totally ordered universe. We assume
they are given in an array A[1..n], where initially A[i] = Ui for i = 1, . . . ,n. The array
can be modified; in fact our algorithms are required to sort elements in place, i.e., by
rearranging them in the array. While the contents of array cells A[i] thus change over time,
with U1, . . . ,Un we always denote the elements in their initial order.

3.1.1 The Random-Permutation Model

As is usual for the average-case analysis of sorting algorithms, we assume the random-
permutation model for the most part of this work: we assume that all elements are different
and every ordering of them is equally likely.

For comparison-based sorting, the actual values do not matter; only their ranking is
of significance. Traditionally one therefore assumes that U1, . . . ,Un are the numbers 1

The Random-Permutation Model · 3.1.1

121

to n in a random order. There is however another, equivalent, choice that is much more
convenient for the analysis of Quicksort, and potentially also other sorting algorithms: the
uniform model. We assume that U1, . . . ,Un are i. i.d. uniformly U(0, 1) distributed. This
assumption is without loss of generality as their ordering forms a random permutation
almost surely.

Fact 3.1: Let U1, . . . ,Un be n i. i.d. random variables uniformly drawn from (0, 1). Then

1 there are no duplicates, Ui 6= Uj for i 6= j, almost surely and

2 the ranks of U1, . . . ,Un, i.e., the number of elements less or equal an element, form
a random permutation of [n]. J

Proof: For U D= U(0, 1), we have P[U = u] = 0 for any fixed number u, likewise the event
that any two if the i. i.d. elements are equal is a zero-measure event.

The second part is intuitively a consequence of the i. i.d. variables and the resulting
symmetry, but I found it reassuring to explicitly compute the probability of a given rank
sequence. So let π1, . . . ,πn be a permutation of [n] and denote by a1, . . . ,an its inverse,
i.e., aj = i ⇐⇒ πi = j. Intuitively, aj is the index i of number j in the list π. Our elements
U1, . . . ,Un have the same relative ranking as π1, . . . ,πn if and only if Ua1 < Ua2 < · · · <
Uan . The probability for that event is

P
[
Uan > Uan−1 > · · · > Ua2 > Ua1

]

=

∫1

xn=0

∫xn
xn−1=0

· · ·
∫x3
x2=0

∫x2
x1=0

1 dx1 dx2 · · ·dxn−1 dxn. (3.1)

These integrals have a recursive structure; we have P[Uan > · · · > Ua1] = In(1) where

I1(x) :=

∫x

0

1 dx, (3.2)

In(x) =

∫x

y=0
In−1(y)dy, (n > 2). (3.3)

One easily verifies inductively that In(x) = xn/n!, so for any permutation π, the probabil-
ity that U1, . . . ,Un has the same relative ordering as π is 1/n!. �

The models are hence equivalent results-wise, and we use the established term random-
permutation model throughout this work, but will mostly work in the uniform model from
above.

Fact 3.1 actually holds for any continuous distribution; e.g., Mahmoud [113] discusses
this general case. I think it is this fact that makes the random-permutation model a natural
choice in the first place: Coming from a scientific or engineering application, data will
usually consist of real numbers. Without further information, the principle of maximum
entropy tells us to assume i.i.d. data then.

3 Models and Assumptions

122

3.1.2 The Expected-Profile Model

For data from a continuous universe, exact duplicates are rare, even when real numbers
are discretized to fixed-length floating-point numbers. In other application of sorting, it is
sensible to assume a finite universe. For example, Knuth [103] lists as application of sorting
what he calls solving the togetherness problem: bring elements together that share the same
value of some attribute. We will consider an example in Section 8.1.

In many cases, this attribute has a finite domain a priori, e.g., the country of origin
or the year of birth, or as an extreme example, the sex of a person. The time for sorting
such inputs can differ significantly from what the random-permutation model predicts.
Therefore, we consider an alternative model here, the expected-profile model.

The expected-profile model is a parametric model. On top of the length n of the
inputs, we have as parameter the universe size u ∈ N and the universe probabilities q =

(q1, . . . ,qu) ∈ (0, 1)u with Σq = 1. Recall that D(q) denotes the discrete distribution over
[u] with weights q, i.e., with U D= D(q) we have P[U = v] = qv for v = 1, . . . ,u. For the
expected-profile model with parameters n, u and q, we assume that U1, . . . ,Un are i. i.d.
D(q) distributed.

Unless specific information is available, a natural choice is q = (1u , . . . , 1u), i.e., ele-
ments are chosen uniformly from the universe. We refer to this special case as the random-
u-ary-word model, as it corresponds to the uniform distribution over all un words of length
n over the alphabet [u]. Coming from the continuous uniform model above, random u-ary
words are a natural modification: instead of n i. i.d. elements from a continuous uniform
distribution, we now use n i. i.d. elements from a discrete uniform distribution. Unlike in
the continuous case, the choice of the universe does matter in the discrete case, though.

3.1.3 The Exact-Profile Model

With parameter q, we fix the expected number nqv of occurrences of each value v ∈ [u],
i.e., the expected profile of the input, hence the name of the model. This is in contrast to the
exact-profile model, where we fix the numbers xv of occurrences of v in the input and then
choose a random permutation of the corresponding multiset.

Both models have already been studied in the literature: Burge [27] considers the
exact-profile model, without giving it a name. Sedgewick [160] calls the model random per-
mutation from a multiset. Kemp [98] introduces the names multiset-model and probability-
model, which are used also by Archibald and Clément [3]. Sedgewick [160] also explicitly
studies the random-u-ary-word model, which he calls n-ary file model; Sedgewick writes
N and n for our n and u.

3.1.4 Enforcing Random Order

The families of distributions for the initial input values introduced above are all comprised
of i. i.d. elements with a certain universe distribution. Unless more is known, this might
be a reasonable assumption but we certainly cannot rely on real-world data to be chosen
i. i.d. This is not as severe a restriction as it might seem at first sight: we can actually

Cost Models · 3.2

123

enforce inputs to be in random order by first randomly shuffling it. This turns Quicksort
into a Las Vegas algorithm, whose random costs follow precisely the distribution that we
get for inputs that are chosen i. i.d. in first place.

The assumption that elements appear in random order is thus w.l.o.g. if we are willing
to invest in the overhead for shuffling. In terms of memory bandwidth and caching,
shuffling can be quite expensive. For Quicksort, we can reduce the cost by doing the
shuffle on demand: whenever pivots are to be chosen from a sample, we pick the sample
elements from random positions in the input. This has the same effect on the chosen pivot
values as a complete a-priori shuffle: sample elements are chosen uniformly at random
from the input. As array accesses are then restricted to the current subproblem, we get
increasingly better locality of references as we proceed to sorting smaller subarrays.

3.2 Cost Models

In this section we discuss different models of cost for the execution of an algorithm. Some
models only make sense for specific algorithms, e.g., the comparison model, others are
more general.

3.2.1 Information Costs: The Comparison Model

In the comparison model, the cost of an execution of a program is the number of key com-
parisons it uses. This only makes sense with notions of “key” and “comparison.” For our
application we define that a key comparison is any operation that compares two elements
Ui and Uj of the input w.r.t. the ordering relation on the elements. It can be only of the
three forms Ui 6 Uj, Ui < Uj or Ui = Uj, or their symmetric versions.

For conciseness one often says just comparisons instead of key comparisons. To avoid
confusion let us make explicit here that even then other forms of comparisons, e.g., in-
volving index variables, do not count as comparisons.

The comparison model is a valuable model for two reasons. First, the elements of the
input can be complicated objects, and comparing their keys can be an expensive operation.
The comparison model can then be seen as the limit case when these comparisons are so
expensive that any other parts of the computation can be ignored. We remark however
that usually we are not dealing with very expensive comparison functions, and if so the
running time of a comparison often depends heavily on the objects compared, as, e.g.,
for the lexicographic order on strings. We should not rely on the comparison model in
isolation to predict running times.

Lower Bounds. The second reason for the importance of the comparison model is that—
unlike for most other cost models—we can prove nontrivial lower bounds for costs in the
comparison model by information-theoretic arguments. In its simplest form, it has become
folklore: at least ld(n!) ∼ n ldn (binary) comparisons, i.e., yes-no-questions, are needed
to distinguish n! different possibilities. If U1, . . . ,Un are all different, we cannot sort them
with less key comparisons.

3 Models and Assumptions

124

3.2.2 Rearrangement Costs: Swaps and Write Accesses

It is not enough for a sorting method to know the permutation of the input, it also has
to actually apply it—or rather its inverse—to the data. For in-place sorting methods it
makes sense to compare the effort they need for rearranging the array into order. The
rearrangement operations in classic versions of Quicksort are conveniently expressed in
terms of swaps, where we exchange the values of two cells in the array. Therefore the
number of swaps has become an established measure of rearrangement cost.

Not all rearrangement procedures are based on swaps, therefore we prefer a more
elementary unit of cost: write accesses to the array. One swap entails exactly two write
accesses, so all swap counts can simply be multiplied by two.

Discussion. Other elementary operations might come to mind; the choice to count write
accesses might seem a bit arbitrary. Let us see why other operations are less well-suited:
We could count read accesses, but every element will have to be compared, and to do
so it has to be read first. Subsequent accesses can be cached in local variables, i.e., CPU
registers. We would thus essentially only reproduce the comparison count.

We could also count all assignment operations, not only those targeted at the array.
Local variables are likely to reside in CPU registers so that this assignment is relatively
cheap. Write accesses to the array can also be cached, but unlike local variables they have
to be written back to main memory at some point in time.

3.2.3 Primitive Instruction Counts

There is more to sorting than comparisons and write accesses, e.g., control flow statements
and index increments. This is ignored by the above models. A refinement is to consider
an actual implementation in a low-level language and to count the number of executed
instructions. We refer to this as the primitive instruction model.

Many options for implementations exist, ranging from theoretical models like random-
access machines (RAM) over ones inspired by real hardware like Knuth’s MMIX [104], the
successor of MIX, to real low-level instruction sets like x86 assembly or Java Bytecode.

Are Comparisons and Swaps Overrated? While swaps and comparisons together give
a rough indication of efficiency, I think their importance has traditionally been over-
rated. The reason is the following special property of classic Quicksort: All code loca-
tions with linearithmic execution frequencies—i.e., those that contribute to the leading
term of costs—contain a comparison or a swap operation. Moreover, both inner loops
are completely symmetric. Therefore, the instruction count of a reasonable implemen-
tation of classic Quicksort will simply be a linear combination of the number of swaps and
comparisons [103, 162, 182].

This is no longer true for other variants of Quicksort, in particular not for dual-pivot
Quicksort, as discussed in detail by Wild et al. [185]. It is still true that high-frequency
blocks contain comparisons or write accesses to the array, but not all blocks have the same
number of instructions. We therefore have to determine execution frequencies separately

The Memory Hierarchy: Scanned Elements and Cache Misses · 3.2.4

125

for all locations in the code where a comparison happens. This is not what is usually done
when considering the comparison model.

For classic Quicksort the number of comparisons and swaps are, coincidentally, ex-
actly what determines the leading term of the number of executed instructions. Re-
searchers might in the past have rightfully concluded that swaps and comparisons explain
the running time of classic Quicksort, but this result does not carry over to other variants
of Quicksort.

Its flexibility is actually a weakness of the primitive instruction model: results are specific
to the given language and the given implementation. I determined exemplary instruction
counts for MMIX and Java Bytecode implementations of classic Quicksort, YBB Quicksort
and Kciwegdes partitioning [182] (the algorithms are discussed in Section 4.2). Running
times and instruction counts showed opposite results: the implementations that ran faster
executed more instructions at the same time. It is plausible that running time is heavily
influenced by the modern hardware features discussed below, which the primitive instruc-
tion model does not take into account.

For the purpose of this work, the primitive instruction model only adds complexity
without providing a significant gain in explanatory power. We will therefore not determine
instruction counts in this work. Instead, we consider models for two aspects that the
primitive-instruction model does not take into account: memory hierarchies and pipelined
execution.

3.2.4 The Memory Hierarchy: Scanned Elements and Cache Misses

One of the aspects ignored by the primitive instruction model is the memory hierarchy:
memory access costs are not uniform.

The Memory Hierarchy. Accesses to main memory are roughly two orders of magnitude
slower than CPU speed. To alleviate this discrepancy, current machines use two to three
levels of caches with faster, but smaller memory, holding data that is close to previous
accesses in time or location. They do so by keeping copies of a number of contiguous
segment of main memory, called blocks or cache lines. Access to main memory always goes
through the cache, so that after an access to an address the whole block containing the
accesses location is in the cache. If the accessed element is already in the cache, the access
is cheap. This situation is called a cache hit. Otherwise, we have a cache miss and have to
load that element’s block to the cache first; this is costly as it involves an access to the next
level of the memory hierarchy, whose latency is usually an order of magnitude larger. As
cache capacities are limited we must evict one old block to make room for the new one. The
cache replacement strategy determines which block to select in this case. Level-one caches
(L1) are closest to the CPU and offer access latencies at the order of a single instruction.
At the other end of the memory hierarchy, we might have solid-state disks and hard-disk
drives for data that is too large to fit in main memory. The latency of the latter is around
seven orders of magnitude slower the CPU frequency. This sure has an influence on running
time.

3 Models and Assumptions

126

A matter of scale. Such numbers are hard to grasp; it is important to translate them to
relations we have a better feeling for.

Here are some:

I If a L1 cache access would takes a few
seconds, a disk seek took a few years.

I A nanosecond, the time a usual CPU
needs to execute one instruction, is
also the time light needs to travel the
distance from the paper or monitor to
the reader’s eyes. And light is fast.

I A classic spacial analogy for the orders
of magnitude is shown in the graphic
to the right by Nyberg et al. [142].

The External-Memory Model. There is a standard model for non-uniform memory costs,
the external-memory model of Aggarwal and Vitter [1]. It was originally intended and de-
scribed for the situation that inputs are so large that they do not fit into the main memory
of size M at once and have to be held on disk, see, e.g., Section 2.2.1 of Mehlhorn and
Sanders [127]. The cost of an algorithm is the number of I/Os, (input/output operations),
which are transfers of size-B blocks between memory and disk. The external-memory
model also applies to lower levels of the memory hierarchy as they are conceptually sim-
ilar. Despite its wide use, I am reluctant to use the external-memory terminology in this
work, for several reasons:

I For our purposes “a straightforward extension of the I/O model is inadequate for hierar-
chical memory systems” (Wickremesinghe et al. [181], p. 2), as efficient in-memory “al-
gorithms need to be both instruction-conscious and cache-conscious” ([181], p. 16). There
is vast literature on sorting in external memory, describing algorithms with as little
I/O cost as possible, potentially at the expense of excessive in-memory effort. The
assumption there is that we are sorting on disk, so that only I/Os matter. This is a
different regime and we should avoid confusion.

I Second, all our Quicksort variants are essentially scanning-based: memory accesses
are sequential, even though several scans can work interleaved. The parameters M
and B of the model do not add insight for Quicksort and similar algorithms.

We may note here that as a scanning-based algorithm, Quicksort is cache oblivious
in the sense of Frigo et al. [67]: it does not adapt its behavior to the actual values of
M and B, but is reasonably cache-efficient for any parameters M and B.

I Moreover, the external-memory model (nominally) restricts attention to cache misses,
the event that is equivalent to I/Os on lower levels of the memory hierarchy. But it
is not a priori clear whether it is really the latency of the next level in the hierarchy

The Memory Hierarchy: Scanned Elements and Cache Misses · 3.2.4

127

that determines execution time. It might as well be the bandwidth of the bus to the
next level of the hierarchy. In fact, CPUs can in restricted cases recognize a scan and
issue prefetching instructions to load elements into the cache ahead of time; in the best
case there are then no cache misses at all. Bandwidth still limits execution speed,
whereas counting cache misses would be misleading in that case.

I hence prefer the more abstract terminology given below, which leaves open whether
latency or bandwidth is the limiting factor.

The Iterator-Model: Scanned Elements. Our cost measure for assessing efficiency w.r.t.
the use of the memory hierarchy is the number of scanned elements. We recently introduced
this name [137] and it was taken up by Aumüller et al. [10], but the underlying ideas
are older. Both LaMarca and Ladner [107] and Kushagra et al. [105] only speak of the
approximate number of cache misses, but their analysis fits exactly the scanned-elements
model.

We previously defined scanned elements as the “total distance covered by all scanning
indices” (Nebel et al. [137], p. 3). We will complement this definition herein with an opera-
tional model that makes the notion of scanning indices explicit.

A scanning index is a one-directional iterator, i.e., an object pointing at one element of
the array and having a direction, either forward or backward. The notion of iterators is
widely used in programming libraries, e.g., in the Java runtime library and the standard
template library of C++. Our iterators offer access to the array of elements through exactly
the following interface:

read() returns the value at the current location,

write(x) writes new value x to current location,

advance() move the iterator one position in its direction,

clone(dir) creates a new iterator with same position and the given direction,

distance(iter) returns the number of cells between iter and this iterator;
the result is negative if iter is to the left of this.

In the iterator model, algorithms may only use scanning indices to access the input. The
input array is initially given by two indices pointing at A[1] and A[n], the left and right end
of the array, respectively. The cost of an execution is the total number of advance-calls, i.e.,
each call of advance() is counted as one scanned element.

We assume that there is an fixed upper bound on the number of scanning iterators an
algorithm uses at any point in time. This will be the case for all Quicksort variants studied
in this work; if in another application this is not the case, one should probably also count
the number of clone-calls as costs.

We demonstrated that scanned elements match the number of cache misses very well
in an idealized fully associative LRU cache [137], and Aumüller et al. [10] found good
correspondence to L1 cache misses also on actual hardware.

3 Models and Assumptions

128

Classic Quicksort with Iterators. To illustrate the iterator model, here is a Java implemen-
tation of classic Quicksort using the scanning index interface. The code is quite similar to
a pointer-based implementation in a language like C.

1 interface ScanningIndex {
2 int read();
3 void write(int newValue);
4 Direction direction();
5 ScanningIndex advance(); // returns this
6 ScanningIndex clone(Direction direction);
7 int distance(ScanningIndex other);
8 enum Direction { FORWARD, BACKWARD }
9 }

11 void quicksort(ScanningIndex start, ScanningIndex end) {
12 if (start.differenceTo(end) > 0) {
13 final int p = end.read(); // the pivot
14 ScanningIndex i = ←↩

start.clone(BACKWARD).advance().clone(FORWARD);
15 ScanningIndex j = end.clone(BACKWARD);
16 while (true) {
17 do i.advance(); while (i.read() < p);
18 do j.advance(); while (j.read() > p);
19 if (i.distance(j) < 0) break;
20 int t = i.read(); i.write(j.read()); j.write(t);
21 }
22 // bring pivot to its final position i
23 end.write(i.read()); i.write(p);
24 quicksort(start, i.clone(BACKWARD).advance());
25 quicksort(i.advance(), end);
26 }
27 }

3.2.5 Pipelined Execution: Branch Mispredictions

A second aspect ignored by the primitive-instruction model is that branching statements,
i.e., conditional jump instructions, have non-uniform cost because only mispredicted
branches imply a pipeline stall.

Instruction pipelines. Modern processors use instruction pipelines to speed up execution
as follows: Inside the CPU, machine instructions are split into severals phases like, e.g.,

1 fetching the instruction,

2 decoding and loading data,

3 executing the instruction, and

Pipelined Execution: Branch Mispredictions · 3.2.5

129

4 writing back the results.

Each phase takes one CPU cycle. If there are L phases, a single instruction would take L
cycles. Modern processors can execute different phases of different instructions in parallel,
i.e., one can execute up to L instructions at once, each in a different phase. If the pipeline
is completely filled we now finish the last stage of one command in every cycle; a speedup
of L.

The downside of this idea comes with conditional jumps. For those, the CPU will have
to decide the outcome before it has actually been computed. Otherwise it could not go
on with the first phases of the subsequent commands. To alleviate that, processors try to
predict the outcome and start executing, speculatively, the commands that will follow if
the prediction is correct. Several branch-prediction schemes have been invented to guess
the actual outcome, some of which we discuss below.

In case of a false prediction, a branch misprediction (BM) or branch miss, the CPU has
to undo all erroneously executed steps (phases) and load the correct instructions instead
(pipeline stall). A branch miss is thus a costly event, and we use their number as our costs
measure.

Branch-Prediction Schemes. Several branch prediction schemes have been invented to
guess the actual outcome. In the simplest case each branch (conditional jump) is marked
as probably taken or probably not taken at compile time and the CPU acts accordingly. Knuth’s
MMIX for example has two variants of each branch instruction, a probably-taken variant
and a probably-not-taken variant.

When branch outcomes depend on data not known at compile time, this static strategy
does not help much. We have to adapt predictions at runtime in such cases. Adaptive
schemes are either local or global. Local schemes store for each branching instruction a
history of past outcomes. Predictions for different branch locations are done on indepen-
dent data, i.e., locally. If we allow ` bits of history, there are 2` different states. Each of
these states corresponds to a prediction (taken or not taken). When the branch is executed
the next time, its outcome triggers a state transition. We thus describe local schemes as
finite-state machines. Figures 8 – 10 show the most common local predictors. The schemes
are described in more detail, e.g., by Martínez et al. [117].

1
taken

2
not t.

taken

not t.
 not t.

taken

Figure 8: The finite-state automaton corresponding to a 1-bit branch
predictor. The prediction for the next execution of the
branch is given in the lower part of the nodes, and after
the branch has been executed, the edge corresponding to
the actual outcome is followed. Whenever an edge marked
with is followed, we incur a branch miss.

Global schemes store a history table of size 2`, indexed by the outcome of the last `
branches, no matter where they happened. For example, if ` = 3 and the outcomes of the last
three branches were taken, taken and not-taken, we would access the history entry 110.

3 Models and Assumptions

130

Figure 9: The finite-state automaton corre-
sponding to a 2-bit saturating-counter
predictor; see Figure 8 for an expla-
nation.

1
taken

2
taken

3
not t.

4
not t.

taken

not t.

not t.

not t. not t.

taken

taken

taken

Figure 10: The finite state automaton corresponding to a 2-
bit flip-on-consecutive predictor; see Figure 8 for
an explanation.

1
taken

2
taken

3
not t.

4
not t.

taken

not t. taken
not t.

not t.

taken

not t.
taken

Each entry of the history table is then a local predictor, usually a 2-bit saturating counter,
which then determines the actual prediction.

Auger et al. [6] analyzed a global prediction scheme for a variant of binary search
with two branch locations. Analysis becomes intractable quickly if the number of involved
branch instructions grows.

Hardware Implementation of Prediction Schemes. Adaptive schemes require special
hardware support. When it comes to actual implementations, the above descriptions are
an idealized view. For the local 1-bit predictor as given above, the CPU would need one
bit of storage for each branch in the code; other predictors require even more memory.
It is impossible in practice to reserve even just a single bit of branch history for every
possible branch-instruction location. Therefore actual hardware prediction units use hash
tables of history storage, which means that all branch instructions whose addresses hash
to the same value will share one history storage. The resulting aliasing effects have typi-
cally small, but rather chaotic influences on predictions in practice. We ignore those in our
model.

The simple schemes described above have been used by the first CPUs with pipelining.
Modern microprocessors implement more sophisticated heuristics, as the ones described
by Fog [65]. They try to recognize common patterns in branching behavior, in particular,
for-loops with known numbers of iteration. They also mix global and local predictors.
Such schemes are probably too intricate for precise analysis. We will therefore focus on
local schemes.

Discussion. Differences in the number of branch misses can make a big difference. As
an extreme example, Kaligosi and Sanders [96] observed on a Pentium 4 Prescott CPU (a
processor with an extremely long pipeline and thus a high cost per branch miss) that the
running time penalty of a BM is so high that a very skewed pivot choice outperformed
the typically optimal median pivot, even though the latter leads to much less executed
instructions in total. The effect was not reproducible on the slightly different Pentium 4

Pipelined Execution: Branch Mispredictions · 3.2.5

131

Willamette [23]. Here two effects counteract: a biased pivot makes branches easier to
predict but also gives unbalanced subproblem sizes.

We showed in earlier work that for the comparison of dual-pivot and classic Quicksort,
branch misses do not seem to make the difference [117]; nevertheless, branch misses are
analytically an interesting cost measure. We will thus show how to extend that analysis to
generic one-pass partitioning in this work, but we will not discuss branch misses results
in detail.

� � �

With these models for input distributions and costs of execution, the stage is set for the
main part of this work: the analysis of Quicksort. We already gave a rough idea of Quick-
sort and multiway partitioning in the introduction, but a precise analysis needs a precise
description of the object of study. This is the purpose of the next chapter.

132

133

Quicksort4
Contents

4.1 From Partitioning to Sorting 134

4.2 Famous Quicksort Variants. 136

4.3 Generic One-Pass Partitioning 148

4.4 Choosing Pivots From a Sample 158

4.5 Randomness Preservation in the Presence of Pivot Sampling . . 160

4.6 Other Partitioning Methods 161

4 Quicksort

134

The purpose of this chapter is to present our object of study: Quicksort. As the name
suggests, it is a sorting algorithm: given a list of elements from a totally ordered universe,
the task is to rearrange them into sorted order.

We assume that we have n ∈ N0 elements, given in an array A[1..n]. We can access
array cells A[i] by index i, 1 6 i 6 n, both for reading the current entry or for writing a
new value to that cell. It is convenient to think of the values in A as numbers, and we will
use numbers in examples, but our algorithms may only use pairwise comparisons between
such values: we can ask whether A[i] < A[j], A[i] 6 A[j] etc. but nothing else; the values we
sort can in general be arbitrarily complex objects.

Chapter Outline. We begin this chapter with a short discussion of the abstract idea of
Quicksort: partitioning recursively. We then present in Section 4.2 all practically relevant
array-based implementations for the partitioning step. We also briefly discuss the most
important optimizations that can be combined with any particular partitioning procedure.
In Section 4.3 we present generic s-way one-pass partitioning, the synthesis of all the
methods discussed before that we will analyze in this work. In Section 4.4 we detail
the most important optimization of Quicksort: pivot sampling. We present a generalized
version of it that covers all practically relevant variants. We discuss in Section 4.5 how to
preserve randomness in Quicksort; a vital property for our analysis. Finally, Section 4.6
briefly states what is not covered by generic one-pass partitioning, and we relate our
framework to related work.

4.1 From Partitioning to Sorting

Quicksort is a classic instance of the divide-and-conquer paradigm: the solution to the prob-
lem at hand consists of using the very same method on parts of the problem, so that at the
end, the whole problem is solved magically. The method to be described re(oc)curs in its own
description. It is one of the great achievements of computer science to take the mystery out
of such recursive definitions, by formally settling the question when such a definition is
vacuous and how to give it a precise meaning whenever it is not.

There is no magic in recursion; at some point we have to actually do something to the
array. For Quicksort, this active part is called partitioning: We partition the elements in
the input array into a finite number s of segments or classes, according to a partition of the
universe into intervals. That means that either all elements in one segment are smaller
than all elements of another segment, or they are all larger. We obtain this partition of the
universe by selecting s− 1 pivot elements from the array—let us call them P1 6 · · · 6 Ps−1
in weakly increasing order—which serve as borderlines separating the segments. The rth
segment for r = 1, . . . , s thus only contains elements between Pr−1 and Pr, where we set
P0 := −∞ and Ps := +∞ for notational convenience. The segments form contiguous parts
in the sorted array, and they can indeed by sorted independently of each other, e.g., by
recursively using Quicksort.

From Partitioning to Sorting · 4.1

135

An implementation of Quicksort consists of a partitioning method together with a
frame of recursive-call logic. Several variants of the former, and a unifying parametric
version will be discussed in detail in the remainder of this chapter. The latter is almost
trivial nowadays, since programming languages have built-in recursion stack management.

� � �

The concept of recursion is still a startling and fascinating one. I still remember vividly
the aha moment when I first saw the recursive solution for the Tower of Hanoi problem. Of
course, I was taught the modern version of recursion right away; as a native recursionist it
is thus hard for me to imagine how it must have been to describe the idea of Quicksort
without recursion. Let us hear a contemporary witness on that.

Dijkstra describes the relevance of recursion for Quicksort as follows: “A major mile-
stone of ALGOL 60 was its introduction of recursion into imperative programming. [. . .] it was
crucial in enabling Tony Hoare to complete the design of one of computing’s most famous algo-
rithms, viz. Quicksort. Prior to knowing ALGOL 60, he had the idea, but it remained an elusive
vision, a dream that defied formulation, but as soon as he saw ALGOL 60 offering him just what he
needed, Quicksort materialized in all its glory” [44].

ALGOL 60, Recursion and the Amsterdam Plot. ALGOL 60 was the first imperative pro-
gramming language to include recursive procedure calls with automatic call-stack man-
agement. How it came to be so is a story worth telling.

A novelty of ALGOL 60 is that it was specification-defined and vendor-independent:
In the late 1950s an expert committee was formed to work out a specification for the
language, based on which a reference compiler would be implemented. The committee
was divided in the question whether recursive procedures should be explicitly allowed in
ALGOL 60. One group around F. L. Bauer argued strongly against it as they deemed it
impossible to be implemented efficiently.

At that time the standard was to statically allocate for each procedure one fixed portion
of memory for the local variables of that procedure. This piece of memory was globally
shared among all invocations of the procedure, which naturally limits the allowable number
of invocations of any procedure to one at any given time. The idea of a call stack had not
spread widely at that time. Even two years later, Hoare [82] found it adequate to start his
Quicksort article with a detailed description of a data structure he called nest—nothing
but a stack in modern terminology. This shows how little standardized these notions were
at the time.

Another group in the ALGOL committee around A. van Wijngaarden and J. McCarthy,
the creator of LISP, feared that excluding recursion would substantially limit ALGOL’s
usefulness and elegance. Wijngaarden was in contact with E. W. Dijkstra who, shortly
after the report for ALGOL 60 was finished, published an article describing in detail an
implementation of procedure calls with the modern version of stack frames etc. [42]. It can
be taken for granted that he had these ideas already in mind when the issue of recursion
was discussed in the ALGOL committee.

As ideas for the final report started to converge, a majority of the committee seemed to
oppose recursion. Nevertheless, the final report allows recursive procedure calls explicitly.

4 Quicksort

136

Dijkstra remembers the inclusion of recursion in ALGOL 60 as “almost an accident and
certainly a coup. When the ALGOL 60 Report was nearing completion and circulated for final
comments, it was discovered that recursion was nowhere explicitly excluded, and, just to be sure
that it would be in, one innocent sentence was added at the end of the Section 5.4.4., viz. ‘Any
other occurrence of the procedure identifier within the procedure body denotes activation of the
procedure.’ Some committee members only noticed this sentence when it was too late to oppose, got
very cross and refused to implement it. In more than one sense they were the losers” [44]. The
sneaky addition of this sentence, initiated by the Dutchmen Wijngaarden and Dijkstra,
was called the “Amsterdam plot on introducing recursivity” by Bauer [135, p. 130].

� � �

Personal controversy aside, the impact of this single sentence may seriously be ques-
tioned. In a recent article, van den Hove argues that even without that explicit mention
of recursive calls, there are several means to force an ALGOL program to have several
simultaneous invocations of one procedure: mutually recursive functions, procedure pa-
rameters with self-application and via the call-by-name mechanism [84]. Formulating
syntactic rules to disallow recursive invocations—so that the static memory implementa-
tion remains possible—is quite hard, and not natural. Even more so for a language like
ALGOL 60 that contains intricate constructs like call-by-name parameter. It may be for a
reason that these constructs are hardly found in modern programming languages.

Though obscure the circumstances may have been, we must be happy in hindsight
that recursion was, sneakily or not, indeed introduced in the ALGOL 60 report, as it
fostered the wide adoption of recursion in programs and its reception as a core technique
of computer science. Many algorithms are most elegantly specified recursively.

We close the history class by remarking that even though ALGOL 60 is hardly used any
more, the widespread understanding of the concept of recursion is a lasting legacy. It is
probably also rather this abstract idea than the specific implementation in ALGOL that
enabled Hoare to bring Quicksort into our world.

4.2 Famous Quicksort Variants

The Quicksort version initially published by Hoare [80, 81, 82] used a single pivot and
s = 2 segments. With some minor changes, it is to this day one of the most efficient sorting
algorithms, so we shall describe this classic version of Quicksort in some detail.

4.2.1 Classic Quicksort

The classic partitioning method consists of letting two indices k and g scan the array from
left resp. right until they finally meet. Invariantly, elements left of k are known to belong
to the first segment and elements to the right of g belong to the second segment. Elements
between the two indices are in an undecided state as of yet.

Whenever one index moves towards the other, a new element is considered. If it be-
longs to the corresponding segment—the first segment for k resp. the second segment for
g—the invariant already holds again and we are done. So k moves right until an element

Classic Quicksort · 4.2.1

137

left right
6 P > P

gk
←→

?
Figure 11: Invariant for Algorithm 2. Initially, the

“?-area” covers the complete range,
at the end it is empty.

greater than the pivot is found; this element belongs in the second segment. Then g moves
left until an element smaller than the pivot is found. That element likewise belongs to the
first segment, so we can reestablish the invariant by swapping the two elements A[k] and
A[g].

Once k and g have met, we have found the boundary between small and large ele-
ments and partitioning is finished. We put the pivot element at this position, between
the segments. The pivot has reached its final position in the sorted array now. The two
segments are sorted recursively by the same procedure. To be concrete, Algorithm 2 gives
a detailed implementation of this sorting method.

Algorithm 2: Classic Quicksort with Sedgewick-Hoare partitioning
ClassicQuicksort(A, left, right)

// Sort the array A in index range left, . . . , right (both inclusive).
// We assume a sentinel value A[left − 1] = −∞, i. e.
// ∀i ∈ {left, . . . , right} : A[left − 1] 6 A[i]

1 if right − left > 1
2 P := A[right] // Choose rightmost element as pivot
3 k := left − 1; g := right
4 while true
5 do k := k+ 1 while A[k] < P end while
6 do g := g− 1 while A[g] > P end while
7 if k > g then break while end if
8 Swap A[k] and A[g]
9 end while
10 Swap A[k] and A[right] // Move pivot to final position
11 ClassicQuicksort(A, left ,k− 1)
12 ClassicQuicksort(A,k+ 1, right)
13 end if

The implementation closely follows the description of and is due to Sedgewick [162,
161], but uses the rightmost element as pivot instead of the leftmost, as done in Program 1.2
of Sedgewick and Flajolet [165]. We call Algorithm 2 classic Quicksort in this work. Its
brevity is appealing and it ranks among the fastest sorting methods as its inner loops are
simple and short.

4 Quicksort

138

In light of this, we may forgive it the idiosyncrasy of requiring a sentinel value in A[0]
that is less or equal to all occurring elements. Sentinels allow us to omit array-boundary
checks in inner loops, which gives a significant speed-up in practice. One can avoid this
problem by only using the sentineled version in recursive calls that are not leftmost. Then
elements of adjacent segments can serve as sentinels.

Rest in Peace, Loop-while-repeat. For clever implementations of partitioning, we will
often find the construct used in Algorithm 2: a while-true loop, that is exited using break
statements. It would have been nice to have an explicit control statement for this:

loop
〈some code〉

while 〈condition〉
〈more code〉

repeat

instead of

while true
〈some code〉

if 〈condition〉 then break end if
〈more code〉

end while

Knuth [101] suggested the specific syntax on the left. A few programming languages
indeed offer such control structures, e.g., Ada and ALGOL 68. Unfortunately, middle-
conditioned loops never found widespread adoption and none of the modern languages
support it directly. In fact, these loops are so uncommon nowadays that I did not even
dare to use them in pseudocode; it must be feared that for many readers it would be
unclear what the intended meaning is.

We will occasionally want to exit an outer loop directly from within an inner loop. In
Java, this is possible using labeled break statements; in C/C++ we can resort to goto.

4.2.2 Lomuto’s Partitioning

Hoare’s partitioning method is among the most efficient ones, but certainly not the easiest
to understand or implement correctly. Bentley, who certainly is (among other things)
one of the most talented programmers of our time, commented on Hoare’s partitioning:
“Although the basic idea of that code is simple, I have always found the details tricky—I once spent
the better part of two days chasing down a bug hiding in a short partitioning loop” [18, p. 117]. I
can say I share Bentley’s experience.

Figure 12: Invariant for Algorithm 3. Initially, the
“?-area” covers the complete range,
at the end it is empty. left right

6 P ?
kk2
→→

> P

Bentley [18] therefore advocates in his Programming Pearls to start with a conceptually
simpler method that we attributes to Nico Lomuto. It is given in Algorithm 3.

Lomuto’s partitioning scheme works unidirectional: instead of growing two segments
from both ends, we have two segments on the left. This makes the termination condition
simpler: we are done when k reaches right.

Yaroslavskiy-Bentley-Bloch Quicksort · 4.2.3

139

Algorithm 3: Quicksort with Lomuto’s Partitioning [35, Chapter 7].
LomutoQuicksort(A, left, right)

1 if left < right
2 P := A[right]; k2 := left − 1
3 for k := left, . . . , right − 1
4 if A[k] 6 P
5 k2 := k2 + 1

6 Swap A[k2] and A[k]
7 end if
8 end for
9 k2 := k2 + 1

10 Swap A[k2] and A[right]
11 LomutoQuicksort(A, left ,k2 − 1)
12 LomutoQuicksort(A,k2 + 1, right)
13 end if

� � �

The history of Quicksort is full of eager suggestions for improvements of the basic al-
gorithm. In the words of Sedgewick and Wayne, it “is tempting to try to develop ways to
improve quicksort: a faster sorting algorithm is computer science’s ‘better mousetrap,’ and quick-
sort is a venerable method that seems to invite tinkering” ([166], p. 295). An analysis of many
variants of classic Quicksort is given by Sedgewick [162]. Many variations are indeed not
helpful in all circumstances.

Some ideas did stand the test of time, most notably pivot sampling, i.e., choosing pivots
as order statistics of a (small) sample of the input and truncating the recursion at some cut-
off size, w, and using Insertionsort there. We include these in our study, see Section 4.2.6.
Splitting the array into more than two parts at once, used to be counted among the unsuc-
cessful ideas, but the success of the dual-pivot Quicksort introduced in Java 7 caused a sea
change.

4.2.3 Yaroslavskiy-Bentley-Bloch Quicksort

Since Java 7, the reference implementation of the Java runtime library uses dual-pivot
Quicksort as default sorting method for primitive-type arrays. At its core is the ternary
partitioning method given in Algorithm 4 below.

The algorithm is due to V. Yaroslavskiy, J. Bentley and J. Bloch and will be referred
to as YBB Quicksort for short. I previously called it Yaroslavskiy’s algorithm, because it was
him who first discovered that time is ripe for a Quicksort with two pivots. From personal

4 Quicksort

140

Figure 13: Invariant for Algorithm 4.
Initially, the “?-area”
covers the complete
range, at the end it is
empty. left right

< P1

k2

> P2
g

P1 6 ◦ 6 P2
k

←→ →

?

communication with the three I learned that YBB Quicksort is more appropriate since
Bentley and Bloch were involved in early stages of the development of the algorithm.

Algorithm 4: Dual-pivot partitioning by V. Yaroslavskiy, J. Bentley and J. Bloch.
YbbPartition (A, left, right,P1,P2)

// Assumes left 6 right and P1 6 P2.
// Modifies A s. t. with return value (i1, i2) holds

A[j] < P1, for left 6 j 6 i1;

P1 6 A[j] 6 P2, for i1 < j < i2;

A[j] > P2, for i2 6 j 6 right.
1 k2 := left; k := k2; g := right
2 while k 6 g
3 if A[k] < P1
4 Swap A[k2] and A[k]
5 k2 := k2 + 1

6 else
7 if A[k] > P2
8 while A[g] > P2 and k < g
9 g := g− 1

10 end while
11 if A[g] > P1
12 Swap A[k] and A[g]
13 else
14 CyclicShiftLeft3(A; k,k2,g)
15 k2 := k2 + 1

16 end if
17 g := g− 1

18 end if
19 end if
20 k := k+ 1

21 end while
22 return (k2 − 1,g+ 1)

Yaroslavskiy-Bentley-Bloch Quicksort · 4.2.3

141

The Dutch National Flag Problem. Partitioning an array around two pivots is similar
to the Dutch National Flag Problem (DNFP) which Dijkstra [43] posed as a programming
exercise in 1976:

Given an array of n pebbles in the colors red, white and blue, rearrange them
by swaps, such that the colors form the Dutch national flag: red, white and
blue in contiguous regions. Each pebble may be inspected only once and only
a constant amount of extra storage may be used.

Dijkstra assumes an operation “buck” that tells us an element’s color in one shot, so any
algorithm must use exactly n buck-operations. Performance differences only concern the
number of swaps needed.

Interestingly, S. J. Meyer gave an algorithm for the DNFP that has essentially the
structure of YBB partitioning and outperformed Dijkstra’s original solution to the prob-
lem [126]! One may hence say that the partitioning scheme is not entirely novel; its effec-
tive use in Quicksort certainly is.

It is surprising how little was known about YBB Quicksort at the time it was included in
the Java library. With my coauthors, I have devoted considerable effort to the mathematical
analysis of this important algorithm to remedy that. In particular, my master’s thesis [182]
contains a detailed account of the inner workings of the algorithm and a meticulous dis-
cussion of certain details, e.g., why it makes sense to have a non-strict comparison in line 7.
The reader is thus referred there for such details on YBB Quicksort.

Rotations and Cyclic Shifts. Single-pivot partitioning methods are naturally written in
terms of swap operations. In multiway one-pass partitioning the need arises to move more
than one element to make way for a single new element in its segment. The usual case is
that we apply a cyclic shift, or rotation to the elements in question, e.g., the second element
takes the position of the first one, the third element takes the position of the originally
second and the originally first element now becomes the third one.

Algorithm 5: Cyclic shift operation on ` indices in an array.
CyclicShiftLeft`(A; i1, . . . , i`)

1 tmp := A[i1]
2 for r := 2, . . . , `
3 A[ir−1] := A[ir]
4 end for
5 A[i`] := tmp

We can implement such a cyclic shift with a single temporary variable, generalizing
binary swaps, see Algorithm 5. We will base our algorithms on this cyclic shift to the left;
in fact we already do so for YBB Quicksort, see line 14 of Algorithm 4.

4 Quicksort

142

One could define a symmetric version that shifts to the right, but we can just as well
reverse the indices. Aumüller et al. [10] also pursued this route and defined a generic
“rotation” macro. I prefer the name (cyclic) shift, since it makes it easy to specify the
direction unambiguously: we always shift to the left. The term cyclic shift is also commonly
used for the corresponding operations on (bit) strings.

There is a little nuisance in working with a generic shifting macro: if some of the
passed indices are equal, the order of the assignment becomes vital. Our algorithms will
indeed call CyclicShiftLeft with equal indices if some segments are (still) empty. One
thus has to choose the order of the indices carefully; the reader has been warned.

4.2.4 Sedgewick’s Dual-Pivot Method and Kciwegdes Partitioning

Dual-pivot Quicksort was considered much earlier than the recency of YBB Quicksort
might suggest. To the authors knowledge, Program 5.1 of Sedgewick [162] is the first full
Quicksort implementation featuring two pivots. We reproduce it here as our Algorithm 6
and call it Sedgewick’s (dual-pivot) partitioning.

Figure 14: Invariant for Algorithm 6.
Initially, the “?-area” cov-
ers the complete range, at
the end it is empty. left right

< P1

k2

> P2

g2

P1 6 ◦ 6 P2
k

P1 6 ◦ 6 P2
g

←←→ →

?

A detailed discussion of this algorithm appears in my master’s thesis [182]. We only
emphasize one peculiarity of this algorithm that none of the aforementioned partitioning
schemes has: the innermost indices, k and g, jointly scan the middle segment and when
they meet, they do so somewhere in amidst this segment. We will later call partitioning
methods with this characteristic master-segment methods, since there is one segment govern-
ing the overall movement of pointers. In the partitioning methods considered up to now,
k and g always meet at the boundary of two segments, or equivalently stated, at the final
position of one of the pivots. We call this pivot the master pivot, and the corresponding
partitioning schemes master-pivot methods.

Kciwegdes. Sedgewick’s dual-pivot Quicksort can quite easily be improved w.r.t. the ex-
pected comparison count: we have to reverse the order of comparisons with the two pivots.
We refer to this modified version as Kciwegdes partitioning, Sedgewick reversed literally.
The movement of pointers otherwise coincides with the original. I discussed this variation
in my master’s thesis [182]; Algorithm 7 shows pseudocode for this method.

Aumüller and Dietzfelbinger [9] independently discovered the idea of Kciwegdes par-
titioning, see their Algorithm 5.

Swaps vs. Hole-Moving. Sedgewick’s dual-pivot partitioning employs a variation of how
to rearrange elements. Classic Quicksort, Lomuto’s Quicksort and YBB Quicksort are all
based on swaps resp. cyclic shifts. If we consider swaps and rotations as atomic operations,

Sedgewick’s Dual-Pivot Method and Kciwegdes Partitioning · 4.2.4

143

Algorithm 6: Sedgewick’s dual-pivot partitioning.
DualPivotPartitionSedgewick(A, left, right)

// Assumes left < right and A[left] 6 A[right] are the two pivots.
1 k := left; k2 := k ; g := right; g2 := g

2 P1 := A[left]; P2 := A[right]
3 while true
4 k := k+ 1

5 while A[k] 6 P2
6 if k > g then break outer while end if // pointers met
7 if A[k] < P1
8 A[k2] := A[k]; k2 := k2 + 1; A[k] := A[k2]

9 end if
10 k := k+ 1

11 end while
12 g := g− 1

13 while A[g] > P1
14 if A[g] > P2
15 A[g2] := A[g]; g2 := g2 − 1; A[g] := A[g2]

16 end if
17 if k > g then break outer while end if // pointers met
18 g := g− 1

19 end while
20 A[k2] := A[g]; A[g2] := A[k]

21 k2 := k2 + 1; g2 := g2 − 1

22 A[k] := A[k2]; A[g] := A[g2]

23 end while
24 A[k2] := P1 ; A[g2] := P2

25 return (k2,g2)

4 Quicksort

144

Algorithm 7: Kciwegdes partitioning.
DualPivotPartitionKciwegdes(A, left, right)

// Assumes left < right and A[left] 6 A[right] are the two pivots.
1 k := left; k2 := k; g := right; g2 := g

2 P1 := A[left]; P2 := A[right]
3 while true
4 k := k+ 1

5 while true
6 if k > g then break outer while end if
7 if A[k] < P1
8 A[k2] := A[k]; k2 := k2 + 1; A[k] := A[k2]

9 else if A[k] > P2 then break inner while end if
10 k := k+ 1

11 end while
12 g := g− 1

13 while true
14 if A[g] > P2
15 A[g2] := A[g]; g2 := g2 − 1; A[g] := A[g2]

16 else if A[g] 6 P1 then break inner while end if
17 if k > g then break outer while end if
18 g := g− 1

19 end while
20 A[k2] := A[g]; A[g2] := A[k]

21 k2 := k2 + 1; g2 := g2 − 1

22 A[k] := A[k2]; A[g] := A[g2]

23 end while
24 A[k2] := P1; A[g2] := P2

25 return (k2,g2)

Waterloo Quicksort · 4.2.5

145

each element is stored at exactly one position in the array at any given time, including the
pivots.

Algorithm 6 uses a hole-moving scheme instead. It initially creates two “holes” by
copying the pivots to local variables. Like a juggler it keeps them flying in the air, writing
other elements to the free positions. Only at the end, the pivots come down again, just in
time to catch them and put them to their final positions. Algorithm 2 also copies the pivot
to a local variable, but this is only for readability; we could have written A[right] each time,
as well.

In general, hole-moving algorithms are a bit more efficient in that they directly reserve
room for the pivots, so that no additional swapping is needed at the end. This difference
exists only if there are several segments. If we pick pivots from a sample, segments should
be initialized to include the elements from the sample that did not become pivots, which
makes it slightly harder to logically separate pivot selection from partitioning. I hence find
rotation-based methods a little easier to understand, so our new algorithm is formulated
as such; we could easily convert it to use hole-moving.

4.2.5 Waterloo Quicksort

Kushagra et al. [105] were the first to note that it is likely that YBB Quicksort is faster
than classic Quicksort in practice because of its more economical usage of the memory
hierarchy. They propose a Quicksort version with three pivots to improve on that further.
We will refer to their partitioning method as Waterloo partitioning; it is given as Algorithm 8.
The structure and invariant of the algorithm, see Figure 15, are quite similar to Sedgewick’s
dual-pivot partitioning. But while the latter scans the middle segment with both k and g,
so that they meet inside this segment, Waterloo partitioning uses them as boundary for
two middle segments.

left right
< P1

k2

> P3

g2

P1 6 ◦ 6 P2
k

P2 6 ◦ 6 P3
g

←←→ →

?
Figure 15: Invariant for Waterloo par-

titioning, variables have
been renamed to match our
scheme.

4.2.6 Algorithmic Improvements

A few optimizations are orthogonal to the choice of a partitioning scheme and can be
combined with any of the above methods. We only mention here those that have stood the
test of time and yield significant improvements in practice. It is noteworthy in this context
how far-sighted Hoare’s 1962 article on Quicksort [82] was: apart from the description and
analysis of the basic algorithm, he anticipated all algorithmic improvements to Quicksort
included in the following.

4 Quicksort

146

Algorithm 8: Waterloo Partitioning as given in Algorithm A.1.1 of Kushagra et al. [105]
WaterlooPartition(A, left, right,P1,P2,P3)

1 k := left; k2 := left; g := right; g2 := right;
2 while k 6 g
3 while A[k] < P2 and k 6 g
4 if A[k] < P1
5 Swap A[k2] and A[k]
6 k2 := k2 + 1

7 end if
8 k := k+ 1

9 end while
10 while A[g] > P2 and k 6 g
11 if A[g2] > P3
12 Swap A[g] and A[g2]
13 g2 := g2 − 1

14 end if
15 g := g− 1

16 end while
17 if k > g then break end if
18 case distinction on the value of (A[k] > P3, A[g] < P1)
19 in case (true, true) do
20 CyclicShiftLeft4(k,k2,g,g2); k2 := k2 + 1; g2 := g2 − 1

21 in case (true, false) do
22 CyclicShiftLeft3(k,g,g2); g2 := g2 − 1

23 in case (false, true) do
24 CyclicShiftLeft3(k,k2,g); k2 := k2 + 1

25 in case (false, false) do
26 Swap A[k] and A[g]
27 end cases
28 k := k+ 1; g := g− 1

29 end while
30 return (k2,k,g,g2)

Algorithmic Improvements · 4.2.6

147

Pivot Sampling. Choosing pivots from a small sample is the improvement with the ar-
guably highest potential. We present our generalized sampling scheme in Section 4.4
below.

Truncating Recursion. Quicksort is very efficient on moderate-size inputs, but for very
small subarrays, other methods are indeed superior. It is thus helpful to truncate the re-
cursion at some threshold size w and sort subarrays of at most w elements with another
sorting algorithm. We will assume in the analysis that w is a fixed constant. s-way parti-
tioning does not make sense if the subarray is so small that we cannot even select our s− 1
pivots. It is therefore convenient to require w > s− 1. If we additionally choose pivots
from a sample of size k, we assume w > k.

Insertionsort has consistently been found a good general-purpose choice as the base
case sorting method [170, 161]. Other methods are also used successfully, recently also
exploiting modern hardware features like vectorized instructions and predicated instruc-
tions [68, 33].

Manual Stacks and Logarithmic Space. Quicksort is most conveniently stated using re-
cursive procedure calls, but if memory is scarce, a manually handled explicit stack allows
more economic storage usage.

The first important observation is that Quicksort is tail-recursive: nothing remains to be
done for the current call after its child recursive calls have returned. There is no need then
to keep memory blocked for the current stack frame, i.e., the local variables and return
address, during execution of these child recursive calls.

With tail-recursion elimination and reordering of recursive calls, Quicksort can be im-
plemented with only logarithmic stack height in the worst case. This has already been
pointed out by Hoare [82] when he initially presented Quicksort and is exemplified in
detail in Algorithm Q of Knuth [103] for single-pivot Quicksort.

The proof is often not even spelled out as it is quite elementary, see e.g., Exercise 5.2.2-
20 of Knuth [103]). For s-way Quicksort, a similar result must be possible, but I could not
find a source where this is made explicit. So even though it might be considered below
the threshold of originality, I include here an extended argument for s-way Quicksort.

Fact 4.1 (Logarithmic Stack for s-Way Quicksort): Assume we maintain a stack of yet-to-
be-sorted subranges (i, j) of the array. At the beginning of a partitioning step, we remove
its pair from the stack and at the end, we push the s pairs for the created segments onto
the stack. The order in which the segments are pushed is arbitrary except for the largest
segment, which is always pushed on the stack first. Then the height of the stack never
exceeds max

{
0, (s− 1)dld(n/w)e

}
, where recursion is truncated at ranges of size w. J

Proof: Let us denote the maximal stack height for sorting n elements as described in the
claim by hn and the bound by f(n) = max{0, (s− 1)dld(n/w)e}. We prove the claim by
induction. If n 6 w, no partitioning and no recursion takes place, so hn = 0 6 f(n).

For n > w, we partition the array into s parts and push all but one segment on the
stack, starting with the largest one. The sth segment would be pushed and removed again

4 Quicksort

148

immediately after anyway, so it does not contribute to stack height. As f(n) > s− 1 for
n > w, we are in accordance with the bound. Now consider any of the segments that are
now recursively partitioned.

The first case is that this segment is not the largest one. Then its length is at most
n−(s−1)

2 6 n/2. By the induction hypothesis, we have hn/2 6 f(n/2) = f(n) − (s− 1).
(The latter holds for n > w.) Together with the at most s− 1 segments still waiting to be
handled, we never exceed stack size f(n).

The second case is that we are now sorting the largest segment which has at most
n− (s− 1) elements. By assumption, all other top-level segments have been sorted by now
already, and the stack is empty. That means, we only need a stack as high as required to
sort the largest segment in isolation, which is by induction hypothesis at most f(n− (s−

1)) 6 f(n).
So we never needed more than f(n) stack entries, which concludes the inductive step

and thus the proof. �

Remark: The given bound is almost tight for the given stack organization for large n, as
the segment sizes assumed in the proof are attainable. We can improve the constant of
proportionality if we sort subranges by size decreasingly, i.e., put the largest first onto the
stack, then the second-largest etc. We can then show that a stack of size

f̃(n) = max
{
0,
s− 1

bld(s)c
dld(n/w)e

}
(4.1)

actually suffices: As in the proof above, consider the situation for the subproblems of the
topmost partitioning step. We now sort the rth largest subproblem of these, for r = 1, . . . , s.
The r− 1 larger subproblems are still present in the stack, so that we may use a stack of size
at most f̃(n) − (r− 1) for sorting the rth largest subproblem. This subrange can contain
at most n−(s−1)

r 6 n
r elements, for which we need at most f̃(n/r) stack height by the

inductive hypothesis. It is now easy to verify that indeed f̃(n/r) 6 f̃(n) − (r− 1) for r > 1
and n > 1, so the claim follows by induction. J

4.3 Generic One-Pass Partitioning

The partitioning schemes described above cover all Quicksort variants that have been in
wide-spread productive use. All of those have been analyzed mathematically, each one
separately. Although they differ in details, when it comes to the average-case analysis,
what unites them is stronger than what divides them. It is the purpose of this work to
present a single framework to unite all the solitary analyses. The generic analysis will also
cover as of yet unknown partitioning schemes sharing the same common features, and so
will make analyses of future partitioning schemes much easier.

In this section, we describe the realm of analysis in this work: generic one-pass parti-
tioning. It is a synthesis of the ideas underlying all of the aforementioned partitioning
methods, which are recovered as special cases.

Master-Pivot Schemes · 4.3.1

149

Common Properties: One-Pass and In-Place. The main characteristic of all partitioning
methods above is that partitioning proceeds in a one-pass fashion: we “consider” each ele-
ment of the array exactly once and after all n elements have been considered, partitioning
is finished.

It is not easy to come up with a sensible definition of what exactly “consider” means in
this case, and we will not try to formalize the notion here. Note that an element might be
further moved around in the array after it has officially been considered, in particular after
it has been determined into which segment an element belongs. Such later movements
happen when we have to make room for another element that is currently under consid-
eration. For any given partitioning method, it is usually easy to say whether it proceeds
in one pass over the array or not. A few notable examples for methods that do not work
in one pass are discussed in Section 4.6. We will not cover those in our analysis.

The second common characteristic of all previous methods is that they partition the
array in place: they use only a constant amount of temporary storage no matter how large
the array is. I consider this a vital requirement for a good practical sorting algorithm.
Quicksort needs logarithmic space even with in-place partitioning, but this is tolerable.

4.3.1 Master-Pivot Schemes

To describe our generic algorithm in detail, we introduce some notation that will also
simplify language later in the analysis. In the main text, we successively add to this body
of notations as we make our idea of generic one-pass partitioning more and more specific.
Where it would have overly obscured explanations and formulas, we will first ignore later
generalizations, e.g., the case of master-segment methods. I tried to meticulously collect
all notations used in this work in Appendix A with definitions covering all cases. Code
and figures also match these general definitions.

Memory Layout of Partitioning. Assume we want to partition an array into a fixed given
number, s > 2, of segments, which is the first parameter of the procedure. The segments
are defined by s− 1 pivot values P1, . . . ,Ps−1. How can this be done in-place and in one
pass? Without scratch memory to hold elements, we have to establish the partition by
maintaining a partition for a subset of the array, to which we add elements step by step.
To be able to do so, we certainly need a way to remember the boundaries between all
segments.

As the sizes of the segments are not known a priori, the only method avoiding exces-
sive swapping at the end is to grow segments from the ends of the array inwards; these
are the only fixed points that we have. Therefore, we will have one contiguous region in
the middle of the array that contains the elements yet to be partitioned, whereas partially
filled segments will grow outside-in. Needless to say that we arrange the segments in
order: the smallest elements to the left, followed by the segment of the second-smallest
class etc.

How many partial segments should we grow from the left end and how many from
the right? A priori it is not clear how to answer that question, so we leave this an open

4 Quicksort

150

P1 Pm−1 Pm Pm+1 Ps−1P0 = −∞ Ps = +∞

sm . . .

. . .

. . .

s1 l1 . . .

. . .

. . .

ls−m

I1 Im Im+1 Is

K = K1

K2

Km

G = G1

G2

Gs−m

Figure 16: State of the array after partitioning. The figure illustrates naming conventions for
pivots Pr (shown at their final position), classes si, lj, segment sizes Ir (to be intro-
duced in Section 5.2) and index ranges Ki and Gj for generic one-pass partitioning
in the master-pivot case.

parameter of generic one-pass partitioning. We assume here for the moment that any
segment is either a left or a right segment, i.e., we consider only master-pivot methods. In
Section 4.3.2, we treat master-segment schemes, where the innermost segment is growing
from both ends, coalescing only at the very end of the partitioning process.

Naming Convention for Index Variables and Classes. Let us denote the number of left
segments by m. We will also call m the meeting point of the left and right parts, more
precisely, we put the mth pivot Pm at the boundary between left and right part after
partitioning, and we call Pm the master pivot. The meeting point m can be any integer
between 0 and s, endpoints included; the corner cases of only left or only right segments
are explicitly allowed. If there are m segments on the left, s−m segments grow from the
right.

We use the m index variables k1, . . . ,km to mark the right boundaries of the m left
segments. Likewise, the s−m variables g1, . . . ,gs−m demarcate the left boundaries of the
s−m right segments. The index variables are numbered in inside-out order, i.e., k1 and g1
are the two indices that eventually meet, the leftmost index is always km, the rightmost
gs−m. As k1 and g1 are the main indices that advance into the area of unclassified ele-
ments, we abbreviate them as k ≡ k1 and g ≡ g1, dropping the subscript. We already
follow this somewhat unorthodox naming conventions for Algorithms 2 – 8. The reader
might find it helpful to consult these again.

In s-way partitioning, each element belongs to one of s different classes. Its class
determines which segment an element is put in. We think of the classes as labels that are
assigned to elements when they are classified. For classic Quicksort, elements can either be
small or large, relative to the single pivot. In dual-pivot Quicksort, the classes are called
small, medium and large in previous work. This convention does not scale up to larger s,
though.

Master-Pivot Schemes · 4.3.1

151

We will instead call all classes for left segments small, and all classes for right segments
large. To further differentiate, we number the small and large classes, again in inside-out
order. For example in Waterloo partitioning, we have s = 4 classes, m = 2 of which are
small. In sorted order, the classes are small of order 2, small of order 1, large of order 1 and
large of order 2. In symbols, we call these classes s2, s1, l1 and l2, respectively.

If U is small of order 2, we write this as U ∈ s2 etc. We mostly think of the classes as
mere labels assigned to elements; if we want to interpret classes sets of values to which
this label can be assigned, we can state si ⊆ [Pm−i,Pm−i+1] for 1 6 i 6 m and lj ⊆
[Pm+j−1,Pm+j] for 1 6 i 6 s −m. The question to which class the pivots themselves
belong is discussed below. The vector of all classes is written as

C = (sm, . . . , s1, l1, . . . , ls−m). (4.2)

Finally, we use the position sets Ki resp. Gj, which are the set of array indices accessed
through index ki resp. gj for i = 1, . . . ,m and j = 1, . . . , s−m. They are also depicted in
Figure 16. We abbreviate the two most important of those: K = K1 and G = G1.

Invariant for Partitioning. The actual partitioning process is governed by the memory
layout sketched above. Amidst partitioning, the array is kept invariably in the form shown
in Figure 17.

kdme k2 k ≡ k1 g ≡ g1 g2 gs−bmc

sdme . . . s1 ? l1 . . . ls−bmc

.left right

Figure 17: Invariant for Algorithm 9. Initially, the “?-area” covers all of A; partitioning is
finished, when it has been consumed completely. The ki-indices are initially equal
to left, and all gj-indices are initially right; partitioning is finished when k and g
have met. Note that in the master-segment case, s1 and l1 are actually the same,
and k and g meet somewhere inside the master segment.

Structure of Code. We are finally in the position to fix the structure of the partitioning
procedure. The complete code is given in Algorithm 9. We use an outer loop that continues
until the main indices k and g have met, that is until the area of unclassified elements has
been consumed entirely. Two inner loops advance the indices. The first one handles the
left side, the second one the right side.

The first inner loop, the k-loop, starts by classifying the element A[k]. If it is small of
some order i, A[k] ∈ si, we do a rotational swap to put this element into its corresponding
segment. In doing so we move all small segments with lesser order one position to the
right: it is a cyclic shift to the right, see Figure 18. This is needed to make room in segment
si to accommodate for the new element. Then we can advance k and repeat the procedure
until A[k] is instead large of order j, A[k] ∈ lj. Then we pass control to the second loop.

4 Quicksort

152

Algorithm 9: Generic s-way one-pass partitioning (abstract pseudocode).
Partitions,m(A, left, right,P)

1 k ≡ k1,k2, . . . ,kdme := left, g ≡ g1,g2, . . . ,gs−bmc := right
// k and g will point at elements next to be classified.

2 while k 6 g
3 while true
4 ck := classify A[k] with λk w.r.t. P
5 if ck == si for some i ∈ [1..dme]
6 CyclicShiftLefti(A; k,k2, . . . ,ki)
7 Increment k, k2, . . . , ki by one each.
8 if k > g then break outer while end if
9 else break inner while end if
10 end while

// We know here: A[k] is already classified as lj for some j ∈ [1..s− bmc].
11 while true
12 if k == g // Special case: A[g] is last element to put in place.
13 Set j so that ck == lj.
14 CyclicShiftLeftj(A; g,g2, . . . ,gj)
15 Decrement g ≡ g1, g2, . . . , gj by one each.
16 break outer while
17 end if

18 cg := classify A[g] with λg w.r.t. P
19 if cg == lj for some j ∈ [1..s− bmc]
20 CyclicShiftLeftj(A; g,g2, . . . ,gj)
21 Decrement g, g2, . . . , gj by one each.
22 else break inner while end if
23 end while

// We know: ck is large and cg is small ∞-shape rotation.
24 Set i and j such that ck == lj and cg == si.
25 CyclicShiftLefti+j(A; k,k2, . . . ,ki, g,g2, . . . ,gj)
26 Increment k, k2, . . . , ki by one each.
27 Decrement g, g2, . . . , gj by one each.
28 end while
29 return (kdme,kdme−1, . . . ,k1,g1,g2, . . . ,gs−bmc)

k-loop

g-loop

Master-Pivot Schemes · 4.3.1

153

k3 k2 k

g g2

k3 k2 k g g2∞ Figure 18: Examples for the three
kinds of cyclic shifts that
appear in Algorithm 9:
the shift to the right in
the k-loop (top), the shift
to the left in the g-loop
(middle), and the∞-shift
in the outer loop (bot-
tom).

The second inner loop, the g-loop, determines the class of A[g]. If A[g] ∈ lj, we put it to
its segment with cyclic shift to the left, decrement g and repeat. Once A[g] ∈ si, we move
both A[k] and A[g] to their corresponding segments on the opposite side, again making
room by moving intermediate segments towards the middle, see line 25. The rotation
applied in this case has the twisted shape of the ∞-symbol, so we call this operation
∞-shift. Then we continue in the outer loop.

A Special Case of Termination. The if-statement at the beginning of the g-loop (line 12)
takes care of the special case that we found a large element in A[k], but there is no small
element left to participate as its partner in an ∞-shift. In such a case, we handle this
element separately with an ordinary cyclic shift. Note that the outer loop is always exited
afterwards, so this case can occur at most once.

Partitioning could be made to work without explicitly dealing with this special case,
but then the last element would sometimes be classified twice, a nuisance for the analysis
I prefer to avoid. Double classifications do occur, e.g., in YBB partitioning, and that has
complicated its precise analysis [186]. When classifications are very costly, e.g., for large
values of s or complicated comparison functions, it might also pay in terms of running
time to avoid the unnecessary classifications.

There are several exit points for the outer loop in Algorithm 9, and it might be helpful
to make explicit under which conditions each is taken. We have the following cases:

1 k becomes equal to g in the k-loop, and A[k] is small.
Then we exit the outer loop via the break statement in line 8.

2 k becomes equal to g in the k-loop, and A[k] is large.
Then we leave the k-loop (via line 9) with k = g and immediately enter the special-
case handler in line 12. We leave the outer loop through the break statement in
line 16.

4 Quicksort

154

3 g becomes equal to k in the g-loop.
Then A[g] = A[k] has already been classified as large, and the special-case handler
kicks in. We leave the outer loop via line 16.

4 k and g cross each other simultaneously after an∞-shift.
In this case, we exit the outer loop via the ordinary exit condition. For this situation
to occur, we must have had k = g− 1 before the∞-shift.
(We cannot have had k = g since we would have ended up in cases 2 or 3 then.)

No matter which exit point is taken, at the end we have k = g+ 1, and in particular, the
invariant shown in Figure 17 still holds with an empty ?-area.

Unidirectional Cases. We include the cases m = 0 and m = s, where we do not have a
crossing-pointer scheme at all, and the meeting point is on one of the two imaginary pivots
P0 resp. Ps, i.e., at the left resp. right boundary of the array.

Consider for example m = s. Lomuto’s single-pivot partitioning scheme (Algorithm 3)
is an example of such an algorithm, corresponding to s = m = 2. Formally, we then have
zero index variables on the right side, but Algorithm 9 accesses g even for m = s. Our
code still works correctly if we interpret g as an alias for right in this case; it is initialized
to right and never changed afterwards.

For m = s, the whole partitioning is done in the k-loop; we only exit it via line 8 when
k has reached right = g. A real implementation with these parameters would of course
eliminate all the dead code after the k-loop. It is good to see we have found one abstract
formulation that covers all possible choices of parameters.

Comparison Trees. There is a final aspect that we did not yet address: how to classify?
We have to determine for each element U to which of the s classes it belongs. Assuming
distinct elements for the moment, we do so by comparing U to pivot elements until we
find an index r with Pr < U < Pr+1. The degrees of freedom in ordering these pivot
comparisons are the most overlooked feature of multiway Quicksort; probably because
in single-pivot Quicksort there is no such freedom: we simply compare each element to
the single pivot. The new possibilities in multiway Quicksort were only very recently
addressed by Aumüller et al. [10].

For our generic one-pass partitioning, we have two parameters: λk, λg ∈ Λs, the com-
parison trees, where Λs is the set of extended binary tree over s leaves. If we fill the s− 1
internal nodes of such a binary tree in in-order with our s − 1 pivots P1, . . . ,Ps−1, and
label the s leaves from left to right with our s classes, we obtain a bona fide binary search
tree (BST). Classification of an element U then consists of searching U in this BST. If the
search ends in a leaf with label c, the class of U is c. We write this as c(U) = c.

Classes and Classification in Presence of Equal Keys. In the analysis of Algorithm 9, we
will assume distinct elements, but a sensible sorting method of course has to cope with
equal elements. In Chapter 8, we discuss partitioning methods that treat elements equal
to one of the pivots as a class of their own; such methods are called fat-pivot schemes. For

Master-Pivot Schemes · 4.3.1

155

<

6 >

>

6

< >

>

< >

<P2

6P1

s3 s2

6P4

<P3

s1 l1

<P5

l2 l3

Figure 19: An exemplary comparison tree for s = 6 andm = 3

with different tie-breaking rules in the nodes. This
tree induces the partition s3 ∪̇ s2 ∪̇ s1 ∪̇ l1 ∪̇ l2 ∪̇
l3 of the universe with
s3 = (−∞,P1], s2 = (P1,P2), s1 = [P2,P3),
l1 = [P3,P4], l2 = (P4,P5), and l3 = [P5,+∞).

<

6 6
< <

Figure 20: The comparison tree of Figure 19 in compact notation. The labels of
the nodes are fully determined by s = 6 and m = 3, so there is no
need to give them explicitly.

the remainder of this work, we confine ourselves to methods that only use the s classes
introduces above; see Equation (4.2).

To deal with elements equal to one of the pivots, we require a tie breaking rule in
each internal node of a comparison tree: in λk and λg, each node has to be marked with
either “<” or “6”, indicating that the left branch is to be pursued either for strictly smaller
elements only, or for elements less or equal than the corresponding pivot; if that condition
is not met, we pursue the right branch. With that convention, searching any element U
in a comparison tree always ends in a leaf and returns one well-defined class c(U). An
example of a comparison tree is given in Figure 19; we will in the following also use the
compact notation shown in Figure 20.

Note that the same element U might be assigned to different classes for different tie
breaking rules, if U equals one of the pivots. We remark that such a difference is explicitly
allowed for λk and λg. This means that even for s = 2, where only one tree shape is
possible, we have two options for the single comparison: we can ask U < P or U 6 P.
The attentive reader might have noticed that we already used the two different types of
comparisons in classic Quicksort (Algorithm 2).

The code in Algorithm 9 works just fine in that case, as well; since all elements are
classified exactly once, either with λk or λg, we can consider classification as a black box.
From the point of view of Algorithm 9, we do not notice if the two classification methods
would have disagreed over the class of a certain element. In the invariant in Figure 17, we
marked segments with their corresponding classes, which means that a segment contains
only elements which have been assigned the corresponding label.

The resulting segmentation of the array is in general not a partition in the set-theoretic
sense of the values in the universe since elements equal to pivots can end up in any of
the two neighboring segments. For Quicksort this weaker form of a partition is fully
sufficient; it is in fact to be encouraged: For many equal elements the possibility to spread
equals out to two segments can mean the difference between quadratic and linearithmic

4 Quicksort

156

complexity; see Section 8.1.1. This is why comparisons in classic Quicksort are chosen as
in Algorithm 2.

To have a concrete algorithm to work with, let us fix a tie breaking rule for generic
partitioning that generalizes this behavior. Unless explicitly stated otherwise, we always
assume this rule in the following.

Tie-breaking Rule:
All nodes in λk are marked as ‘<’, and all nodes in λg are marked as ‘6’, i.e.,
elements equal to a pivot are always assigned to the smaller class in λk and to
the larger class in λg.

This rule distributes duplicates of pivots roughly equally over two segments, leading in
particular to efficient behavior on inputs with all elements equal since it stops scanning in
the k- and g-loop as soon as possible. This makes sure we do not go quadratic on inputs
with many equals. The other extreme, making all nodes in λk ‘6’ and all in λg ‘<’ would
result in a degenerate partition for such inputs and is clearly not desirable. A mixture of
both extremes might have certain benefits.

Since we focus on random permutations in this work where no duplicates occur, all
these variants behave the same. And if equal keys are to be expected, a fat-pivot scheme
as discussed in Chapter 8 is superior to any of the above. We will thus not further explore
the question of how to best assign ‘<’- and ‘6’-nodes in comparison trees.

4.3.2 Master-Segment Schemes

Some partitioning algorithms have a segment that is scanned from both left and right, so
that the meeting point of k and g is somewhere in the middle of this segment. We call this
segment the master segment. Sedgewick’s dual-pivot partitioning method, Algorithm 6, is
an example of this type: the two outer segments are scanned exclusively by one index, but
k and g meet somewhere inside the middle segment.

We formally include this possibility in our generic partitioning scheme by allowing
non-integral values: m ∈ {1, . . . , s}− 1

2 . The Sedgewick dual-pivot method corresponds to
s = 3 and m = 1.5, where one and a half segments grow from the left (and another one and
a half from the right).

We name the classes of elements so that for non-integral m the two inner classes coin-
cide: s1 = l1. When convenient, we refer to such elements also as medium elements and
denote their class by m = s1 = l1. The medium elements are those that go to the master
segment. Figure 21 shows the state of the array after partitioning with the corresponding
naming conventions for indices and pivots. The master segment is the dmeth segment
(counting from the left), and contains elements that lie between Pbmc and Pdme. The vector
of classes is then

C =

{
(sm, . . . , s1, l1, . . . , ls−m), for m ∈ [0..s];

(sdme, . . . , s2, m, l2, . . . , ls−bmc), for m ∈ [1..s] − 1
2 .

(4.3)

Known Methods as Generic One-Pass Instances · 4.3.3

157

P1 Pbmc−1 Pbmc Pdme Pdme+1 Ps−1P0 = −∞ Ps = +∞

sdme . . .

. . .

. . .

s2 s1 = m = l1 l2 . . .

. . .

. . .

ls−bmc

I1 Ibmc IdmeIdme Idme+1 Is

K = K1

K2

Kdme

G = G1

G2

Gs−bmc

Figure 21: State of the array after partitioning in the master-segment case (cf. Figure 16.

With these conventions, the pseudocode in Algorithm 9 remains valid: we have a single
formulation for both master-pivot and master-segment methods. Let us clarify that the
condition ck == si in line 5 is considered fulfilled when ck = m; in this case we have i = 1.
Likewise, the condition cg == lj in line 19 is fulfilled when cg = m, with j = 1. If you
like, the medium class mis a wildcard that can play the role of both s1 and l1, whichever
is needed.

Our syntactical choice m = 1.5 might be mistaken to imply that the indices k and g in
Sedgewick’s algorithm meet exactly in the middle of the second segment; this is of course
not the case. It depends on the classes of elements in that range of the array how far k
and g proceed. I discussed the meeting point in detail for the special case of Sedgewick’s
algorithm in my master’s thesis [182]. We will extend this in Section 5.5.2.

Master-segment methods might appear wasteful in their use of two indices to delimit
the same segment. They can however be a natural choice, e.g., for symmetry reasons if s
is odd. It is not a priori clear whether master-segment schemes are inferior in general, so
we retain them as possible choice for the analysis.

4.3.3 Known Methods as Generic One-Pass Instances

Now that we have introduced generic one-pass partitioning, we can show how the methods
from Section 4.2 fit into the framework. The parameter choices corresponding to these
methods are shown in Table 1.

Upon inserting these values in Algorithm 9, we will not precisely obtain the hand-
crafted code we presented earlier. For certain parameter choices, the generic code can be
simplified, e.g., for Lomuto’s partitioning method, where the g-loop is never executed. A
subtler difference is that the hand-written multiway partitioning methods do not classify
elements completely at one location in the code, but rather mix the comparisons with
different pivots with code to move elements around. For example, Waterloo partitioning
postpones comparisons with P3 for elements that are reached by k until after the second
inner loop (see line 18 in Algorithm 8).

4 Quicksort

158

Table 1: Famous Quicksort variants as special cases of generic s-way one-pass partitioning.

Method Code s m λk λg

Classic Algorithm 2 2 1
< 6

Lomuto Algorithm 3 2 2
6 6

YBB Algorithm 4 3 2

<

<

6
6

Sedgewick Algorithm 6 3 1.5
6

<

<

6

Kciwegdes Algorithm 7 3 1.5
<

<

6
6

Waterloo Algorithm 8 4 2

<

< 6
6

< 6

It is therefore clear that actual running times and detailed cost measures like the pre-
cise number of executed instructions will be slightly different for the methods presented in
Section 4.2 when compared with generic one-pass partitioning with the parameter choices
of Table 1. For the cost measures we consider in this work, though, they will perform ex-
actly the same: the numbers of comparisons, scanned elements, swaps resp. cyclic shifts,
write accesses to the array, and branch misses at comparison branches are cost measures
abstract enough to not be influenced by minor differences in coding style.

4.4 Choosing Pivots From a Sample

A good partitioning method efficiently divides the array into segments for recursive calls,
but it can only react to a given selection of pivots: if in the worst case, all elements fall into
the same class, there is nothing a partitioning method could do about it. A good Quicksort
implementation has to choose its pivots wisely.

4.4.1 Generalized Pivot Sampling

The question what exactly wisely means has no simple answer. We try to approach the
answer from the analytic side, and leave the pivot selection method parametric. For

Random-Parameter Pivot Sampling · 4.4.2

159

consistency with existing literature [162, 77, 182], we use the pivot-sampling parameter
t = (t1, . . . , ts) ∈Ns

0 to specify the generic pivot sampling process. We remark in particu-
lar that our sampling scheme is precisely the same as the one used by Hennequin [77].
In some respects, the choice of this parameter is a little unfortunate and we will use
σ = (σ1,σ2, . . . ,σs) = t+ 1 whenever more convenient.

The s− 1 pivots P1 6 P2 6 . . . Ps−1, are selected from a sample of k = Σσ− 1 elements
from A. For notational convenience we write κ := k+ 1 = Σσ; as for σ and t+ 1, we use κ
instead of k+ 1 whenever more convenient.

The pivots are chosen as quantiles of the sample, according to the quantiles vector τ =

σ/κ = t+1
k+1 : P1 is the τ1-quantile of the sample, P1 the (τ1 + τ2)-quantile, and so on. Ps−1

is the element with relative rank τ1 + · · ·+ τs−1 = 1− τs. Note that Στ = 1 by definition,
so that τ is in fact a κ-discretized distribution in the sense of Definition 2.51 (page 89). The
absolute ranks of the pivots are similarly described by σ: P1 has rank σ1 in the sample, P2
has rank σ1 + σ2 etc.

We call the k− (s− 1) sample elements which are not selected as pivots sampled-out
elements. We assume they are excluded from partitioning since their classes are known
after sampling anyway; hence the name. All elements that have not been part oft the
sample are ordinary elements. In terms of t, we have t1 sampled-out elements smaller than
P1; ts is the number of sampled-out elements greater than Ps−1 and, in general, ti is the
number of sampled-out elements between Pi−1 and Pi, for 2 6 i 6 s− 1.

If no sampling is used then k = s − 1 and t = 0, the vector of s zeros. Note that
τ = (1s , . . . , 1s) is well-defined in this case. Median-of-three sampling for single-pivot
Quicksort corresponds to t = (1, 1), median-of-five would be t = (2, 2). Similarly, the
tertiles-of-five scheme for dual-pivot Quicksort has t = (1, 1, 1).

All these sampling schemes pick pivots equidistantly from the sample and have
τ = (1s , . . . , 1s). A sampling parameter t = (0, 1, 2) entails pivots with a systematic skew
towards smaller elements. Here τ = (16 , 13 , 12) and the expected value for the large pivot
will be the median of the array.

� � �

Our notation has the advantage that we often desire to separate the influence of the quan-
tiles vector τ and the sample size k, which we can now conveniently do. For example, we
might want to hold τ fixed and observe the effect of varying k. We have to make sure that
τ is (k+ 1)-discretized, or define some rounding rule, but we have a clear separation of
concepts. t specifies τ and k in one shot.

4.4.2 Random-Parameter Pivot Sampling

Allowing arbitrary quantiles of a sample already gives a lot of freedom, but it does not
cover all sensible ways of how to select pivots. A widely used method in practice is the
ninther, which is the median of three elements, each of which is the median of three other
elements. It is a good approximation for the median of nine elements, but can be computed
much more efficiently.

4 Quicksort

160

The ninther actually gives the exact median with probability 4
7 if all permutations

of the sample are equally likely; with probability 3
14 each, the ninther is the forth or

sixth largest element instead [49]. Result-wise, ninther sampling is thus equivalent to first
randomly selecting t to be any of the three sampling vectors (3, 5), (4, 4), and (5, 3) with
probabilities 3

14 , 47 , resp. 314 , and then using generalized pivot sampling with the selected
sampling parameter as described above.

Of course, we would not like to really execute the method this way, as that would be at
least as expensive as selecting the precise median. But we know that selecting the ninther
as median of medians has the very same outcome distribution, and for the analysis the
two-phase definition turns out much more convenient.

Random-Parameter Pivot Sampling. As a general model, we allow the sampling param-
eter t to be a random variable, then written as T , with a given, fixed distribution over
sampling parameters. In theory, even the used sample size can be random if T attains
values corresponding to different sample sizes. For such methods it is unlikely to find
efficient shortcuts similar to ninther sampling, but there is no need to exclude them from
our analysis.

The idea of random-parameter pivot sampling has been studied before, see, e.g., the
doctoral theses of Sedgewick [162] and Hennequin [77], but the connection to ninther
sampling was not pointed out by them. Chern et al. [30] gave some more examples of
interesting distributions for T .

As we will show in Section 6.4, we can compute the expected costs of Quicksort with
random-parameter pivot sampling by taking the expectation over T in the final results for
a fixed t; hence most of the time, we will work only with a fixed sampling parameter t.

4.5 Randomness Preservation in the Presence of Pivot Sampling

For the analysis of Quicksort via recurrence equations, it is vital to ensure that subprob-
lems for recursive calls follow the same input distribution as the initial input. We get this
guarantee if we never compare two non-pivot elements directly [76], so any sensible parti-
tioning method, including all those above, preserves randomness on ordinary elements.

However, we violate this condition in the pivot sampling step! Sampled-out elements
have been compared and ordered, but did not end up being pivots. We therefore have to
take special care of them. There are several viable options:

(a) Copy the complete sample to scratch memory, select pivots there as described above,
and then discard that array again.

The original elements have remained untouched and thus random. As we would like
to exclude pivot elements from partitioning, we also have to swap them to the ends
of the array before partitioning.

(b) Explicitly shuffle sampled-out elements before sorting segments recursively.

(c) Ensure that sampled-out elements are part of the sample in recursive calls.

Other Partitioning Methods · 4.6

161

If we use a sorting algorithm that can skip presorted prefixes or suffixes, e.g., In-
sertionsort, we can still precisely analyze the costs of sorting the sample and short
subarrays. Details on this approach are given in [136] in the context of YBB Quick-
sort. This approach is easily generalized to any number of pivots, if we choose ts+ 1
elements from the right end of the array and the k− (ts + 1) other ones from the left
end of the array.

For this work, it does mostly not matter which method is used. We assume in the analysis
that randomness is preserved.

All three options should be considered primarily relevant for analysis purposes. In
fact, practical implementations do usually not preserve randomness precisely. As long as
sample sizes are small, the non-randomness due to sampling is negligible. A partitioning
method that systematically violates randomness among ordinary elements can however be
problematic [101, 162].

4.6 Other Partitioning Methods

Generic one-pass partitioning methods cover most (practically) relevant partitioning
schemes, but of course there are other conceivable methods that do not fit our template.
We briefly list them here for completeness.

4.6.1 Removing Duplicates

In presence of many equal keys, it can pay off to choose a partitioning method that singles
out all elements that are equal to one of the pivots. We can directly put such elements
to their final position in the sorted list, removing them from subproblems for recursive
calls. We discuss such fat-pivot partitioning methods in Chapter 8; if carefully designed,
their performance on random permutations does not differ very much from methods that
do not remove all duplicates. To a good extent, our results and conclusions on generic
one-pass partitioning apply to fat-pivot methods as well.

4.6.2 Linear Memory Or Several Passes

Result-wise, multiway partitioning can be seen as equivalent to several rounds of binary
partitioning: we first partition around one of the s− 1 pivots and obtain two segments.
If there still is one, we select a smaller pivot and partition the left segment around this
smaller pivot; likewise we partition the right segment around a larger pivot, and so on,
until all pivots have been used.

Tan made this idea of iterative binary partitioning the basis of the Quicksort framework
he studied in his Ph.D. thesis [173]. He required s to be a power of two, so that in each
binary-partitioning round, we can select the median of the remaining pivots; e.g., for s = 8,
we have three rounds: First, we partition the whole list around P4, yielding two segments.
In the second round, we partition the first segment around P2 and the second around P6,
leaving us with four segments. In the third and last round, we partition these around P1,

4 Quicksort

162

P3, P5, and P7, respectively, and so obtain eight segments. Result-wise, this is the same as
an eight-way partitioning method that produces the same eight segments in one step.

Tan’s multiway partitioning method works in place if the binary partitioning method
it is based on does so; but it does clearly not operate in one pass: it scans the whole array
ld(s) times, considering every single element exactly ld(s) times.

As we will discuss in depth in Section 7.3, iterative binary partitioning is equivalent in
terms of costs to a single-pivot method with a properly chosen sampling method for the
pivot. I therefore consider it not very interesting.

� � �

More tricks can be applied to speed up partitioning if ample scratch storage is available.
The super scalar sample sort algorithm of Sanders and Winkel [157] determines the classes
of all elements and stores them in an array. In a second step, we use this information
to copy elements to a new array, directly at the correct position. Super scalar sample
sort fully decouples classification of elements from rearrangement into segments. This
allows code that fosters instruction-level parallelism and branch-free code using predicated
instructions.

Aumüller et al. [10] consider two related two-pass methods which they call Permute
and Copy. Instead of storing all classes, they only keep the sizes of segments, which suffices
to govern rearrangement. Copy is essentially super scalar sample sort, only that classes
are recomputed in the rearrangement phase. Permute achieves partitioning by following
cycles of the needed permutation. The algorithm is much more contrived as for Copy, but
does not need additional storage.

These methods have the potential to speed up Quicksort, if the need for extra memory
can be tolerated. Their analysis is beyond the scope of this work.

4.6.3 Hennequin’s Generalized Quicksort

In his doctoral thesis [77], Hennequin studied a parametric framework for Quicksort that
is quite similar to generic one-pass partitioning: Hennequin also considers partitioning
into s segments around s− 1 pivots chosen as order statistics from a sample according to
generalized pivot-sampling parameter t. This model of Quicksort is often simply called
generalized Quicksort in the analysis-of-algorithms literature. We will built on Hennequin’s
work on the analytical side, namely for (asymptotically) solving recurrences; his algorith-
mic framework is, however, somewhat limited:

I Hennequin did not specify an array-based implementation of partitioning, but rather
considered a simple method working on linked lists; I sketched Hennequin’s generic
partitioning method in Algorithm 5 of my master’s thesis. For such an implemen-
tation, cost measures like counting swaps, write accesses and scanned elements are
meaningless; Hennequin always focused on comparisons.

I Hennequin fixed comparison trees as almost-complete binary search tree. His
method naturally uses only one comparison tree.

Relation to Concurrent Work of Aumüller et al. · 4.6.4

163

4.6.4 Relation to Work of Aumüller et al.

Aumüller et al. also study multiway Quicksort with a generic partitioning method in a
recent preprint [10]; most results already appear in Aumüller’s doctoral thesis [7]. That
work has been done in parallel and independently of my work on this thesis. Due to the
similarity of the approaches a detailed breakdown of the differences is in order.

The algorithm Exchangek of Aumüller et al. [10] is essentially equivalent to our generic
one-pass partitioning with parameters s = k+ 1, m = ds/2e and λk = λg. Aumüller et al.
fix the choice m = ds/2e, which means in particular that they do not consider master-
segment methods. They further assume for their detailed analysis that a single comparison
tree is used for all classifications.

The latter has implications for the analysis: with a single comparison tree, the number
of comparisons is a linear function of the quantiles vector τ, and it is independent of the
sample size k; this is no longer the case for two different trees. For other cost measures,
e.g., the number of assignments, Aumüller et al. also deal with nonlinear functions, but
they only study these without pivot sampling. They thus confine the discussion of pivot
sampling to cost functions that are linear in τ, which simplifies analysis and interpretation.
We do the analysis including pivot sampling for all our cost measures including two trees.

Note that with respect to comparisons, Aumüller et al. also analyze the much more
general situation of an arbitrary classification strategy; see their Section 3. However it is
not clear how to simplify their generic result for our case of partitioning with two trees.
Also, their result is only given for random pivots, i.e., without using sampling.

The reader is encouraged to consult their sections on the very interesting experimen-
tal results. Aumüller et al. not only compare bare running times, but they also evaluate
performance-counter measurements of the number of cache misses and branch misses,
leading to a variety of noteworthy observations, e.g., that the number of L1 cache misses
are (approximately) proportional to the number of scanned elements. Experimental vali-
dations are beyond the scope of this work.

164

165

Analysis of Generic Partitioning5
Contents

5.1 Toll-Function Notation 166

5.2 Stochastic Description of Partitioning Under Pivot Sampling . . 166

5.3 Generic Model: Element-wise Charging Schemes. 169

5.4 Charging Schemes for Our Cost Measures. 174

5.5 Execution Frequencies of Inner Loops 178

5.6 Class-State Co-Occurrences 184

5.7 Comparison-Optimal Partitioning 185

5.8 Branch Misses . 188

5 Analysis of Generic Partitioning

166

The analysis of Quicksort parallels its glorious structure: We first analyze partitioning
in isolation in this chapter, then we use the result in a recursive description of overall costs
in Chapter 6. The parameters of generic one-pass partitioning now become parameters of
the analysis; we have

I the number of segments s ∈N>2,

I the meeting point m ∈ {0, 0.5, 1, 1.5, . . . , s− 0.5, s}, where we operate either in master-
pivot mode if m ∈ [0..s] or in master-segment mode for s ∈ [1..s] − 1

2 , and

I the comparison trees λk, λg ∈ Λs.

I Additionally, we have the pivot-sampling parameter t that influences the used pivot
values.

Our analysis is valid for any valid combination of parameter values. Orthogonal to these
options for the algorithm, there are several models of costs discussed in Chapter 3. Each
of these is a sensible model, it depends on the machine which one will be more relevant.
It is likely that no single model will suffice to explain performance differences, and it
is to be expected that cost models change over time; they already did so in the past. The
framework of element-wise charging schemes developed below generalizes the common parts
of the analysis for all our cost measures. The resulting unified analysis of Quicksort can
be instantiated for future cost measures, as well.

5.1 Toll-Function Notation

Quicksort means partitioning and recursing. The work for partitioning is the toll we have
to pay to get to the next level of the recursion tree. In the recurrence equation for total
sorting costs, the partitioning costs are the toll we have to pay for unfolding the recurrence
once. It has become customary to call the non-recursive part of such a recurrence equation
toll function.

We will use toll function and partitioning costs interchangeably to denote the cost of
one execution of Algorithm 9. We write TM(n) for these costs, where M is the used cost
measure:

I TC(n) for the number of comparisons,

I TSE(n) for the number of scanned elements,

I TWA(n) for the number of write accesses to the array and

I TS(n) for the number of swaps resp. cyclic shifts.

Whenever n is clear from the context, we write TM instead of TM(n).

5.2 Stochastic Description of Partitioning Under Pivot Sampling

In this chapter, we study the expected costs of partitioning n randomly permuted distinct
elements U1, . . . ,Un, i.e., we assume the uniform model. As discussed in Section 3.1.1, for

Class Probabilities · 5.2.1

167

comparison-based sorting this is equivalent to the random-permutation model (Fact 3.1).
Let us repeat this important fact: The values that we sort are stochastically independent of
each other and they are all uniformly in (0, 1) distributed.

We will introduce several random variables and notations in the following; their defi-
nitions are collected for convenience in Appendix A, see Section A.5 (page 345).

5.2.1 Class Probabilities

Assume we have picked the s− 1 pivots, P = (P1, . . . ,Ps−1), where P1 6 P2 6 · · · 6 Ps−1.
They are chosen from our input elements U1, . . . ,Un ∈ (0, 1) and so lie in (0, 1); it is
therefore convenient to set P0 = 0 and Ps = 1. (We used a different convention, namely
P0 = −∞ and Ps = +∞ in Chapter 4; we replace that convention in the uniform model.)
The pivots partition the unit interval into s intervals of lengths given by the successive
differences

D =
(
P1 − P0,P2 − P1, . . . ,Ps − Ps−1

)
(5.1)

of the pivots, see Figure 22. (The reader might have noticed by now that I prefer notation
for parts over notation for separators.)

0 1P1 P2

D1 D2 D3
Figure 22: Partition of the unit interval induced by

P = (P1,P2). The three intervals have
lengthsD = (P1,P2 − P1, 1− P2).

If we condition on the pivot values, i.e., consider P, or equivalently D, fixed, an ordi-
nary element U falls into the first segment, if U ∈ (0,P1), which happens with probability
D1, independently of all other ordinary elements. The same is true for all segments: the
probability of an ordinary element to end up in the rth segment after partitioning is given
precisely by Dr. It is a trivial consequence of our random model, but let us state this vital
observation once again for reference.

Fact 5.1 (Class Probabilities): Let the input for generic one-pass partitioning be n i. i.d.
U(0, 1) variables. Conditional on D, the probability of an ordinary element U to belong to
a class c ∈ C is given by

P[c(U) = c |D] =: P[c |D] = Dr(c), (5.2)

where r(c) denotes the index map r : C→ [1..s] given by

r(c) =

{
dme− i+ 1, for c = si, 1 6 i 6 dme,
bmc+ j, for c = lj, 1 6 j 6 s− bmc.

(5.3)

Conditional onD, the classes of all ordinary elements are thus independent and identically
distributed. �
Note that conditioning on D is important here: the unconditional class probabilities of
two ordinary elements are not independent, exactly because they both depend on the
pivot values.

5 Analysis of Generic Partitioning

168

5.2.2 Segment Sizes and Subproblem Sizes

Recall that we only have to partition the ordinary elements, i.e., the elements that have
not been part of the sample. We denote by Ir the number of such ordinary elements that
belong into the rth segment, r = 1, . . . , s. The vector I = (I1, . . . , Is) is the vector of segment
sizes after partitioning (excluding sampled-out elements). We have ΣI = n− k, the number
of ordinary elements, which we will abbreviate as η := n− k.

In Lack of Letters. I chose η and n because the two quantities are similar, so it makes
sense to have their names look similar as well. Nevertheless I carefully distinguished
them in the analysis. (Munsonius [132] independently used a corresponding convention
for random split trees, which I take as sign that this naming scheme is acceptable.)

Recall from Fact 5.1 that the classes of ordinary elements are i. i.d. random variables if
we condition on D. The segment sizes I are then obtained as the collective outcome of
η independent drawings from this distribution, so conditional on D, I is multinomially
Mult(η,D) distributed.

Subproblem Sizes. Before we call Quicksort recursively on the s segments, we have to
add the sampled-out elements again. As discussed in Section 4.4, the number of sampled-
out elements that belong to the rth segment is precisely tr. Their number is not random.
The number Jr of elements in the rth subproblem is thus Jr = Ir + tr. So there is a close
relation between the vectors of segment sizes I and subproblem sizes J that characterizes also
the distribution of subproblem sizes: J = I+ t.

5.2.3 Distribution of Pivot Values

The random variable D ∈ [0, 1]s is a vector of spacings induced by order statistics from a
sample of i. i.d. uniform variables in the unit interval, which is known to have a Dirichlet
Dir(σ) distribution, see Proposition 2.28 (page 72):

D
D
= Dir(σ) D

= Dir(t+ 1). (5.4)

The distribution of D depends on the pivot-sampling scheme; this should not come as a
surprise. It is however remarkable that the class probabilities and segment sizes I depend
on t only via D: The segment sizes I are multinomially distributed with a parameter that
has a Dirichlet distribution. We know from Section 2.4.7 (page 78) that the unconditional
distribution of I is then a Dirichlet-multinomial distribution,

I
D
= DirMult(η;σ). (5.5)

Random-Parameter Pivot Sampling · 5.2.4

169

Advertisement: The Strengths of the Uniform Model. The benefit of the i. i.d. uniform in-
put model stems from exactly this fact that segment sizes I and class probabilities depend
only indirectly on the pivot-sampling parameter t. We can determine partitioning costs
conditional on D in a form that is valid for any pivot-sampling scheme. What is more, in
determining the costs conditionally on D, we can exploit the (conditional) independence
of classes.

The classical approach to the analysis of Quicksort effectively conditions on the ranks
of the pivots, or equivalently, the segment sizes I: if we assume the input to be a permuta-
tion of {1, . . . ,n}, the values and ranks of pivots coincide! Only with our alternative input
model we can decouple pivot ranks from the pivot values.

Apart from my work, this decoupling trick has (implicitly) been applied to the analy-
sis of classic Quicksort earlier, e.g., by Neininger [139], but it had not yet gained currency.

Of course there are other ways to analyze Quicksort. Our approach is admittedly some-
what heavier in notation and requires a little proficiency in stochastics. As long as we
only use it to compute expected values, as in this work, it might feel like cracking a nut
with a sledgehammer . . . but who does not like to operate a sledgehammer at times?

5.2.4 Random-Parameter Pivot Sampling

In the most general setting, we allow a random pivot-sampling parameter T ∈ Ns
0 to

be used, drawn according to some given distribution, see Section 4.4.2. In terms of the
stochastic model, this merely means another level of mixing variables: D now is a mixture
of Dirichlet variables and conditional on T , we have

D
D
= Dir(T + 1). (5.6)

For example, ninther sampling yields

D
D
= 1{X=1}Dir(4, 6) + 1{X=2}Dir(5, 5) + 1{X=3}Dir(6, 4) (5.7 .1)

with X D
= D

(
3
14 , 47 , 314

)
. (5.7 .2)

We stress again that only the distribution of D is directly affected; conditional on D, the
same analysis remains valid as before.

5.3 Generic Model: Element-wise Charging Schemes

In this section, we define our unifying framework to analyze cost measures: element-wise
charging schemes. Element-wise means that overall costs for partitioning are the sum of
contributions of all ordinary elements. These contributions may depend on the class of the
element and the current state of the partitioning algorithm, and nothing else.

We will later, in Section 5.5, derive how many elements of a certain class occur in
a certain state. Combined with the (constant) contributions per class and state for our
cost measures discussed in Section 5.4, we obtain the partitioning cost w.r.t. all our cost
measures.

5 Analysis of Generic Partitioning

170

5.3.1 General Charging Schemes

Our parametric algorithms unify the analysis of many practical partitioning methods by
embedding them in a common framework. In this section, we will likewise set up a
universal framework for studying different measures of cost using one generic analysis.

The framework embraces all element-wise cost measures, which intuitively means that
overall partitioning costs are given as a sum of the costs for each (ordinary) element, where
these per-element costs in turn depend only on the classes of the elements up to now. With
the natural assumption that comparing with the pivots is the only allowed operation on
ordinary elements in partitioning, this framework is quite comprehensive. Here comes the
formal definition. Recall that we denote by C the vector of classes;

C =

{
(sm, . . . , s1, l1, . . . , ls−m), for m ∈ [0..s];

(sdme, . . . , s2, m, l2, . . . , ls−bmc), for m ∈ [1..s] − 1
2 ;

(4.3) revisited

C? denotes the set of all finite sequences of classes. Moreover, we write c(U) for the class
of an ordinary element U.

Definition 5.2 (Element-Wise Cost Measures): An element-wise cost measure M consists of

I a (possible infinite) state set QM,

I a next-state function nextM : C? → QM, where nextM(c1 . . . cj) denotes the state after
processing j elements with respective classes c1 . . . cj, and next(ε) denotes the initial
state, and

I a charging scheme costM : C× QM → R>0, where costM(c,q) is the cost of processing
one element of type c ∈ C, when the partitioning algorithm is currently in state
q ∈ QM.

The M-cost TM of partitioning the elements U1, . . . ,Uη (in that order) is defined as

TM =

η∑

i=1

costM
(

c(Ui), nextM
(
c(U1) · · · c(Ui−1)

))
. (5.8)

J

One should think of the state as the internal state of the machine while executing the
partitioning algorithm, in particular, the program counter, i.e., the location in the code is
part of the state.

Note that even though QM may be infinite in general, for any fixed η, only the finitely
many states nextM(C6η) are reachable, where C6η is the set of all words over alphabet
C with length at most η. In fact, for the general element-wise cost measures the full-
history state set QM = C? is always a possible choice, but our analysis below becomes
uninformative then.

We will later restrict that to the natural and analyzable class of next-state functions
corresponding to finite automata. The first step in our analysis, however, works just as
well for the more general setting of element-wise cost measures, so we will stick to it for
the moment.

Relation to Classification Strategies · 5.3.2

171

5.3.2 Relation to Classification Strategies

Our element-wise cost measures generalize the classification strategies introduced by
Aumüller et al. [10], and the core idea of splitting state frequencies and per-state average
costs is due to them. A classification strategy for η = n− k (ordinary) elements around
s− 1 given pivots P1, . . . ,Ps−1 has to determine in each step

I an index i ∈ {1, . . . ,η} of an element to classify next and

I a comparison tree λ to use for the next classification.

Both choices may depend on the classes of all previously classified elements.
This framework of classification strategies arguably contains the comparison costs of

any reasonable partitioning method as special case. Aumüller et al. [10] in particular study
cases where the comparison tree is changed after each classified element, e.g., so that it
minimizes the total cost of classifying all elements seen up to now. We consider their
comparison-optimal strategies in Section 5.7.

Clearly, the number of key comparisons under any given classification strategy, i.e., a
rule how to choose the next comparison tree based on the classes of all previously classified
elements, is an element-wise cost measure, whose states are the possible comparison trees.

5.3.3 Separating State Frequencies From Element Costs

In this section, we do the first step in the analysis of the expected costs of one partitioning
step, for an arbitrary element-wise cost measure. We show that we can separately take
expectations on the number of times partitioning is in a given state and on the cost of
dealing with a random element in that state. Roughly speaking, the former depends on
the algorithm and the latter on the cost measure, so with this separation, it suffices to
analyze the partitioning algorithm once. Different cost measures are obtained by inserting
corresponding charging schemes.

As discussed above, our element-wise cost measures generalize the classification
strategies introduced by Aumüller et al. [10]. While the cost models and results are sim-
ilar, the analyses differ. Aumüller et al. use concentration arguments, more precisely the
method of averaged bounded differences, to show that even for fixed segment sizes I, the
probability for an element to fall in a certain class is close to being independent of the
classes of all previously classified elements, unless only very few, a sublinear number, of
elements are left (Lemma 2.2 of Aumüller et al. [10]). These last few elements can however
be ignored for the leading term of costs. In the uniform model, we can get rid of this case
distinction, since conditional of D, classes of elements are i. i.d., precisely.

Let M be an arbitrary element-wise cost measure. To analyze (expected) costs, we con-
sider again a random input, consisting of n i. i.d. U(0, 1) distributed elements U1, . . . ,Un.
We partition the η = n− k ordinary elements using pivots chosen by generalized pivot
sampling with parameter t ∈Ns.

In general, the elements in the array are not classified in a predefined order, e.g., in
our one-pass partitioning methods it depends on their classes whether we continue scan-
ning from the left or from the right (see Section 5.5 for more details). Let in general

5 Analysis of Generic Partitioning

172

Π1,Π2, . . . ,Πη be the (random) indices of the elements as they are classified, so that UΠ1 is
the element classified first, UΠ2 is the second one, and so on. We assume that Π1, . . . ,Πη is
a permutation of the indices of all ordinary elements. If we denote with c(U) the class of
an ordinary element U, the (random) sequence of classes, as seen by the element-wise cost
measure, is c(UΠ1), c(UΠ2), . . . , c(UΠη). The next-state function transforms this to a (ran-
dom) sequence of states Q = (Q0,Q1,Q2, . . . ,Qη), where Qj = nextM(c(UΠ1) . . . c(UΠj))
for j ∈ [0..η]. We are in stateQj after having classified UΠj . With this notation, the (random)
total cost of the first partitioning step is

TM(n) =

η∑

j=1

costM
(
c(UΠj),Qj−1

)
(5.9)

=

η∑

j=1

∑

q∈QM

∑

c∈C
1{c(UΠj)=c}

1{Qj−1=q} costM(c,q) (5.10)

=
∑

q∈QM

∑

c∈C
costM(c,q)

η∑

j=1

1{c(UΠj)=c}
1{Qj−1=q}. (5.11)

Recall that both the classes of elements c(UΠj) and the states Qj−1 are random, and they
are in general not stochastically independent. (Even for the restricted case introduced
below, they are not: for the automaton in Section 5.4.1 (page 174), there will be a correlation
between the probability of being in state qk and the probability of an element to be small.)

What comes to our rescue is that upon conditioning on D, the classes c(UΠj) of all
ordinary elements are i. i.d., see Fact 5.1. The current state Qj−1 depends only on the
classes of the previous elements, namely Qj−1 = nextM(c(UΠ1) . . . c(UiΠ−1

)
)
. So for fixed

D, we find that Qj−1 and c(UΠj) are conditionally independent. We use this to simplify the
conditional expectation

E[TM(n) |D] =
∑

q∈QM

∑

c∈C
costM(c,q)

η∑

j=1

E
[
1{c(UΠj)=c}

1{Qj−1=q}

∣∣D
]

(5.12)

=
∑

q∈QM

∑

c∈C
costM(c,q)

η∑

j=1

E
[
1{c(UΠj)=c}

∣∣D
]
·E
[
1{Qj−1=q}

∣∣D
]

(5.13)

=
∑

q∈QM

(∑

c∈C
costM(c,q) ·P[c(U) = c |D]

)(
η∑

j=1

E[1{Qj−1=q} |D]

)
(5.14)

=
∑

q∈QM
EU

[
costM(c(U),q)

∣∣∣D
]

︸ ︷︷ ︸
=:costM(D,q)

·EQ

[
η∑

j=1

1{Qj−1=q}

︸ ︷︷ ︸
=:F(n)q

∣∣∣∣∣D
]

. (5.15)

Both abbreviations have intuitive meanings. Fq = F(n)q is the frequency of state q, i.e., the
(random) number of elements that are classified while we are in state q. costM(D,q) is the
expected cost of an element in state q, when the class probabilities are given by D (Fact 5.1).
We state the above result once more for reference.

FSM-based Element-Wise Charging Schemes · 5.3.4

173

Lemma 5.3: Conditional on the pivot values, i.e., on D, the expected cost of the first parti-
tioning step in an element-wise cost measure M is given by

E[TM(n) |D] =
∑

q∈QM
E[Fq |D] · costM(D,q), (5.16)

with Fq and costM as in Equation (5.15). The unconditional expectation can be written as

E[TM(n)] =
∑

q∈QM

∑

c∈C
costM(c,q) · o(n)c,q , (5.17)

where o(n)c,q := ED
[
E[F(n)q |D] ·P[c |D]

]
is the expected number of co-occurrences of class c

and state q. �

The class-state co-occurrences generalize and replace the hypergeometric terms “s@K”
(the number of small elements falling in k’s range) etc. that we used in previous works
[184, 186, 137].

� � �

Lemma 5.3 is similar to Lemma 3.1 of Aumüller et al. [10] for the comparison case. (They
write Fλ for the number of classifications with tree λ, and cλavg(i) for the average compari-
son cost using that tree when the number of occurrences of each class is given by i.) The
difference is that Aumüller et al. work with expectations conditional on segment sizes I.
These are usually easy to compute; but then we have to average over all pivot ranks. The
resulting sums are quite inconvenient to deal with. A look at the lengthy computations in
the proof of Theorem 7.1 of Aumüller et al. [10] might convince the reader of our point
here — and that computation only deals with the case t = 0.

In contrast, we split up costs at the level of fixed D. The conditional state frequencies
E[Fq |D] are much easier to compute, even precisely, as we will see. Once we have them
computing the unconditional co-occurrences is a mechanic task.

5.3.4 FSM-based Element-Wise Charging Schemes

We have shown in the last section that in the very general framework of element-wise cost
measures, it suffices to separately compute how often we are in a certain state and of how
much an average element costs us in that state (Lemma 5.3). This is only helpful if we can
compute these two things. State frequencies can be very complicated in general, but we
do not need this generality for most cost measures.

In generic one-pass partitioning, costs essentially depend on whether the element is
reached by index k or by index g. Transitions between these two modes of operation only
depend on the current state and the next element’s class. They can thus be characterized
by a finite automaton. This motivates the following definition.

Definition 5.4 (FSM-Based Cost Measure): An element-wise cost measure M is finite-state-
machine based (FSM-based) if nextM(c1 . . . cj) is the state of a finite automaton after reading
c1 . . . cj, for all sequences of classes c1 . . . cj. More specifically, FSM-based means there is a

5 Analysis of Generic Partitioning

174

finite automaton AM = (QM,C,q0, δM), the state automaton, with (finite) state set QM, initial
state q0 ∈ QM, alphabet C (the set of classes of elements), and the transition function δ, so
that nextM(ε) = q0 (initial states agree), and for all j > 1 and all class sequences c1 . . . cj ∈ Cj

holds
nextM(c1 . . . cj) = δM

(
nextM(c1 . . . cj−1), cj

)
. J

5.4 Charging Schemes for Our Cost Measures

Except for branch misses, we can express all cost measures introduced in Chapter 3 as
FSM-based charging schemes with a simple two-state automaton: costs only depend on
whether we are in the first inner loop or in the second inner loop. We derive the corre-
sponding state transition probabilities in Section 5.5. In this section, we give the charging
schemes costM for comparisons, scanned elements, swaps/shifts and write accesses. We
treat branch misses separately in Section 5.8.

5.4.1 The State Automaton For One-Pass Partitioning

For generic one-pass partitioning, the state automaton is actually quite simple; and the
same for all our cost measures; the only exception are branch misses, which are treated
separately in Section 5.8.

From an ordinary element’s point of view, there are only two basic alternatives: it
can be reached with index k, i.e., while we are executing the first inner loop, or it can be
reached with index g, while we are in the second inner loop. We will denote these two
states by qk and qg, respectively. We initially start in state qk. The new state depends on
the class of the most recently classified element: if we found a small element, we go to
state qk, and if we found a large element, we go to state qg.

Figure 23 shows the resulting automaton. Note that slight differences exist between
the master-pivot case, (m ∈ [0..s]) and the master-segment case (m ∈ [1..s] − 1

2). A detailed
discussion of the state automaton is given in Section 5.5 below, in particular Lemma 5.5
and Lemma 5.8 show that the transitions in the automata are as given in Figure 23. In that
section, we also determine the expected state frequencies (Corollary 5.7 and Lemma 5.9).

5.4.2 Key Comparisons

The number of comparisons to classify a single ordinary element U depends on the used
comparison tree, i.e., the order in which we compare the elements to the pivots, and the
class of the element itself. Our algorithms use two comparison trees, where λk is used
while in state qk and λg is used in state qg. We thus have for all classes c ∈ C that

costC(c,qk) = λk(c) and costC(c,qg) = λg(c), (5.18)

where λ(c) is the depth of leaf c in the comparison tree λ. It is convenient to define the
leaf-depth profile λ of a comparison tree λ as the vector

λ = λ(C) =
(
λ(C1), . . . , λ(Cs)

)
, (5.19)

Scanned Elements · 5.4.3

175

qk

qg

s1, . . . , sdme

l1, . . . , ls−bmc

l1, . . . , ls−bmc

s1, . . . , sdme

start

(a) Master-Pivot Case

qk

qg

s1, . . . , sdme

l2, . . . , ls−bmc

l1, . . . , ls−bmc

s2, . . . , sdme

start

(b) Master-Segment Case

Figure 23: State automata for the element-wise cost measures in our generic one-pass partition-
ing algorithm (Algorithm 9). There is a slight difference in the transitions between
the master-pivot and the master-segment case; the reason is that in the master-
segment case, the classes small and large of order one coincide, s1 = l1 = m, and
do not trigger a state change.

i.e., λ is the vector of leaf depths in left-to-right order. Then average costs in a given state
for a fixed D are a weighted external path length of the comparison tree:

costC(D,qk) = λk
T ·D =

∑

c∈C
P[c |D] · λk(c), (5.20)

costC(D,qg) = λg
T ·D =

∑

c∈C
P[c |D] · λg(c). (5.21)

Example. Consider for example s = 6, m = 3 and let λk be comparison tree from Fig-
ure 19 (page 155). Then we have costC(s3,qk) = λk(s3) = 2, since the leaf with label s3 is
at depth 2. Similarly costC(s2,qk) = 2, and costC(c,qk) = 3 for all other classes. We thus
have the leaf-depth profile λk = (2, 2, 3, 3, 3, 3).

5.4.3 Scanned Elements

If we are in qk and the current element is small of order i, we rotate i elements down
(line 6), which requires one (new) element scan with each of the indices k1,k2, . . . ,ki. So
we have costSE(si,qk) = i. Symmetrically, in state qg we rotate j elements up (line 20) if
the current element is large of order j, so costSE(lj,qg) = j.

The remaining two cases are slightly more interesting. Consider first a si-type element
in state qg. A brief look at Algorithm 9 shows that we then have to end up in the ∞-shift
in line 25. This operation involves a total of i+ j elements, accessed through the indices
k1, . . . ,ki and g1, . . . ,gj, where j is the order of the ∞-shift partner, i.e., ck = lj there.

5 Analysis of Generic Partitioning

176

But we do not know ck; are we in trouble here? The answer is no, since we can split the
bill: the current element will pay for costSE(qg, si) = i of the i+ j scanned elements, say,
for those through indices g (the element itself) and k2, . . . ,ki, the i− 1 elements that have
been touched to make room for A[g] in the si-region.

It is then clear that costSE(qk, lj) must be j, if this element is put into position by the
∞-shift. Unlike above, we might also end up in the special case handler in line 14, namely
if the current element is the last element classified by λk and k = g holds. Luckily we need
exactly j element scans in these cases, as well.

We summarize the result in the following table. Note that these numbers apply for
both master-pivot and master-segment methods.

costSE(c,q) q = qk q = qg

c = si i i

c = lj j j

The cost measure of scanned elements has a few noteworthy properties.

I First of all, as becomes obvious in the table above, the scanned elements charging
scheme is state-less: costSE(c,q) does not depend on state q. It is clear then that the
number of scanned elements will only depend on the number of elements in each
class, that is, the segment sizes I. In fact, TSE(n) is by definition the distance scanned
by the indices k1, . . . ,kdme and g1, . . . ,gs−bmc. It is immediate from the invariant
after partitioning, Figure 16 (page 150), that the innermost segments are scanned
only by k1 resp. g1; the next segment outwards is additionally scanned by k2 resp.
g2, and so forth. We thus have

TSE(n) = αTSE · I, (5.22)

the dot product or scalar product of the vectors αSE and I, where coefficient vector
αSE is given by

αSE =

(
m , m − 1, . . . , 2, 1, 1, 2, . . . , s− m

)
, for m ∈N0;

(
dme, dme− 1, . . . , 2, 1, 2, . . . , s− bmc

)
, otherwise.

(5.23)

I Comparing the two representations, the charging scheme and the explicit vector form
above, it seems suspicious at first that one of them has to distinguish master-pivot
and master-segment methods, whereas the other does not. Let us give two (re-
dundant) arguments, why both are correct and equivalent. First, master-segment
schemes differ from master-pivot schemes only in that medium elements, which co-
incide with s1 and l1 in this case, do not participate in∞-shifts. These elements are
charged only 1 scanned element, which is needed to read and classify them anyway.

The other reason is that the definition of I does not depend on m, but the definition
of the classes does. In the master-segment case, both s1- and l1-elements go to the
same segment, the master segment, which is jointly scanned by k1 and g1.

Write Accesses · 5.4.4

177

I Note that in some cases, we access the current location, A[k] resp. A[g] twice: Once
for classifying the element, and a second time later, when the element is moved to
the correct segment. In terms of scanned elements, these two references count as
one, as they refer to the same location and happen through the same index variable,
namely k resp. g. Usually, these accesses happen so shortly after each other that the
second access will not cause a cache miss.

5.4.4 Write Accesses

By write accesses, we mean only write accesses to the array, assignments to local variables
are not counted as they usually reside in registers and are discarded afterwards. Writes to
the array, in contrast, have to be written back to main memory at some point in time, which
is more costly. Write accesses are closely related to scanned elements, but differences exist
in the details.

First note that an ordinary cyclic shift involving i > 2 elements needs exactly i write
accesses to the array A, see Algorithm 5. Formally, CyclicShiftLeft1(i) would entail one
write operation, but such a shift is actually vacuous and would of course be eliminated
from real code. We will thus not count a write access for it.

For an element’s share of the cost of an∞-shift, we have to distinguish between master-
pivot and master-segment methods. In the master pivot-case, the exception above does not
apply, because even in the case that both i and j are 1, i.e., we have ck = l1 and cg = s1
in line 25 of Algorithm 9, we still have to swap these two elements, charging each of them
1 write access. For master-segment methods, the classes with order 1 do not participate in
the∞-shift, so elements of types s1 and l1 never entail a write access.

In summary, we obtain the following charging scheme for the number of write ac-
cesses. Note that in the master-segment case, the charging scheme is stateless, whereas
states are needed in the master-pivot case.

Master-Pivot Algorithms

costWA(c,q) q = qk q = qg

c = si i− [i = 1] i

c = lj j j− [j = 1]

Master-Segment Algorithms

costWA(c,q) q = qk q = qg

c = si i− [i = 1] i− [i = 1]

c = lj j− [j = 1] j− [j = 1]

5.4.5 Swaps resp. Cyclic Shifts

Since one-pass partitioning methods usually have to move several elements around to
make room for one new element in its segment, it is not efficient to implement the re-
arrangement based on (binary) swaps. Instead, we use cyclic shifts of a number of ele-
ments. We herein determine how many of these shift operations we execute. For single-
pivot partitioning, this is the number of swaps, which is a widely used measure of cost in
the literature.

5 Analysis of Generic Partitioning

178

In terms of running time, it is plausible that the contribution of one cyclic shift should
be proportional to the number of involved elements, as is the case for counting write
accesses. One should thus not expect the number of shift operations to be a suitable
measure to predict running times for multi-pivot Quicksort variants; however, it may serve
well in a compound cost measure: we can use the number of shifts to model constant
overhead per shift.

To be precise, we define the number of (cyclic) shifts to be the number of times lines 6, 14,
20, and 25 of Algorithm 9 are executed. Cyclic shifts related to only one new element, i.e.,
all but the∞-shift in line 25, are charged to that element. A cyclic shift there happens if and
only if the same element is charged a positive amount of write accesses: costS(si,qk) =

[costWA(si,qk) > 1] and costS(lj,qg) = [costWA(lj,qg) > 1]. Costs of ∞-shifts are split
equally between the two involved new elements, i.e., costS(lj,qk) = 1

2 [costWA(lj,qk) > 1]
and costS(si,qg) = 1

2 [costWA(si,qg) > 1]. We thus obtain the following charging scheme
for the number of cyclic shifts:

Master-Pivot Algorithms

costS(c,q) q = qk q = qg

c = si [i > 1] 1
2

c = lj 1
2 [j > 1]

Master-Segment Algorithms

costS(c,q) q = qk q = qg

c = si [i > 1] 1
2 [i > 1]

c = lj 1
2 [j > 1] [j > 1]

5.5 Execution Frequencies of Inner Loops

For our analyses it is vital to know how often each the two inner loops of Algorithm 9 are
executed. As k is incremented in the first inner loop and g in the second, we will call the
loop in lines 3 – 10 of Algorithm 9 the “k-loop” and the loop in lines 11 – 23 of the “g-loop.”
To be a little more precise, let Fk and Fg denote the (random) numbers of executions of
line 4 respectively line 18, i.e., the number of classifications with λk respectively with λg,
during the first partitioning step.

Stated in terms of our element-wise cost measures, Fk and Fg are the (random) num-
bers of elements that are classified while in state qk resp. qg of the state automaton (Sec-
tion 5.4.1 on page 174). We have (slight) differences in transitions of the automaton when
we use a master-pivot method as compared to a master-segment method, see Figure 23, so
we consider these two cases separately.

5.5.1 Master-Pivot Algorithm

Let us first consider the master-pivot case m ∈ [0..s]. From the invariant after partitioning,
see Figure 16, it is clear that Fk+ Fg must be the number of ordinary elements and that the
meeting point of indices k and g is roughly after the first I1+ · · ·+ Im elements, since those
appear left of k after partitioning is finished. We must have roughly Fk ≈ I1 + · · ·+ Im
executions of the k-loop and Fg ≈ Im+1 + · · ·+ Is of the g-loop.

Master-Pivot Algorithm · 5.5.1

179

Note however that there are several possible points at which the outer loop can be left,
which causes slight (in particular, constant w.r.t. n) deviations from the above bird’s eye
view. Also note that the last update of pointers k and g has been carefully chosen so that
after partitioning we always have k = g+ 1 and the master pivot Pm belongs at position
k− 1 = g; the final valuations of variables k and g do thus not directly reflect the number
of classifications with λk and λg.

State Frequencies in YBB partitioning This is different for YBB Quicksort as studied in
[186], where each increment of k corresponds exactly to one classification with λk, and
likewise for each decrement of g we have a classification with λg. However, YBB parti-
tioning occasionally classifies the same element twice, namely when the ranges of k and g
overlap (see the “crossing-point lemma” in [186]). Our Algorithm 9 was tailored to avoid
exactly this idiosyncrasy — which inevitably comes at the price of losing the one-to-one
correspondence of pointer movements and classifications.

We can precisely characterize Fk and Fg despite the missing correspondence with final
pointer values using the following observation.

Lemma 5.5: Except for the very last element classified in the partitioning step, after each
large element, we classify the following element using λg; likewise each small element
entails a classification with λk for the next element. J

Proof: We briefly consider the possible cases and assume that we are not currently dealing
with the element classified last, so we have k 6 g− 1. If we classified the current element
using λk in line 4 as small, we execute the k-loop once more and thus use λk for the next
element. If otherwise A[k] is large, we do leave the loop and continue classification using
λg, as claimed.

Now consider the case of classifying with λg in line 18. If the element is small, we
leave the g-loop and the next classification must be with λk in the next iteration of the
outer loop. (Recall that the current element is not the last one by assumption, so there
will be a next iteration.) Otherwise, the element is large and we claim we then execute the
g-loop at least once more, entailing a new classification with λg, as claimed. So towards a
contradiction, assume we left the g-loop. We had k > g then, because cg is a large class
and after the g-loop, we decrement g for sure so that afterwards k > g would hold. But
then, no further execution of the outer loop would follow and our current element would
have been the last classified element in this partitioning step, contradiction our assumption
that it is not. �

The automaton shown in Figure 23-(a) is nothing more than this simple rule of Lemma 5.5
expressed as finite-state machine.

As hinted at above, there does not seem to be a neat, concise characterization of the
exact index of the element classified last (apart from that it is roughly I1 + · · ·+ Im). But
we can characterize the distribution of Fk and Fg.

5 Analysis of Generic Partitioning

180

Lemma 5.6: Let the pivot value distances,D, be fixed and denote by η = n− k the number
of ordinary elements. The numbers of elements classified using λk resp. λg satisfy

(Fk, Fg)
D
= Mult(η− 1;D1 + · · ·+Dm,Dm+1 + · · ·+Ds) + (1, 0). (5.24)

J

Proof: No matter what the input, Algorithm 9 always does the first classification using
λk, hence the constant offset for Fk. For the remaining η− 1 classifications, the used tree
depends on the outcome of the previous classification: we use λk if the last element was
small and λg if it was large, see Lemma 5.5. Conditional on D, the classes of elements are
i. i.d., and an element is small with probability D1 + · · ·+Dm and large otherwise, i.e.,
with probability Dm+1 + · · ·+Ds. �

Corollary 5.7: The expected numbers of elements classified using λk resp. λg in the first
partitioning step using Algorithm 9, conditional on D, are

E[F(n)k |D] = (D1 + · · ·+Dm)(n− k− 1) + 1, (5.25)

E[F(n)g |D] = (Dm+1 + · · ·+Ds)(n− k− 1). (5.26)

The total expectations are

E[F(n)k] =
t1 + · · ·+ tm +m

k+ 1
(n− k− 1) + 1, (5.27)

E[F(n)g] =
tm+1 + · · ·+ ts + s−m

k+ 1
(n− k− 1). (5.28)

�

5.5.2 Master-Segment Algorithms

The pointers k and g in Sedgewick’s algorithm (Algorithm 6) do not always meet exactly
in the middle of the second segment, even though our syntactical choice m = 1.5 might
seem to imply that; rather it depends on the classes of elements in that range of the
array [182]. This is true in general for master-segment methods. The numbers Fk and Fg
of elements classified using λk resp. λg exhibit a more complex behavior than in the case
of master-pivot partitioning. Recall that the s classes for master-segment methods are

C =
(
sdme, . . . , s2, s1 = m = l1, l2, . . . , ls−bmc

)
.

Lemma 5.8: All elements up to and including the first non-medium element are classified
using λk. For all others holds: If the most recent non-medium element that has been
classified was small of order at least two, the current classification uses λk, and if the most
recent non-medium element was large of order at least two, we use λg. J

Proof: Following the code of Algorithm 9, we see that we initially classify using λk in
the k-loop, and we stay there until we find an element that is large of order at least two.
Likewise we classify with λg in the g-loop as long as no element is found that is small of
order at least two. �

Master-Segment Algorithms · 5.5.2

181

This means that we can describe the state sequence in Algorithm 9 as the finite-state ma-
chine given in Figure 23-(b). After each classification, the edge containing the resulting
class of the element then determines the new state.

If we consider a fixed D, the probabilities for classes of ordinary elements are i. i.d.,
and so are the transition probabilities in the finite-state machine with the corresponding
labels. It thus forms a Markov chain; it is shown in Figure 24.

qk

qg

ps + pm

pl

pm + pl

ps

start
Figure 24: Markov chain of used classification trees in Algorithm 9.

Nodes indicate the tree used for the next classification, the
outcome of the classification determines the transition to be
taken. The edge labels give the transition probabilities using
the abbreviations of Equation (5.31); we assumeD is fixed.

To determine E[F(n)k |D], we have to count how often we leave the λk-state in a random
run of length η of this Markov chain. To do so, we make use of the rich toolkit around
generating functions for combinatorics on regular languages, see Section I.4 of Analytic
Combinatorics [64]. We consider the generating function

Fk(z,u) =
∑

η,i

P
[
F(n)k = i

∣∣ η,D
]
· zηui (5.29)

for words of element classes including their probabilities, where we encode the word
length in the exponent of z and the number of visits of state λk in the exponent of u. The co-
efficient [zηui]Fk(z,u) is thus precisely P[Fk = i | η,D] and E[Fk |D] = [zη] ∂∂uFk(z,u)

∣∣
u=1

.
The following set of equations for Fk(z,u) follows directly from the decomposition

given by the automaton:

Fk(z,u) = (ps + pm)zuFk(z,u) + plzuFg(z,u) + 1, (5.30 .1)

Fg(z,u) = (pm + pl)zFg(z,u) + pszFk(z,u) + 1, (5.30 .2)

where we abbreviate

ps = D1 + · · ·+Dbmc, (5.31 .1)

pm = Dbmc+1 + · · ·+Ddme = 1− ps − pl , (5.31 .2)

pl = Ddme+1 + · · ·+Ds . (5.31 .3)

Note that ps + pm + pl = 1 by definition. Solving the equations for Fk(z,u) and rewriting,
we find

Fk(z,u) =

1+
plzu

1− (pm + pl)z

1−
plzu

1− (pm + pl)z
psz− (ps + pm)zu

. (5.32)

5 Analysis of Generic Partitioning

182

As we are mainly interested in the expected values of Fk and Fg, we proceed with the
derivative w.r.t. u

∂

∂u
Fk(z,u)

∣∣∣
u=1

=
z− (pm + pl)z

2

(1− pmz)(1− z)2
(5.33 .1)

=
ps

ps + pl

1

(1− z)2
−

(
1−

pl
ps + pl

−
pl

(ps + pl)2

)
1

1− z

−
pl

(ps + pl)2
1

1− pmz
. (5.33 .2)

In the last partial-fractions form, it is easy to precisely extract coefficients, yielding

E[Fk |D] =
ps

ps + pl
(η+ 1) −

(
1−

pl
ps + pl

−
pl

(ps + pl)2

)
−

pl
(ps + pl)2

pηm . (5.34)

Since each ordinary element is classified exactly once in Algorithm 9, we have Fg = η− Fk
and we need not compute E[Fg |D] from the Fg(z,u). We summarize the main result of
this derivation in the following statement.

Lemma 5.9: The expected numbers of elements classified using λk resp. λg in the first
partitioning step using Algorithm 9 in the master-segment case, conditional on D, are

E[F(n)k |D] =
D1 + · · ·+Ddme−1

1−Ddme
·n ± O(1), (5.35)

E[F(n)g |D] =
Ddme+1 + · · ·+Ds

1−Ddme
·n ± O(1). (5.36)

�

Remark: We actually know the terms hidden in the O(1) precisely, see Equation (5.34),
but they are rather unwieldy and will not contribute to leading-term coefficients. The
statement of Lemma 5.9 is sufficient for our purpose. J

Ergodic Theory. Along the same lines as above, one can in principle compute the state
frequencies of any Markov chain and thus any FSM-based element-wise cost measure. A
possible shortcut is given by ergodic theory for Markov chains. It basically states that the
leading-term coefficient of the expected number of traversals of a certain edge in the chain is
given by the weight of that edge in the stationary distribution of the Markov chain. Biggar
et al. [23], Kaligosi and Sanders [96], Martínez et al. [117] and Auger et al. [6] took this
route for example.

Simple formulations of ergodic theorems, e.g., Proposition V.8 of Flajolet and
Sedgewick [64], do not give a sufficiently strong error bound. Such a theorem can be
proven, though. For the present work, I prefer the above elementary derivation as it does
not need Markov chain theory.

� � �

A Note on Limit Distributions · 5.5.3

183

Unifying Master-Pivot and Master-Segment Case. The attentive reader will have noticed
that the Markov chain in Figure 24 and its analysis are actually also valid in the master-
pivot case. Inserting pm = 0 and ps + pl = 1 in Equation (5.34), we directly find

E[Fk |D] = ps(η− 1) + 1 ,

from which Corollary 5.7 follows immediately. When we are only interested in the ex-
pected value, we can thus analyze both master-pivot and master-segment variants in one
shot.

I think the observations made in Section 5.5.1 are helpful to better understand generic
one-pass partitioning; the automaton-based approach is a little opaque in that sense.
As briefly discussed in the next section, there is indeed a significant difference between
master-pivot and master-segment methods when it comes to the distribution of costs.

5.5.3 A Note on Limit Distributions

For YBB Quicksort we derived limit distributions of costs in an article [186] with Ralph
Neininger. YBB partitioning is a master-pivot method, and for such it is indeed relatively
easy to generalize our contraction-method arguments. We do not explicitly cover the issue
of limit distributions of costs in this work, but let us briefly sketch how this could be done.

One first has to determine the full distribution of class-state co-occurrences for that,
and, as a first step the distribution of Fk and Fg conditional on I. Lemma 5.6 gives the
distribution when only fixingD; this is not sufficient; but there is indeed a close connection
between Fk, Fg, and I verbally expressed in Lemma 5.5:

(Fk, Fg) = (I1 + · · ·+ Im, Im+1, . . . , Is) ± 1. (5.37)

The term ±1 is needed as we cannot be sure what the class of the element classified last is.
This is a somewhat special element, so we cannot simply assume that the class probabil-
ities conditional on being the last element are the same as for the unconditional case; for
asymptotic statements, however, the ±1 does not make a difference. The remainder of the
analysis is along the same lines as for YBB Quicksort.

For master-segment methods, such a simple relation between I and (Fk, Fg) does not
hold: not only the number of medium elements is important, but also their location in
the array. Following the arguments for Sedgewick’s partitioning (see Lemma 4.8 and
Proposition 4.9 in my master’s thesis [182]), we obtain

Fk
D
= I1 + · · ·+ Idme−1 + Bin

(
Idme,

I1 + · · ·+ Idme−1 + 1
η− Idme + 1

)
± 1, (5.38 .1)

Fg
D
= Idme+1 + · · ·+ Is + Bin

(
Idme,

Idme+1 + · · ·+ Is
η− Idme + 1

)
± 1. (5.38 .2)

It is not directly clear how to show stochastic convergence of the normalized partitioning
costs to a limit distribution in this case; one would have to generalize, e.g., Lemmas 4.1
and 4.2 of Wild et al. [186]. For the present work, we leave this open.

5 Analysis of Generic Partitioning

184

Open Problem 5.10 (Limit Distributions for Master-Segment Methods): Compute limit-
ing distributions of cost for Quicksort under a master-segment method. Sedgewick’s dual-
pivot partitioning method (Algorithm 6) may serve as prototypical example. J

5.6 Class-State Co-Occurrences

By Lemma 5.3 we have for any FSM-based element-wise cost measure M the total expec-
tation

E[TM(n)] =
∑

q∈QM

∑

c∈C
costM(c,q) · o(n)c,q , (5.17) revisited

where o(n)c,q := ED
[
P[c |D] · E[F(n)q |D]

]
. For our state frequencies (Corollary 5.7 and

Lemma 5.9) these expectations are all of the form dealt with in the following lemma.

Lemma 5.11: Let D D= Dir(σ) for σ ∈ Rs>0 and let I ⊆ J ⊆ {1, . . . , s} be index sets and
r ∈ {1, . . . , s}. Then

E

[
Dr ·

∑
i∈IDi∑
i∈JDi

]
=

σr

Σσ
·
[r ∈ I] +

∑
i∈I σi

[r ∈ J] +
∑
i∈J σi

. (5.39)
J

Proof: Recall that we denote by 1I the characteristic vector of a subset, see (2.4) on page 40.
We compute in the Dirichlet-calculus, see Section 2.4.5:

E

[
Dr ·

∑
i∈IDi∑
i∈JDi

]
= ED(σ)

[
Xr ·
∑
i∈I Xi∑
i∈J Xi

]
(5.40)

=
(P2P)

σr

Σσ
ED(σ+1{r})

[∑
i∈I Xi∑
i∈J Xi

]
, (5.41)

aggregating components i ∈ [s] according to the cases i ∈ I, i ∈ J \ I or i /∈ J and setting
σ̃1 := [r ∈ I] +

∑
i∈I σi, σ̃2 :=

(
[r ∈ J] +

∑
i∈J σi

)
− σ̃1 and σ̃3 := [r /∈ J] +

∑
i/∈J σi, we

continue

=
(Agg)

σr

Σσ
ED(σ̃1,σ̃2,σ̃3)

[
X1

X1 +X2

]
(5.42)

=
(Zoom)

σr

Σσ
ED(σ̃1,σ̃2)[X1] (5.43)

=
σr

Σσ
·
[r ∈ I] +

∑
i∈I σi

[r ∈ J] +
∑
i∈J σi

. (5.44)
�

To allow concise notation, we write σ = t+ 1 and κ = k+ 1 = Σσ. Moreover, we abbreviate
the subrange totals of σ corresponding to the ranges scanned from the left, from the right,
and, for master-segment algorithms, from both sides:

σ→ = σ1 + · · ·+ σbmc, (5.45 .1)

σ↔ = σbmc+1 + · · ·+ σdme = σdme · [m /∈ Z] = Σσ− σ→ − σ← , (5.45 .2)

σ← = σdme+1 + · · ·+ σs . (5.45 .3)

Comparison-Optimal Partitioning · 5.7

185

Table 2: Leading term coefficients for the class-state co-occurrences oc,q. The main term is linear, and
the error is in O(1). For example, we have o(n)si,qk =

(
σm−i+1(σ→ + 1)/κ2

)
· n±O(1) for

i = 1, . . . ,m in the master-pivot case.

(a) Master-Pivot Algorithms

oc,q q = qk q = qg

c = si
σm−i+1(σ→ + 1)

κ2

σm−i+1σ←
κ2

c = lj
σm+jσ→
κ2

σm+j(σ← + 1)

κ2

(b) Master-Segment Algorithms

oc,q q = qk q = qg

c = si,
(i > 2)

σdme−i+1(σ→ + 1)

κ(κ− σ↔ + 1)

σdme−i+1σ←
κ(κ− σ↔ + 1)

c = m
σdmeσ→
κ(κ− σ↔)

σdmeσ←
κ(κ− σ↔)

c = lj,
(j > 2)

σbmc+jσ→
κ(κ− σ↔ + 1)

σbmc+j(σ← + 1)

κ(κ− σ↔ + 1)

With these preparations set up, we can count the class-state occurrences for our partition-
ing method. The leading terms for all oc,q are given in Table 2.

Note that the leading-term coefficients are mainly the product of the two components
of the co-occurrence: For example for osi,qk , the term σm−i+1/κ is the expected fraction of
si-type elements, and σ→/κ is the expected fraction of time we spend in state qk. However,
there is a +1 whenever the considered class and state “co-vary”: many elements of type si
imply many visits to state qk. The +1 is absent when this correlation is not present, e.g.,
many elements of type lj do not imply many visits to state qk; rather the contrary.

� � �

For our main cost measures—comparisons, scanned elements, write accesses and swaps—
we now have all ingredients we need for the partitioning cost: We multiply the class-state
occurrences by the corresponding cost from the charging scheme and sum up. This yields
Theorem 7.1 in Chapter 7.

We devote the rest of this chapter to two further cases, where the simple automaton
with two states from above is no longer sufficient.

5.7 Comparison-Optimal Partitioning

The first case that we consider where the above analysis is not sufficient is when the par-
titioning algorithm may choose comparison trees depending on the current input. Aumüller
et al. [10] have shown that there is a partitioning method of this kind that achieves
asymptotically the minimal possible expected comparison count of any s-way partition-
ing method. Our random model, and in particular the possibility to condition onD, offers
an alternative route to compute this comparison lower bound on the s-way classification
problem.

5 Analysis of Generic Partitioning

186

A Lower Bound On Classification with One Tree. Conceptually we analyze a partitioning
algorithm that can ask an oracle before partitioning, how many elements of each class we
have, i.e., the algorithm may use the value of I. Based on that we select one comparison
tree that minimizes the number of comparisons for this partitioning step: it is the binary
tree over s leaves with minimal weighted external path length, where the access frequencies
of the leaves are the segment sizes I1, . . . , Is. (Recall that the s external nodes correspond
exactly to the classes C.) This optimal BST can actually be computed reasonably efficiently
with the algorithms discussed in Section 7.7.3. We ignore the cost of this step in the
analysis, since we regard s as constant.

To obtain an actual algorithm, we can replace the oracle by running counts of seg-
ment sizes and we switch dynamically the comparison tree, so that it is optimal w.r.t. the
current counts. Aumüller et al. [10] have shown that this strategy’s comparison count is
asymptotically equivalent to using the optimal tree right away. What this cost is remains
to a good extent open. A formula can be given for its leading-term coefficient, which is
known to be a rational number, but Aumüller et al. [10] could only compute its exact value
for s 6 4. In this section, we will derive a formula for the leading-term coefficient in our
framework, including generalized pivot sampling. We also contribute the exact value for
one more term: s = 5.

Analysis of Oracle-Based Strategy. The overall number of comparisons for the first parti-
tioning step using the comparison-optimal strategy is

TC(n) = min
λ∈Λs

η∑

j=1

λ(c(Uij)) (5.46)

= min
λ∈Λ

[
m∑

i=1

λ(si) · Im−i+1 +

s−m∑

i=1

λ(li) · Im+i

]
(5.47)

= min
λ∈Λ

λT · I , (5.48)

for λ the leaf-depth vector of the comparison tree λ, see Equation (5.19). TC(n) is the
pointwise minimum of linear functions in I. This expression is hard to simplify in general.
Note that the minimum is over exponentially many BSTs as s increases—we have |Λs| =
1
s

(
2s−2
s−1

)
, the sth Catalan number—and all trees contribute for some I. We will therefore

confine ourselves to computing the leading term of E[TC(n)] for the first few values of s.
We start noting that by linearity

TC(n)

η
= min

λ∈Λ
λT · I

η
. (5.49)

Now, by the strong law of large numbers Iη converges almost surely to D, so we have

E

[
TC(n)

η

∣∣∣∣D
]

∼ min
λ∈Λ

λT ·D (5.50)

by the continuous mapping theorem. (The right-hand side of Equation (5.49) is the point-
wise minimum of linear functions and thus continuous.)

Comparison-Optimal Partitioning · 5.7

187

This already gives a means to compute the leading-term coefficient of E[TC(n)]; we
shall see, however, that we need an error bound ofO(n1−ε), cf. our Theorem 6.1 (page 196).
We can get such an error guarantee from Lemma 2.36 (page 76): we use it on E[f(I/η) |D]

with

f(x) = min
λ∈Λ

λT · x , (5.51)

which is certainly bounded and Lipschitz-continuous over all of [0, 1]s with Lipschitz con-
stant s w.r.t. ‖ · ‖∞, since all entries in λ are at most s. We thus have by Lemma 2.36

E[f(I/η) |D] = f(D)± o(n−1/2+ε) (5.52)

for any ε > 0, where the error bound holds uniformly for D ∈ (0, 1)s. Taking expectations
over D gives the desired result

E[TC(n)] =

(∫

∆s

min
λ∈Λ

[
λT · x

]
·
xt11 · · · x

ts
s

B(t+ 1)
dx

)
n ± O(n1−ε), (n→∞), (5.53)

for any ε < 1
2 as n→∞.

Some Values. Table 3 shows the leading-term coefficient for a few exemplary values. All
were computed automatically by Mathematica from Equation (5.53). Sampling does not
seem to complicate the computation of the integral significantly, but larger numbers of
pivots do: The computation for s = 5 already took several days and used some tens of
gigabytes of main memory. The computation for s = 6 failed with an out-of-memory
exception on our compute server with 128 GB of main memory.

Table 3: Leading-term coefficients for comparison-optimal partitioning.

t a a/H

(t1, t2) 1 1/H

(0, 0, 0) 3/2 1.8
(1, 1, 1) 37/24 1.6228070175438596491
(0, 1, 2) 71/48 1.7067307692
(0, 0, 0, 0) 133/72 1.7051282
(1, 1, 1, 1) 44761/23328 1.57553...
(0, 2, 2, 0) 5785/2916 1.81532...
(0, 0, 0, 0, 0) 2384/1125 1.65125541

Our integral representation is amenable to the usual approaches to approximate the
integral numerically. Since the integrand has bounded derivative, one should be able to
bound exactly the error resulting from numeric approximations, at least in the case without
pivot sampling. Of course, we will feel the curse of dimensionality here as well. I did not
pursue this route further.

5 Analysis of Generic Partitioning

188

We discuss crude upper and lower bounds in the digression on page 269; there we also
discuss a relation to redundancy of prefix codes. Except for s 6 5, a feasible method to
compute the precise cost of comparison-optimal partitioning remains to be found.

Open Problem 5.12 (Analysis of Comparison-Optimal Partitioning):
Compute the leading-term coefficient of the expected number of comparisons for s-way
Quicksort with comparison-optimal partitioning.

This is tantamount to computing the integral in Equation (5.53), or to compute the
average redundancy of alphabetic codes a.k.a. Hu-Tucker codes, i.e., the difference of the
expected leaf depth in an optimal alphabetic tree and the entropy of the leaf distribution,
when the leaf probabilities are D D= Dir(t+ 1). J

5.8 Branch Misses

In this section, we express the expected number of branch misses as an FSM-based charg-
ing scheme. As is common in the literature, we consider only the local branch-prediction
schemes introduced in Section 3.2.5 (page 128). This means that we can consider each
branching location in the code in isolation, adding up the overall number of branch misses
from different locations at the end.

Branching Locations. Algorithm 9 has several branching locations, but not all are interest-
ing w.r.t. branch misses. For example, the outer while loop (line 2) is exited exactly once
per partitioning step, so this will cause only a constant number of mispredictions with
any predictor scheme. The conditional statements in lines 8 and 12 are likewise executed
at most once and thus contribute O(1) branch misses. All of these can be ignored for the
leading term of costs.

There are two more types of branching locations. The first type occurs in lines 5
and 19, and in a hidden way also in line 24 to determine the values of i and j; the second
type corresponds to the comparisons used in classifying elements by searching them in
the comparison trees. We call this second type comparison branches, since their outcome is
directly tied to a specific key comparison with a certain pivot.

The branching locations of the first type are actually conceptual branches only; im-
plementations can usually avoid using additional branches to implement these steps by
deferring comparison branches needed for classification anyway until we can react suit-
ably to its outcome. For example, Waterloo partitioning (Algorithm 8) directly uses key
comparisons to determine which swaps resp. cyclic shifts have to be executed, by defer-
ring the comparison with P3 from λk respectively the comparison with P1 from λg until
directly before the∞-shift.

This works in general if we put the master pivot into the root of the comparison tree.
We therefore ignore these branching locations, and it remains to analyze branch misses
from comparison branches.

Conditional Independence · 5.8.1

189

5.8.1 Conditional Independence

We know that conditional on D, the classes of ordinary elements in partitioning are i. i.d.
random variables, see Fact 5.1. For comparison branches during one partitioning step,
this means that the outcomes of subsequent executions of one branch location are also
i. i.d. random variables. This allows us to analyze the number of incurred branch misses
under the local predictor schemes precisely, since the corresponding predictor automaton
is a Markov chain.

Algorithm 10: Exemplary Insertionsort implementation.
Insertion(A,n)

// Sorts A[1, . . . ,n].
1 for i = 2, . . . ,n
2 j := i− 1; v := A[i]
3 while j > 1∧ v < A[j]
4 A[j+ 1] := A[j]; j := j− 1

5 end while
6 A[j+ 1] := v

7 end for

Quicksort is Special! That branch outcomes are i. i.d. directly follows from our random
model, and the observation is trivial in hindsight. But we should appreciate what a lucky
situation this is. If we think of a typical program and a branch location in the code, we
often find dependencies between outcomes of past executions of this branch and how
likely it is for this branch to be taken in the next execution. This naturally happens if
a branch outcome is actually deterministic, e.g., the branch to enter a block in a loop
body that is executed exactly every other iteration. But it can more subtly happen also in
situations where outcomes are random.

Consider for example the comparison branch in Insertionsort, see line 3 of Algo-
rithm 10. Since the insertion positions in a random permutation are uniformly distributed,
it is easy to see that v < A[j] holds with probability 1− j

i , independently of all previous
branch outcomes. This means that at the beginning of an iteration of the outer loop, when
j = i− 1 it is quite likely that v < A[j], but with each iteration of the inner loop it becomes
more and more unlikely to continue.

So even if the outcome of the next execution v < A[j] was stochastically independent
of the previous outcomes (which it is not), the outcomes cannot be identically distributed,
and our machinery to analyze branch misses is not applicable. In fact, I am not aware of a
precise, mathematical analysis of branch misses in Insertionsort; Biggar et al. [23] reported
from experiments that we essentially get one branch miss for each execution of the inner
loop, namely when it is exited. This would be exactly the result for a static predictor that
always predicts v < A[j].

5 Analysis of Generic Partitioning

190

Open Problem 5.13 (Branch Misses in Insertionsort): Analyze the expected number of
branch misses in Insertionsort on random permutations using the local branch predictor
schemes. J

Now that we brought to mind how beautiful Quicksort is compared to other algorithms,
let us quickly get back to it.

5.8.2 A Generic Comparison-Branch Location

In this section, we always consider D to be fixed. We will take the expected value w.r.t. D
only at the very end. We have a comparison branch for each node in the two comparison
trees λk and λg, and each of these branches has different branching characteristics: the
probability to take the branch depends on the probabilities of the two subtrees of the
corresponding node in the comparison tree, and there is also a probability that this node
is not reached at all during the classification of an element.

Notation. Let us now consider one fixed node, say the one corresponding to Pr, in com-
parison tree λk. If we classify an element U with λk, we denote the three possible events
w.r.t. the comparison branch for Pr as follows:

I t denotes the event that we compare U with Pr and the branch was taken.

I n denotes the event that we compare U with Pr and the branch was not taken.

I - denotes the event that we did not (directly) compare U with Pr.

Additionally, we will use s, m, and l to denote the events that c(U), the class of U, is
small, medium resp. large. Of course, m never occurs for master-pivot methods. We always
understand the three events as disjoint, so for master-segment methods, s then means
c(U) = si with i > 2, and l similarly means c(U) = lj with j > 2.

For notational convenience, we additionally introduce the wildcard event * which sim-
ply occurs always. We now abbreviate with pc,b = P[c∧ b] the joint probability of events
c ∈ {s, m, l, *} and b ∈ {t, n, -, *}. Some of these probabilities will be zero, and we always
have p*,* = 1. The notation generalizes abbreviations we used before see Equation (5.31)
in Section 5.5.2:

ps,* = ps = D1 + · · ·+Dbmc, (5.54)

pm,* = pm = Dbmc+1 + · · ·+Ddme = 1− ps − pl , (5.55)

pl,* = pl = Ddme+1 + · · ·+Ds . (5.56)

Figure 25 shows an example for a comparison-branch and the corresponding probabilities.
By varying the parameterm, it is clear that none of the pc,b probabilities is zero in all cases,
even though for any fixed choice some probabilities are zero.

A Generic Comparison-Branch Location · 5.8.2

191

P6

P1

s3 P4

P2

s2 P3

s1 l1

P5

l2 l3

P7

l4 P8

l5 l6

D1 D2 D3 D4 D5 D6 D7 D8 D9

ptpt pn

ps pl

pc,b b = - b = t b = n b = *

c = s D1 D2..D3 0 D1..D3
c = m 0 0 0 0

c = l D7..D9 D4 D5..D6 D4..D9
c = * D1,D7..D9 D2..D4 D5..D6 1

Figure 25: An exemplary comparison branch for the comparison tree shown; we have s = 9, m = 3 and
we consider the branch at the node corresponding to P4. The table shows the probabilities
Pc,b for all combinations of classes c ∈ {s, m, l, *} and branch outcomes b ∈ {-, t, n, *}; here
we write Dk,Di..Dj for Dk +Di + · · ·+Dj.

Branch-Miss Automata. The local branch-prediction schemes are given as a finite-state
machine, whose states indicate the current prediction. After each execution of the branch,
the state is updated. We will focus here on the 2-bit saturating-counter predictor; its corre-
sponding automaton is shown in Figure 9 (page 130). The techniques below apply equally
well to other local branch-predictor schemes.

The outcomes of our comparison branch is positive (branch taken) with probability
p*,t/(1− p*,-) and negative (not taken) with probability p*,n/(1− p*,-); that is, when it is
executed at all: with probability p*,- we classify U without reaching this branch location.
Additionally there is the second comparison tree in the partitioning algorithm, so for some
classifications, we are for sure not reaching this branch location.

In a joint article on branch misses [117] we computed for each branch location sep-
arately how often it is reached and which fraction of its executions yield a branch miss.
This requires to argue precisely why such a separation is legitimate; in fact there is also a
more mechanical way to proceed that avoids this separation: we construct one big autom-
aton, the branch-miss automaton, from the automata for comparison trees (Figure 24) and
the branch-predictor automaton (Figure 9).

Its states are all pairs of states, i.e., (i,q) for i ∈ [4] and q ∈ {qk,qg}. For qg-
states, i.e., states with qg as second components, outgoing transitions are copied from
the comparison-tree automaton, i.e., they ignore the first component of the state and leave
it unchanged; in qg, we do not execute the branch in λk. For qk-states, we similarly leave
i unchanged if we do not execute the branch; these transitions are labeled with a - then.
For the other transitions, we update i as in the predictor automaton, and at the same time

5 Analysis of Generic Partitioning

192

Figure 26: Branch-miss Markov chain for
a generic comparison branch
in λk. The edge labels en-
code the transition probabil-
ities, where, e.g., “sm×t-”
means ps,t + ps,- + pm,t + pm,-
(expand all combinations and
add them up).

1
k

2
k

3
k

4
k

1
g

2
g

3
g

4
g

start

sm×n

sm×n

sm×- sm×-sm×t- sm×n-

sm×n

sm×t

sm×t

sm×t

ml×* ml×* ml×* ml×*

s×
*

s×
*

s×
*

s×
*

l×
t-

l×
n-

l×
-

l×
-

l×n

l×n

l×nl×
t

l×
t

l×
t

update q as in the comparison-tree automaton. This is where we need all the combinations
of events s, m, l, resp -, t, and n. The resulting automaton is shown in Figure 26, labeled
with the corresponding transition probabilities.

Product Automata. The construction is similar to the idea of product automata: there also
the states are all pairs of original states, and transitions are chosen so that the restriction
to one component of the states gives the original transitions. Intuitively, the product
automaton simulates running both original automata independently in parallel by keeping
track of the current state of each. This is a classic construction in the field of formal
languages; product automata accept the intersection of two languages, see e.g., Hopcroft
et al. [83].

Our construction looks similar, but the transitions are a bit different: we pause execu-
tion of the branch-predictor while we are in a qg-state.

Since we consider D fixed, the automaton defines a Markov chain. All that remains to do
is to determine the expected number of transitions using edges marked with a symbol
in a random run of length η of this Markov chain.

This is possible with the technique described in Section 5.5.2: the transitions of the
Markov chain induce a linear system of equations for the generating function F1k(z,u) =∑
η,i bη,iz

ηui where bη,i is the probability for a random run of the Markov chain that
starts in state (1,k) and takes η transitions in total to use exactly i branch-miss transitions.
Solving the system of equations and determining the coefficients [zη] ∂∂uF1k(z,u)

∣∣
u=1

gives
the expected number of branch misses at a comparison branch location when classifying
η ordinary elements.

Since the terms become large the use of computer algebra is unavoidable with this
approach, and we skip the details here. Although the results can be obtained exactly in
principle, the terms are so huge that Mathematica could not produce a result in a reasonable
amount of time. Hence, I truncated precision already at the level of generating function by

A Generic Comparison-Branch Location · 5.8.2

193

considering only a singular expansion around the dominant singularity z = 1; one finds

∂

∂u
F1k(z,u)

∣∣∣∣
u=1

=
A

(1− z)2
± O((1− z)−1), (z→ 1), (5.57)

for a constant A that depends on the probabilities pc,b. By Theorem 2.19 we thus have
[zη] ∂∂uF1k(z,u)

∣∣
u=1

= A(η+ 1)±O(1). (The function is clearly ∆-analytic since z = 1 is its
only singularity.) After simplifying the term for A a bit, we find

A =
ps,*

1− pm,*
(1− p*,-) ·

p*,tp*,n

p2*,t + p
2
*,n

(5.58)

=
ps,*

1− pm,*
(1− p*,-)

︸ ︷︷ ︸
executions

of branch

· q

1− 2q︸ ︷︷ ︸
steady-state

miss rate

, where q =
p*,tp*,n
p*,t + p*,n

. (5.59)

Note that for the leading term, the probabilities could be split again into terms that
only depend on the events s, m and l, and terms that only depend on the events t, n and
-. In the latter form, we obtain as special cases our results on YBB Quicksort and classic
Quicksort [117]; in particular the term q

1−2q with q = p(1− p) is the steady-state miss-rate
function, i.e., the expected misprediction probability for a branch that is i. i.d. taken with
probability p (after a long sequence of branch executions).

For any fixed comparison node, this is a function ofD, and we have to take expectation
overD at the end. Here the rules of Dirichlet-calculus are useful; however, I could not find
a nice closed form in the end; cf. the geometric beta integrals from Figure 4 of Martínez
et al. [117]. We therefore leave the analysis of branch misses in this stage, remarking that it
requires only a good portion of diligence and computer algebra to compute the expected
number of branch misses for any given choice of parameters of generic s-way one-pass
partitioning.

� � �

With this, we close our chapter on the analysis of partitioning. The notion of (FSM-based)
element-wise charging schemes combined with the uniform input model has proven to be
just the right tool to analyze partitioning algorithms for Quicksort, even for such compli-
cated cost measures as branch misses.

Now that we understand what it costs to do a single step in the recursive Quicksort
algorithm, we can turn to its overall costs, given by the Quicksort recurrence.

194

195

The Quicksort Recurrence6
Contents

6.1 Recursive Description of Costs 197

6.2 Back-of-the-Envelope Approaches 201

6.3 Solution with the Distributional Master Theorem 207

6.4 Random-Parameter Pivot Sampling 210

6.5 Solution with Generating Functions 212

6 The Quicksort Recurrence

196

Implementing Quicksort reduces to implementing a partitioning method and surround-
ing it with a recursive-call scaffold. Analyzing Quicksort reduces to analyzing the parti-
tioning method and inserting the result into a recursive description of overall costs.

While recursion is deceptively simple to implement, its analysis can be challenging,
and we are far from having a general automatic solution for that. We do have theorems
of impressive generality, however, to solve many kinds of recursive equations, if we are
willing to accept an asymptotic solution.

In this chapter, we derive such solutions for the generalized Quicksort recurrence,
corresponding to the costs of s-way Quicksort with pivot sampling. Here is our main
result of this chapter.

Theorem 6.1 (Total Expected Costs):
The total expected costs E[Cn] for sorting a random permutation with a randomness-
preserving Quicksort using a partitioning method that incurs expected costs E[Tn] of the
form E[Tn] = an±O(n1−ε), with constants a and ε > 0, to produce s segments, and
whose s− 1 pivots are chosen by generalized pivot sampling with parameter t ∈ Ns

are asymptotically

E[Cn] =
a

H
n lnn ± O(n),

where H is the discrete entropy of t:

H =

s∑

r=1

tr + 1

k+ 1
(Hk+1 −Htr+1). (2.193) revisited

This result also holds if we truncate the recursion at subproblems of size at most w, for
any constant w, and switch to another sorting method. J

The solution to the recurrence underlying Theorem 6.1 has long been known, see also
below. In fact, all technical results in this section, already appeared in previous work in
one form or another; but there is no source that rigorously proves Theorem 6.1 in the
form above, in particular with the weaker requirement E[Tn] − an = O(n1−ε) on the toll
function.

This chapter contains two formal proofs as well as and some back-of-the-envelope
ideas. Certainly it could have been shortened, but while researching on the Quicksort
recurrence, I stumbled upon many interesting connections between recurrence, tools and
techniques that are not pointed out in existing literature, and I feel that they deserve begin
mentioned.

Chapter Outline. We discuss the Quicksort recurrence in Section 6.1; we give a distri-
butional recurrence of total costs, from which one can derive the ordinary recurrence for
expected costs easily. We then first discuss some non-rigorous, but insightful approaches
to estimate the solution of the Quicksort recurrence in Section 6.2.

Recursive Description of Costs · 6.1

197

Hennequin [77, Proposition III.9] gave the first formal proof of (a slightly weaker form
of) Theorem 6.1 using direct arguments on the Cauchy-Euler differential equations that
the recurrence implies for the generating function of E[Cn]. Sedgewick [162] used that
method already in his Ph.D. thesis to analyze classic Quicksort with sampling. We retrace
this path of arguments in Section 6.5.

Building on the toolbox of theorems developed by the analysis-of-algorithms com-
munity, the proof of Theorem 6.1 can be simplified significantly, and we present this
straightened-out derivation first: Section 6.3 gives the proof using the Continuous Master
Theorem of Roura [154]. Here we use our Distributional Master Theorem (Theorem 2.70)
as a shortcut. The latter derivation nicely generalizes to the case of random-parameter
sampling, see Section 6.4.

Constant-Coefficient Error Term. We can strengthen the statement of Theorem 6.1 a little
further: the O(n) error term has a constant coefficient.

Lemma 6.2: Under the conditions of Theorem 6.1 there is a constant µ ∈ R so that

E[Cn] =
a

H
n lnn + µn + o(n).

J

For direct applications this fact is not very relevant, unless we can get hold of that constant,
as well. This is doable in principle, but the procedure is only tractable for special cases, and
we will not pursue this path in this work. Even when the constant remains unspecified, the
stronger result is very helpful in studying limit distributions with the contraction method,
where a linear term with µn entails cancellation of the linear terms after normalization.
This ensures the needed convergence of the toll function in the normalized recurrence; see,
e.g., Wild et al. [186].

Not all methods provide enough detail to prove this stronger version; in fact there
seems to be no shortcut around the detailed generating-function approach pursued by
Hennequin [77]. To my knowledge, Hennequin’s French thesis is the only source with a
rigorous proof of Lemma 6.2 for the generalized Quicksort recurrence with Insertionsort
cutoff, and we reproduce it in Section 6.5 for future reference.

6.1 Recursive Description of Costs

Fix one of our measures of cost from Chapter 3, e.g., the number of comparisons, and
denote by Cn the (random) costs to sort a random permutation of size n. Further let Tn
denote the (random) costs for the first partitioning step in doing so. It is immediate from
the recursive structure of Quicksort that Cn can be written as Tn plus the costs for the
recursive calls.

Additive Costs. We use here that all our cost measures are additive: costs of sequential
executions add up. This is not the case in general; e.g., for memory usage, we would have
to take the maximum.

6 The Quicksort Recurrence

198

Let J(n)1 , . . . , J(n)s be the (random) sizes of the s subproblems. Since we assume that Quick-
sort preserves randomness in subproblems, the costs to sort a subproblem of size j has
the same distribution as the costs to sort an initial input of size j, i.e., it has the same
distribution as Cj. We can thus give a recursive description of the distribution of total
costs.

The Distributional Recurrence. The total costs of Quicksort form a family (Cn)n∈N of
nonnegative random variables which satisfies the following distributional recurrence:

Cn
D
= Tn +

s∑

r=1

C
(r)
J(n)r

, (n > w); (6.1 .1)

Cn
D
= Wn, (n 6 w), (6.1 .2)

where (C(1)
n)n∈N, . . . , (C(s)

n)n∈N are independent copies of (Cn)n∈N, which are also inde-
pendent of J(n) = (J(n)1 , . . . , J(n)s) ∈ {0, . . . ,n− 1}s and Tn. (For a more detailed description
of what these side conditions mean, see Section 2.6.2.)

The distribution of the subproblem sizes J(n) is discussed in Section 5.2 in detail; we
only summarize the result here. Recall the abbreviations we introduced there: σ = t+ 1,
κ = Σσ = k+ 1, τ = σ/κ, and η = n− k.

J(n) = I(n) + t, (6.2 .1)

I(n)
D
= Mult(η,D), (6.2 .2)

D
D
= Dir(σ). (6.2 .3)

(For a description of the multinomial distribution and the Dirichlet distribution, see Sec-
tion 2.4.) We will drop the superscripts when n is clear from the context.

For arrays of length at most w, which is the (constant) Insertionsort threshold w > k,
we have the initial values Wn, the cost to sort a random permutation of length n with
Insertionsort. Of course, Insertionsort can be replaced with other sorting methods; the
choice does not matter: the careful reader will have noticed that the initial values do not
appear in Theorem 6.1 since they do not contribute to the leading term of costs.

As in the theorem, we assume from now on that

E[Tn] = an ± O(n1−ε) (6.3)

for constants ε > 0 and a. The leading-term coefficient a eventually depends on the
parameters of the partitioning algorithm, namely, s, m and our pivot selection scheme as
described by t.

6.1.1 Nitpicks on Generalized Pivot Sampling

If we sort samples to select pivots in place, Equation (6.1) is not 100 % accurate. The costs
of sorting the sample then depend on whether the current call is a topmost invocation or

Recurrence for Expected Costs · 6.1.2

199

an rth child recursive call. The reason is that the ranges of the sample from the parent call
are already sorted.

For an earlier article, I worked out a detailed implementation of YBB Quicksort that
actually exploits this presortedness and maintains randomness [137], which is vital for the
analysis. The basic idea is to use Insertionsort, but skip the first few iterations correspond-
ing to the sorted part. I refer the reader to reference [137] for details. The same ideas work
for generic s-way one-pass partitioning.

For most interesting cost measures, the resulting savings only depend on the length `
of the sorted part, not on the length of the whole array. If we denote these savings by E`,
we pay Etr less for calls to an rth subproblem, regardless of n: We either save in sorting
the sample or in sorting the whole subarray if there are at most w elements. We assume
that the same algorithm is used for sorting both samples and small subarrays.

Using the following simple charging scheme, we can then still write total costs in the
form of Equation (6.1), with a reduced toll function T̃n: We simply discount the future
savings Et := Et1 + · · ·+ Ets of all recursive calls directly in the current call. Then each
partitioning step adds the reduced toll costs of T̃n := Tn − Et, where Tn contains the
cost of fully sorting the sample, and all subarrays shorter than w pay the full price of
Insertionsorting their elements.

Since t is considered a constant, the savings described above will not affect the leading
term of costs. We will thus ignore these in the rest of this work. The reader who prefers
so may imagine that we instead use another one of the methods to preserve randomness
discussed in Section 4.5. For the purpose of this work, the result will be the same.

6.1.2 Recurrence for Expected Costs

From the practitioner’s point of view, we are primarily interested in the average behavior
of Quicksort. We easily obtain an (ordinary) recurrence for the sequence (E[Cn])n∈N0

of expected costs E[Cn] from the distributional recurrence for Cn by taking expectations,
circumventing thereby the error-prone task of coming up with probabilities for subproblem
sizes anew.

A little care is needed in doing so, because the right-hand side involves several random
quantities, namely T , C and J:

Tn +

s∑

r=1

C
(r)
J(n)r

.

Our aim is a recurrence in E[Cn], i.e., we would like to express the expected value of
this as a function of terms E[Cj] for (deterministic) numbers j. Taking expectations E[CJr]

would result in a “mix” of E[Cj] for different values of j.
We can apply a trick here called conditioning to get the terms in the shape we need. In

general, if X is a discrete random variable, taking values in the countable set X, and f(X)
is a term depending on X, we have

f(X) =
∑

x∈X
1{X=x}f(x). (6.4)

6 The Quicksort Recurrence

200

In our sum over subproblems, we condition on J to find

s∑

r=1

C
(r)
J(n)r

=
∑

j∈Ns
0

1{J(n)=j}

s∑

r=1

C
(r)
j(n)r

, (6.5)

which is of the form we need for a proper recurrence. So finally taking expectations on
both sides of Equation (6.1) gives

E[Cn] = E[Tn] + E

[∑

j∈Ns
0

1{J(n)=j}

s∑

r=1

C
(r)
j(n)r

]
, (n > w), (6.6)

and since J and C(r)
jr

are independent, and C(r)
jr

D= Cjr , we obtain an ordinary recurrence
for the sequence of numbers (E[Cn])n∈N0

that we can approach with the usual machinery:

E[Cn] = E[Tn] +
∑

j∈Ns
0

P
[
J(n) = j

] s∑

r=1

E[Cjr], (n > w). (6.7)

Note that the sum over j in Equation (6.7) is finite for all n, as P
[
J(n) = j

]
= 0 unless

Σj = n− (s− 1). We can therefore safely exchange the order of summation to collect all
terms with the same subproblem size:

E[Cn] = E[Tn] +

n−(s−1)∑

j=0

(
s∑

r=1

P
[
J(n)r = j

]
)
·E[Cj], (n > w). (6.8)

This is a second useful representation of our recurrence, one that very explicitly shows its
full-history nature.

6.1.3 Relation to Combinatorial Form for Subproblem Size Probabilities

We can directly argue combinatorially that

P[J = j] =

(
j1
t1

)
· · ·
(
js
ts

)
(
n
k

) , if j1 + · · ·+ js = n− (s− 1);

0, otherwise.
(6.9)

The representation via binomial coefficients holds because for a fixed j, there are
(
j1
t1

)
ways

to choose exactly t1 elements from the smallest group,
(
j2
t2

)
ways to choose from the second

smallest, etc. Combining all these yields the number of possible size-k samples compatible
with a given j, which we divide by the overall number of samples.

The following lemma gives an arithmetic proof that both models are really the same.

Lemma 6.3: Let t ∈Ns
0 be given and let J ∈ {0, . . . ,n} be a random variable so that P[J = j]

is given by Equation (6.9). Then I = J− t D= DirMult(n− k, t+ 1). J

Back-of-the-Envelope Approaches · 6.2

201

Proof: We compute using η = n− k and i = j− t
(
j1
t1

)
· · ·
(
js
ts

)
(
n
k

) =
Γ(k+ 1)Γ(n− k+ 1)

Γ(n+ 1)

s∏

r=1

Γ(jr + 1)

Γ(tr + 1)Γ(jr − tr + 1)
(6.10)

=
Γ(k+ 1)Γ(η+ 1)

Γ(η+ k+ 1)

s∏

r=1

Γ(ir + tr + 1)

Γ(tr + 1)Γ(ir + 1)
(6.11)

=
Γ(η+ 1)∏s
r=1 Γ(ir + 1)

· Γ(k+ 1)∏s
r=1 Γ(tr + 1)

·
∏s
r=1 Γ(ir + tr + 1)

Γ(η+ k+ 1)
(6.12)

=

(
η

i1, . . . , is

)
B((t+ 1) + i)

B(t+ 1)
, (6.13)

which is the probability weight of a Dirichlet-multinomial distribution with parameters
η = n− k and t+ 1. �

6.2 Back-of-the-Envelope Approaches

Before tackling formal proofs, let us first devise a guess-timate for E[Cn] following gut
instinct, ignoring any cumbersome technicalities in our way. Such informal reasoning is
dangerous since we might arrive at wrong results. Not pursuing the path of intuition
altogether is just as dangerous, though, because interesting results might not be found at
all: they might be too deep in the jungle to be seen from our current camp of rigorous
knowledge.

Therefore, we first explore some back-of-the-envelope computations, and back them
up later with rigorous proofs. To make this very clear here is my explicit disclaimer: This
section is not intended to prove Theorem 6.1, it is there to convey intuitions. That said,
let us start. Since we seek an approximation for large n, let us consider n to be large, in
particular n > w, throughout this section.

6.2.1 Van Emden’s Entropy-Reduction Argument

Van Emden [55] was the first researcher to analytically compute the number of compar-
isons for classic Quicksort with median-of-(2t + 1). He attributes the formula to F. E. J.
Kruseman Aretz, who did not publish it however.

Van Emden’s derivation builds on an intuitive entropy argument, which is not fully rig-
orous, but definitely deserves to be mentioned here, not only because it is the historically
first published argument, but also because it conveys another enlightening perspective on
the Quicksort recurrence.

Sorting is a process of learning about the input: initially, we do not know anything
about the relative order of input elements, at the end, we have (maybe implicitly) fully
identified the initial permutation. In order to get there, we thus have to overcome ld(n!)
bits of uncertainty or entropy. By comparing two elements, we learn at most one bit, since

6 The Quicksort Recurrence

202

the outcome is binary. If we knew the (average) amount of information gain per compari-
son, we could invert that to compute how many such trials, i.e., how many comparisons,
we need to learn the whole permutation.

The amount of information gained is hard to tell on this individual basis, but we can
determine it for a whole partitioning step. If after partitioning, the pivot has rank I, all
(I− 1)!(n− I)! permutations of the remaining elements are still possible, leaving us with
uncertainty of ld((I− 1)!) + ld((n− I)!) bits. The information yield of the first partitioning
step then is ld(n!) − ld((I− 1)!) − ld((n− I)!); since we used n comparisons for that, the
average information gain per comparison is that divided by n. Asymptotically for large n,
we have ld(n!) ∼ n ld(n), so this information gain H is roughly

H =
1

n

(
n ld(n) − I ld(I) − (n− I) ld(n− I)

)
(6.14)

= −
I

n
ld
(
I

n

)
−
n− I

n
ld
(
n− I

n

)
(6.15)

≈ −Z ld(Z) − (1−Z) ld(1−Z) (6.16)

for Z = I/n. Now, for large n and a pivot chosen as median of 2t+ 1 sample elements, we
have Z D= Beta(t+ 1, t+ 1); we then obtain (Proposition 2.54 on page 90)

E[H] ≈ −2E[Z ld(Z)] = −
Ht+1 −H2t+2

ln(2)
=

H

ln(2)
. (6.17)

The expected number of comparisons is then ld(n!)/E[H] ≈ 1
H
n ln(n). Van Emden’s

argument can be extended to multiway Quicksort and asymmetric sampling; the only
change is that in our general model E[H] = −

∑s
r=1E[Dr ld(Dr)], leading to the general

formula for H from Equation (2.193).

� � �

The two steps, using the asymptotic approximation of ld(n!) for I and n− I, and replacing
I/n by Z, require formal justification, to bound the resulting error term. We essentially
follow this route in Section 6.3 below. The key to get back to firm grounds is to argue
along the formal description of costs that we have: the recurrence. So we try to get it into
a form that is easier to reason about.

6.2.2 A Continuous Recurrence

We start with the recurrence for E[Cn] in Equation (6.8), where we ignore the constant
offsets in n− (s− 1) and the error term for E[Tn] = an±O(n1−ε)

E[Cn] ≈ an +

n∑

j=0

E[Cj]

s∑

r=1

P
[
Jr = j

]

︸ ︷︷ ︸
=:wn,j

. (6.18)

The sum over all previous terms makes things a little involved; in particular the depen-
dence of the weights wn,j on the current value of n is a pain in the neck. Let us get rid of

Explicit Solution of Continuous Recurrence · 6.2.3

203

those then. We first symbolically substitute z ·n for j, so that z ∈ [0, 1] becomes the relative
subproblem size:

E[Cn] ≈ an +

n∑

zn=0

E[Czn]

s∑

r=1

P

[
Jr

n
= z

]
. (6.19)

In the sum over zn, of course n remains unchanged while z goes from 0 to 1, in discrete
steps of 1n . As often, things get simpler when discreet xness is thrown overboard. When
n gets larger and larger, z “scans” the unit interval more and more densely, so that it is
plausible to replace the sum by an integral:

n∑

zn=0

E[Czn]

s∑

r=1

P

[
Jr

n
= z

]
≈
∫1

z=0
E[Czn]

s∑

r=1

P

[
Jr

n
∈ (z− dz, z]

]
dz . (6.20)

Jr is essentially Bin(n− k,Dr) ≈ Bin(n,Dr) distributed when we fix D. For n large, Jr/n
is thus very close to its expectation Dr, so we continue with

≈
∫1

z=0
E[Czn]

s∑

r=1

P
[
Dr ∈ (z− dz, z]

]
dz . (6.21)

P
[
Dr ∈ (z − dz, z]

]
is nothing else than the density fDr(z) of Dr. This means that the

relative subproblem size follow a beta distribution, namely Beta(tr + 1,k − tr) for the rth
subproblem (r = 1, . . . , s). This does not depend on n any more. Hooray!

Recapitulating our steps up to now, we obtain a continuous recurrence

E[Cn] ≈ an +

∫1

0

w(z)E[Czn] dz , (6.22)

where w(z) is the shape function of the recurrence, i.e.,

w(z) =

s∑

r=1

fDr(z) =

s∑

r=1

ztr(1− z)k−tr−1

B(tr + 1,k− tr)
. (6.23)

6.2.3 Explicit Solution of Continuous Recurrence

Equation (6.22) is what we called the equilibrium equation of the original recurrence in
Section 2.6.4. There we made an educated guess for a solution and prove it correct; we
will repeat that process for our specific recurrence in Section 6.2.5. But let us take a step
back and try to justify this guess purely analytically.

Equation (6.22) is an integral equation for the unknown function φ(x) = E[Cx] of the
form

φ(x) = ax +

∫1

0

w(z)φ(zx) dz. (6.24)

6 The Quicksort Recurrence

204

The term φ(zx) might look scary, but we can substitute z = u/x to get rid of it

φ(x) = ax +

∫x

0

w(u/x)

x︸ ︷︷ ︸
K(x,u)

φ(u) du. (6.25)

Equations of this form are called Volterra integral equations of the second kind, they
are discussed, e.g., by Arfken and Weber [5]. General solutions are not available for
such integral equations, but there is hope if they have a separable kernel, i.e., if the
part K(x,u) =

w(u/x)
x of the integrand without the unknown function, can be written

as K(x,u) =
∑
iMi(x) ·Ni(u). As our w(z) is a polynomial, such a separation is possible,

more precisely, we have

K(x,u) =
w(u/x)

x
=

k∑

i=1

λi
ui−1

xi
(6.26)

by expanding. The coefficients λi can be computed explicitly, but we leave them for now
symbolically. Inserting into Equation (6.25), exchanging the order of integration and sum-
mation, and finally multiplying by xk gives

φ(x)xk = axk+1 +

k∑

i=1

λix
k−i

∫x

0

ui−1φ(u) du

︸ ︷︷ ︸
“ d−1
dx−1

xi−1φ(x)”

. (6.27)

Now in this form, the integrals are precisely in form of the fundamental theorem of calcu-
lus, so by differentiating k times on both sides, we do away with all integrals and obtain a
linear differential equation of order k. Moreover, all terms involving φ are products with
powers of x (or u inside the integral, but after taking the derivative of the integral, u turns
into x) with like powers. After taking the kth derivative, these terms are sums of terms of
the form xiφ(i)(x), so that the resulting differential equation is actually a Cauchy-Euler
equation. It can therefore be solved explicitly for a given sampling parameter t.

Example. Let us quickly illustrate the process for t = (1, 1), median-of-three Quicksort.
The kernel then is K(x,u) = −12u

2

x3
+ 12 u

x2
, which is already in the separated form. We

have k = 3 and the constants in the expansion are (λ1, λ2, λ3) = (0, 12,−12). Inserting
into Equation (6.27) and differentiating thrice, we obtain the Cauchy-Euler differential
equation

x3φ ′′′(x) + 9x2φ ′′(x) + 6xφ ′(x) − 6φ(x) = 24ax . (6.28)

With the differential operator Θf(x) = xf ′(x) the equation can be written as (Θ+ 6)(Θ+

1)(Θ− 1).φ(x) = 24ax, and successively solved to

φ(x) =
12

7
ax ln x +

(
c1 −

54

49
a

)
x +

c2
x

+
c3
x6

. (6.29)

A Master-Theorem-Style Argument · 6.2.4

205

The integration constants c1, c2 and c3 depend on the initial conditions; they do not affect
the leading term though, and its coefficient is correct!

One might try to derive a closed form for the operator polynomial, which will always have
a root Θ = 1 contributing the ln x factor. If we obtain the corresponding summand of the
solution, that would give another derivation of H.

With this approach, we can determine the general solution of the equilibrium equation.
We will verify in Section 6.2.5 that there is always a particular solution of the form φ(x) =
a
βx ln x; and we will see later that the difference between the equilibrium solution and the
solution of the original recurrence dominates the contribution of any other summands of
the general solution. We will therefore not pursue this path further; but it is interesting
that the continuous recurrence for the total cost function leads to structurally very similar
differential equations as for the generating function of the cost sequence, see Section 6.5.1.

� � �

The analytic solution of Equation (6.22) is doable, but cumbersome to carry out. Maybe we
can throw in some algorithmic insight to get to its solution without the rote calculations on
differential equations? Let us again take a step back and consider how we would roughly
bound the effort of a divide-and-conquer algorithm.

6.2.4 A Master-Theorem-Style Argument

In the classical master theorem for divide-and-conquer recurrences, there are three cases
to distinguish depending on the toll function:

1 If the toll function grows very slowly with n, the current subproblem size is not
very relevant, but the number of considered subproblems is important. In terms of
a recursion tree, the major contribution comes from the leaves of the tree. This also
means that initial conditions of the recurrence are important.

2 If the toll function has just the right rate of growth, the toll for treating one subprob-
lem is (roughly) the same as the tolls of treating all its direct child subproblems. This
means that on each level of the recursion tree, the toll costs sum up to (roughly) the
same cost and the overall solution is given by this sum of costs times the recursion
depth. In a classical divide-and-conquer recurrence, this depth is logarithmic.

3 Finally, if the toll function grows very fast with n, the first step essentially dominates
overall costs, as the toll costs of subproblems are small in relation to the first step.
The first two cases need no further restriction on the toll function, but in this last
case we have to assume a technical regularity condition.

Binary search and Mergesort are prime examples of the second case; in the analysis of
Karatsuba’s integer multiplication or Strassen’s matrix multiplication, we end up in the
first case, and in the Median-of-Medians selection algorithm, the initial call is asymptoti-
cally dominating, so we get the third case (see, e.g., Cormen et al. [35] for these examples).

6 The Quicksort Recurrence

206

The classical master theorem distinguishes these cases by comparing, for large n, the
toll of the topmost call with the total tolls of all its immediate child recursive calls. If there
is an (asymptotic) imbalance to the one or the other side, this imbalance will eventually
dominate for large n.

Figure 27: Balance scale of asymptotics.
Depending on which side out-
weighs the other, we have one
of the three cases of the master
theorem.

∫1

0
E[Tzn]w(z)dzE[Tn]

123

Quicksort is a paragon of divide and conquer, should not its recurrence be similar
to those well-conducted divide-and-conquer recurrences then? In fact, it is, only that we
have to consider the expected toll cost of the child subproblems to make the above case
distinction. So let us compare the toll of the first call E[Tn] to the total tolls of its child
recursive calls, i.e., how

∫1

0

E[Tzn]w(z) dz (6.30)

relates to E[Tn], as illustrated by Figure 27. Upon inserting the leading term E[Tn] = a ·n,
we find

∫1

0

aznw(z) dz = an , (6.31)

so the balanced case applies: The total cost of the child subproblems is (asymptotically)
the same as the cost of the initial call. In analogy with the classical master theorem, the
overall costs E[Cn] are thus the toll cost of the initial call times the number of levels in the
recursion tree.

6.2.5 Leading Term by Ansatz

Guessing that the number of recursion levels will be logarithmic as in the case of the clas-
sical master theorem, we make the ansatz E[Cn] =

a
βn lnn with an unknown constant β.

Inserting into Equation (6.22) yields

a

β
n lnn = an+

∫1

0

w(z)
a

β
zn ln(zn) dz . (6.32)

Multiplying by β
an and rearranging, we find

β = lnn ·
(
1−
∫1
0 zw(z)dz

)
−

∫1

0

z ln(z)w(z)dz , (6.33)

where the first integral is 1, we just computed it in Equation (6.31). This is good; otherwise
we would be left with a lnn term. The second integral turns out to be precisely −H

Solution with the Distributional Master Theorem · 6.3

207

(Proposition 2.54 on page 90). Recall that H = H(t) is the discrete entropy of t defined in
Equation (2.193). So we find that

E[Cn] =
a

H
n lnn

fulfills the continuous recurrence (6.22) exactly.

� � �

Great, our somewhat sketchy arguments all yield the correct leading term! Now that we
have gained confidence in this result, let us dive into the formal proofs. We start with
what is the most convenient one in my opinion, and then work our way through the more
elaborate methods that are needed to get more refined results.

6.3 Solution with the Distributional Master Theorem

Our first formal proof of Theorem 6.1 is based on the Distributional Master Theorem
(DMT), our Theorem 2.70 (page 106), which in turn builds on the Continuous Master
Theorem of Roura [154]. Because of its generality, the proof for Roura’s theorem is rather
lengthy; the concerned reader might appreciate that the simplified version, Theorem 2.71,
also suffices here. For the latter we gave a self-contained proof in Section 2.6.4.

Proof of Theorem 6.1: The random costs for Quicksort fulfill Equation (6.1), which is of
the form required by Theorem 2.70. Note that Cn is a linear function of the toll function Tn:
upon fully expanding recursive uses of Cn, we obtain for any n a large, but finite sum of
terms Tj with j 6 n. This is obvious from Equation (6.7), but let us state it for reference
here.

Fact 6.4: E[Cn] is a linear combination of terms E[Tj] with j 6 n, i.e., we can write
E[Cn] =

∑n
j=0 τn,j ·E[Tj] for some numbers τn,j > 0. �

We can therefore apply the DMT separately to each summand of the toll function, in our
case the main term an and the error term O(n1−ε). We will in total apply the DMT three
times:

1 to the main term an of E[Tn], which gives the leading term E[Cn] ∼ a
H
n lnn;

2 to the error term O(n1−ε), which contributes an O(n) term; and

3 to E[Cn] −
a
H
n lnn to bound the error of the leading-term approximation.

This will contribute another O(n) term.

Before we can do so, we have to show that Equation (2.269), the density convergence condi-
tion, holds for the relative subproblem sizes Z(n) = J(n)/n. What is the limiting behavior
of J/n? For large n, we have J ≈ I and for a fixed D this is I D= Mult(n− k,D). In other
words, I(n)r /n is the average of n i. i.d. drawings and thus converges almost surely to its
expectation, Dr for r = 1, . . . , s.

6 The Quicksort Recurrence

208

Our educated guess for the limiting marginal densities is

fZ∗r(z) = fDr(z) =
ztr(1− z)k−tr−1

B(tr + 1,k− tr)
, (6.34)

the density of Dr
D= Beta(tr + 1,k− tr). We guess that Z∗r

D= Dr. This limit density has
the required smoothness: it is Lipschitz-continuous by Lemma 2.29 (page 73) (and thus
Hölder-continuous by Proposition 2.9).

To show the required speed of convergence, recall that Ir
D= BetaBin(η, tr + 1,k− tr),

and by Lemma 2.38 (page 80), Ir/n converges in density to Dr. We only have to take
care of the little nuisance that our subproblem sizes J are J = I+ t, and thus not directly
Dirichlet-multinomially distributed. The small offset is harmless, though, since the limit
density is smooth enough: with z̃ so that z = z̃+ tr−z̃k

n , i.e., z̃ = zn−tr
η = z+ zk−tr

η , we
have

nP
[
Z(n)
r ∈ (z− 1

n , z]
]

= nP

[
Z(n)
r ∈

(
z̃+

tr − z̃k

n
−
1

n
, z̃+

tr − z̃k

n

]]
(6.35)

= nP

[
Z(n)
r ∈

(
z̃(n− k) + tr

n
−
1

n
,
z̃(n− k) + tr

n

]]
(6.36)

= nP
[
nZ(n)
r − tr ∈ (z̃η− 1, z̃η]

]
· n− k

n− k
(6.37)

= ηP
[
Ir = bz̃ηc

]
·
(
1+

k

η

)
(6.38)

=
Lemma 2.38

(
fDr(z̃)±O(η

−1)
)
·
(
1+

k

η

)
(6.39)

= fDr(z̃) ± O(η−1) (6.40)

= fDr

(
z+

zk− tr
η

)
± O(η−1) , (6.41)

and since fDr is Lipschitz-continuous (Lemma 2.29) and zk−tr
η = O(η−1) uniformly in

z ∈ (0, 1), we conclude with Proposition 2.12–(a) that this is

= fDr(z) ± O(η−1). (6.42)

This proves Equation (2.269). So, we have shown that the distributional recurrence in
Equation (6.1) fulfills the requirements of the DMT; we proceed with the three announced
applications of the DMT for different toll functions.

1 To obtain the main term, we use as toll function E[Tn] = an, i.e., parameters K = a,
α = 1, β = 0. As

∑s
r=1Dr = 1, we have H = 1−

∑s
r=1E[Dr] = 0, so we are in case 2

of the DMT. Thus E[Cn] ∼ E[Tn] lnn
H̃

with H̃ = −
∑s
r=1E[Dr ln(Dr)] = E[Hln(D)],

which is the expected entropy of the distribution induced by D. Proposition 2.54
(page 90) yields H̃ = Hhdκ(τ) = H(t) and E[Cn] ∼ a

H
n lnn, as claimed.

2 Next, we consider the error term O(n1−ε) in the expansion of E[Tn]. By definition,
there is a constant K with E[Tn] 6 Kn1−ε for large enough n, so we set E[Tn] =

Solution with the Distributional Master Theorem · 6.3

209

Kn1−ε. Consequently, we have to compute H = 1−
∑s
r=1E[D1−εr]. Since x1−ε > x

for all x ∈ (0, 1), we must have
∑s
r=1E[D1−εr] >

∑s
r=1E[Dr] = 1, thus H < 0. We

are therefore in case 3 of the DMT. We already know that we have
∑s
r=1E[Dcr] = 1

for c = 1, so the contribution from the toll function E[Tn] = Kn1−ε is in O(n). We
thus get an overall contribution of O(n) for tolls in O(n1−ε).

3 Finally, we consider the remainder Rn := Cn− a
H
n lnn in order to bound the second-

order term in the asymptotic approximation of E[Cn]. From Equation (6.1) for n > k,
we find

Rn
D
= Tn +

s∑

r=1

R
(r)
Jr

+

s∑

r=1

a

H
Jr ln(Jr) −

a

H
n lnn (6.43)

=: TR(n) +

s∑

r=1

R
(r)
Jr

, (6.44)

so Rn also fulfills a recurrence of the shape (2.268) and the DMT is applicable. If we
can show that E[TR(n)] = O(n

1−ε), we know from above that E[Rn] = O(n) and we
are done. So let us work on

TR(n) = Tn −
a

H

(
n lnn −

s∑

r=1

Jr ln Jr
)

(6.45)

a little more. The main idea is that second summand can be written (details follow)
as

an ·

∑s
r=1E

[
Jr
n ln

(
Jr
n

)]

∑s
r=1E[Dr lnDr]

,

which converges to an since Jr/n → Dr. However, we have to explicitly deal with
the error to prove our claim E[TR(n)] = O(n1−ε), so we have to look a little closer.
Again, it is inconvenient that I, and not directly J = I+ t, has a Dirichlet-multinomial
distribution, but the small offset does not matter in the end:

TR(n) − Tn =
a

H

(s∑

r=1

Jr ln Jr − n lnn
)

(6.46)

(using J = I+ t and splitting n = I1 + · · ·+ Is + k in the n lnn term)

=
a

H

(s∑

r=1

Ir
(
ln Jr − lnn

)
+

s∑

r=1

tr ln Jr − k lnn
)

(6.47)

=
a

H

s∑

r=1

Ir
(
ln Jr − ln Ir + ln Ir − lnη+ lnη︸ ︷︷ ︸

=0

− lnn
)
± O(logn)

(6.48)

=
a

H

(s∑

r=1

Ir

(
ln
(
Ir

η

)
+ ln

(
Jr

Ir

))
+ η ln

(
η

n

))
± O(logn) (6.49)

6 The Quicksort Recurrence

210

=

(
1−

k

n

)
an

H

s∑

r=1

Ir

η
ln
Ir

η

+
a

H
η ln

(
1−

k

n

)

︸ ︷︷ ︸
=O(1)

+
a

H

s∑

r=1

Ir ln
(
1+

tr

Ir

)

︸ ︷︷ ︸
=O(1)

± O(logn) (6.50)

(using ln(1+ x) 6 x twice and k
n = Θ(n−1))

=
an

H

s∑

r=1

Ir

η
ln
Ir

η
± O(logn). (6.51)

Now, we take expectations and insert H = −
∑s
r=1E[Dr lnDr], see the proof for the

main term above, to get

E[TR(n)] = an − an ·
∑s
r=1E[Irη ln Irη]∑s
r=1E[Dr lnDr]

± O(logn). (6.52)

We can apply Lemma 2.36 on the conditional expectation E
[
Ir
η ln Irη

∣∣Dr
]

because x 7→
x ln x is Hölder-continuous for any exponent h ∈ (0, 1) on x ∈ [0, 1] by Lemma 2.13.
We get for any ε ′ > 0

E[TR(n)] = an − an ·
∑s
r=1E[Dr lnDr] + o(n−1/2+ε ′)∑s

r=1E[Dr lnDr]
± O(logn) (6.53)

= O(n1/2+ε
′
). (6.54)

Thus, by the DMT with arguments just as in the second step above, we find E[Rn] =

E[Cn] −
a
H
n lnn = O(n).

Putting these three results together concludes the proof of Theorem 6.1. �

6.4 Random-Parameter Pivot Sampling

The proof using the distributional master theorem extends very nicely to the random-
parameter pivot-sampling case, e.g., ninther sampling; see Section 4.4.2 for details. The
recurrence, Equation (6.1), remains valid literally, the only thing that changes is that now
the distributions in Equation (6.2) only hold conditionally on the event T = t. We can thus
copy Theorem 6.1 almost literally.

Theorem 6.5 (Total Expected Costs (Random-Parameter Sampling)):
The total expected costs E[Cn] for sorting a random permutation with a randomness-
preserving Quicksort using a partitioning method that incurs expected costs E[Tn] of
the form E[Tn] = an±O(n1−ε), with constants a and ε > 0, to produce s segments and
whose s− 1 pivots are chosen by generalized pivot sampling with the finitely supported

Random-Parameter Pivot Sampling · 6.4

211

random parameter T ∈Ns are asymptotically

E[Cn] =
a

E[H(T)]
n lnn ± O(n).

This result holds also if we truncate the recursion at subproblems of size at most w, for
any constant w, and switch to another sorting method. J

By “finitely supported” we mean that T can take only finitely many different values. This
is probably not necessary for the statement of the theorem to hold, but it spares us from
dealing with convergence issues in the proof.

Proof: We can extend the arguments used in Section 6.3 for the case of a fixed T , and we
will only consider the difference to that case in detail.

Let us assume that T takes the values t(1), . . . , t(b) ∈Ns
0 for some b ∈N. Conditional

on T we have D D= Dir(T + 1), i.e., D is a mixture of Dirichlet variables; see Section 5.2.4.
Its density is then a convex combination of Dirichlet densities:

fDr(z) =

b∑

i=1

P[T = t(i)] · z
t(i)r (1− z)k−t

(i)
r −1

B(t(i)r + 1,k− t(i)r)
; (6.55)

it is Hölder-continuous as it is the sum of Hölder-continuous functions, see Lemma 2.11–
(a). Since all t(i) are constant, by Equation (6.42) we have that uniformly in z ∈ (0, 1)
holds

nP
[
Z(n)
r ∈ (z− 1

n , z]
∣∣∣ T = t(i)

]
=

zt
(i)
r (1− z)k

(i)−t(i)r −1

B(t(i)r + 1,k(i) − t(i)r)
± O(η−1). (6.56)

Unconditioning using the law of total probability yields

nP
[
Z(n)
r ∈ (z− 1

n , z]
]

=

b∑

i=1

P[T = t(i)] · z
t(i)r (1− z)k

(i)−t(i)r −1

B(t(i)r + 1,k(i) − t(i)r)
︸ ︷︷ ︸

=fDr(z)

± O(η−1). (6.57)

So the DMT is applicable; as in Section 6.3, we apply it three times.

1 We still have ΣD = 1 by definition, so we are in Case 2. Conditionally on T = t(i), we
have E[Hln(D) | T = t(i)] = H(t(i)) and by the law of total expectation H̃ = E[H(T)],
as claimed.

2 The arguments for the bound on the influence of the lower term of E[Tn] remains
valid literally.

3 Likewise, the proof of the bound on the difference between exact solution and lead-
ing term remains literally the same; all arguments consider a fixed D.

This concludes the proof. �

6 The Quicksort Recurrence

212

� � �

Sedgewick [162] and Hennequin [77] considered a scenario equivalent to random-
parameter sampling in their respective theses, and it is certainly possible to prove The-
orem 6.5 without the stochastic detour that we took. However, the stochastic formulation
allows an elegant solution of the Quicksort recurrence that naturally suggests and supports
the extension to random-parameter sampling.

On the other hand, if we require more than the leading term, for example as in
Lemma 6.2, the master-theorem-style arguments are too coarse. We thus present the more
algebraic route to solve the Quicksort recurrence in the following section.

6.5 Solution with Generating Functions

The arguments in this section follow the presentation in the French doctoral thesis of
Hennequin [77], and are a generalization of the analysis for the single-pivot case given in
Sedgewick’s Ph.D. thesis [162]. We rederive and detail some of Hennequin’s results here
for the reader’s convenience and for future reference as a “community service.”

We restrict our attention to solving the recurrence of expected costs. Hennequin ad-
ditionally considers properties of the distribution of Cn and gives a description of Quick-
sort in terms of combinatorial structures as discussed by Flajolet and Sedgewick [64] in
depth. This latter part is covered for single-pivot Quicksort in an English article by Hen-
nequin [76], as well.

� � �

We start with introducing the ordinary generating function

C(z) =
∑

n>0
E[Cn]z

n (6.58)

for the sequence (E[Cn])n∈N0
. We will show that the recurrence on the coefficients im-

plies a Cauchy-Euler differential equation for C(z). Such equations can in principle be
solved explicitly using the differential-operator method, as discussed in Section 2.3.2. As
the degree of the differential equation depends on k, the explicit solution has to remain
symbolic, though. In particular, determining the integration constants is a challenging task
in general.

It can luckily be shown that the integration constants are irrelevant for the leading
term of the coefficients. Using the O-transfer theorems of Flajolet and Odlyzko [62], also
given in Analytic Combinatorics [64], we can directly translate the partially determined
generating function into a truncated asymptotic expansion for the coefficients, i.e., our
sequence of costs E[Cn].

6.5.1 A Differential Equation for the Generating Function

We will often need to sum over all feasible vectors of subproblem sizes j, so we define the
abbreviation Jn := {j ∈ Ns

0 : Σj = n− (s− 1)}. We start with Equation (6.7) and insert

A Differential Equation for the Generating Function · 6.5.1

213

Equation (6.9) for P[J = j] to obtain

E[Cn] =

E[Tn] +
∑

j∈Jn

∏s
r=1

(
jr
tr

)
(
n
k

)
s∑

r=1

E[Cjr], n > w;

E[Wn], n 6 w.

(6.59)

Multiplying both sides by
(
n
k

)
zn and summing over all n > 0, we obtain

∑

n>0

(
n

k

)
E[Cn]z

n =

∑

n>w

[(
n

k

)
E[Tn]z

n +
∑

j∈Jn

[s∏

r=1

(
jr

tr

)] s∑

l=1

E[Cjl]z
n

]
+

w∑

n=0

(
n

k

)
E[Wn]z

n . (6.60)

Our goal is to express this equation in terms the generating functions C(z) and T(z) =∑
n>0E[Tn]z

n. The left-hand side is easily expressed in terms of derivatives of C(z) using

∑

n>0

(
n

k

)
E[Cn]z

n =
zkC(k)(z)

k!
, (6.61)

which follows from C(k)(z) =
∑
n>0 n

kE[Cn]z
n−k by multiplying with zk/k!. The first

of the three parts on the right is similar, but since the sum excludes sizes n = 1, . . . ,w,
we have to subtract

∑w
n=0

(
n
k

)
E[Tn]z

n again. For the remaining terms, we have to work
a little harder. Exchanging the order of summations we can split the middle terms into
s summands dealing with E[Cj1], . . . , E[Cjs], respectively. Let us consider the term for
E[Cj1]. With the abbreviations ̂ = (j2, . . . , js) and ρ̂ = (s− 1) +Σ̂ = j2+ · · ·+ js+ s− 1, so
that j1 = n− ρ̂, we find:

∑

n>0

∑

j∈Jn

[s∏

r=1

(
jr

tr

)]
E[Cj1] z

n (6.62)

=
∑

n>0

∑

j∈Jn

[s∏

r=2

(
jr

tr

)]
·
(
j1
t1

)
E[Cj1] z

n (6.63)

=
∑

̂∈Ns−1
0

[s∏

r=2

(
jr

tr

)]∑

n>ρ̂

(
n− ρ̂

t1

)
E[Cn−ρ̂] z

n (6.64)

=
∑

̂∈Ns−1
0

zρ̂
[s∏

r=2

(
jr

tr

)]∑

n>0

(
n

t1

)
E[Cn] z

n (6.65)

=
(6.61)

z(s−1)+t2+···+ts
∑

̂∈Ns−1
0

[s∏

r=2

(
jr

tr

)
zjr−tr

]
· z
t1C(t1)(z)

t1!
(6.66)

=
zkC(t1)(z)

t1!

s∏

r=2

∞∑

jr=0

(
jr

tr

)
zjr−tr (6.67)

6 The Quicksort Recurrence

214

=
(2.64)

zkC(t1)(z)

t1!

s∏

r=2

1

(1− z)tr+1
(6.68)

=
zkC(t1)(z)

t1!(1− z)k−t1
. (6.69)

Similar computations with E[Cj2], . . . , E[Cjs] yield corresponding results. Using this rep-
resentation in Equation (6.60) for the generating functions, we find

zkC(k)(z)

k!
=

zkT (k)(z)

k!
+

s∑

r=1

[
zkC(tr)(z)

tr!(1− z)k−tr
−

w∑

n=0

∑

j∈Jn

[s∏

r=1

(
jr

tr

)]
E[Cjr]z

n

]

+

w∑

n=0

(
n

k

)(
E[Wn] − E[Tn]

)
zn (6.70)

=
zkT (k)(z)

k!
+

s∑

r=1

zkC(tr)(z)

tr!(1− z)k−tr

+

w∑

n=k

zn

[(
n

k

)(
E[Wn] − E[Tn]

)
−
∑

j∈Jn

[s∏

r=1

(
jr

tr

)] s∑

r=1

E[Wjr]

]

︸ ︷︷ ︸
=:σn

. (6.71)

Multiplying both sides by (1− z)k/zk finally yields a Cauchy-Euler differential equation
for C(z):

(1− z)kC(k)(z)

k!
−

s∑

r=1

(1− z)trC(tr)(z)

tr!
=

(1− z)kT (k)(z)

k!
+ (1− z)k

w−k∑

n=0

σn+k z
n . (6.72)

This equation corresponds to Equation (III.12) of Hennequin [77]. Note that the only
summand involving the unwieldy coefficients σn is a polynomial of degree w − k when
viewed as a function of z. Wn thus only contributes to a polynomial part of the right-hand
side, and the leading term of the asymptotic expansion of E[Cn], the coefficients of C(z),
is thus independent of the strategy for sorting small subarrays.

6.5.2 Differential-Operator Transformation

For solving the differential equation, it is convenient to make the change of variable x =

1− z and denote by C̄(x) := C(1− x) and T̄(x) := T(1− x) the correspondingly changed
generating functions. Hennequin uses C̃(x) instead of C̄(x); our notation is meant to
resemble the minus sign in 1− x. We can then rephrase Equation (6.72) using a differential
operator Θ, defined by

Θf(x) = x d
dxf(x) . (6.73)

Differential-Operator Transformation · 6.5.2

215

As discussed in Section 2.3.2, Θ is a linear operator, and with powers Θi understood as i
successive applications, we can extend the notation to P(Θ)[f(x)] for arbitrary polynomi-
als P. Recall that

(
Θ

k

)
f(x) =

1

k!
Θ(Θ− 1) · · · (Θ− k+ 1)f(x) =

xkf(k)(x)

k!
, (2.98) revisited

so we can write Equation (6.72) as

Pt(Θ)C̄(x) = (−1)k
(
Θ

k

)
T̄(x) + xk

w−k∑

n=0

σn+k (1− x)
n (6.74)

with Pt(Θ) = (−1)k
(
Θ

k

)
−

s∑

r=1

(−1)tr
(
Θ

tr

)
. (6.75)

The −1 factors come from the inner derivate of the original functions:

d

dx
C̄(x) =

d

dx
C(1− x) = −

d

dz
C(z)

∣∣∣∣
z=1−x

. (6.76)

For the rest of the section, we will only work with C̄(x) and T̄(x), and thus avoid further
trouble with −1 factors.

The main benefit of writing our differential equation in terms of Θ, however, is that
it unleashes the power to apply algebraic transformations to the operator polynomial Pt;
the prime trick of the trade being to factorize Pt. This allows us to reduce the differential
equation to a sequence of ordinary first-order equations, which are easy to solve using
integrating factors. In order to do so, we need the roots of Pt, which depend on t in a
non-obvious way.

Luckily, we can obtain the main terms of the solution without computing all roots. In
fact, Hennequin showed that all contributions to coefficients up to the linear term come
from the single root −2. Following his argument for the symmetric case t = (t, . . . , t), we
will solve Equation (6.74) up to linear terms for coefficients. The following lemma collects
the needed properties of Pt.

Lemma 6.6: The polynomial Pt(y) given in Equation (6.75) has a simple root at y = −2 and
all other roots have real part strictly greater than −2. The value of the derivative at y = −2

is given by

P ′t(−2) = −(k+ 1)Hk+1 +

s∑

r=1

(tr + 1)Htr+1 = (k+ 1) ·H(t). (6.77)
J

The first part of Lemma 6.6 corresponds to Lemme B.8 of Hennequin [77] and we follow
his arguments in the proof.

Proof: To check that −2 is a root, we negate the upper index with Equation (2.63)

(−1)m
(
−2

m

)
= (−1)2m

(
m+ 1

m

)
= m+ 1, for integer m, (6.78)

6 The Quicksort Recurrence

216

hence Pt(−2) = k+ 1−
∑r
l=1(tr + 1) = 0. Next, we compute the derivative at −2, consid-

ering the summands in isolation. For any integer m, we have by the product rule

d

dy
(−1)m

(
y

m

)∣∣∣∣
y=−2

=
(−1)m

m!

m−1∑

i=0

ym

y− i

∣∣∣∣
y=−2

(6.79)

= −
2m

m!

m−1∑

i=0

1

2+ i
(6.80)

= −(m+ 1)(Hm+1 − 1) , (6.81)

which proves Equation (6.77). If y = −2was a multiple root of Pt, we would have P ′t(−2) =
0, however, we easily find by monotonicity of Hn and since tr 6 k− (s− 1)

P ′t(−2) < −(k+ 1)Hk+1 +

s∑

r=1

(tr + 1)Hk+1 (6.82)

= Hk+1

(s∑

r=1

(tr + 1) − (k+ 1)

)
= 0 . (6.83)

It remains to show that all other roots of Pt have real part no smaller than −2. For
that, we write Pt as

Pt(y) = (−1)k
(
y

k

)(
1−

s∑

r=1

Btr(y)

)
(6.84)

with Bt(y) = (−1)k−t
(
y

t

)/(
y

k

)
(6.85)

= (−1)k−t
k!
t!
yt

yk
(6.86)

=
kk−t

(t− y)k−t
(6.87)

=
t+ 1

k+ 1
· k+ 1

k− 1− y

k

k− 2− y

k− 1

k− 3− y
· · · t+ 2
t− y

. (6.88)

Let y = a+ ib be an arbitrary complex number with <(y) = a 6 −2 and y 6= −2. Then we
have for c > 0

∣∣∣∣
c− y

c+ 2

∣∣∣∣ =

√(c− a
c+ 2

)2
+
(b

c+ 2

)2
> 1, (6.89)

since we have c−a
c+2 > 1 with equality for a = −2; and if a = −2, we have b 6= 0 by

assumption. This means that all fractions k+1−i
k−1−y−i , for i = 0, 1, . . . ,k− t, are of modulus

strictly less than 1, so we have |Bt(y)| <
t+1
k+1 and thus

∣∣∣∣
s∑

r=1

Btr(y)

∣∣∣∣ < 1. (6.90)

From the representation of Pt in Equation (6.84), it is clear that then |Pt(y)| 6= 0, so y is not
a root. �

A General Solution to the Differential Equation · 6.5.3

217

By Lemma 6.6, we can write Pt as

Pt(y) = Qt(y)(y+ 2) =
(−1)k

k!
(y−α1)(y−α2) · · · (y−αk−1)(y+ 2) (6.91)

for a polynomial Qt(y) of degree k− 1 with (not necessarily distinct) roots α1, . . . ,αk−1,
for which we know that <(αi) > −2, for i = 1, . . . ,k− 1. The factor (−1)k/k! comes from
equating coefficients: the common factor must be the coefficient of the highest power yk.

For any fixed k, we can find ε̃ = ε̃(k) > 0 such that <(αi) > −2+ ε̃ for all roots αi and
also −1 > −2+ ε̃.

6.5.3 A General Solution to the Differential Equation

We discussed how to solve Euler equations in Section 2.3.2; with the knowledge about the
roots of the operator polynomial this is a simple application of Theorem 2.23 (page 66).
We still have to take care of the right-hand side of Equation (6.74).

By assumption, our toll function is E[Tn] = an±O(n1−ε) for some constants a and
ε > 0. We would like to translate the error term for E[Tn] into a corresponding error term
for T(z) as z→ 1, the dominant singularity of T(z).

Translating O-terms from a generating function to its coefficients is an intensely stud-
ied and well-understood operation. It is formally justified by so-called transfer theorems,
a term originally coined by Flajolet and Odlyzko [62]. O-transfers are at the core of the
process of singularity analysis of generating functions, which is comprehensively described
in Analytic Combinatorics [64, Chapter VI].

For our scenario above, we would need the inverse direction, from coefficients to gen-
erating functions. This case is not covered by the standard O-transfer theorems, e.g.,
Theorem VI.3 of Flajolet and Sedgewick [64].

Inverse O-Transfers. It might often be the case that we would like to translate a known
sequence to generating functions to apply a certain transformation that is conveniently
done in the world of series, and then extract coefficients again. If that first sequence is
only known in the form of an asymptotic approximation, the first step corresponds to an
“inverse O-transfer.”

It is certainly possible to deduce some properties of the generating function from
bounds on its coefficients, e.g., that the radius of convergence must be at least 1 if coef-
ficients grow sub-exponentially. Other properties are simply not available from a coarse
asymptotic bound on coefficients, most notably the location of dominant singularities.
Assume we know that fn = O(n) as n → ∞ and f(z) =

∑
fnz

n. We can conclude that
f(z) = O((1− z)−2) as z→ 1 inside the unit disk; otherwise we would get faster-growing
coefficients.

We cannot, however, extend the validity of the bound |f(z)| 6 K|1 − z|−2 beyond a
neighborhood of 1 in general, as f might have additional singularities at any point z0 on
the unit circle. To make the discussion concrete, take g(z) = (1− z)−2(z0 − z)

−2, whose
coefficients satisfy by ordinary O-transfer (Theorem VI.5 of Flajolet and Sedgewick [64])
[zn]g(z) = O(n), as well.

6 The Quicksort Recurrence

218

If we cannot locate the dominant singularities, the usual approaches to extract precise
bounds for coefficients are not available, and the detour to the generating functions world
remains fruitless.

I spent a few days on proving properties of functions and their singular expansions
if we only have analyticity inside the unit disk. A weak form of an inverse O-theorem can
be obtained, and differentiation and integration of singular expansions can be justified.
However as indicated above, the obtained analyticity properties for the functions are too
weak in the end to obtain useful error bounds on the coefficients again.

An unfortunate formulation of Flajolet and Odlyzko [62] in their Theorem 4 had
fueled my hopes to succeed on this route. They wrote “Assume that f(z) is analytic in
|z| < 1. Assume further that as z → 1 in this domain, f(z) = O(|1− z|α), for some real number
α < −1.” In the limiting sense used also in this work, the O-term is only concerned with
a neighborhood around 1, but what they mean here is that we have |f(z)| 6 K|1− z|α “in
this domain,” i.e., for all z with |z| < 1—the bound has to hold in the whole open unit
disk! This of course excludes the possibility of any singular points other than 1 in whose
neighborhood f becomes unbounded. Flajolet and Sedgewick [64] briefly mentioned this
in their Note VI.10, stating more clearly that “in the whole open unit disc it [the function]
satisfies f(z) = O((1− z)−α)”.

Using only an asymptotic approximation for the coefficients, such a uniform bound
for the generating function in the whole open unit disk seems impossible to obtain, and
the idea of inverse O-transfer turns out to be a dead end. May posterity be warned.

To avoid the troubles of inverse O-transfers, we will work with concrete functions instead.
This is essentially made possible by Fact 6.4, which implies that we can solve our recur-
rence using an upper and lower bound on E[Tn] and obtain an upper and lower bound
on E[Cn]. This monotonicity of the transformation of toll costs into total costs relieves
us of dealing with generating functions of a sequence that we only know as asymptotic
approximation.

Our toll terms are given as the asymptotic approximation E[Tn] = an±O(n1−ε). We
can well assume that 1− ε > 0, i.e., 1 < ε < 2; otherwise we weaken our error bound
slightly. The asymptotic approximation means that there are constants n0 and C so that
for all n > n0 holds |E[Tn]| 6 an+ Cn1−ε 6 an+ C

(
n+1−ε
n

)
, where the last inequality

follows by Lemma 2.15 (page 56). Let K be the maximum of C and max06n<n0 |E[Tn]|.
Then we have for all n ∈N0 the following corridor for our toll costs

a(n+ 1) − K
((
n+1−ε
n

)
+ 1
)
6 E[Tn] 6 a(n+ 1) + K

((
n+1−ε
n

)
+ 1
)

. (6.92)

Multiplying by zn and summing over all n, we find

a

(1− z)2
− K

(
1

(1− z)2−ε
+

1

1− z

)
6 T(z) 6 a

(1− z)2
+ K

(
1

(1− z)2−ε
+

1

1− z

)
.

(6.93)

Note that the only singularities of the upper and lower bounds are at z = 1; in particular
we can analytically continue both bounds to the whole complex plane slit along [1,+∞),
so that they are ∆-analytic. We continue our derivation with the upper and lower bounds
instead of T(z), knowing that this will give us a sandwich for the coefficients in the end.

Coefficient Asymptotics · 6.5.4

219

By truncating the precision to the point where the bounds differ, we can handle the lower
and upper bound in one shot. So let us set

T(z) :=
a

(1− z)2
± K

(
1

(1− z)2−ε
+

1

1− z

)
(6.94)

=
a

(1− z)2
± O

(
(1− z)−2+ε

)
, (z→ 1). (6.95)

The singular expansion for z→ 1 follows from 1 < ε < 2.
Next, we have to apply the differential-operator polynomial to T̄(x) = T(1− x). Taking

term-wise derivatives of T̄(x) is justified by Proposition 2.20 (page 62), where we use that
T(z) is ∆-analytic. The result of applying operator polynomial (−1)k

(
Θ
k

)
to T̄(x) then

fulfills

(−1)k
(
Θ

k

)
T̄(x) = (−1)k

(
Θ

k

)(
ax−2 ±O(x−2+ε)

)
(6.96)

=
Proposition 2.21

a(−1)k
(
−2

k

)
x−2 ± O(x−2+ε) (6.97)

=
(2.63)

a(k+ 1)

x2
± O(x−2+ε). (6.98)

Inserting into Equation (6.74) yields the Euler equation

Qt(Θ)(Θ+ 2)C̄(x) =
a(k+ 1)

x2
± O(x−2+ε) , (6.99)

where the O-term considers the limit as x→ 0.
Solving this equation is a simple application of Theorem 2.23, where we weaken the

error bound O(x−2+ε) so that −2+ ε is smaller than the real part of any of the roots of Qt;
this is possible for any fixed k by Lemma 6.6. We thus obtain that C̄(1− z) is ∆-analytic
and admits for x→ 0 the singular expansion

C̄(x) =
a(k+ 1)

Qt(−2)
x−2 ln(x) + λx−2 ± O(x−2+ε), (x→ 0), (6.100)

where λ is an integration constant that depends on the initial conditions of the differential
equation and thus on the initial conditions for E[Cn].

6.5.4 Coefficient Asymptotics

Observing that

P ′t(−2) =
d

dy
(y+ 2)Qt(y)

∣∣∣∣
y=−2

= Qt(−2), (6.101)

we can use Lemma 6.6 and substitute back x = 1− z to get the generating function for the
total costs as

C(z) =
a

H(t)

ln
(
1
1−z

)

(1− z)2
+

λ

(1− z)2
± O

(
1

(1− z)2−ε

)
, (6.102)

6 The Quicksort Recurrence

220

where the error bound considers the limit z → 1. As C(z) is ∆-analytic we can translate
the error bound on the generating function to an appropriate error bound on coefficients
using Theorem 2.19. The coefficients of the first two summands are from the standard
function scale, see Equation (2.93); so we finally find

E[Cn] =
a

H

(
Hn+1 − 1

)
(n+ 1) + λ(n+ 1) ± O(n1−ε) , (6.103)

where λ is an unknown constant. Inserting the well-known asymptotic approximation for
the harmonic numbers Hn = lnn+ γ±O(n−1), see Equation (2.70), concludes the proof
of Lemma 6.2 and Theorem 6.1.

� � �

With this second proof, we close our study of the Quicksort recurrence, and this also
completes the technical part of our analysis of Quicksort under the random-permutation
model. It only remains to put the pieces together, and to see what algorithmic conclusions
we can draw from our findings; this is our plan for the next chapter.

221

Results and Discussion7
Contents

7.1 Average Costs . 222

7.2 Disclaimer . 225

7.3 Simulating Multiway Partitioning by Binary Partitioning 226

7.4 The Optimal Meeting Point for Indices 230

7.5 Optimal Pivot Sampling 235

7.6 The Optimal Number of Pivots 246

7.7 Optimal Comparison Trees 261

7.8 Interactions between Parameters: The Jellyfish Paradox 279

7 Results and Discussion

222

This chapter is devoted to the discussion of the results of our analysis. The analysis was
carried out in a setting as general as tractable, keeping a parameter for as many choices
for the algorithm as possible, to not exclude any potentially interesting variant. In its full
glory, the statement for the average cost is presented in Section 7.1. Merely stating this
result in a concise way requires creative abbreviations. We will spend the most part of
this chapter to get a feeling for what it means algorithmically by looking at the result from
various angles.

7.1 Average Costs

We are finally in the position to state the main result of this work: the expected costs of
Quicksort with generic s-way one-pass partitioning, symbolically in all its parameters, and
in several cost measures.

Theorem 7.1 (Expected Costs of s-way Quicksort):
Consider Quicksort with generic one-pass partitioning (Algorithm 9), splitting the input
into s ∈ N>2 segments at once, with meeting point m ∈ {0, 0.5, 1, 1.5, . . . , s− 0.5, s} of
main scanning indices, pivot-sampling parameters t ∈ Ns

0, comparison trees λk, λg ∈
Λs, and Insertionsort cutoff w > k.

Sorting a random permutation of n elements with Quicksort costs on average Cn =
aC
H
n lnn ± O(n) key comparisons and SEn = aSE

H
n lnn ± O(n) scanned elements,

where the leading-term coefficients are given by

aC =
∑

c∈C
τr(c)

λk(c) · (σ→ + [c = s]) + λg(c) · (σ← + [c = l])
κ− σ↔ + [c 6= m]

, (7.1)

aSE =

dme∑

i=1

i · τdme−i+1 +

s−bmc∑

j=1

j · τbmc+j −
σ↔
κ

. (7.2)

(We use the abbreviations in Table 4 for concise notation.)
Moreover, s-way Quicksort uses Sn = aS

H
n lnn±O(n) (cyclic) shifts / swaps, which

cause WAn = aWA
H
n lnn±O(n) write accesses to the array where

aWA = aSE −M , (7.3)

aS = 1−
σ→σ←

κ(κ− σ↔ + 1)
−M , (7.4)

where we have

M =

τm
σ→ + 1

κ+ 1
+ τm+1

σ← + 1

κ+ 1
, for the master-pivot case;

σ↔
κ

for the master-segment case.
(7.5)
J

Average Costs · 7.1

223

Table 4: This table collects notations and abbreviations used in Theorem 7.1.

Symbol Definition

τ (t+ 1)/(k+ 1) = σ/κ

σ t+ 1

κ k+ 1 = σ1 + · · ·+ σs
σ→ σ1 + · · ·+ σbmc
σ↔ σbmc+1 + · · ·+ σdme; (0 for m ∈N and σdme otherwise)
σ← σdme+1 + · · ·+ σs
r(c) index in [s] corresponding to c, see (5.3) on page 167
λk(c) number of comparisons to classify c-type element with λk
λg(c) as λk(c), but using tree λg

[c = s] etc. 1 if c is a small class, 0 otherwise; see Table 5

Table 5: Which classes count as small, medium resp. large. Note that for master-segment
algorithms, s1 and l1 coincide, and are written as m. Such elements are neither
regarded small nor large then.

“c = s/m/l” c = s2 . . . sdme c = s1 c = m c = l1 c = l2 . . . ls−bmc

Master Pivot y/n/n y/n/n — n/n/y n/n/y
Master Segment y/n/n n/y/n n/y/n n/y/n n/n/y

Proof: For the proof, we only have to put the pieces together: By Lemma 5.3 (page 173)
(Equation (5.17)), we know that the partitioning costs can be expressed via class-state
co-occurrences and the constants from the cost-measure-specific charging schemes. The
latter are listed in the tables in Section 5.4 (page 174) for the four cost measures covered
by Theorem 7.1. The leading terms of the class-state co-occurrences are listed in Table 2
(page 185). Together, we obtain the partitioning costs as E[Tn] = an ±O(1), where a
depends on the parameters of the algorithm and the cost measure. We finally obtain the
total costs using Theorem 6.1. �

The formulas in Theorem 7.1 are a bit hard to digest, and we will discuss them extensively
in the rest of this chapter. Before we dive into this, let us look at a few concrete numbers
first. To keep things simple, let us set t = 0, i.e., we do not use pivot sampling.

Table 6 shows the leading-term coefficients a/H for all cost measures and the parame-
ter choices corresponding to the Quicksort variants we discussed in Section 4.2; see also Ta-
ble 1 (page 158). They coincide with known results from the literature [82, 162, 24, 182, 105].
Note that many previous works counted the number of binary swaps [162, 182, 105]. Since
our generic partitioning method is not based on binary swaps, this cost measure does not
appear in the table. In particular, it is not the same as the number of cyclic shifts.

7 Results and Discussion

224

Table 6: Leading-term coefficients of costs for parameter choices corresponding to famous
Quicksort variants, and a few more. All results are for t = 0, i.e., without sampling.
The numbers are all rational, and where feasible we give exact representations as
(repeating) decimals.

s m λk λg aC/H aSE/H aWA/H aS/H

2 1 2 2 0.6 0.3

2 2 2 3 2 1

3 2 1.9 1.6 1.1 0.5

3 1.5 2.13 2 1.6 0.6

3 1.5 1.86 2 1.6 0.6

3 3 2 2.4 2 0.8

4 2 1.846153 1.384615 1.1076923 0.461538

6 3 1.80624... 1.37931... 1.24795... 0.410509...

6 6 1.87192... 2.41379... 2.29885... 0.574713...

8 4 1.746361 1.455301 1.374451 0.371910

Chapter Outline. A few observations are immediate from the values in Table 6. For exam-
ple, using more pivots seems beneficial for the number of comparisons. Hennequin [77]
already noted this in his thesis. We will see in Section 7.7.6, however, that part of this
improvement is spurious in a certain sense.

Multiway partitioning is also beneficial for the number of scanned elements, in fact,
the savings are even more pronounced; but unlike for comparisons, there seems to be a
finite optimal s w.r.t. scanned elements. We consider this in detail in Section 7.6. Scanned
elements are also very sensitive to parameter m, and so are write accesses and shifts. We
consider choices for m in Section 7.4.

From the few examples it is hard to tell what the influence of λk and λg will be. For
s = 3 it is clearly important to choose them wisely, and having two different trees helps,
for s = 6 the differences in the number of comparisons are smaller. Section 7.7 sheds light
on that.

The numbers in Table 6 are without pivot sampling. How to choose t is the subject
of Section 7.5, but we will see throughout this chapter that pivot sampling can change the
picture dramatically. We close this chapter with a word of caution in Section 7.8: as the

Disclaimer · 7.2

225

jellyfish paradox shows, intuitions for optimal parameter choices can be misleading when
pivot sampling is taken into account.

7.2 Disclaimer

All discussions in this chapter consider the leading-term coefficient of the average costs
in the random-permutation model. It has to be taken into account that the given opti-
mal choices need not be best possible for small n. Our goal is to provide an academic
discussion of good values for the parameters and why they are so. This provides guide-
lines for identifying promising Quicksort variants for practice; but the choices need further
empirical evaluation before they are used in production code.

The parameter space is vast. Even for the leading term of costs we can still play with

I s, the number of segments,

I k, the sample size,

I τ, the quantiles vector, (which together with k determines t = τ(k+ 1) − 1),

I λk and λg, the comparison trees that determine to which pivots we compare an
element, and

I m, the meeting point of the main scanning indices k and g, which also determines
whether we use a master-pivot or a master-segment method.

An implementation also has to decide for a threshold w, i.e., when to stop recursion, and
which algorithm to use for the base cases; Insertionsort is the classical choice, but others
are possible. We will have to concentrate on certain restricted regions of the parameter
space.

In the following, we will mostly try to identify good choices for all the parameters
of generic s-way Quicksort in isolation; i.e., in Sections 7.4 – 7.7, we focus on one of the
parameters, namely the meeting point m, the pivot-sampling parameter t, the number
of segments s and the comparison trees λk and λg, respectively, and consider the other
parameters as given. Even though this does not in general reveal what the optimal combi-
nation of parameters is (see Section 7.8), it seems the only manageable approach to me.

Moreover, we will focus on comparisons and scanned elements. The former is the
classical cost measure for sorting, and of interest because of the connections to information
theory. If we sort complex objects, comparisons are an expensive operation, and might
in fact dominate running time. For simple types like numbers, the number of scanned
elements is more likely to be a good predictor for running time on modern machines, so
this is the cost measure of practical interest.

In contrast, the number of cyclic shifts is not likely to predict running time well, since
shifts of different length contribute the same; the number of write accesses is more appro-
priate in this respect. Write accesses, however, are of minor importance in practice, since
all array cells we ever write to were read immediately before, so that the write access is
cached for sure.

7 Results and Discussion

226

7.3 Simulating Multiway Partitioning by Binary Partitioning

A reason why multiway Quicksort might not have been considered interesting in the past
is that it can be simulated by several rounds of binary partitioning. We will discuss below
what exactly can be gained by multiway partitioning; not much in terms of comparisons,
but quite a lot in terms of scanned elements.

The situation is reminiscent of folklore results about Mergesort: a heap-based multi-
way merge can also be simulated by iterative binary merging, and the comparison costs
are very similar. In terms of I/Os, however, multiway merging is far superior. What makes
the situation in Quicksort much more interesting is the choices of the pivots.

7.3.1 Waterloo vs. Classic

Let us first consider a simple example. Consider Waterloo Quicksort without sampling,
i.e., the parameter choice s = 4, t = (0, 0, 0, 0) m = 2, and λk = λg = . What one execu-
tion of four-way partitioning does in a single step can also be achieved by first partitioning
the input around P2, and then partitioning only the left segment around P1, and likewise
only the right segment around P3.

Each (ordinary) element will have participated in exactly two binary partitioning
rounds, so the overall number of comparisons for the latter is 2η. (Recall that η = n− k =

n− 3 is the number of ordinary elements). Similarly, classifying an element using also
requires exactly two comparisons per element, yielding costs 2η also for the single round
of four-way partitioning. Does that mean that four-way Quicksort and classic Quicksort
use the same number of comparisons in total?

The answer is no; Theorem 7.1 tell us that classic Quicksort needs 2n lnn ± O(n)
comparisons, while four-way Quicksort needs only 24

13n lnn ±O(n). Why does classic
Quicksort need 8.3% more comparisons in the asymptotic average?

Apples and Oranges. The difference is that even though the three pivots for four-way
Quicksort are randomly selected, they are then sorted, so P2 is effectively chosen as the
median of three elements. The first round of partitioning gets a higher-quality pivot, and
produces more balanced subproblems on average.

That Waterloo Quicksort without sampling outperforms classic Quicksort without
sampling seems to speak in favor of multiway partitioning, but we are really compar-
ing apples and oranges: we effectively allow one method to sample pivots but not the
other. Recall that we effectively disregard the costs for sampling since it only contributes
to the O(n) error term; that is not a fair comparison then.

Towards a Fair Race. To make the competition fair, we have to allow sampling for clas-
sic Quicksort, as well. Is four-way Quicksort then equivalent to median-of-three classic
Quicksort? Again no; the costs for the latter would be 12

7 n lnn±O(n), roughly another
2.2% better than four-way Quicksort. The reason is that the second level of partitioning,
where we use P1 resp. P3 as pivots, does not get a median-of-three pivot, but rather a

Entropy-Equivalent Sampling · 7.3.2

227

random one. (A moments reflection shows that P1 is indeed uniformly selected among
the elements smaller than P2, i.e., those in the left segment, and similarly for P3.)

If we want to simulate four-way Quicksort without sampling using binary partitioning,
we have to alternate between the two pivot selection modes: initially, we pick the median-
of-three, for the child recursive calls we switch to no sampling, for their child calls again
back to median-of-three, and so on. For this simple example, it is easy to see that the two
methods perform exactly the same comparisons if sampled-out elements of a median-of-
three round become the pivots of the child calls.

The main result of this section is that, for the leading term of costs, we can consider
a randomized version of this alternating scheme: In each round, we flip a (fair) coin and
depending on its outcome we either choose the pivot at random or as median of three
elements. That is to say, we use a random-parameter pivot-sampling scheme (cf. Section 4.4.2)
whose parameter T takes the values t = (0, 0) and t = (1, 1) with probability one half each.
On average, we will use median-of-three in half of the partitioning steps, as in the strictly
alternating version, so it is plausible that the costs should be similar.

7.3.2 Entropy-Equivalent Sampling

In this section, we show that for any pivot-sampling parameter t ∈Ns
0, we can indeed find

a binary random-parameter scheme T = (T1, T2), so that choosing a single pivot according
to T is equivalent to sampling s− 1 pivots according to t w.r.t. the reduction in entropy.
To make precise what we mean by this statement, we need some notation.

Bisection Trees. To simulate s-way partitioning, we have to choose pivots for the binary
partitioning rounds: for s = 3, we may first use P1 and then partitioning the right segment
around P2, or we first use P2 and partition the left segment around P1 afterwards. It is in
general inevitable that not all elements participate in the same number of rounds.

To describe one possible way to organize rounds, we fix a bisection tree λb ∈ Λs.
The levels of this BST correspond to the rounds of binary partitioning, and the labels
of inner nodes indicate the pivots to use in these rounds. Leaves correspond to one of the
s classes resp. segments produced by s-way partitioning. A natural choice for λb is to pick
a comparison tree used for classification; but recall that λk and λg need not be equal. For
the statements below, λb may be an entirely different tree.

Let the internal nodes of λb be v1, . . . , vs−1, indexed in in-order, so that node vr corre-
sponds to a binary partitioning step using pivot Pr. Further, let the s leaves be labeled by
σ1, . . . ,σs, the parameter σ = t+ 1 of the pivot-sampling scheme of the s-way Quicksort.
We then denote for each inner node v by κ(v) the sum of leaf weights in its subtree; for
the root, this is simply κ = Σσ. Moreover, we write p(v) = κ(v)

κ , which is the probability
to pass node v in a search for a random leaf, and pL(v) resp. pR(v) = 1− pL(v) are the
probabilities to go to the left respectively right child of v in such a search. Finally, we
denote the expected depth of a random leaf by

b =

s−1∑

r=1

p(vr) = λb
T · τ. (7.6)

7 Results and Discussion

228

Proposition 7.2 (Equivalent Binary Sampling-Parameter Distribution):
Let τ ∈ (0, 1)s, κ > 0, and a bisection tree λb ∈ Λs be given. With the notation introduced
above, let

T =

s−1∑

r=1

1{X=r} ·
(
κ(vr) ·

(
pL(vr),pR(vr)

)
− 1︸ ︷︷ ︸

 local (t1, t2)-sampling at v

)
, (7.7)

with X
D
= D

(
p(v1)

b
, . . . ,

p(vs−1)

b

)
. (7.8)

Then holds

E
[
H(T)

]
=

H(t)

b
, (7.9)

and we will call that number the effective bisection entropy of t w.r.t. λb. J

Proof: With the corresponding lemma from our discussion of discrete entropy, see Sec-
tion 2.5 (page 89), the proof is actually trivial:

E
[
H(T)

]
=

s−1∑

r=1

p(vr)

b
·H
(
κ(vr) ·

(
pL(vr),pR(vr)

)
− 1
)

(7.10)

=
1

b

s−1∑

r=1

κ(vr)

κ
Hhdκ(vr)(pL(vr),pR(vr)) (7.11)

=
Lemma 2.67

1

b
·Hhdκ(τ) (7.12)

=
H(t)

b
. (7.13)

�
Our notation hides an important fact that deserves to be noticed: if τ is κ-discretized
in the sense of Definition 2.51, then all local probabilities τ(v) = (pL(v),pR(v)) will be
κ(v)-discretized. This means that T ∈ Ns

0 holds, and the resulting sampling scheme is
implementable.

Entropy-Equivalent Sample Sizes. With Proposition 7.2 we can compare two otherwise
incomparable sampling schemes, for example: is t = (0, 1, 2) yielding higher-quality pivots
than t = (0, 0, 0, 0, 0, 0)? Note that both schemes use a sample of five elements.

For both, we first select bisection trees, and we will in the following always pick the
best such, i.e., the ones with minimal values for b. These are simply optimal BSTs with leaf
weights τ; we discuss properties of such trees in depth in Section 7.7.3. For t = (0, 1, 2),
the optimal b is 32 , for t = (0, 0, 0, 0, 0, 0), we have 8

3 . Proposition 7.2 says that we should
compare the effective bisection entropy of the two, which here is

26

45
= 0.57 vs.

87

160
= 0.54375 , (7.14)

s-Way vs. Binary Partitioning · 7.3.3

229

0.5 0.55 0.6 0.65
0

2

4

6

8

(0,0,0)

(0,0,0,0)
(0,0,0,0,0,0)

(0,0,0,0,0,0,0,0)

(1,1,1)
(0,1,2)

(0,0,1)

(1,1,1,1)

(0,0,3,3,0,0)

(0,2,7,7,2,0)

ninther

Figure 28: Entropy-equivalent median-of-k sampling.
The x-axis gives the discrete entropy per
binary partitioning round, i.e., the x-
coordinate for the given points is com-
puted as H(t)/b∗(τ); the y-axis shows
the value of k, so that median-of-k sam-
pling has this entropy, i.e., x- and y-values
are related as x = Hhdy+1(

1
2 , 12).

so t = (0, 1, 2) yields higher-quality pivots.
But is this difference significant? The effective bisection entropy is not a very intuitive

scale to judge that. We can always translate it to a (not necessarily integral) sample size k̂,
so that it has the same entropy-value as median-of-k̂ sampling. To do so, we (numerically)
solve the equation

Hhdk̂+1(
1
2 , 12) = −hdk̂+1(

1
2) =

H(t)

b
. (7.15)

Figure 28 shows k̂ as a function of the right-hand side, and also includes the values of a
few exemplary sampling parameters. For our two from above, we find that the quality of
pivots using t = (0, 1, 2) corresponds approximately to “median-of-2.778,” whereas pivots
using t = (0, 0, 0, 0, 0, 0) correspond to “median-of-1.776.”

7.3.3 s-Way vs. Binary Partitioning

Recall that the overall costs of generalized Quicksort are given by a
H
n lnn±O(n), where

we understand H either as H(t) for a fixed t, or as E[H(T)] for random-parameter sam-
pling; see Theorem 6.5. Proposition 7.2 then simply says that we can exactly simulate the
effect of drawing s− 1 pivots according to the sampling parameter t in a Quicksort vari-
ant that uses only binary partitioning with a suitably chosen random-parameter sampling
scheme T = (T1, T2).

More importantly, Proposition 7.2 allows to assess the relative efficiency of an s-way
partitioning method w.r.t. classic binary partitioning in isolation, without the different
shapes of the recurrences getting in our way: we simulate s-way partitioning by b rounds
of binary partitioning, where b depends on the bisection tree λb and on τ; these b rounds
of binary partitioning each have cost n ±O(1), independent of sampling. If the s-way
method cannot beat this cost of bn±O(1), there is no incentive to use multiway partition-
ing.

The value b depends on the bisection tree λb, which we are free to choose; for a fair
comparison we should choose the best possible such tree as above. Since b is the weighted
external path length of λb, when we assign the probabilities τ1, . . . , τs to the leaves, b is
nothing but the expected search costs of λb, which are lower-bounded by the entropy:

7 Results and Discussion

230

b > Hld(τ), see Proposition 2.49 (page 86). We can thus advise for τ the quantiles vector
of our pivot selection method:

If multiway-partitioning is more than Hld(τ) times as expensive as binary par-
titioning, i.e., if a > Hld(τ), better use classic Quicksort with median-of-k̂.

Assume we use only one comparison tree λk = λg. The entropy bound then also holds
for comparison-costs there, so we have a > Hld(τ), and by the above rule, we are always
at least as good with iterated binary partitioning. With respect to the average comparison
count, there is absolutely no savings possible from multiway partitioning with a single
(fixed) comparison tree. Zero.

Any apparent advantage of multiway methods is due to comparing apples and or-
anges: we effectively allow the multiway methods to sample higher-quality pivots. If we
are fair enough to grant classic Quicksort the entropy-equivalent amount of sampling, it is
at least as good.

But this is not the end of the story; multiway partitioning does have intrinsic qualities:

1 We can use two different comparison trees in generic one-pass partitioning, and this
indeed allows us to break the entropy bound (or circumvent it rather).

2 For practical purposes the number of scanned elements is more important than com-
parisons; for those there is no lower bound that spoils the game, and indeed, signifi-
cant savings are possible.

In the following sections, we will quantify what is possible, and which parameter choices
reap the most benefits from multiway partitioning.

7.4 The Optimal Meeting Point for Indices

Recall that our generic s-way partitioning method consists of repeatedly moving the scan-
ning indices towards each other, k to the right or g to left, putting the newly encountered
element into the corresponding segment. One parameter of this method is the meeting
point of the scanning indices k and g; more precisely m is the number of segments to the
left of the point where k and g finally meet. We allow non-integral values like m = 1.5,
which means that k and g jointly scan one segment, in this case the second one, counting
from the left. Such a partitioning method is of the master-segment type, those with m ∈ N

are called master-pivot methods.
The flexibility in parameter m allows us to give one general analysis that covers many

special cases of existing partitioning methods, see Chapter 4. It does not complicate analy-
sis too much, so we kept it symbolically. Aumüller et al. [10] also use the value m, but
they fix it to m = ds/2e. They do not consider master-segment methods.

For interpreting results, every additional parameter complicates matters significantly.
If we can, we will fix parameters to values that are good for most, if not all, choices of all
other parameters. This is not possible, since the parameters interact and influence each
other; but as we will see in this section, m = ds/2e is often a good choice.

Comparisons · 7.4.1

231

7.4.1 Comparisons

With respect to comparisons, m essentially influences how many elements are classified
with λk and how many with λg. If λk = λg, the number of comparisons does not depend
on m at all. So assume λk 6= λg. To put the difference between the two trees to good use,
m ≈ s/2 intuitively is a good choice. It is a recurrent theme of this chapter that things are
a little more involved than they might appear at first glance, and this case is no exception.
Let us look at a few examples to get a feeling of the influence of m.

We focus on simple choices for the other parameters, in particular let us assume we do
not use pivot sampling, i.e., t = 0, and we pick for each parameter set the optimal pair of
comparison trees (λk, λg). When s is an integer-power of two, the best pick for both trees
is the complete binary search tree; we discuss this in more detail in Section 7.7. In that
case, the choice of m is immaterial to the number of comparisons; this is a boring case.
Figure 29 shows all possible choices for m for a few exemplary values of s that are not
powers of two.

0 1 2 3 4 5 6 7 8 9 10

1.745

1.75

1.755

1.76

s = 10

Figure 29: Comparisons in s-way Quicksort as a func-
tion of m, for different choices for s. All
variants use t = 0. λk and λg are cho-
sen so as to minimize comparisons for each
given parameter configuration. The x-axis
variesm, the y-axis shows the leading-term
coefficient of the expected number of com-
parisons. Note that m = ds/2e is never
optimal; but always close to.

0 1 2 3

1.9

1.95

2 s = 3

0 1 2 3 4 5

1.82

1.84

1.86
s = 5

0 1 2 3 4 5 6

1.8

1.82

1.84
s = 6

0 1 2 3 4 5 6 7

1.78

1.785

1.79

1.795
s = 7

Our general intuition to pick m roughly at s/2 is confirmed, but the patterns that
emerge are interesting. Note in particular that neither m = s/2, m = ds/2e, nor m = bs/2c
are optimal for all s, even though they always come close. With a little more diligence,
we can characterize the choices for m that contribute the lowest two levels of points in
Figure 29, in particular also for cases like in s = 7.

Proposition 7.3: Assume s is fixed and let t = 0. Further let (λk, λg) be the optimal trees
w.r.t. the number of comparisons, for given s, m and t. Among m ∈ {0, 0.5, 1, 1.5, . . . , s}, an
optimal choice is m∗ = ds/2e− 1

2 . Unless s is a power of two, no master-pivot method, i.e.,
no choice m ∈N0, achieves optimal cost.

7 Results and Discussion

232

Moreover, let lll = lll(s) = 2
(
s− 2bld(s)c

)
be the number of leaves on the lower level

of a maximally balanced binary tree with s leaves. Write ls = min{lll, s− lll} and ls2 =

max{lll, s− lll}. All of the following choices for m are optimal, and they are the only optimal
choices unless s is a power of two:

{
ls + 1

2 , ls + 1
2 + 1 , . . . , ls2 − 1

2

}
. (7.16)

Finally, for any m ∈ (ls, ls2) holds

aC = bld(s)c+ 1 −
[
lll < s

2

]
· s− 2 lll

s
− ls ·

(
1+

1

s− [m /∈N0] + 1

)
. (7.17)

(Note that ls = 0 for s a power of two.) J

Proof: The optimal choice of comparison trees in this scenario uses for λk a maximally
balanced binary search tree on s leaves whose leftmost s− lll(s) leaves are at depth bld(s)c
and the remaining lll(s) leaves are on level bld(s)c+ 1. As we do not use sampling, the
access probabilities for all leaves of the trees are almost uniform, with a slight overhang
on the left, so the above tree is a plausible choice. We refer the reader to our detailed
discussion of optimal trees, in particular Section 7.7.6 (page 271), for formal arguments for
the optimality of this tree.

We thus have λk(c) = bld(s)c for all c ∈ C with r(c) 6 s− lll, and λk(c) = bld(s)c+ 1
otherwise. Similarly, λg is the maximally balanced BST where the leaves on the lesser level
are at the very right, i.e., λg(c) = bld(s)c for r(c) > lll, and λg(c) = bld(s)c+ 1 otherwise.

Inserting this and our other parameters into the expression for aC from Theorem 7.1,
we find after rearranging

aC = bld(s)c+ 1 −
[
lll < s

2

]s− 2 lll
s

−
1

s
·

bmc(bmc+1)
s−[m/∈Z]+1 +

[m/∈Z]·bmc
s−[m/∈Z] +

(ls−dme)bmc
s−[m/∈Z]+1 , m 6 ls,

ls(bmc+1)
s−[m/∈Z]+1 , m > ls,

−
1

s
·

(s−dme)(s−dme+1)
s−[m/∈Z]+1 +

[m/∈Z](s−dme)
s−1 +

(ls−s+bmc)(s−dme)
s−[m/∈Z]+1 , m > ls2,

ls(s−dme+1)
s−[m/∈Z]+1 , m < ls2.

(7.18)

The terms are a bit unwieldy, but the representation is telling. The terms in the first line do
not depend on m, so we can ignore them for optimizing. In the case distinctions one easily
checks that the first alternative is smaller in both cases, and as we subtract it, we should
thus pick the second alternative to minimize aC. This already shows thatm∗ ∈ (ls, ls2). For
all such m, adding up the two terms from the case distinctions yields the representation
of Equation (7.17).

It remains to show that ds/2e− 1
2 ∈ (ls, ls2), in particular that interval had better not

be empty. So, assume towards a contradiction that ls = ls2 for some s ∈ N. Unfolding

Scanned Elements · 7.4.2

233

definitions, that would mean lll(s) = s− lll(s), i.e.,

s = 2 lll(s) = 4
(
s− 2bld(s)c

)
(7.19)

=⇒ s =
2bld(s)c

3
/∈ Z, (7.20)

so ls2− ls > 1. For the claim that master-pivot methods are not optimal unless s is a power
of two, it suffices to note that in Equation (7.17), only the last term depends on m, namely
via [m /∈N0]. �

7.4.2 Scanned Elements

Scanned elements are simpler to deal with than comparisons: we do not have to take
different trees into account. To keep things simple, let us again consider the case without
pivot sampling, i.e., t = 0. Then κ = s, σ = 1, and τ = (1s , . . . , 1s), so the leading-term
coefficient from Theorem 7.1 becomes

aSE =
1

s

dme∑

i=1

i +
1

s

s−bmc∑

j=1

j −
[m /∈ Z]

s
(7.21)

=
dme2 + (s− bmc)2

2s
−

[m /∈ Z]

s
. (7.22)

Figure 30 shows a few exemplary values, similarly as Figure 29 above for comparisons.
Values around s/2 seem to be good. With a quick second look, we can again characterize
optimal choices precisely.

0 1 2 3

1.6

1.8

2

2.2

2.4 s = 3

0 1 2 3 4

1.5

2

s = 4

0 1 2 3 4 5

1.5

2

s = 5

0 1 2 3 4 5 6

1.5

2

2.5
s = 6

Figure 30: Scanned elements in s-way Quicksort as a function ofm, for different choices for s. All variants
use t = 0. The x-axis varies m, the y-axis shows the leading-term coefficient of the expected
number of scanned elements.

Proposition 7.4: Assume s is fixed and let t = 0. Among m ∈ {0, 0.5, 1, 1.5, . . . , s}, the
optimal choices are exactly m∗ = ds/2e and m∗ = bs/2c, for which

aSE =
ds/2e
2

(
1+

1

s

)
. (7.23)

In particular, no master-segment method, i.e., no choice m /∈N0, achieves optimal cost. J

7 Results and Discussion

234

Proof: We first show that among all master-pivot methods, those with m closest to s/2
must be optimal. If m ∈N0, we have by Equation (7.22)

aSE =
m2 + (s−m)2

2s
, (7.24)

and upon settings m = µs for µ ∈ [0, 1] and rearranging, this is

= s ·
(
1

2
− µ(1− µ)

)
+
1

2
. (7.25)

aSE is obviously minimal for µ = 1/2, and increasing monotonically from there. The
integer values closest to s/2 are optimal among all master-pivot choices.

Next, we show that for any master-segment method, the adjacent integer m is strictly
better. Rewriting the term for aSE lets us see why that is the case:

aSE =
1

s

dme∑

i=1

i +
1

s

s−bmc∑

j=1+[m/∈Z]

j (7.26)

=
1

s

dme∑

i=1

i +

1

s

s−dme∑

j=1

j, for m ∈N0,

1

s

s−dme∑

j=1

(j+ 1), for m /∈N0.

(7.27)

Thus we can strictly improve aSE for any m ∈ {1.5, 2.5 . . . , s− 0.5} by using m− 0.5 ∈ N0

instead, since dme = dm− 0.5e = m− 0.5. �

7.4.3 Summary

The meeting point m of the indices is a rather simple parameter in its influence on overall
costs. For our cost measures it is always optimal to use m ∈

{
s−1
2 , s2 , s+12

}
, and all three

choices are usually close to the optimum. We will in the following mostly use m = ds/2e
since this choice is always optimal w.r.t. scanned elements and master-pivot methods also
feel more natural to me. For odd s, the resulting method is thus asymmetric: there is
one more segment that is scanned from the left than there are segments on the right; YBB
Quicksort is the instantiation of this scheme for s = 3.

� � �

Other measures of quality might well lead to other choices of m. As vividly discussed
by Bentley [18], code simplicity, ease of implementation and maintenance favor Lomuto’s
partitioning scheme (s = 2, m = 2) over Hoare’s scheme (s = 2, m = 1). One deliberately
compromises on efficiency then, which may be appropriate in a given situation. The
analysis in this work tells us how much we pay for simplicity; in this case 50% additional
scanned elements.

Optimal Pivot Sampling · 7.5

235

7.5 Optimal Pivot Sampling

While choosing pivots from a sample of the input has been used in Quicksort since its
child days, people mostly focused on equidistant choices for the pivots. For single-pivot
Quicksort, the median-of-three strategy has become a classic trick to speed up Quicksort,
and its generalization, median-of-(2t+ 1), has been studied extensively.

The possibility to choose other order statistics of the sample has been considered, but
was not found very helpful [162, 77]: the studied Quicksort versions were highly sym-
metric—either single-pivot Quicksort, or multiway Quicksort, but with a single, balanced
comparison tree and no one-pass in-place partitioning—therefore skewed pivots only in-
creased the entropy H, but did not lower the comparison count per partitioning step.

There are scenarios where, even for the symmetric, classic Quicksort, a skewed pivot
can yield benefits over median of (2t+ 1): the number of swaps and the number of branch
misses increase in single-pivot Quicksort when using sampling, unless skewed order sta-
tistics are used [116, 96]. However, these cost measures do not usually dominate practical
performance.

Only with the advent of the truly asymmetric YBB Quicksort has skewed sampling
entered the limelight [185, 137]. In this section, we extend these results to our generic
s-way Quicksort and try to find optimal ways to pick pivots from a sample.

We start by briefly discussing the parameter k, the sample size. For the rest of the
section, we assume k is already given; either as some concrete value or as the limiting
behavior for k → ∞, where pivots are chosen as precise quantiles of the input. We then
give conditions for optimality, starting with the simplest ones and working onwards to
more general statements. In particular, we first consider the limit case k→∞. We conclude
the section with examples of optimal sampling vectors.

7.5.1 Optimal Sample Sizes?

In our discussion, we confine ourselves to the leading terms of costs. For these leading
terms, the cost of pivot sampling is completely neglected: If we consider the sample size k a
fixed, constant parameter, we have only constant effort per partitioning step. The number
of partitioning steps remains linear in n, since we exclude in each step the constant number
of pivots from further consideration. Together this means that pivot sampling only affects
the linear term of overall costs. When we only consider leading terms, we can increase k
for free.

An interesting theoretic model is to let k be a function of n. This has been studied for
classic Quicksort [123, 116]. We do not cover that case in this work.

For most cost measures, larger sample sizes improve overall costs in the leading term,
because Hhdκ is decreasing with κ, and there is no finite optimal sample size.

We will consider the limiting case k → ∞ in more detail in the following, for two
reasons. First, because it corresponds to the best sample size, even though we cannot
expect to achieve this costs with finite k. Second, because in the limit any stochastic vector
is a feasible quantiles vector τ, which simplifies the process of finding optimal quantiles.

7 Results and Discussion

236

We will then at the end of this section try to translate back from optimal continuous
quantiles to the κ-discretized choices for a finite sample size k.

The actual value of k in practice has to be chosen to yield good performance on rea-
sonably sized inputs. Our leading-term analysis is not very helpful in doing so, but it
clearly states how the theoretical cost measures are affected, and how much can be gained
from using larger samples.

7.5.2 Entropy-Tight Pairs

For certain cases, it is simple to show that a given sampling vector τmust be optimal w.r.t.
comparisons, because it achieves the information-theoretic lower bound for comparison-
based sorting. For a single comparison tree and the exact-quantile limit k → ∞, we
can in fact characterize the optimal parameters: they are precisely the entropy-tight pairs of
comparison trees and quantiles vectors.

Proposition 7.5: Assume s and λk = λg and τ are fixed. Then the leading-term coefficient
of the expected number of comparisons converges to 1/ ln(2) as k→∞ if and only if

τr =
1

2λk(r)
, for r = 1, . . . , s, (2.192) revisited

where λk(r) denotes the depth of the rth leaf of λk.
Parameters (s, λk,τ) that fulfill Equation (2.192) are called exact-quantiles comparison-

optimal: no other parameter configuration can have a strictly smaller limiting value as
k→∞ for the leading-term coefficient of the expected number of comparisons. J

Proof: For a single comparison tree we have independent of k that

aC =

s∑

r=1

τrλk(r) (7.28)

= E[λk(I)] (7.29)

for I D= D(τ). By Fact 2.50 (page 88) and Proposition 2.49 this is

> Hld(τ) , (7.30)

and equality holds exactly under the given assumption, Equation (2.192). The overall
number of comparisons in the limit k→∞ is then ∼ Hld(τ)

Hln(τ)
n lnn = 1

ln2n lnn, which is up
to first order the information-theoretic lower bound for comparison-based sorting. So the
given parameter configuration is asymptotically optimal. �

There are a lot of exact-quantiles comparison-optimal choices (s, λ,τ). The probably most
well-known is s = 2 and τ = (12 , 12), which is the limit case of median-of-k Quicksort
for k → ∞. For a single pivot, there is only one comparison tree with both classes on
level 1, so we have aC = 1 regardless of τ. For the entropy Hln(τ), we have the unique
maximum of ln(2) at τ = (12 , 12) (Corollary 2.44), so for single-pivot Quicksort, this is the
only comparison-optimal sampling vector.

Linear Costs With Exact-Quantile Pivots · 7.5.3

237

For more pivots, there are many different comparison trees to choose from. If we fix
any of them, λk = λg = λ and define a quantiles vector τ according to Equation (2.192), the
so obtained triple (s, λ,τ) is exact-quantiles comparison-optimal, and it is the only such
for the given λ.

� � �

Arguing for optimality w.r.t. comparisons is facilitated by entropy bounds: whenever an
algorithm needs asymptotically n ld(n) comparisons, we know it must be optimal to first
order, irrespective of any alternative parameter choices. Similarly, we could lower-bound
partitioning costs with entropy arguments. One can extend these arguments a little further,
however, even for other cost measures.

7.5.3 Linear Costs With Exact-Quantile Pivots

Aumüller et al. [10] noticed that we can use Gibb’s inequality, stated as Lemma 2.43 in this
work, to cook up a rather general optimality criterion for the exact-quantiles case. We give
here a slightly stronger version of Lemma 8.1 of Aumüller et al., adding uniqueness of the
optimum.

Proposition 7.6 (Optimality Criterion for k→∞): Let a = a(τ) = αTτ =
∑s
r=1 αrτr, for

a vector α ∈ Rs>0 with s > 2. Then the unique minimum of a(τ)/Hln(τ) over all τ ∈ [0, 1]s

with Στ = 1 is attained for τ∗ = xα = (xα1 , . . . , xαs) and has value a(τ∗)/Hln(τ
∗) =

1/ ln(1/x), where x is the unique value in (0, 1) so that Στ∗ = 1. J

Proof: Let us briefly check that x as claimed exists and is unique. Σ(xα) is non-negative
and continuous, and goes from 0 at x = 0 to s at x = 1, so it must cross the value 1 in
between by the intermediate value theorem. Moreover, Σ(xα) is strictly increasing on (0, 1),
so the crossing point is unique.

Let now τ ∈ [0, 1]s with Στ = 1 be arbitrary. Using Lemma 2.43 with p = τ and
q = τ∗, we find

Hln(τ) 6 −

s∑

r=1

τr ln(τ∗r) (7.31)

= −

s∑

r=1

τr ln(xαr) (7.32)

= − ln(x)
s∑

r=1

αrτr (7.33)

= ln(1/x)a(τ), (7.34)

so a(τ)/Hln(τ) > 1/ ln(1/x). As in Lemma 2.43, equality holds only for τ = τ∗, so the
minimum of 1/ ln(1/x) is attained only for τ∗. �

Proposition 7.6 offers an analytic method to determine the optimal sampling parameter in
the exact-quantile limit. It applies, however, only to cost measures for which the leading-

7 Results and Discussion

238

term coefficient of partitioning costs is a linear function of τ. For our selection of measures,
this is the number of scanned elements and the number of comparisons when λk = λg = λ.

Comparisons. For comparisons, the coefficient vector α is simply
(
λ(1), . . . , λ(s)

)
, the

sequence of leaf depths in λ. We already know that the value for which (xλ(1), . . . , xλ(s))
sums to one is x = 1

2 : τ∗ =
(
1
2

)α is just the entropy-tight distribution for tree λ, and the
minimal value for a/Hln is 1/ ln(2). For comparisons, Proposition 7.6 reduces exactly to
Proposition 7.5.

A Generalized Lower Bound. For comparisons, we knew a priori that the leading-term
coefficient cannot undercut 1/ ln(2) . With Proposition 7.6, we can generalize this property,
as well: In the given form, the partitioning cost coefficient a(τ) does not depend on the
sample size k at all. As the discrete entropy of any τ ∈ [0, 1)s is always strictly larger than
its base-e Shannon entropy (Lemma 2.63 on page 96), we obtain the following corollary
from Proposition 7.6.

Corollary 7.7 (Lower Bound for Finite k): Let a = a(τ) = αTτ for a vector α ∈ Rs>0 and
x∗ be the unique solution of Σ(xα) = 1 in (0, 1). For any finite κ > s and τ ∈ [0, 1)s with
Στ = 1 holds a(τ)/Hhdκ(τ) > 1/ ln(1/x∗). In particular, for any sampling vector t ∈ Ns

0

holds a(τ)/H(t) > 1/ ln(1/x∗). �

For the number of comparisons, Corollary 7.7 shows that it is impossible to achieve the lower
bound of 1/ ln(2) with fixed-size sampling for any choice of the parameters for our generic
s-way Quicksort, as long as we use a single comparison tree. This fact has probably been
known before, but I am not aware of an explicit proof in earlier work.

7.5.4 Scanned Elements

The optimality criterion from Proposition 7.6 allows us to characterize the optimal quantile
vectors w.r.t. the number of scanned elements in the limit k→∞.

Proposition 7.8: Let s, τ ∈ [0, 1]s with Στ = 1 and m ∈ N0 and be fixed, i.e., we use
a master-pivot method. Let us denote with x∗ = x∗(s,m) the unique number in (0, 1)
satisfying

m∑

i=1

xi +

s−m∑

j=1

xj = 1. (7.35)

Then the leading-term coefficient of the expected number of scanned elements is aSE/H >

1/ ln(1/x∗). This coefficient converges to 1/ ln(1/x∗) as k→∞ if and only if

τ =
(
(x∗)m, (x∗)m−1, . . . , (x∗)2, x∗, x∗, (x∗)2, . . . , (x∗)s−m−1, (x∗)s−m

)
. (7.36)

J

Scanned Elements · 7.5.4

239

Proof: By Theorem 7.1, aSE = αTSEτ for

αSE = αSE(s,m) = (m,m− 1, . . . , 2, 1, 1, 2, . . . , s−m) (7.37)

when m is an integer. The claim then follows from Proposition 7.6 and Corollary 7.7. �

Unlike for comparisons, the basis x∗ depends on s and m, therefore the behavior of the
lower bound and τ∗ is a little opaque. Equation (7.35) can be simplified: x∗(s,m) is the
unique solution in (0, 1) of

xm+1 + xs−m+1 − 3x+ 1 = 0. (7.38)

Obviously, the behavior is symmetric: s∗(s,m) = s∗(s, s−m).

Table 7: x∗(s,m) for scanned elements from Proposition 7.8 for small values of s and exemplary
choices for m. All solutions are polynomial roots, so they can easily be computed to
arbitrary precision. In a few special cases they can be expressed explicitly as radicals:
x∗(2, 0) = (

√
5 − 1)/2, x∗(3, 1) = x∗(3, 2) =

√
2 − 1, x∗(4, 2) = (

√
3 − 1)/2 and

x∗(s, 1)→ (
√
5− 3)/2.

s 2 3 4 5 6 7 16 s→∞
m = 0 0.618 0.544 0.519 0.509 0.504 0.502 0.500 0.5
m = 1 0.5 0.414 0.393 0.386 0.383 0.383 0.382 0.382

m = ds/4e 0.5 0.414 0.393 0.353 0.349 0.348 0.335 0.3
m = ds/2e 0.5 0.414 0.366 0.353 0.343 0.339 0.333 0.3

Table 7 shows some concrete values for small s, and the limit value for s→∞. Even for
very small s, x∗ is very close to these limit values. Therefore a reasonably good choice for
the quantiles vector is τ ∝ xαSE for x = lims→∞ x∗, which is 13 , unless m is held constant.
This means that a good quantiles vector should assign about one third of all weight to
each of the two innermost segments, corresponding to classes s1 and l1, then one ninth to
classes s2 and l2 and so on. The resulting distribution is extremely skewed, essentially a
(truncated) geometric distribution.

Figure 31 shows that for all but the most extreme values of m, we are close to the case
m = ds/2e. With sampling, less centered meeting points can well be compensated for. In
contrast, we find a parabolic shape in Figure 30 (page 233), which shows corresponding
numbers without pivot sampling.

How does the lower bound 1/ ln(1/x∗) look like as a function of s? For ease of discus-
sion, let us now concentrate on m = ds/2e. If we compare the overall number of scanned
elements of τ∗ to the quantiles vector proportional to

(
1
3

)αSE , we find for s = 3 that the
latter implies 0.00344n lnn additional scanned elements, on top of the 1.13459n lnn for τ∗.
For larger s, the difference is even smaller. So it is legitimate to consider quantiles vectors
of the form C ·

(
1
3

)αSE .

7 Results and Discussion

240

Figure 31: Lower bound from Proposition 7.8
for the leading-term coefficient of the
number of scanned elements in s-
way Quicksort for s = 10 and
m = 0, 1, . . . , 10. The minimum is
at m = 5 and has value 0.912553;
the corresponding x∗ is x∗(10, 5) ≈
0.334263. For the other extreme, we
have x∗(10, 0) ≈ 0.500245. 0 1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

0.91

1/ ln(1/x∗)

We can complement this observation with an asymptotic approximation for x∗(s, s/2).
Rewriting Equation (7.38) for s = 2m as

x =
1

3
+
2

3
· xm+1, (7.39)

we immediately see that x = 1
3 is a solution for m→∞. Starting with a rough asymptotic

approximation, we can bootstrap a complete expansion:

Lemma 7.9: The solution of Equation (7.39) admits the following asymptotic approxima-
tion:

x∗(2m,m) =
1

3
+
2

9
· 3−m +

4

81
(m+ 1) · 3−2m ± O(3−3m), (m→∞). (7.40)

J

Proof: By comparing the two sides of Equation (7.39), we see that for m ∈ N, x∗ always
lies between 1

3 and 1
2 . Inserting x 6 1

2 into Equation (7.39), we find x∗ 6 1
3 +

1
3 · 2

−m, and
inserting this again yields

x∗ −
1

3
6 2

3
· 3−m−1

(
1+ 2−m

)m+1

︸ ︷︷ ︸
→1

= O(3−m). (7.41)

This is the term with which we now “prime the pump” in the words of Greene and
Knuth [73]: starting with x∗ = 1

3 ±O(3
−m), we can pump out a full asymptotic expansion

of x∗ by repeatedly inserting into Equation (7.39). The results of the first two rounds of
pumping are

1

3
± O(3−m), (7.42)

1

3
+
2

9
· 3−m ± O(3−m), (7.43)

1

3
+
2

9
· 3−m +

4

81
(m+ 1)3−2m ± O(3−m). (7.44)

�

An Optimality Criterion for Finite Sample Sizes and Gibb’s Gap · 7.5.5

241

Corollary 7.10: Let s be even and m = s/2. The lower bound 1/ ln(1/x∗) for aSE/H from
Proposition 7.8 fulfills

1

/
ln
(

1

x∗(s, s/2)

)
=

1

ln(3) − 2
3 · 3−s/2

± O(3−s), (s→∞). (7.45)
J

Proof: Using ln(1+ x) = x±O(x2) as x→ 0 we find

1

/
ln
(

1

x∗(s, s/2)

)
= −

1

ln
(
1
3 · (1+

2
33

−m ±O(3−2m))
) (7.46)

=
1

ln(3) − 2
33

−m ±O(3−2m)
(7.47)

=
1

ln(3) − 2
33

−m
± O(3−2m). (7.48)

�

7.5.5 An Optimality Criterion for Finite Sample Sizes and Gibb’s Gap

If we seek a sorting method that is fast also for moderate sized inputs, we cannot afford
to use very large sample sizes for selecting the pivots in each partitioning step. Among
the algorithms that are or have been in productive use, the largest sample size is nine.
We cannot assume the results of the last sections to apply with great accuracy there. In
this section, we derive an optimality criterion similar to Proposition 7.6 that explicitly
addresses finite sample sizes.

If we stick to the restriction a = αTτ, the sample size only affects the entropy: we re-
place Hln by Hhdκ , and use the corresponding version of Gibb’s inequality that we derived
in Section 2.5. Unfortunately, Gibb’s inequality for Hhdκ (Lemma 2.66) does not hold for
all vectors, and much of the elegance of Proposition 7.6 is lost thereby. Still, the resulting
criterion is a useful tool.

Proposition 7.11 (Optimality Criterion for Finite k): Let s > 2 and κ = k+ 1 > s be fixed,
and assume a = a(τ) = αTτ =

∑s
r=1 αrτr, for a vector α ∈ Rs>0. A sampling vector t∗

with Σ(t∗+ 1) = κ is the unique optimum if there is a constant c > 0 such that for all r ∈ [s]

holds hdκ(τ∗r) = −c · αr with τ∗ = t∗+1
κ . In this case, the value of the leading-term

coefficient is a(τ∗)/H(t∗) = 1/c.
Moreover, if no such c exists, but we have c ′ > 0with hdκ(τ∗r) > −c ′ ·αr for r = 1, . . . , s,

then holds a(τ)/H(t) > 1/c ′ for all sampling vectors t. J

Proof: Let t be an arbitrary sampling vector for sample size k, i.e., t ∈Ns
0 with Σ(t+ 1) =

κ = k+ 1. As usual, denote by τ = t+1
κ the corresponding quantiles vector.

Towards a unified proof of both parts of the claim, assume that hdκ(τ∗r) > −cαr for a
c > 0. Both τ∗ and τ are κ-discretized vectors/distributions in the sense of Definition 2.51,

7 Results and Discussion

242

so we can apply Gibb’s inequality for the discrete entropy (Lemma 2.66). This gives

Hhdκ(τ) 6 −

s∑

r=1

τr hdκ(τ∗r) (7.49)

6
s∑

r=1

τr · cαr (7.50)

= c · a(τ), (7.51)

and so
a(τ)

Hhdκ(τ)
> 1

c
. (7.52)

The first inequality, Equation (7.49), holds with equality only if τ = τ∗, see Lemma 2.66.
For the first part of the claim, we also have equality in the second line (7.50), so in fact
a(τ∗)

Hhdκ(τ
∗) = 1

c . For any τ 6= τ∗, the first inequality is strict and so is Equation (7.52) as a
whole. This proves the first part.

For the moreover-part, we have by assumption strict inequality in Equation (7.50), so
Equation (7.52) is strict even for τ∗. �

Proposition 7.11 bears a blemish: the first part is hardly ever applicable; for integral t and
α it is not usually the case that a c exists with hdκ(τ) = −c ·α.

How likely is it for integral t to be optimal? For a fixed t, we can compute a cost vector
α so that the optimality criterion from Proposition 7.11 is satisfied: it simply says α ∝
−hdκ(τ). If we consider w.l.o.g. only normalized α, then for each τ there is exactly one
cost function so that the criterion is fulfilled, namely α =

−hdκ(τ)
‖hdκ(τ)‖ . If we now assume

that α is, say, uniformly distributed over the set of all normalized vectors over R>0, the
probability of hitting one of the finitely many choices is zero.

I hope the reader did not have the impression up to now that the cost measures
studied in this work are random. The above result thus has no direct implications. But it
makes clear that it is an exceptionally lucky case, if we can apply the optimality criterion
of Proposition 7.11.

If the optimality criterion is not applicable, we can only resort to the lower bound 1/c ′ for
c ′ := maxr∈[s]

−hdκ(τr)
αr

. Then a gap remains between the value of the optimal t and 1/c ′:
Gibb’s gap. We consider a few examples below. Unfortunately, Gibb’s gap is often quite
large.

Still, to my knowledge, it is the only rigorous tool to judge the quality of sampling
vectors for finite sample sizes; besides exhaustively exploring the design space, of course.
It can be useful as an inexpensive way to show that no other sampling vector can improve
over a given one by too much.

Balanced Comparisons Trees. We consider once more the number of comparisons with
λk = λg = λ. If s is a power of two and λ is the complete BST, we have aC = ld(s) = αTτ
for α = (ld(s), . . . , ld(s)). If further κ is a multiple of s, say, κ = s(t + 1) for t ∈ N0,

An Optimality Criterion for Finite Sample Sizes and Gibb’s Gap · 7.5.5

243

a feasible sampling vector is the symmetric choice t∗ = (t, . . . , t). Indeed, this vector

must be optimal since hdκ(τ∗r) = hdκ(1s) = −cαr for c = −
hdκ(1s)

ld(s) , so the first part of
Proposition 7.11 applies!

This result is long known, of course, see, e.g., Hennequin’s doctoral thesis [77]; yet
it is always reassuring to see new theorems reproduce old results. For the symmetric
tree, partitioning costs are completely independent of τ, so we only have to maximize
the discrete entropy, and we know already that the discrete entropy is maximal for τ =

(1s , . . . , 1s), see Corollary 2.48 (page 85).
Much to my displeasure, this degenerate example is the only situation I could find

among our cost measures where the first part of Proposition 7.11 could be applied.

� � �

If κ is not an integer multiple of s, there is no balanced integral t, but it is intuitive that the
entries in t should only differ by 1, i.e., an optimal choice is t = (t+ 1, . . . , t+ 1, t, . . . , t)
or obtained by permuting the components of this vector. In fact, this follows directly from
Schur-concavity of Hhdκ(τ), (Corollary 2.48 (page 85) with Lemma 2.59): the given vector
t is majorized by any other integral vector with the same total.

3 7 11 15

1.5

1.6

1.7

1.8

1
ln(2)

1/c ′

−aC/hdκ(
1
s)

aC/H(t)

Figure 32: Quality of the lower bound 1/c ′ from
Proposition 7.11 for s = 4 and λ the
complete BST. The sample size k is
given on the x-axis, the y-axis shows the
leading-term coefficient of the expected
number of comparisons. We also show
the actual costaC/H(t) of the optimal t,
and the value −aC/hdκ(1s) of the sym-
metric, but possibly non-integral choice
τ = (1s , 1s , 1s , 1s).

Figure 32 shows the quality of the error bound from Proposition 7.11 for this case. The
result is quite disappointing. In half of the cases, the 1/c bound lies even below 1/ ln(2),
the one from Corollary 7.7. This does not change much if we increase s.

Scanned Elements. Maybe, Gibb’s gap is particularly large for balanced α; let us try a
skewed one then. For the number of scanned elements in YBB Quicksort, i.e., s = 3 and
m = 2, we have α = (2, 1, 1), so the cost of the first segment is twice as much as for the
other two segments.

Figure 33 shows the resulting lower bound 1/c ′ together with the actual cost of the
optimal t∗ for the first values of k. t∗ is determined by exhaustive search. Again, for
around half of the values of k, the lower bound 1/c ′ is even below the continuous bound
from Corollary 7.7; only for a few lucky cases is it informative.

We conclude this section with the observation that the lower bound from Proposi-
tion 7.11 is not often helpful: Gibb’s gap is too large.

7 Results and Discussion

244

Figure 33: Quality of the lower bound 1/c ′ from
Proposition 7.11 for scanned elements
in YBB Quicksort, i.e., s = 3 andm = 2.
The sample size k is given on the x-
axis, the y-axis shows the leading-term
coefficient of the expected number of
scanned elements. We also show the
actual cost aSE(τ

∗)/H(t∗) of the op-
timal t∗. The fat black line gives the
lower bound from Corollary 7.7; here
x∗ =

√
2− 1. 2 5 8 11 14 17 20

1.2

1.3

1.4

1.5

1.6

−1
ln(x∗)

1/c ′

aSE(τ
∗)/H(t∗)

7.5.6 Two Comparisons Trees: Non-Linear Costs

The optimality criteria discussed in this section only apply to cost measures where the
leading-term coefficient of the toll cost is a linear function in τ, the quantiles vector, and
independent of the sample size k. When we use two comparison trees λk 6= λg, aC is
neither linear, nor independent of k.

YBB Quicksort. For example in YBB Quicksort, we have

aC = aC(τ, κ) = 2τ2 +
κ

κ+ 1

(
τ1(τ1 + τ2)

τ1 + τ2 +
1
κ

τ1 + τ2
+ 2(2τ1 + τ2)τ3 + τ

2
3

τ3 +
1
κ

τ3

)

(7.53)

→ 2τ2 + τ1(τ1 + τ2) + 2(2τ1 + τ2)τ3 + τ
2
3, (κ→∞), (7.54)

= 1+ (τ2 + 2τ3)(1− τ3). (7.55)

It is an open problem even in the limit case to find the optimal τ, i.e., to analytically
minimize

1+ (τ2 + 2τ3)(1− τ3)

−τ1 ln(τ1) − τ2 ln(τ2) − τ3 ln(τ3)
. (7.56)

in the closed simplex. Numerically, the minimum is located at

τ∗ ≈ (0.42884 60207, 0.26877 31696, 0.30238 08097), (7.57)

with a leading-term coefficient of 1.49309 53723. Notably, this optimal leading-term coef-
ficient is strictly larger than the lower bound 1/ ln(2) ≈ 1.44270 that we do achieve in the
limit with a single comparison tree using an entropy-tight pair.

Kciwegdes. For Kciwegdes partitioning, i.e., s = 3, m = 1.5 we obtain

aC → 1+ τ2 + 2τ1

(
1−

τ1
1− τ2

)
, (7.58)

Optimal t: Heuristics and Tables · 7.5.7

245

and we seek that minimum of aC/Hln(τ). The minimum is located roughly at

τ∗ ≈ (0.36809 73350, 0.26380 53300, 0.36809 73350) (7.59)

with value 1.50088 87099; again this is strictly larger than 1/ ln(2). Because Kciwegdes is
a symmetric algorithm, it is plausible that τ∗1 = τ∗3, as is in fact the case in the numerical
solution. Starting with this assumption, it is easy to check using computer algebra that
τ = (q, 1− 2q,q) with q the unique root of q4+ 8q3− 12q2+ 6q− 1 in (0, 1) is a stationary
point of aC/Hln(τ).

Six-Way Quicksort. For six-way Quicksort with s = 6, m = 3 and comparisons as in
Figure 43 (page 273), we obtain numerically

τ∗ = (0.18430, 0.18430, 0.13141, 0.13141, 0.18430, 0.18430) (7.60)

with a leading-term coefficient of 1.47823.

7.5.7 Optimal t: Heuristics and Tables

It turned out quite hard to identify optimal sampling vectors for a finite sample size k, and
for partitioning costs that are not linear in τ, we cannot even find the optimal quantiles for
the limit case k→∞. It is time to admit defeat.

Open Problem 7.12 (Characterize Optimal Sampling Vectors): Find a characterization,
or at least a useful sufficient condition, for sampling vectors t ∈ Ns

0 that minimize the
function a(t)/H(t). A result restricted to the case where a(t) is linear in τ = (t+ 1)/(k+ 1)

would already be valuable. J

Let us see what we can still do. Assume, we know, precisely or approximately, the optimal
quantiles vector τ∗ for the limit case k→∞. Intuitively, a sampling vector t that resembles
this quantiles vector, i.e., one that is close to t ≈ τ∗ · κ− 1, should not be too bad. So, we
could try to simply round that quantity to nearest integers. Of course, we have to avoid
negative entries in t, and the total might not directly give the intended sample size.

We can correct for that by locally adapting, until Σt = κ− s. A rule that works well in
many cases is implemented in Algorithm 11: always round away from extreme values.

Proportional Apportionment The problem of assigning exactly h indivisible, identical
items to n entities proportional to some (fractional) weight vector v occurs in many appli-
cations. In the context of political systems it is known as proportional apportionment. It
arises when after an election, seats in parliament are to be assigned to parties according
to their relative share of votes. It also rises after a census in federate states where each
state is to be represented proportionally to its population count, e.g., in the U. S. House
of Representatives.

Here also, simply rounding the relative shares does not in general assign the right
total of seats. A variety of rules have been invented with the goal to solve this prob-
lem as fairly as possible, and to this day several of them remain in use. Balinski and
Young [13] give a comprehensive overview of these rules—and in particular their prob-

7 Results and Discussion

246

Algorithm 11: Heuristic to compute a sampling vector close to given quantiles vector.
GoodTByRounding(τ∗, κ)

1 t := max
(
round(κ · τ∗ − 1), 0

)

2 while Σt 6= κ− s
3 if Σt > κ− s
4 m := maxr∈[s] tr
5 i := arg minr∈[s]{τr : tr = m}

6 ti := ti − 1

7 else
8 m := minr∈[s] tr
9 i := arg maxr∈[s]{τr : tr = m}

10 ti := ti + 1

11 end if
12 end while
13 return t

lems and paradoxes. These are illustrated with examples from the eventful history of
U. S. Congress, where any thinkable corner case of what could possibly go wrong seems
to have happened some time in the past.

For our problem of finding a good t, we could employ any of the known appor-
tionment rules, but they tend to be inferior to our heuristic. The reason is probably that
apportionment methods aim at fairness, but entropy is not fair: costs typically improve if
we move slightly towards the middle of the simplex, and they increase if make sampling
slightly less balanced, that is, unless a(τ) shows a strong opposite tendency.

When fed with the optimal quantiles vector for infinite k, or a decent numerical approxi-
mation of it, Algorithm 11 in fact computes the optimal t in many cases. Tables 8, 9 and 10
demonstrate this by example.

It is quite remarkable how often the simple heuristic gives the precise optimum, in
particular since it does not at all take the shape of partitioning costs into account. The
intuition that rounding τ∗ gives a good t is thus not totally wrong.

It is reassuring that the precise details of the rounding rule are also not vitally impor-
tant. When we change Algorithm 11 to modify a random entry in each iteration, we still
get optimal t in more than half of the considered cases. We perform a little worse, though.

7.6 The Optimal Number of Pivots

The number of pivots to use is the parameter with the arguably largest impact on how an
implementation will look like. Changing the number of pivots will significantly influence
most parts of the code: obviously the partitioning procedure and the recursion skeleton,

The Optimal Number of Pivots · 7.6

247

Table 8: Optimal sampling vectors w.r.t. comparisons in YBB Quicksort for k 6 29. The
optimal vector t∗ was determined by exhaustive search. The resulting leading-term
coefficient of the expected number of comparisons is given, as well. A number in
column “heu. (%)” indicates that our rounding heuristic (Algorithm 11) computed a
suboptimal t, which is worse by given percentage. The quantiles vector used for
Algorithm 11 is τ∗ = (0.42878, 0.26880, 0.30242).

k t∗ aC(t
∗)/H(t∗) heu. (%)

2 (0, 0, 0) 1.9 —
3 (1, 0, 0) 1.8 —
4 (1, 0, 1) 1.73585 —
5 (1, 1, 1) 1.70426 —
6 (2, 1, 1) 1.65414 —
7 (2, 1, 2) 1.63592 —
8 (3, 1, 2) 1.62274 —
9 (3, 2, 2) 1.60701 —
10 (4, 2, 2) 1.59693 —
11 (4, 2, 3) 1.58485 —
12 (5, 2, 3) 1.58378 —
13 (5, 3, 3) 1.57304 —
14 (5, 3, 4) 1.56623 —
15 (6, 3, 4) 1.56217 —

k t∗ aC(t
∗)/H(t∗) heu. (%)

16 (6, 4, 4) 1.55971 —
17 (6, 4, 5) 1.55535 0.027
18 (7, 4, 5) 1.55007 —
19 (8, 4, 5) 1.54933 —
20 (8, 5, 5) 1.54646 —
21 (8, 5, 6) 1.54254 —
22 (9, 5, 6) 1.54041 —
23 (9, 5, 7) 1.53955 0.052
24 (9, 6, 7) 1.53750 —
25 (10, 6, 7) 1.53459 —
26 (11, 6, 7) 1.53401 —
27 (11, 6, 8) 1.53275 0.034
28 (11, 7, 8) 1.53059 —
29 (12, 7, 8) 1.52921 —

Table 9: Optimal sampling vectors w.r.t. scanned elements in YBB Quicksort for k 6 29. The
setup is as for Table 8. The vector for Algorithm 11 is τ∗ = (0.17158, 0.41421, 0.41421).

k t∗ aSE(t
∗)/H(t∗) heu. (%)

2 (0, 0, 0) 1.6 —
3 (0, 0, 1) 1.5 —
4 (0, 1, 1) 1.35849 —
5 (0, 1, 2) 1.34615 4.261
6 (0, 2, 2) 1.30081 —
7 (1, 2, 2) 1.29151 —
8 (1, 2, 3) 1.27501 —
9 (1, 3, 3) 1.24701 —
10 (1, 3, 4) 1.24180 —
11 (1, 4, 4) 1.22751 —
12 (1, 4, 5) 1.22699 0.243
13 (1, 5, 5) 1.21934 —
14 (2, 5, 5) 1.21021 —
15 (2, 5, 6) 1.20699 —

k t∗ aSE(t
∗)/H(t∗) heu. (%)

16 (2, 6, 6) 1.19959 —
17 (2, 6, 7) 1.19869 0.409
18 (2, 7, 7) 1.19427 —
19 (3, 7, 7) 1.19191 —
20 (3, 7, 8) 1.18959 —
21 (3, 8, 8) 1.18488 —
22 (3, 8, 9) 1.18395 —
23 (3, 9, 9) 1.18092 —
24 (3, 9, 10) 1.18091 0.005
25 (3, 10, 10) 1.17905 —
26 (4, 10, 10) 1.17581 —
27 (4, 10, 11) 1.17492 —
28 (4, 11, 11) 1.17265 —
29 (4, 11, 12) 1.17242 0.108

7 Results and Discussion

248

Table 10: Optimal sampling vectors w.r.t. scanned elements in six-way Quicksort with m = 3 for
k 6 24. For the general setup, see Table 8. The quantiles vector used for Algorithm 11 is
τ∗ = (0.04019, 0.11731, 0.34249, 0.34249, 0.11731, 0.04019).

k t∗ aSE(t
∗)/H(t∗) heu. (%)

5 (0, 0, 0, 0, 0, 0) 1.37931 —
6 (0, 0, 0, 1, 0, 0) 1.28079 —
7 (0, 0, 1, 1, 0, 0) 1.19221 —
8 (0, 0, 1, 2, 0, 0) 1.15734 —
9 (0, 0, 2, 2, 0, 0) 1.11969 —
10 (0, 0, 2, 3, 0, 0) 1.10495 —
11 (0, 0, 3, 3, 0, 0) 1.08618 —
12 (0, 0, 3, 3, 1, 0) 1.07095 0.515
13 (0, 1, 3, 3, 1, 0) 1.05489 —
14 (0, 1, 3, 4, 1, 0) 1.04434 —

k t∗ aSE(t
∗)/H(t∗) heu. (%)

15 (0, 1, 4, 4, 1, 0) 1.03189 —
16 (0, 1, 4, 5, 1, 0) 1.02645 —
17 (0, 1, 5, 5, 1, 0) 1.01913 —
18 (0, 1, 5, 6, 1, 0) 1.01668 —
19 (0, 1, 6, 6, 1, 0) 1.01248 —
20 (0, 1, 6, 6, 2, 0) 1.00832 1.625
21 (0, 2, 6, 6, 2, 0) 1.00320 —
22 (0, 2, 6, 7, 2, 0) 1.00013 —
23 (0, 2, 7, 7, 2, 0) 0.99598 —
24 (0, 2, 7, 8, 2, 0) 0.99445 —

the sampling method to choose pivots, potentially even the handling of small subproblems
as the efficiency of Quicksort on short lists is sensitive to the number of pivots as well.

We discuss in this section how the parameter s, the number of segments, affects overall
costs of our generalized s-way Quicksort. As we will see below it heavily depends on
the employed cost model which choices of s are favorable. We would like to study the
influence of s separately from that of other parameters, but this is not always possible:
many parameter domains depend on s. For example, we must have k > s− 1 (we have to
sample at least the s− 1 pivots), so fixing, say, k = 10 also means s 6 11.

7.6.1 Key Comparisons

For comparisons, the choice of the two comparison trees λk and λg is vital. We cannot
fix a given tree, of course, as the trees have to contain exactly s− 1 inner nodes, one for
each pivot. So let us assume that we have two sequences of such trees, (λ(s)k)s∈N>2 and
(λ(s)g)s∈N>2 . To state the behavior of the number of comparisons as s grows, the sequences
of comparison trees have to converge in a certain sense, so that the trees for s-way Quicksort
are not totally different from the trees for (s−1)-way Quicksort. Proposition 7.13 below hints
at the required form of convergence: a specific weighted external path length of λk and
λg dictates overall costs. Before we consider this general statement, let us consider two
simple special cases as a warm-up.

No sampling and One Tree. The simplest case is λk = λg, i.e., elements are always
classified using one fixed comparison tree, and we do not use pivot sampling, i.e., t =

(0, . . . , 0). Then many things become symmetric and simple. For example, the expected
fraction of elements that belong to a certain class c ∈ C is simply τr(c) = 1/s. The term
from Theorem 7.1 for aC, the leading-term coefficient of comparisons in one partitioning
step, reduces to the average depth of a leaf in λk, which is just the external path length

Sampling with a Limit Density · 7.6.2

249

divided by s. The latter is minimized by the almost complete binary tree, for which we
have

aC = dld se+ 1− 2
dldse

s
> ld(s), (7.61)

see Equation 5.3.1–(34) of Knuth [103]. For t = (0, . . . , 0), we have H = Hs − 1 and so the
leading-term coefficient of the overall number of comparisons converges to aC

H
→ 1

ln2 ≈
1.4427 and fulfills

aC
H

> ld s
Hs − 1

>
(2.70 .1)

ld s
ln s− 1

=
1

ln 2
· 1

1− 1
lns

>
1

ln 2
, (7.62)

so it approaches the limit from above. Therefore, there is no optimal s; picking more pivots
always improves the leading term in this case. Note that 1

ln2n lnn = n ldn is the leading
term of the information-theoretic lower bound on comparisons, so it is clear a priori that
the convergence must be from above.

Equidistant Sampling. If we fix a number t ∈ N0 and set t = (t, t, . . . , t), we pick as
pivots the s-quantiles of the sample of k = s(t+ 1) − 1 elements. While t > 0 improves
the “quality” of the pivots, it does not change their relative location, in particular we still
have τ = (1s , . . . , 1s) and τ∗(z) = 1, so Equation (7.61) remains valid. The discrete entropy
changes to H = −hds(t+1)(1s), which converges to − ln(1s) = ln(s) (Equation (2.207)), but
remains H < − ln(1s) = ln s (Lemma 2.61). The leading term of the overall number of com-
parisons hence still converges from above to the information-theoretic lower bound if we
choose the maximally balanced comparison trees; the convergence will be faster though.
Again there is no (finite) optimal s. This observation has been made by Hennequin [77],
as well.

It is quite well-known and intuitively clear that classic single-pivot Quicksort with
median-of-(2t+ 1) sampling approaches the comparison lower bound in the limit for t→
∞. We consider this limit in Section 7.5. Note that even though the limiting values of the
leading-term coefficients are the same, this is an entirely different limiting process from
the case s→∞ considered above.

7.6.2 Sampling with a Limit Density

The two appetizer examples above barely scratch the surface of our vast parameter space.
In this section, we consider a whole class of parameters and study their costs as s increases.
The characteristic property of this class is that the pivot-sampling parameters τ converge
to a smooth limiting density. This rules out some degenerate cases. In particular, we will
have that ‖τ‖∞ = Θ(s−1), i.e., the s− 1 pivots are selected roughly uniformly. Thus (many
of) the s segments receive a fraction of all elements, and we make effective use of the
growing number of segments.

Under this model, the number of comparisons behaves for large s as one might expect
(see Proposition 7.13 below): The Iverson brackets in aC as given in Theorem 7.1, [c = s]

7 Results and Discussion

250

etc., can be ignored, and overall costs are a convex combination of the weighted path
lengths of the two comparison trees.

Proposition 7.13: Let τ∗ : [0, 1]→ R>0 be a Lipschitz-continuous probability density func-
tion. Let (t(s))s∈N>2 , t

(s) ∈ Ns
0, be a sequence of sampling vectors, so that we have

uniformly for z ∈ (0, 1) that

s · τ(s)dzse = s ·
t(s)dzse + 1

k(s) + 1
= τ∗(z) ± O(s−ε), (s→∞). (7.63)

Moreover, let µ ∈ (0, 1) be fixed and assume either m = m(s) = dµse for the master pivot
case or m = m(s) = dµse− 1

2 for the master-segment case. We define the “limit-weighted”
(external) path lengths

PLk(s) :=

s∑

r=1

λ(s)k (Cr) ·
∫r/s

(r−1)/s
τ∗(z)dz ; (7.64)

PLg(s) is similar but with λg(c). (These are the expected depths of an external node drawn
according to the (discretized) limiting density.) With the constants

τ∗→ :=

∫µ

0

τ∗(z)dz and τ∗← :=

∫1

µ

τ∗(z)dz , (7.65)

we have for the leading-term coefficient of the number of comparisons per partitioning step

aC =
(
τ∗→ · PLk(s) + τ∗← · PLg(s)

)(
1±O(s−ε)

)
(7.66)

as s→∞. J

The condition (7.63) is essentially the same as in Lemma 2.69, which concerns the contin-
uous master theorem (CMT). There the subproblem size probabilities converge to a shape
function, which is nothing more than a limiting density with certain smoothness require-
ments.

Proof: By Equation (7.63), there is a constant C so that τ(s)r 6 C
s for r = 1, . . . , s and s large

enough. We trivially have κ = Ω(s). We start noting for reference that

σ→
κ

=

bmc∑

r=1

σr

κ
(7.67)

=
(7.63)

bmc∑

r=1

τ∗(r/s)
s

± O(s−ε) (7.68)

=
Proposition 2.12

∫µ

0

τ∗(z)dz ± O(s−ε) (7.69)

= τ∗→ ± O(s−ε). (7.70)

Similarly σ←
κ = τ∗← ±O(s−ε). We also have σ↔κ 6 τdµse = O(s−1).

Sampling with a Limit Density · 7.6.2

251

We prove the claim by expanding the expression for aC given in Theorem 7.1:

aC =
σ→

κ− σ↔ + 1

πk︷ ︸︸ ︷∑

c∈C
τr(c)λk(c) +

σ←
κ− σ↔ + 1

πg︷ ︸︸ ︷∑

c∈C
τr(c)λg(c)

+
1

κ− σ↔ + 1︸ ︷︷ ︸
O(s−1)

(∑

c∈C
c small

τr(c)λk(c) +
∑

c∈C
c large

τr(c)λg(c)

)

︸ ︷︷ ︸
6πk+πg=O(s)

+ [m /∈N0] · τr(m)︸︷︷︸
O(s−1)

(
1

κ− σ↔
−

1

κ− σ↔ + 1

)(
λk(m)σ→ + λg(m)σ←

)

︸ ︷︷ ︸
O(s)

(7.71)

=
σ→

κ− σ↔ + 1
· πk +

σ←
κ− σ↔ + 1

· πg ± O(1). (7.72)

It remains to show that πk ∼ PLk(s):

πk =
∑

c∈C
τr(c)λk(c) (7.73)

=
(7.63)

s∑

r=1

τ∗(r/s)
s

λk(Cr) ± O(s−ε) (7.74)

=
Proposition 2.12

s∑

r=1

λk(Cr)

∫r/s

(r−1)/s
τ∗(z)dz ± O(s−ε); (7.75)

a similar relation holds for πg. Using this in the above equation for aC, we finally obtain

aC =
σ→

κ− σ↔ + 1
· PLk(s) +

σ←
κ− σ↔ + 1

· PLg(s) ± O(1) (7.76)

=
(7.70)

(
τ∗→PLk(s) + τ∗←PLg(s)

)(
1±O(s−ε)

)
. (7.77)

�
The second ingredient for the overall costs is the discrete entropy. We can approximate it
for limit-density sampling as follows.

Proposition 7.14: Under the conditions of Proposition 7.13, we have for s→∞

H(t(s)) = ln s ± O(1). (7.78)
J

Proof: A simple calculation using ln(1+ x) = O(x) for x → 0 shows that for a sequence
(an) with an = a

n ±O(n
−1−ε), a 6= 0 a constant, holds an ln(an) = a

n ln
(
a
n

)
±O

(log(n)
n1+ε

)
.

Since τ∗(z) is Lipschitz-continuous in [0, 1], it is bounded, say τ∗(z) 6 M. Moreover,
x ln x is Hölder-continuous for any exponent α ∈ (0, 1) on the unit interval x ∈ [0, 1]
(Lemma 2.13) and for x ∈ [1,M] it has bounded derivative. So it is Hölder-continuous on
all of [0,M] (Propositions 2.9 and 2.10). The composition of Hölder-continuous functions

7 Results and Discussion

252

is again Hölder-continuous, where the exponents multiply (Lemma 2.11–(c) on page 52).
So we find that τ∗(z) ln

(
τ∗(z)

)
is Hölder-continuous on [0, 1] for any exponent α ∈ (0, 1).

Using these two facts, we obtain for the base-e entropy

Hln(τ
(s)) = −

s∑

r=1

τr ln(τr) (7.79)

= −

s∑

r=1

(
τ∗(r/s)
s

ln
(τ∗(r/s)

s

)
± O

(
log(s)
s1+ε

))
(7.80)

= −
1

s

s∑

r=1

τ∗(r/s) ln
(
τ∗(r/s)

)
+ ln(s) · 1

s

s∑

r=1

τ∗(r/s) ± O

(
log(s)
sε

)
(7.81)

=
Proposition 2.12–(b)

−

∫1

0

τ∗(z) ln(τ∗(z))dz ± O(s−1+ε)

+ ln(s)
(∫1

0

τ∗(z)dz
︸ ︷︷ ︸

=1

±O(s−1)
)
± O

(
log(s)
sε

)
(7.82)

= ln(s) −

∫1

0

τ∗(z) ln(τ∗(z))dz ± O

(
log(s)
sε

)
. (7.83)

For s and hence κ large enough, we will have τi as required for Lemma 2.65, so we can
apply Lemmas 2.63 and 2.65 to get H(t(s)) = (1+ δ) ·Hln(τ

(s)) where − 1
2 ln(κ) 6 δ 6 0.

With that we finally find

H(t(s)) = Hln(τ
(s)) ± O

(
log(s)
log(κ)

)
(7.84)

= ln(s) −

∫1

0

τ∗(z) ln(τ∗(z))dz ± O

(
log(s)
sε

+
log(s)
log(κ)

)
, (7.85)

and since κ = Θ(s) this is

= ln(s) ± O(1). (7.86)
�

It is certainly remarkable that the leading term of the entropy does not depend on the
actual limit distribution. The reason is that the information-theoretic entropy does not
generalize nicely to continuous distributions: The limiting value of the entropy of almost-
uniform discrete distributions over larger and larger support, as in our case, goes to infinity
like ln(s). Intuitively speaking, the information content of a non-degenerate continuous
distribution is infinite, because we can encode any (countable) number of bits in any single
real number, say. Of course, one could define an entropy for the continuous distribution
with density f similarly to the discrete case as

∫
f(z) ld(f(z))dz; but the resulting quantity

does not carry the same information-theoretic meaning.

� � �

Proposition 7.13 shows that under the given scenario with growing s, the possibility to use
different comparison trees λk 6= λg only offers negligible savings over enforcing λk = λg:

Sampling with a Limit Density · 7.6.2

253

the difference to using a “mixture tree,” whose cost is a convex combination of the costs
for λk and λg, vanishes in the error term. The question whether and when two trees
are helpful is taken up in Section 7.7 again. We will see there that the benefit of two
distinct trees drops very rapidly with s, so that for the present section we can assume
λk = λg without noticeably affecting results. As τ∗→ + τ∗← = 1 under the conditions of
Proposition 7.13, we have aC ∼ PL(s) = PLk(s).

With Propositions 7.13 and 7.14, we get

aC
H

=
PL(s)
ln(s)

(
1 ± O

(
1

log s

))
, (7.87)

where PL(s) is the limit-weighted path length given in Equation (7.64).

Mind the Error Terms. A general statement as Equation (7.87) is very helpful for dis-
cussions of limiting behaviors. It should be noted, however, that the convergence rate is
extremely slow, so that it might take really huge values of s to come close to the limit. To
get a feeling for what this means, assume the constant hidden by O(◦) in (7.87) is 1. Then
for s = 1000, we still get a relative error of over 14%!

We only prove an upper bound in Proposition 7.14, but considering the proof, it will
in most cases be a Θ-bound.

There are other limiting processes around Quicksort that have been deemed “slowly
converging.” For example the leading-term coefficient of the number of comparisons for
classic Quicksort with median-of-(2t+ 1) converges to 1

ln(2) . The relative savings are only

worthwhile for the first few values of t. Here, the convergence rate is actually Θ(t−1).
So, without curtailing our enthusiasm, let us remind ourselves of what the disclaimer

above already stated: Direct practical implications of Equation (7.87) and our correspond-
ing discussion are limited.

Let us briefly reconsider the special cases from above in light of the framework of limit-
density sampling.

No sampling and One Tree. If we do not use sampling at all we get τ∗(z) = 1, the
density of the uniform distribution and the number of comparisons reduces to the ordinary
external path length PL(s).

For the almost complete binary trees, we have PL(s) ∼ ld(s) and hence aC
H
→ 1

ln2 ≈
1.4427, which is to first order the information-theoretic lower bound for comparison-based
sorting.

Equidistant Sampling. If we fix a number t ∈ N0 and set t = (t, t, . . . , t), we pick as
pivots the s-quantiles of the sample of k = s(t+ 1) − 1 elements. While t > 0 improves the
“quality” of the pivots, it does not change their relative location, in particular we still have
τ = (1s , . . . , 1s) and τ∗(z) = 1 remains valid. Therefore the behavior for s→∞ remains the
same as if we do not sample at all.

7 Results and Discussion

254

Sample Size. The above observation is in fact a general one: as the limiting behavior of
the discrete entropy does not depend on the sampling parameter at all, the only thing that
reflected the influence of different sample size is gone: Any sampling parameter with the
same τ yields the same result then; the sample size has no influence whatsoever on the
limiting behavior for s→∞.

Other comparison trees. As long as we pick a balanced comparison tree, we thus always
have PL(s) ∼ ld(s) and H ∼ ln(s) as s → ∞; no matter how we sample pivots. This
means in particular that in all these cases, there is no finite optimal choice for s: we always
improve by using even more pivots. We say s∗ =∞ then.

If we decide not to pick completely balanced comparison trees for some reason, but
instead any family of trees and sampling vectors, so that PL(s) ∼ c · ln(s) as s → ∞, the
same reasoning as above shows that the optimal pick still is s∗ =∞.

If, however, our comparison trees exhibit superlogarithmic expected node depths, i.e.,
PL(s) = ω(log s), overall costs are asymptotically increasing and there will be finite values
s∗ minimizing the number of comparisons. Let us look at one specific family of trees, the
extremal trees studied by Aumüller et al. [10].

Definition 7.15 (Extremal Trees): The extremal tree for parameters s ∈ N>2 and m ∈
{0.5, 1, 1.5, . . . , s− 1, s− 0.5}, is the comparison tree we obtain by putting the dme-smallest
pivot in the root and appending all other pivots as linear lists to the root: in decreasing
order for the pivots smaller than the root and in increasing order for those larger than the
root. J

See Figure 34 for an example.

Figure 34: Example of an extremal tree for s = 11

and m = 6. Its depth vector is λ =

(6, 6, 5, 4, 3, 2, 2, 3, 4, 5, 5). Note that its depth
vector is very similar to the corresponding
cost vector for the number of scanned ele-
ments: αSE = (6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5), cf.
Equation (5.23).

P6

P5

P4

P3

P2

P1

s6

s1

s2

s3

s4

s5

P7

l1 P8

l2 P9

l3 P10

l4 l5

These trees are deficient in the sense that under a uniform class distribution, their
expected (external) node depth is linear:

PL(s) =
1

s

(⌈s
2

⌉
+

ds/2e−1∑

r=1

(r+ 1)

)
+
1

s

(⌊s
2

⌋
+

bs/2c−1∑

r=1

(r+ 1)

)
(7.88)

Scanned Elements · 7.6.3

255

=
s

4
+
3

2
−
7+ [s even]

4s
(7.89)

∼
1

4
· s. (7.90)

The extremal trees are thus asymptotically only twice as good as the worst-case tree for
comparisons, and far away from the more balanced ones with logarithmic depth. It is clear
that large values of s will not be helpful in this case, since s/4

ln(s) → ∞. For small values of
s, things are not so clear, however. Here are the first few values when we choose t = 0,
i.e., do not sample pivots.

2 3 4 5 6 7 8 9 10 11 12 13

1.9

2

2.1

1.84615 1.83908

Figure 35: Leading-term coefficient of the number
of comparisons using the extremal tree
for s and m = ds/2e. s is given on the
x-axis.

The optimal choice in this setting is s∗ = 6. A slightly closer look reveals that exactly
up to (including) s = 6, the extremal tree coincides with an almost complete binary search
tree. Stated otherwise, as soon as s becomes large enough for the extremal tree to live up
to its name, the comparison count starts increasing.

The picture changes little if we choose pivots equidistantly from a sample, i.e., with
t = (t, . . . , t) for t ∈ N. Then s∗ = 4 for all t > 1. Of course, the absolute values keep
improving upon increasing t, but the relative ranking does not change further. That is a
first indication that more than five pivots may be not too helpful, at least without tricky
sampling schemes.

7.6.3 Scanned Elements

We have discussed at length how the number of comparisons in s-way Quicksort behaves
when we let s tend to infinity. In practice, however, other cost measures are likely to be
important, as well; in particular the number of scanned elements. As always, let us start
simple.

No Sampling. Without pivot sampling, i.e., with t = 0, we have τ = (1s , . . . , 1s) and
Proposition 7.4 (page 233) shows that in fact the optimal choice form is ds/2e, in particular
optimal choices are always master-pivot methods. The resulting costs for m ∈N0 are

aSE =
m2 + (s−m)2

2s
, (7.91)

7 Results and Discussion

256

for the special case of even s with m = s/2, this reduces to aSE = 1
4s+

1
2—as simple as

it gets. The partitioning costs are to be divided by H = Hs − 1 to get overall costs. As
H ∼ ln(s), it is obvious that aSE/H goes to infinity for s → ∞! With respect to scanned
elements, it is therefore not advisable to make s larger and larger. For the simple function
above, we expect a unique global minimum on R>2. Figure 36 shows the function for
small values of s.

Figure 36: Scanned elements for s-way Quicksort,
when t = 0 and m = s/2 or m =

ds/2e. s is given in the x-axis, the y-
axis shows the leading-term coefficient
for the average number of scanned el-
ements. For m = s/2, the function is
simply s/4+1/2Hs−1

; it only has algorithmic
meaning for even s, where it coincides
with the m = ds/2e case. The cross
marks the minimum of the red curve. 2 4 6 8 10 12 14 16 18 20

1.4

1.6

1.8

2
m = s/2

m = ds/2e

The continuous minimum is at s ≈ 4.94; but recall that the simple form shown in
Figure 36 is only valid for even s. With m = bs/2c, the values in the vicinity of this
continuous minimum are 1.38462 for s = 4, 1.4026 for s = 5, 1.37931 for s = 6 and 1.43498
for s = 7, so s∗ = 6 here; see also the black line in Figure 36.

Five-pivot Quicksort is thus the optimal choice w.r.t. scanned elements when we do not
sample pivots. But note that three-pivot Quicksort, in particular the “Waterloo-Quicksort”
by Kushagra et al. [105] needs only 0.4% more scanned elements in the asymptotic average.

Equidistant Sampling. Now assume t = (t, . . . , t) for a fixed t ∈ N0. We still have
τ = (1s , . . . , 1s) and aSE is as without sampling, but H changes to H(t+1)s − Ht+1 =

hd(t+1)s

(
1
s

)
. The qualitative features of the number of scanned elements are the same

as without sampling, i.e., for t = 0, but the numbers change.

Figure 37: Scanned elements for s-way Quicksort,
when t = (t, . . . , t) and m = ds/2e,
for several choices of t. s is given in
the x-axis, the y-axis shows the leading-
term coefficient for the average number
of scanned elements. Minimal scanned
elements are achieved for s = 4, except
for the case t = 0, then s = 6 is optimal. 4 6 8 10

1.2

1.4

1.6 t = 0 t = 5

t = 1 t = ∞

Figure 37 shows that in fact s∗ = 4 for all variants shown there except t = 0. In fact,
s∗ = 4 for any t > 1; the case without sampling is the sole exception, where s = 6 is very

Scanned Elements · 7.6.3

257

slightly better. As long as our pivots are chosen without skew, the Waterloo-Quicksort is a
very good choice.

Limit-Density Sampling. Even though the practical motivation behind counting scanned
elements is different from that for counting comparisons, the two cost measures are analyt-
ically quite similar to deal with. In fact, the techniques used in Section 7.6.2, in particular
Propositions 7.13 and 7.14 do not make use of the fact that the numbers λ(s)k (c) for a class
c ∈ C actually are depths of leaves in a binary search tree. We obtain analogous results
for scanned elements, by setting λk(si) = λg(si) = i and λk(lj) = λg(lj) = j; recall Sec-
tion 5.4.3 (page 175). The “path length” PL(s) which appears in Proposition 7.13 is thus
given by PL(s) = aSE from Theorem 7.1, i.e.,

aSE(s) =

dm(s)e∑

i=1

i · τ(s)dm(s)e−i+1 +

s−bm(s)c∑

j=1

j · τ(s)bm(s)c+j −
σ↔
κ

, (7.92)

where we define for all s > 2 the vector τ = τ(s) via

τ(s)r =

∫r/s

(r−1)/s
τ∗(z)dz, for r = 1, . . . , s. (7.93)

Again, the formulas might look daunting, but the scenario is in fact quite simple: We pick
a τ from a limit density by picking the average value of the density in the corresponding
1
s -strip of the unit interval.

Now, assume a family of sampling vectors as in Proposition 7.13, i.e., we sample with
a limit density τ∗(z). By continuity τ∗ is bounded on [0, 1], and it integrates to 1; hence
there must be a nonempty interval (ζ, ζ+ ε) ⊂ [0, 1] and a δ > 0 such that τ∗(z) > δ for all
z ∈ (ζ, ζ+ ε). Then, even if we only consider classes in this interval, we have

aSE(s) >
s∑

r=1

λ(s)(Cr) ·
∫r/s

(r−1)/s
δ ·
[
z ∈ (ζ, ζ+ ε)

]
(7.94)

> (εs− 1) · εs− 1
4
· δ
s

, (7.95)

= Ω(s), (s→∞), (7.96)

since at least (εs− 1) classes get an integral contribution of δ/s from the ε-strip (ζ, ζ+ ε),
and λ(c) is at least εs−14 on average in any interval of (εs− 1) classes. So when sampling
with a limit density, the number of scanned elements eventually increases with the number
of pivots and there will be a finite optimal choice s∗.

� � �

Let us consider the following scenario: We pick a smooth limiting density τ∗(z) and set
τ(s) as in Equation (7.93) above. Moreover, we consider the limit case k → ∞. Then the
overall number of scanned elements is aSE(s)/Hln(τ

(s)).

7 Results and Discussion

258

Equidistant sampling as considered above corresponds to a uniform limit density
τ∗(z) = 1, and we have s∗ = 4 there. In fact, s = 4 performed exceptionally well for
all sample sizes there, not only in the limit k → ∞. There is nothing “magical” in this
number, though, as the examples below show.

In order to save scans, we should try a limit density with a peak towards 1
2 , since

elements in “outermost” segments are more expensive than those towards the middle.
There are many such choices; let us, arbitrarily, pick as limit distribution the Beta(α,α)
distribution with α > 1, i.e., τ∗(z) ∝

(
z(1− z)

)
α−1. The larger α is, the more peaky the

distribution becomes, and we expect less scanned elements than in the uniform case for s
large enough.

Figure 38: Scanned elements for s-way Quicksort,
for even s and m = ds/2e, where pivots
are sampled with limit Beta(α,α) den-
sity, see (7.93). s is given in the x-axis,
the y-axis shows the leading-term coeffi-
cient for the average number of scanned
elements. Different values for α are
shown. The minima are at s = 4, s = 6,
s = 8 and s = 14, respectively. 4 8 12 16 20 24 28

1

1.2

1.4

1.6

2

α = 1 α = 5

α = 2 α = 20

Figure 38 shows corresponding values for exemplary choices of α. Note that α = 1

yields τ∗(z) = 1, the uniform case again. With increasing α, scanned element counts do
improve for large s. For sensible values of s, extremely peaky distributions are not helpful,
though, because the resulting entropy is extreme low there. The optimal value for s thus
increases with α, and it is larger than 4 for α > 2.

Figure 39: Optimal choice for s w.r.t. scanned el-
ements for m = ds/2e when pivots are
sampled with limit Beta(α,α) density. α
is given on the x-axis, the y-axis shows
s∗. 5 10 15 20

4

6

8

10

12

14

1 2

Figure 39 shows explicitly how s∗ changes when we increase α. In essence, we can
make any even number the optimal s by choosing the right α. But for any fixed α, or any
other fixed limit density, we have a finite optimal s∗.

Exponential-Decay Sampling · 7.6.4

259

7.6.4 Exponential-Decay Sampling

The above scenario for the limiting behavior of the sampling parameters t(s), formally de-
scribed in Propositions 7.13 and 7.14, is quite general in that it covers any smooth limiting
density. However, the mere existence of a smooth limiting density is a limiting assumption
itself. In this section, we consider a special case where no such density exists and how
overall costs behave when we vary s.

For scanned elements, we have seen for fixed s that in the limit of k→∞, the optimal
sampling distribution weights τ∗ are geometrically decreasing when we move away from
the master pivot, see Proposition 7.8 (page 238). This means that a constant fraction of all
probability mass is concentrated in a constant number of segments around the meeting
point m—irrespective of the number of segments s. The limiting distribution of these
geometrically decreasing weights is the degenerate distribution that has value µ almost
surely. Its density is degenerate, as well, and can only be written using the Dirac delta
function; it is certainly not smooth. This scenario is hence not covered by Propositions 7.13
and 7.14.

For m = ds/2e, Corollary 7.10 already tells us that the overall leading-term coefficient
for scanned elements in this case is

aSE(τ
∗)

Hhdκ(τ
∗)

=
1

ln(3) − 2
3 · 3−s/2

± O(3−s), (s→∞), (7.97)

and it is always strictly larger than 1/ ln(3). This means that there is no finite optimal s∗!
When we sample pivots optimally w.r.t. scanned elements for each given s, increasing s
improves the number of scanned elements in the asymptotic average.

2 4 6 8 10 12 14 16 18 20

1

1.1

1.2

1.3

1.4

1
ln(3)

aSE(τ
∗)/Hln(τ

∗)

1/(ln(3)− 2
33

−s/2)
Figure 40: Scanned elements for s-way Quicksort

with m = ds/2e and exact-quantiles piv-
ots sampled with scanned-element opti-
mal τ∗, see Proposition 7.8. s is given in
the x-axis, the y-axis shows the leading-
term coefficient for the average number
of scanned elements. The asymptotic ap-
proximation from Corollary 7.10 is also
shown.

While the fact that s∗ = ∞ is similar to the results for the number of comparisons
using balanced comparison trees above, the type of convergence is very different. For
comparisons, we had extremely slow convergence of the costs to their limit: the error
bound in Equation (7.87) gives a relative error rate of 1/ log(s). In contrast, the number of
scanned elements under exponential-decay sampling converges exponentially fast towards
its lower bound. This means that even more so than for comparisons, the largest improve-
ments happen for small s, and increasing the number of segments further delivers rapidly
diminishing returns.

7 Results and Discussion

260

Relation to Extremal Trees. The costs vector αSE (Equation (5.23) on page 176) that assigns
each class the number of scanned elements is very similar to the leaf-depth vector λ of the
corresponding extremal tree, see also Figure 34 (page 254). It is therefore not surprising
that the optimal quantiles vector w.r.t. comparisons using the extremal tree is similar to τ∗

from above: it is also an exponential-decay vector, and the conclusions from above apply
accordingly.

7.6.5 Optimal s for fixed k

As argued several times in this work, the leading term of costs does not reflect the cost of
pivot sampling. We can thus increase k for free in our model. Extremely large values for k
or s will clearly not be efficient for practical input sizes. The conclusion from our analysis
to make both s and k as large as possible are not really helpful.

In this section, we take a different perspective: Assume we have decided for a (max-
imum) sample size k, what is the best way to exploit it? For any fixed k, the compatible
parameter space is finite, even though its size quickly explodes. In particular we have
s 6 κ = k+ 1.

The idea of this section is similar to Section 7.3, where we discussed how to compare
the entropy-reducing effect of different sampling schemes. Instead of fixing k, it might
seem fairer to fix an entropy-reduction value instead. However, for any τ 6= (1s , . . . , 1s)
we get in the limit k → ∞ a finite limit value for k̂, the sample size so that median-of-
k̂ is entropy-equivalent to sampling with t = τ · (k+ 1) − 1. Optimal sampling schemes
w.r.t. scanned elements are quite skewed, and we would get insanely large samples with
moderate entropy reduction, see Figure 41. If we allowed sampling with the quality of
median-of-9, no restriction on the sample size for Waterloo Quicksort would result what-
soever. Therefore, we fix the sample size k instead.

Figure 41: Entropy-equivalent sample sizes for sam-
pling with scanned-elements-optimal t.
The x-axis shows the original sample
size k, the y-axis shows k̂ computed as
follows: First, we determine the opti-
mal sampling parameter t∗ for Waterloo
Quicksort (s = 4,m = 2) for sample size
k using the heuristic from Section 7.5.7.
Then k̂ is the sample size, so that median-
of-k̂ has the same entropy-reducing ef-
fect as sampling with t∗. 0 200 400 600 800 1,000

2

3

4

5

6

7

8
7.4057

Scanned Elements. Optimal quantiles vector for scanned elements have been derived in
Proposition 7.8: they are geometrically decreasing from the meeting point outwards with
a basis close to 1

3 . Unless we have an extremely large sample size—namely exponentially
large in s—we are not able to express the tiny differences in the probabilities for the

Optimal Comparison Trees · 7.7

261

outermost segments. More specifically, if we use Algorithm 11 (page 246), our rounding
heuristic to find good sampling vectors, the outermost entries of t are often 0. This is
already the case for s = 6 for reasonable sample sizes, see Table 10.

Intuitively, these low-probability segments cannot be very helpful overall. We have
seen in Section 7.5.7 that t∗ is usually close to round(τ∗ ·κ)− 1. For scanned elements with
m = s/2 and even s, the smallest entry in τ∗ is (x∗)m, which is very close to 3−m. If now
s > 2 log3(κ), then the outermost entry of t∗ is at most round(κ · 3−m) = round(κ1κ) = 1,
which is the limit of precision for sampling. Any further entries should receive less than
a 1
κ fraction of elements, but we cannot express a smaller class probability with the given

sample size.

2 4 6 8 10 12 14 16 18

2

3

4

5

6

s∗(k)
2dlog3(κ)e

Figure 42: Optimal s∗ = s∗(k) w.r.t. scanned ele-
ments when k is fixed. s∗(k) is determined
by exhaustive search among all choices
for s, m and t with sample size k. The
dashed line shows a heuristic explanation
for s∗(k), namely 2dlog3(k+ 1)e. This is
(roughly) the number of non-zero entries
in t chosen by Algorithm 11 based on the
optimal quantiles vector τ∗ w.r.t. scanned
elements.

For a given κ, we thus expect s � 2 log3(κ) to perform worse than s ≈ 2 log3(κ). In
fact, Figure 42 shows that this back-of-the-envelope computation very accurately predicts
the optimal number of segments: s∗(k) ≈ 2dlog3(k + 1)e. The optimal choice of m is
always m = ds∗/2e and the sampling vector is as discussed in Section 7.5.7.

It is quite reassuring that for realistic choices for k in practice, say 3 6 k 6 27, we have
either s∗ = 4 or s∗ = 6, which both still allow reasonably simple partitioning code. The
case s = 4 corresponds to Waterloo partitioning, and this discussion is another indication
that this algorithm has favorable characteristics.

Comparisons. Let us now ask the same question as above for comparisons: what is the
optimal choice of parameters w.r.t. the number of comparisons, when k is fixed to a given
value? In addition to s, m and t, for comparisons can also change the comparison trees λk
and λg.

Unlike for scanned elements and despite the many degrees of freedom, the optimal
choice for s is unspectacular: two. It is best to put all the stakes on one card and select a
single pivot very precisely, namely as close to the median of the input as possible.

7.7 Optimal Comparison Trees

With one pivot, all we can do is to compare each ordinary element to that pivot. For
s-way partitioning, we have much more freedom, we can choose from many different

7 Results and Discussion

262

comparison trees. Most previous work on Quicksort with more than one pivot does not
explore this design space, in particular Hennequin [77] only considers maximally balanced
trees; Tan [173] implicitly does so as well. Sedgewick [162] and Kushagra et al. [105] study
specific implementations with two respectively three pivots and do not explicitly discuss
the chosen order of comparisons.

Aumüller et al. [10], who worked concurrently on multi-pivot Quicksort, were the
first to explicitly describe the idea of comparison trees and to explore the possibility to
choose one that is not maximally balanced. They also discuss the most general setting of
generic classification strategies that we considered in Section 5.3.2. The used comparison
tree was there allowed to change after every single classification. For practical algorithms,
the overhead of dynamically adapting the order in which to compare elements to pivots
is usually too big, see the experiments of Aumüller et al. [8, 10]. Aumüller et al. therefore
consider the simplest strategy in more detail: A priori choose one tree λ = λk = λg for
good.

We first revisit this strategy here in our more general setting and extend a few results
of Aumüller et al. [10]. Then we consider the benefit of dropping the restriction to use the
same comparison tree for both λk and λg.

7.7.1 The Single-Tree Case

If we use the same comparison tree λ = λk = λg to classify all elements, the number of
comparisons in one partitioning step has leading-term coefficient (Theorem 7.1)

aC =
∑

c∈C
λ(c) · τr(c)

σ→ + σ← + [c = l] + [c = s]
σ→ + σ← + [c 6= m]

=
∑

c∈C
λ(c) · τr(c) = λTτ, (7.98)

which is the expected depth of the leaf for the random class C, where P[C = Cr] = τr for
r = 1, . . . , s. As noted already in Section 7.5.3, aC is a linear function in τ, which is not the
case in general for λk 6= λg.

By Equation (7.98), the access probabilities of leaves in the comparison tree are simply
τ and thus determined by the sampling parameter t as τ = t+1

κ , where κ = Σ(t+ 1).

Legitimate Expectations? In a given partitioning step, the actual leaf access frequencies
in the comparison tree are random: they are given by I. We might consider the expectation
of I, as classes of elements are i. i.d., but even then, the leaf access probabilities are still
random; they are given by D. Of course, the expected value of the latter is E[D] = τ; but
is it legitimate to simply insert that expected value in our cost function?

Of course, the general answer is no. But for a fixed comparison tree, the number
of comparisons for sorting with that tree is a linear function in I and D, and we obtain
expected aC by taking expectations first on I, then onD by the linearity of the expectation.

Note that this simple relation does no longer hold for two different trees: the usage
frequencies of the trees and the access frequencies of leaves/classes are not independent.
Therefore, we need the more elaborate machinery of Chapter 5 to compute the expected
comparison count. Luckily, we did that once and for all there.

Two Comparison Trees · 7.7.2

263

If the sampling parameter t is fixed, we can ask for the optimal choice λ∗ for the com-
parison tree, namely the binary search tree (BST) on s− 1 internal nodes whose weighted
external path length with weights τ is minimal. This optimization problem is a classic
scenario, known as the optimal alphabetic tree problem. Section 7.7.3 briefly surveys what
is known for this problem, with a focus on properties that help characterize optimal trees
for important special cases for the weights. But before we consider in more detail how to
find such optimal trees, let us drop the restriction λk = λg.

7.7.2 Two Comparison Trees

Aumüller et al. [10] did not study the possibility of having two different trees, their setting
thus corresponds to the one of the last section. We hence consider the two-tree case in
more detail in this work.

When we allow two different comparison trees, we have to find the best possible pair
of trees. This might seem a much harder problem than the single-tree case above, but it is
actually not. The key observation is that the total costs are a sum of two terms, where one
is influenced only by λk, the other only by λg. We can hence optimize for the two trees
separately; we only have to determine the weights according to which we should choose
λk and λg. The weights are contained in the term for aC from Theorem 7.1, we just have
to dig them out:

aC =
∑

c∈C
λk(c) ·

τr(c)(σ→ + [c = s])
κ− σ↔ + [c 6= m]

+
∑

c∈C
λg(c) ·

τr(c)(σ← + [c = l])
κ− σ↔ + [c 6= m]

. (7.99)

Unlike for a single tree, master-pivot and master-segment methods differ in the leaf
weights for two trees. The case distinction is hidden in the σ→ etc. notation (see Table 4).

� � �

As the formula is a little opaque with all the abbreviations, let us consider a concrete
example. The parameter choices are rather nonsensical and meant for illustrative purposes
only. Set s = 6 and m = 2.5, then the classes are C = (s3, s2, m, l2, l3, l4). Let us pick
t = (0, 5, 1, 3, 1, 4), i.e., we have κ = 20 and τ =

(
1
20 , 310 , 110 , 15 , 110 , 14

)
. The leaf weights for

λk then are
(
2

95
,
12

95
,
7

180
,
7

95
,
7

190
,
7

76

)
≈

(
0.021, 0.126, 0.039, 0.074, 0.037, 0.092

)
, (7.100)

and for λg we have
(
11

380
,
33

190
,
11

180
,
12

95
,
6

95
,
3

19

)
≈

(
0.029, 0.174, 0.061, 0.126, 0.063, 0.158

)
. (7.101)

Note that the weights sum to 7
18 ≈ 0.389 resp. 11

18 ≈ 0.611, which makes 1 in total, not
per tree. The optimal choices for λk and λg are given in Figure 43 (page 273); they are
coincidentally the same as for the symmetric case discussed there. The weighted external

7 Results and Discussion

264

path lengths are 581
570 ≈ 1.02 and 919

570 ≈ 1.61, so that we get aC = 50
19 ≈ 2.63. The expected

leaf depth in the trees, i.e., the weighted path lengths after normalizing so that weights
sum to one per tree, is 24995 ≈ 2.62 and 2757

1045 ≈ 2.64 for λk and λg, respectively. They differ
only very slightly.

7.7.3 The Optimal Alphabetic Tree Problem

The problem of computing λ∗ from the weights τ is known as the optimal alphabetic
tree problem. It is a special case of computing optimal binary search trees, for which the
internal nodes may have weights, as well, and a stricter variant of the coding tree problem,
where we look for any binary tree with the given leaves, but the leaves need not appear
in the input order. The term alphabetic exactly refers to the fact that we require leaves to
remain in order in binary search trees. Nagaraj [134] gives a comprehensive overview of
all three problems. We herein only discuss a few facts relevant for our further discussion
of optimal comparison trees in Quicksort.

Algorithms. The coding tree problem is solved exactly and optimally—w.r.t. the Θ-class
of the number of comparisons—by the classic greedy algorithm due to Huffman [90].
Interestingly, the true complexity of finding optimal BSTs is still open in both variants of
the problem.

Huffman’s algorithm starts with a list of all leaves with their weights. It then iteratively
replaces a pair of nodes with minimal sum of weights, by a new internal node with the
sum as its weight. The two removed nodes become the children of this newly created
node. When only one node is left, the process terminates and the last node is the root of
the constructed tree, which can be shown to have minimal expected external path length.

A neat implementation of Huffman’s algorithm first sorts the leaves by weight—need-
less to say it should use Quicksort for that—and then uses an ordinary queue for created
nodes, see Rytter [156] for details. Excluding the sorting step, Huffman’s algorithm then
runs in linear time.

For the more general optimal binary search tree problem, there is a conceptually simple
dynamic-programming algorithm, see Knuth [103, Section 6.2.2]. It has quadratic time and
space complexity. This algorithm can of course be used to compute optimal alphabetic
trees, and it is fast enough for reasonable values of s.

Specialized methods for the alphabetic tree problem are much more efficient for large
inputs: The Hu-Tucker algorithm [87] and the Garsia-Wachs algorithm [70] both compute
optimal alphabetic trees in linearithmic time. The algorithms and even more so their
correctness proofs are more involved [134, 103]. Even though we do not make use of the
algorithms themselves in this work, we use insights gained from their correctness proofs to
establish optimality of certain trees. We thus describe the idea of the Hu-Tucker algorithm,
following Mumey [131, 99] and Nagaraj [134]. A well accessible description is also given
by Shor [169].

The Hu-Tucker algorithm first computes a binary tree that is not necessarily alphabetic,
i.e., leaves might appear out of order. The cost of this tree can be shown to be optimal

The Optimal Alphabetic Tree Problem · 7.7.3

265

in a restricted class of coding trees containing all alphabetic trees. Moreover a procedure
is known to create an alphabetic tree of the same cost, which thus is optimal. We only
describe the first step, see Nagaraj [134] for the construction of the alphabetic tree.

The first phase is similar to Huffman’s algorithm; it also starts with the list of leaves
and successively merges pairs of nodes until a single root remains. Unlike for Huffman’s
algorithm, the order of nodes is important, so we keep them in a list. A newly created node
takes a place between the two just removed nodes, e.g., the position of its left son. Also,
we do not simply merge nodes with minimal weight sum, but so-called local minimum
compatible pairs (LMCP). Two nodes are compatible if there is no leaf between them in the
current list of nodes— internal nodes may be crossed over, though—and such a pair of
nodes (u, v) is locally minimal if u has minimal weight among all nodes compatible to v
and the other way round, i.e., u and v are mutually minimum compatible nodes. It may
happen that several compatible nodes have the same weight; in that case a tie-breaking
rule is needed to single out the LMCP. We use the position in the list to strictly order
nodes of equal weight. One can show that there always is such a construction where we
merge only LMCPs.

Conditions for Optimality. The following statement is then an immediate consequence of
the correctness of the Hu-Tucker algorithm, see, e.g., Nagaraj [134], and provides the basis
of the proofs of following statements for weights with specific properties.

Proposition 7.16: Let w ∈ Rn>0 be a vector of weights and λ a BST with leaves 1, . . . ,n.
If the expected leaf depth E[λ(I)] for I D= D(w) equals the weighted external path length
of a tree formed by merging local minimum compatible pairs on w1, . . . ,wn, then λ is an
optimal alphabetic tree w.r.t.w. �

For special cases shortcuts are possible to the optimal alphabetic tree. These cover many
choices of interest for sampling vectors t, so we list some here for reference.

Corollary 7.17 (Theorem 5.1 of Hu and Tan [86]): Let 0 < w1 6 w2 6 · · · 6 wn be sorted
weights. Then the costs of optimal alphabetic trees and Huffman trees coincide. J

Proof: We show that Huffman’s algorithm never merges incompatible node pairs; as it
chooses sum-of-weight-minimal pairs, all combinations are LMCP and we are done.

Consider the queue-based implementation of Huffman’s algorithm, i.e., we have one
queue Ql initially holding the leaves in sorted order, increasing by weight, and a second
queue Qi to which we add newly created internal nodes. We only ever remove minimal-
weight leaves from Ql and Qi contains only internal nodes, so Ql and Qi invariantly
contain exactly all leaves resp. all internal nodes, sorted by nondecreasing weight. If the
two weight-minimal leaves and internal nodes are l1, l2 and i1, i2, respectively, the next
merge must combine (l1, l2), (l1, i1) or (i1, i2). All are compatible pairs since i1 is the
leftmost inner node. �

With Corollary 7.17, one can show that optimal alphabetic trees can be computed in linear
time for sorted leaf weights: the LMCP-merging step is the only part in the Hu-Tucker

7 Results and Discussion

266

algorithm that need super-linear time. It is intriguingly still open, whether it is possible to
compute optimal alphabetic trees in linear time, if the weights are only linear-time sortable;
of course, for alphabetic trees this is a much weaker requirement than having leaves with
weights in order also in the final tree.

Proposition 7.18 (Theorem 3.1 of Klawe and Mumey [99]):
Assume the weights w are “within a factor of two,” i.e., there is a constant c such that
c 6 wi < 2c for i = 1, . . . , s. Then there is an optimal alphabetic tree with all leaves on at
most two consecutive levels. J

Proof: We first show that after merging “one level,” we again have weights within a factor
of two.

Starting with s weights within a factor of two, the first bs/2c LMCP merges each
combine two leaves, as any created internal node weighs at least 2c and thus more than
any leaf. If s is even, all nodes are pairs of leaves and thus have weights in [2c, 4c), so the
sequence is again within a factor of two. Also, after this round of merges, all leaves are at
level 1.

If s is odd, a largest-weight leaf will be left over; Klawe and Mumey somewhat aptly
call it the wallflower of the leaves. Let wwf = maxwi be its weight.

The next LMCP must combine the wallflower and the cheapest of the previously
formed internal nodes, which has weight, say, c ′ ∈ [2c, 4c). All other internal nodes
have weight at least c ′, and less than 2c ′ because 2c ′ > 4c, so they all fall into [c ′, 2c ′). The
triple that is formed by including the wallflower, of course, has weight greater than c ′, but
not more than 2c ′ as the wallflower contributes wwf < 2c, but c ′ > 2c. Hence, after the
wallflower merge we have, as in the even case, bs/2c nodes and their weights are within a
factor of two.

After this round of LMCP merges, most leaves are at level 1, except for the pair that
had to include the wallflower, those two leaves are at level 2. Joining the wallflower pushes
them down one level.

We finally observe that the wallflower triple has the unique maximal weight of all
bs/2c nodes in the current list:

c ′ +wwf > 2c+wwf > 2wwf > maxwi +wj. (7.102)

It is thus guaranteed that the root of the wallflower subtree will be the wallflower of any
subsequent rounds (unless we have an even number of nodes then). Joining the wallflower
not only pushes you one level down, it makes the clique become the new wallflower. On
the other hand, once a leaf is part of the wallflower subtree we will never see its level
increase by two again in future rounds, so any one leaf has in the end as level the number
of rounds or the number of rounds plus one. Of course, the number of rounds is simply
bld(s)c. �

If the number of leaves is a power of two, we can even precisely characterize the weight
vectors that make the complete BST optimal:

The Optimal Alphabetic Tree Problem · 7.7.3

267

Proposition 7.19 (Lemma 4.4 of Ramanan [147]): Let s be a power of two. The complete
binary search tree with all s leaves on level ld(s) is an optimal alphabetic tree w.r.t. leaf
weights w if and only if

∀i ∈ {1, 3, 5, . . . , s− 3} : ∀j > i : wi 6 wj +wj+1 , (7.103 .1)

∀i ∈ {4, 6, 8, . . . , s} : ∀j < i : wi 6 wj−1 +wj , (7.103 .2)

∀i ∈ {1, 3, . . . , s− 1} : ∀j ∈ {i+ 1, i+ 3, . . . , s} : ∀q > p+ 2 :

(p > j ∨ q+ 1 < i) =⇒ wi +wj 6 wp +wp+1 +wq +wq+1 . (7.103 .3)
�

� � �

Another extreme case that is also easy to handle is when weights are exponentially spaced.
More specifically, if the ratio between any two nodes is at least two, i.e., wi > wj implies
|wi/wj| > 2, then only adjacent nodes will ever be merged; see Lemma 3.3 of Mumey [131].

This very situation is not so useful for our purposes, but a particular shape of
weights with locally exponential spacing is. The precise conditions are somewhat tech-
nical, but essentially they require the weights to increase exponentially up to some in-
dex m, and then they decrease exponentially, a prototypical example would be w =

(c5, c4, c3, c2, c, c, c2, c3) for a c 6 1
2 . Weights of such shape are used if we sample so

that the number of scanned elements is optimized.

Proposition 7.20: Assume the weights w ∈ (0, 1)s fulfill

w1 < w3 , if m > 3, (7.104 .1)

ws−2 > ws , if m 6 s− 2, (7.104 .2)

φ ·wi < wi+1 , for i = 2, . . . ,m− 1, (7.104 .3)

wi > φ ·wi+1 , for i = m+ 1, . . . , s− 2, (7.104 .4)
m−1∑

i=1

wi < wm+1 , (7.104 .5)

wm >

s∑

i=m+2

wi , (7.104 .6)
J

for φ = (
√
5+ 1)/2 ≈ 1.61803 the golden ratio and an index m ∈ [1..s− 1]. Then the optimal

alphabetic tree for weights w has as root the node with key m+ 0.5, separating leaves wm
and wm+1. The left subtree of the root consists of a linear list of the leaves in decreasing
order of the indices and likewise the right subtree is a linear list with leaves in increasing
index order.

In other words, under the conditions of Proposition 7.20, the extremal tree is optimal, see
Definition 7.15 on page 254.

Proof: We argue inductively that LMCPs are always the two first or the two last elements.
The resulting Hu-Tucker tree is then already alphabetic and hence an optimal BST.

7 Results and Discussion

268

If s = 2, we have m = 1 and there is only one merge possible, which gives a tree as
claimed.

Now assume s > 3 and consider first the case m > 2. Then (w1,w2) is a LMCP since
w1 < w3, either by Equation (7.104 .1) if m > 3 or by Equation (7.104 .5) if m = 2, so we
merge w1 and w2. Next, we show that the resulting weight sequence w ′ ∈ (0, 1)s−1 with
w ′i = wi+1 for i > 2 and w ′1 = w1 +w2 again fulfills Equation (7.104) with s ′ = s− 1

and m ′ = m− 1. Equations (7.104 .2), (7.104 .3) and (7.104 .4) only concern elements that
did not change, so they remain valid. w ′m ′ > wm as no elements can shrink, and the
right-hand side did not change, so Equation (7.104 .6) still holds. Similarly, the sum in
Equation (7.104 .5) has not changed; we only summed up two summands up front. It
remains to check Equation (7.104 .1) if m ′ > 3, i.e., m > 4

w ′1 = w1 +w2 <
(7.104 .1)

w3 +w2 <
(7.104 .3)

(
1+

1

φ

)
w3 = φw3 <

(7.104 .3)
w4 = w ′3.

(7.105)

So, indeed, for the case s > 3 and m > 2, we can merge the LMCP (w1,w2) and get the
tree of the claimed form by the induction hypothesis.

It remains to consider the case s > 3 andm = 1, but since the conditions are symmetric,
we obtain by the same line of arguments that (ws−1,ws) is a LMCP and that we get a
sequence of the same form again after merging these two nodes. �

Note that all conditions in Equation (7.104) are linear inequalities in the weights w. So if
w and v fulfill Equation (7.104), so does any conic combination αw+βv with α,β > 0.

� � �

This section was mainly concerned with relative quality: how to find the best tree among all
that are possible, or how to recognize a given tree as optimal. The next section complements
this with bounds on its absolute quality: how good can trees possibly be?

7.7.4 Entropy-Bounds for Comparison Trees

Apart from the well-known information-theoretic lower bound on the number of compar-
isons needed to sort, we can also put entropy arguments to good use in analyzing a single
classification step in multi-pivot Quicksort.

As noted above, even in the two-trees case, we can analyze and optimize costs sepa-
rately for the two trees. In this section, we therefore consider a single classification with
one comparison tree λ whose leaves are accessed with probabilities q ∈ [0, 1]s. As the
leaves are associated to classes c ∈ C, q really gives a distribution over C. The expected
number of comparisons to classify a random class C ∈ C, distributed according to this
distribution, is then given by E[λ(C)], where λ(c) denotes the depth of the leaf c. Proposi-
tion 2.49 (page 86) relates this to the entropy of the distribution of C, in particular we have
the following lower bound on the expected number of comparisons to classify one element:

E[λ(C)] > Hld(q) (7.106)

Entropy-Bounds for Comparison Trees · 7.7.4

269

for any tree λ. Moreover, we can always find a tree with E[λ(C)] < Hld(q) + 2 6 ld(s) + 2.
The lower bound is precisely attainable for some distributions q, namely those that

admit an entropy-tight tree (see Algorithm 1).

Single-Tree Case. If we enforce λk = λg, we directly have aC = E[λ(C)]. Also, the weights
are simply q = τ. So for the single-tree case, we always have

aC > Hld(τ), (7.107)

and the optimal tree λ∗ achieves aC < Hld(τ) + 2.

Bounds for Comparison-Optimal Partitioning. In Section 5.7 on comparison-optimal par-
titioning, we have seen that it suffices for the leading term to consider a classification
strategy that chooses the optimal comparison tree for a given D. We need not know the
actual segment sizes I, because for large n, they do not deviate much from D ·n.

Now for a fixed D, the best conceivable strategy would cut the range of possible
values of an element in half with each comparison. If that is possible precisely, we need
exactly Hld(D) per ordinary element on average. In general, we will need a few more
comparisons, but never more than Hld(D) + 2.

If we could achieve the entropy bound for each D, the expected number of compar-
isons per partitioning step would be

E[Hld(D)] = −
1

ln 2

s∑

r=1

E[Dr lnDr] =
1

ln 2
H(t), (7.108)

where the second equality follows by Proposition 2.54. The overall number of comparisons
is then precisely n ldn ±O(n), the information-theoretic lower bound for comparison-
based sorting. Of course, we knew that lower bound already.

We also get the upper bound aC < E[Hld(D)] + 2, but this bound is not very helpful.
A precise statement about the quality of comparison-optimal partitioning would require
the expected value of the weighted external path length of the optimal alphabetic tree,
when the leaf weights are Dir(t+ 1) distributed, i.e., uniformly for t = 0. To my knowl-
edge, this average redundancy is not known. It is hence included in Open Problem 5.12.

Redundancy has been studied in more detail for Huffman codes, starting with Gal-
lager [69], but also with a focus on upper bounds. To the author’s knowledge, even for
Huffman codes the average redundancy is not known in this model.

Open Problem 7.21 (Average Redundancy of Huffman Codes): Let P D= Dir(1, . . . , 1) be
an s-dimensional random vector, drawn uniformly among all stochastic vectors. Let λH =

λH(P) be a Huffman tree for the leaf weights P, and define the redundancy of λH as
R =
∑s
r=1 PrλH(r) −Hld(P). Compute E[R], as a function in s. Results for special s (small

values) or nontrivial lower and upper bounds would already be interesting. J

A related problem has been solved by Szpankowski [172]: There, alphabet symbols are
blocks of bits of length n, generated by a memoryless source where p < 0.5 is the probability
for 0 in the block. The average redundancy of different codes, including Huffman’s, are
computed for large n. Here the symbol probabilities are fixed, and so is the redundancy;

7 Results and Discussion

270

the average here means average redundancy over all symbols, not over random symbols
weights.

7.7.5 Optimal Choices for A Single Tree

For any given τ, we can use the algorithms discussed in Section 7.7.3 to determine an
optimal comparison tree. However, running the algorithm as black box does not give
much insight into what parameters allow for good trees. For two sensible special cases
of families of weights, we can explicitly give optimal trees, so that we can analytically
compare costs.

Let us start simple: We do not use sampling, i.e., t = 0 and τ = (1s , . . . , 1s), and assume
s is a power of two. Then the complete binary tree is optimal: all s leaves are at depth
ld(s), i.e., τi = 2−λ(i), so the tree is entropy-tight by Fact 2.50 (page 88), and thus optimal.
The same remains true if t = (t, . . . , t) for any t ∈N0.

If s is not a power of two, there is no perfectly balanced tree, but as discussed already
in Section 7.6, the almost complete BST is optimal and has the cost given in Equation (7.61)
on page 249.

Exponential-Decay Sampling. Things get more interesting if we sample pivots with a
systematic skew. To save comparisons, it might not help to deviate much from equidistant
sampling, but we have seen in Section 7.5.4 that extremely skewed sampling is needed to
optimize the number of scanned elements. Aumüller et al. [10] show that this remains
true at least for small s and k, when we optimize the sum of comparisons and scanned
elements. So let us assume τ is the optimal quantiles vector w.r.t. scanned elements for
m ∈N0, that means

τ = (xm, xm−1, . . . , x2, x, x, x2, . . . , xs−m), (7.109)

with x = x∗(s,m), see Proposition 7.8. It is easy to check that τ fulfills the conditions
(Equation (7.104)) of Proposition 7.20 (page 267). For scans-optimal sampling, the opti-
mal comparison tree is thus the extremal tree with the master pivot Pm as root. We can
generalize this statement to a class of quantiles vectors.

Proposition 7.22: For χ ∈ [0, 1] and x ∈ (0, 12] set

α =
(
m− χ,m− 1,m− 2, . . . , 2, 1, 1, 2, 3, . . . , s−m− 2, s−m− 1, s−m− χ

)
, (7.110)

and assume τ ∝ xα = (xα1 , . . . , xαs). If 1 − x − xχ > 0, we require additionally that
3 6 m 6 s− 3. Then the optimal comparison tree λ∗ is the extremal tree with Pm in the
root. J

The Benefit of Two Trees · 7.7.6

271

Proof: Conditions (7.104 .1) – (7.104 .4) trivially hold because 1/φ > 1
2 . For (7.104 .5), we

compute

m−1∑

i=1

τi = xm−χ +

m−1∑

i=2

xi (7.111)

=
x2

1− x
+ xm−χ · 1− x− x

χ

1− x
; (7.112)

for the case 1− x− xχ < 0, we can simply drop that term and continue

<
x2

1− x
(7.113)

6
(x 6 1/2)

x (7.114)

= τm+1. (7.115)

If 1 − x − xχ > 0, we have m > 3 by assumption. Moreover, 1 − x − xχ > 0 implies
χ > logx(1− x), so if x = 1

2 , then we must have χ = 1. Then τ =
(
1
2

)
α+1 is precisely the

entropy-tight distribution for the extremal tree, so it must be optimal by Proposition 2.49.
Otherwise we have x < 1

2 and continue the estimate from above

m−1∑

i=1

τi =
x2

1− x
+ xm−χ · 1− x− x

χ

1− x
(7.116)

6
(m > 3)

x2

1− x
+ x3−χ · 1− x− x

χ

1− x
(7.117)

= x2 + x3−χ (7.118)

6 2x2 (7.119)

<
(x < 1/2)

x (7.120)

= τm+1. (7.121)

That proves condition (7.104 .5). Condition (7.104 .6) is similar. Therefore, all requirements
of Proposition 7.20 are fulfilled and the extremal tree with root Pm is optimal. �

7.7.6 The Benefit of Two Trees

We can rewrite the term for aC from Equation (7.99) to make the influence of the two trees
λk and λg more transparent:

aC = σ→
∑

c∈C
λk(c)ρc + σ←

∑

c∈C
λg(c)ρc

︸ ︷︷ ︸
symmetric in λk and λg

+
∑

c∈C
c=s

λk(c)ρc +
∑

c∈C
c=l

λg(c)ρc , (7.122)

where

ρc =
τr(c)

κ− σ↔ + [c 6= m]
. (7.123)

7 Results and Discussion

272

The first part of this expression for aC is symmetric in the sense that the value of this
part does not change if we simultaneously swap λk and λg, as well as σ→ and σ←. It is
a linear combination of weighted path lengths of λk and λg, with the same weights ρc.
Stated otherwise it represents a mixture of the cost of the two trees, where the cost of λk
contribute σ→ parts of the cost and λg contributes σ← parts. If we choose trees so that
they minimize the overall comparison count, there often are several choices with the same
overall path length and any combination of these has the same value for this symmetric
part.

The asymmetry of the partitioning algorithm manifests in the second two sums. Each
considers only a part of the tree, and those parts are disjoint. Thereby the contribution
of these two sums can be smaller than the path length of any single tree. This is where
comparisons can be saved.

Dual-Pivot Quicksort. The simplest case to see the above remark in action is dual-pivot
Quicksort, i.e., s = 3. We only have two trees to choose from, which makes four different
combinations for λk and λg

(
,

)
,

(
,

)
,

(
,

)
,

(
,

)
.

Let us first assume that m = 2 like in the YBB Quicksort. Without sampling, all
combinations then yield 5

4 in the symmetric part of aC. The reason is that the two trees
have the same external path length, namely 5. For the asymmetric part, however, they
differ. In the order from above, the four combinations yield additionally

5

12
,

1

3
=
4

12
,

1

2
=
6

12
,

5

12
. (7.124)

The clear winner is the second pair of trees, where we have λk 6= λg. This is indeed the
choice of trees used in YBB Quicksort, with an overall number of 1912n comparisons in the
asymptotic average for partitioning n elements, saving 5% of the comparisons over using
one tree.

A most remarkable feature is that this is less than the entropy bound! Without sampling,
the three leaves all have probability 1

3 , and entropy of this distribution is

Hld
(
1
3 , 13 , 13

)
= ld(3) = 1.58496 . . . > 1.583 =

19

12
. (7.125)

Of course, the above entropy considers the overall distribution of leaves, and is only a valid
lower bound for a single comparison tree. There is nothing fishy in beating lower bounds
that are not applicable.

We do get a valid lower bound for the two trees scenario be computing the condi-
tional leaf distributions, given that we classify with λk resp. λg. In our example, these
distributions are

(
3

8
,
3

8
,
1

4

)
for λk, resp.

(
1

4
,
1

4
,
1

2

)
for λg. (7.126)

The Benefit of Two Trees · 7.7.6

273

The entropy of these distributions is 1.56128 . . . and 1.5, which we should compare to the
expected leaf depths in λk and λg, namely 1.625 and 1.5, respectively. None is smaller than
the entropy, but λg is in fact entropy-tight.

Dual-Pivot Quicksort with Kciwegdes-Partitioning. In terms of comparisons, we can
slightly improve upon YBB Quicksort if we switch to a master segment method with
m = 1.5. The symmetric part rises to 4

3 for all tree pairs and the asymmetric part be-
comes

1

3
=
3

9
,

2

9
,

4

9
,

1

3
=
3

9
. (7.127)

The differences between the tree pairs becomes even more pronounced; we save 6.6% of
the comparisons by using two different trees; if we use the right pair. The classification
strategy corresponds exactly to Kciwegdes partitioning (Algorithm 7).

Intuitively the optimal choice of trees profits from the following fact: The left tree λk
is advantageous for inputs with many small elements, as it needs only one comparison to
identify these. Likewise, λg is good for many large ones. How often each of the two trees
is used for classification is coupled to the number of small and large elements in the input
by the way our partitioning proceeds. If there are exceptionally many small elements, we
use λk more often than λg, and likewise for many large elements, λg is used more often.
That way, we automatically use that tree more often which is better for the current input.
In the formula for aC from Equation (7.122), this shows in the asymmetric part, where we
only add the costs of λk on the small classes and the costs of λg on the large classes.

� � �

The benefit of two trees is quite striking in the example above. Yet we argued in Section 7.6
and Section 7.5, that the use of two trees has negligible effect; how does that fit together?
The answer is that the relative contribution of the asymmetric part of Equation (7.122) soon
becomes very small when we increase the number of pivots or the sample size. To get a
feeling for what “soon very small” means, let us consider another concrete example from
the realistic range of parameters.

Six-way Quicksort. Let us set s = 6 and m = 3 and again assume we do not sample
pivots. The optimal choice of trees is given in Figure 43; with a complete enumeration of
all possibilities, we find that it is in fact the unique optimal choice.

λk λg

Figure 43: The optimal comparison trees λk (left) and λg
(right) for s = 6 and m = 3 under equidistant
sampling. The second part of Equation (7.122)
considers the leftmost three leaves of λk and
the right most three leaves of λg, and thus com-
bines the inexpensive part of each tree.

7 Results and Discussion

274

Both trees have minimal path length; but there are four more trees with the same path
length. All of these six trees would be optimal choices if we enforced λk = λg, but al-
lowing two trees only the given pair is optimal. The intuitive reason is that only this pair
minimizes the asymmetric contribution in Equation (7.122), by putting the high-hanging
leaves all the way to the left for λk resp. to the right for λg.

The overall expected number of comparisons in one partitioning step is then ∼ 55
21n,

whereas using any of the two trees for both λk and λg yields the coefficient 83 = 56
21 . If we

swap λk and λg, we even need ∼ 57
21n comparisons. The difference is clearly there, but

it is small; below 2% in this case. If we include pivot sampling, the differences become
even less pronounced; the three cases above for t = (1, 1, 1, 1, 1, 1) are 103

39 , 10439 resp. 10539 ,
differing by less than 1%.

General Perspective: Varying s. In the above examples we found that the benefit of al-
lowing λk 6= λg drops when we make s and/or k larger. The general picture is somewhat
richer, so let us examine it in a little more detail. Figure 44 shows the savings from using
the optimal pair of comparison trees, where two different trees are allowed, over the opti-
mal choice for a single tree, in a range of practical values for s. Here, we assume that no
sampling is used to pick pivots. Also, we let m = s/2, which means that λk and λg are
each used for half of the classifications in expectation, maximizing the effect of two trees.

Figure 44: Improvement by using the optimal pair of
comparison trees over the optimal choice
upon enforcing λk = λg. The x axis shows
s in the range from 2 to 32, the y axis the
savings of two trees in percent when pivots
are chosen at random, i.e., with t = 0, and
we choose m = s/2. 2 4 8 16 32

0

2

4

6

11 21

Indeed, the overall picture is that for s > 12, less than 1% is gained from using two
trees, which might be deemed as unobservable in practice. Moreover, there are no savings
at all if s is a power of two in the given range. With symmetric sampling, the complete
binary search tree is the optimal choice for both λk and λg, even if they are allowed to
differ. Between two consecutive powers of two, savings first increase and then drop again.

Let us see whether we can transfer the above observations to all s and give a rigorous
proof. With t = 0 and m = s/2, Equation (7.99) simplifies to

aC =
∑

c∈C
λk(c) ·

1
s (bs/2c+ [c = s])

s− [m /∈N] + [c 6= m]
+
∑

c∈C
λg(c) ·

1
s (bs/2c+ [c = l])

s− [m /∈N] + [c 6= m]
. (7.128)

The Benefit of Two Trees · 7.7.6

275

For simplicity let us confine ourselves to even s, then we have m ∈ N, i.e., a master-pivot
method. In this case, we get the following weights for λk:

w(k) =

(
s/2 terms︷ ︸︸ ︷

s/2+ 1

s(s+ 1)
, . . . ,

s/2+ 1

s(s+ 1)
,

s/2 terms︷ ︸︸ ︷
s/2

s(s+ 1)
, . . . ,

s/2

s(s+ 1)

)

∝
(
1+ 2

s , . . . , 1+ 2
s , 1, . . . , 1

)
.

For λg we get the same weights reversed, w(g) ∝ (1, . . . , 1, 1+ 2
s , . . . , 1+ 2

s). The weights
are very close to uniform, but with a slight surplus in one half. In particular, they are
within a factor of two for any s > 4, so that we know by Proposition 7.18 that there is an
optimal almost complete binary search tree. In any almost complete binary tree on s leaves,
we have the same number of leaves on the lower level, namely lll = lll(s) := 2(s− 2bld(s)c)
many: starting with a complete binary tree for the last power of two, each additional leaf
lands in the lower level and it pushes one of old leaves down.

As our weights are sorted, the best we can do for λk obviously is to have cheap leaves as
far to the left as possible. More specifically, λ∗k is the tree where the rightmost lll(s) nodes
are at depth bld(s)c + 1 and the remaining s − lll(s) are at depth bld(s)c. λ∗g similarly
has leftmost lll(s) nodes at depth bld(s)c + 1 and the others at depth bld(s)c. For the
single-tree case, any of these maximally balanced trees are optimal, so we can compare the
comparison count of (λ∗k, λ∗g) to say λk = λg = λ∗k.

It is immediately clear from the above discussion that if s is a power of two, i.e.,
lll(s) = 0, both λ∗k and λ∗g are the complete binary tree, and indeed no savings over the
single-tree case are achieved. For other values of s, the costs of the single-tree choice are

a(1)C = bld(s)c + lll
s

. (7.129)

For two trees with even s, overall costs are by symmetry twice the weighted path length
for λ∗k, which after some computation yields

a(2)C = bld(s)c + lll
s+ 1

+
[
lll > s

2

]
·
2 lll
s − 1

s+ 1
, (7.130)

and for the difference we get

a(1)C − a(2)C =
lll

s(s+ 1)
−

[lll > s
2](2

lll
s − 1)

s+ 1
(7.131)

=

lll
s(s+ 1)

, lll 6 s/2;

s− lll
s(s+ 1)

, lll > s/2.
(7.132)

The absolute benefit of using two trees is maximal for lll = s/2, where we save 1
2(s+1)

comparisons per element on average, which is rapidly shrinking with s.
The two coefficients a(1)C and a(2)C are compared in Figure 45; they are divided by the

common scale ld(s). While the two functions differ substantially for small s, they soon

7 Results and Discussion

276

Figure 45: Leading term coefficient aC of the
number of comparisons in one s-way
partitioning step with m = s/2 and
t = 0, normalized by ld(s), i.e., the
plot shows the functions given in Equa-
tions (7.129) and (7.130) divided by
ld(s). Only even integer values are al-
gorithmically meaningful, but it is inter-
esting to see the behavior of the func-
tion also in between. 2 4 8 16 32

1

1.02

1.04

1.06
a(1)
C

a(2)
C

look very similar. When comparing this to Figure 44, note that there we show the relative
savings, which is the difference from Equation (7.132) divided by a(1)C . The relative savings
thus even drop at a rate of O(1

s logs).
Strictly speaking, we have only considered the case of even s in detail here, but it is

intuitively clear that the odd case will not differ by much, in particular if s becomes large.

General Perspective: Varying k. We discussed at some length how savings decrease with
growing s, while keeping t = 0 fixed. Let us now also consider the effect of sampling,
for the value of s where the largest benefits are to be expected, namely for dual-pivot
Quicksort. We thus fix s = 3 and m = 1.5 here. Let us start by expressing the leading-term
coefficient aC for the number of comparisons in one partitioning step in terms of κ and
τ = (τ1, τ2, τ3). We find

aC = τ1
τ1κ+ 1

(1− τ2)κ+ 1
· λk(s2) + τ2

τ1
1− τ2

· λk(m) + τ3
τ1κ

(1− τ2)κ+ 1
· λk(l2)

+ τ1
τ3κ

(1− τ2)κ+ 1
· λg(s2) + τ2

τ3
1− τ2

· λg(m) + τ3
τ3κ+ 1

(1− τ2)κ+ 1
· λg(l2).

(7.133)

Note the asymmetries between the weights for λk and λg, indicating that in general, λ∗k 6=
λ∗g is possible. The asymmetries vanish in the limit, though, when the vector τ ∈ (0, 1)3 is
fixed:

aC =
τ1

1− τ2

(
τ1λk(s2) + τ2λk(m) + τ3λk(l2)

)

+
τ3

1− τ2

(
τ1λg(s2) + τ2λg(m) + τ3λg(l2)

)
± O(κ−1), (κ→∞). (7.134)

Thus, when the sample size goes to infinity, there is an optimal choice (λ∗k, λ∗g) with λ∗k = λ∗g
and the benefit of allowing two trees is zero. Note that this is not a special feature of dual-
pivot Quicksort: we get the same weights for both trees for any s when we fix τ and let
κ→∞.

Let us therefore consider in some detail how the benefit changes when we keep a
sample size k fixed, but choose different order statistics of this sample as pivots. For two

The Benefit of Two Trees · 7.7.6

277

0

1
6

2
6

3
6

4
6

5
6

1

0 1
6

2
6

3
6

4
6

5
6

1

0

1
6

2
6

3
6

4
6

5
6

1

τ1τ2

τ3

k = 5

0

1

2

3

4

Be
ne

fit
of

tw
ot

ree
sin

%
Figure 46: Benefit of using two trees for s = 3,

m = 1.5 when the two pivots are chosen
from a sample. The four pictures show dif-
ferent values of k, namely 5, 8, 11 and 21.
Each figure is a ternary plot in barycentric
coordinates for τ = (τ1, τ2, τ3). Colors in-
dicate the relative benefit in percent of two
trees over using the same tree for λk and
λg. The function is continued analytically
to the whole simplex, but only the values
at the small circles correspond to an inte-
gral t vector and thus have an algorithmic
counterpart. The dashed lines indicate the
lines τ3 = τ1 ± 1κ .

0

2
9

4
9

6
9

8
9

1

0 2
9

4
9

6
9

8
9

1

0

2
9

4
9

6
9

8
9

1
k = 8

0

2
12

4
12

6
12

8
12

10
12

1

0 2
12

4
12

6
12

8
12

10
12

1

0

2
12

4
12

6
12

8
12

10
12

1
k = 11

0

4
22

8
22

12
22

16
22

20
22

1

0 4
22

8
22

12
22

16
22

20
22

1

0

4
22

8
22

12
22

16
22

20
22

1
k = 21

pivots the sampling vectors τ lie in a two-dimensional simplex, so we can still sensibly
visualize their effect. Figure 46 does this for the benefit of two trees. The first impression
probably is black dominates the picture: for a large region of possible sampling vectors,
there is no (visible) benefit.

In fact, a moments reflection on Equation (7.133) shows that if τ1 > τ3 + 1
κ , we have a

larger weight for s2 than for l2 not only for λk, but also for λg. Hence, the tree with the
smaller pivot P1 in the root is optimal for both, and there is no advantage in allowing two
different trees. Similarly we get twice the tree with root P2, whenever τ3 > τ1 + 1

κ . So the
whole region outside the dashed lines in Figure 46 does not only look dark, it is perfectly
black: the benefit is precisely zero there.

It is intuitive that the maximal savings are achieved for τ = (12 , 0, 12). Medium elements
need two comparisons in any comparison tree, so their presence only weakens savings
from two trees. This matches the behavior shown in Figure 46. The dashed lines there
approach each other if κ, i.e., the sample size, grows, and so the margin for two trees
shrinks. And also, the absolute value of savings seems to drop rapidly with the sample
size.

Figure 47 confirms this claim. It shows the behavior of the savings for two points of
the simplex, namely τ = (13 , 13 , 13) and τ = (12 , 0, 12), as k varies. The benefit is rapidly
dropping with k, but for reasonable sample sizes, it is still over 2%. By inserting into

7 Results and Discussion

278

Figure 47: Benefit of two trees for s = 3 and m = 1.5
when sampling with τ = (13 , 13 , 13) or
τ = (12 , 0, 12). The x-axis shows the sam-
ple size k, the y-axis shows relative sav-
ings in percent. In fact, the two shown
functions are 60

2k+5 and 100
3k+6 . 5 10 15 20

0

2

4

6

8 τ = (1
3 , 1

3 , 1
3)

τ = (1
2 ,0, 1

2)

Equation (7.133), one finds that with τ = (13 , 13 , 13) two trees save us, per element and
partitioning step, precisely 1

2k+5 comparisons in expectation; for τ = (12 , 0, 12) it is slightly
more, namely 1

2k+4 .

Enforcing Different Trees Can Hurt. We have seen that there is some potential for savings
with using two different trees, but it quickly becomes insignificant for growing sample
sizes. Moreover it is a narrowing region for quantiles vectors τ, for which the option to
use two trees helps, at all, see Figure 46. Things are even worse, if we fix instead of τ the
trees that we use:

Figure 48: Comparison counts for Kciwegdes parti-
tioning and λk = λg = (Small First)
with optimal sampling. The x-axis shows
the sample size k, the y-axis the leading-
term coefficient of the number of com-
parisons, where for each algorithm and
k, the comparison-optimal τ is chosen.
For k > 6, enforcing two trees as in Kci-
wegdes is worse. 5 10 15 20

1.5

1.6

1.7

1.8

1.9

2

2

values are
identical

λk = λg better

Kciwegdes
Small First

Figure 48 shows that when we choose the best sampling vector t separately for the
two strategies (λk, λg) = (,) and (λk, λg) = (,), we find savings only for k 6 5; for
larger sample sizes, it actually hurts to enforce the use of two different trees! We already
noticed that we do not achieve the information-theoretic lower bound for YBB Quicksort in
the exact-quantiles limit; but it is still surprising how little a sample suffices to outperform
classification with two trees.

Figure 48 shows the situation only for s = 3 and m = 1.5. The plot for YBB Quicksort
looks very similar, and also for larger s, choosing λk 6= λg is better only for the first few
values of k, even if we compare with a method that uses a single, but very unbalanced tree.
If we can sample with sufficient accuracy, tuning the quantiles vector to one tree seems to
outweigh by far what we save by beating the entropy using two trees.

Concluding Remarks on Optimal Comparison Trees · 7.7.7

279

7.7.7 Concluding Remarks on Optimal Comparison Trees

In this section, we considered how to choose the two comparison trees. Roughly speaking,
there are two regimes that require different choices:

If either the number of segments s is relatively large, say s > 6, or if the sample
size k is relatively large, say k > 5, or both are relatively large, then the choice of two
different trees is not rewarding. If the sample size is really large, it is important to not
use two different trees, but which tree is chosen is not important, if we can choose the
corresponding quantiles vector τ. In these cases, we should let other cost measures guide
the choice for τ, and then choose a single comparison tree that fits the sampling vector.
We recapitulated algorithms for finding such trees in Section 7.7.3.

In the practically relevant regime of small s and k, the option to use two different trees
can be helpful; it depends on the sampling vector then. Again a good advise is to choose
a t so that other cost measures are optimized, and then consider which trees are best. As
shown in Section 7.7.2, we can use the same algorithms to independently find the best
choices for λk and λg. This may save a few comparisons without increasing costs.

7.8 Interactions between Parameters: The Jellyfish Paradox

Humans seem to strive for symmetry whenever they can. In Quicksort that means equidis-
tant t = (t, . . . , t) for a t ∈ N0, m = s/2 and comparison trees λk and λg as close to com-
plete binary trees as possible. Symmetric parameter choices have been used in many works
on Quicksort without discussing alternatives. This is often legitimate; after all, comparison
costs are highly symmetric among the classes, only restricted by classes being ordered.

If s is not a power of two, we cannot get perfect symmetry in trees, but we expect
optimal comparison trees to be almost balanced and t-vectors that are almost equidistant.
Mimicking the tree, t will slightly deviate from perfect symmetry to exploit the inevitable
tiny asymmetries in the tree. Also t has to be an integer vector, so for certain sample sizes,
we will have inevitable asymmetries due to rounding.

If, however, s is a power of two and κ is a multiple of s, no such obstacles exist and I
expected at least the following statement to be true.

Plausibe Statement 7.23: Assume, we require λk = λg and consider s = 2h with h ∈ N.
The sample size is k = (s− 1) + ts, so that (t, . . . , t) is a possible sampling vector. If we
are free to choose the comparison tree λk and t, so that the overall number of comparisons
is minimized (in the asymptotic average), then the optimal choice is equidistant sampling
t∗ = (t, . . . , t) and the complete binary search trees (for both λ∗k and λ∗g). J

It was surprisingly hard to prove this statement; which is, mostly, because it is not correct.
As the statement seems so natural, I had been willing to believe it for some time, even
though it resisted all attempts to prove it. This belief had been reinforced by the fact that
for any reasonable choices for the parameters, it is in fact the case that symmetric tree and
t are optimal: For h = 1, . . . , 8, Statement 7.23 is true. Intriguingly, in general it is not.

7 Results and Discussion

280

Before we consider counterexamples, let us recapitulate evidence for the plausibility
of Statement 7.23. First, the statement is true in the limit for t → ∞: balanced tree and
quantiles vector form an entropy-tight pair, so they achieve the information-theoretic lower
bound for k → ∞ (Proposition 7.5 on page 236). For finite k, we have t∗ = (t, . . . , t) if we
fix λk and λg to both the complete tree. Likewise if we fix the equidistant sampling vector,
the optimal choice for the comparison trees is the complete BST. The symmetric choice
thus forms a Nash equilibrium: no unilateral change can improve the outcome. Should that
not imply that it is an optimal choice then?

Well, no. As for the famous example in game theory, the prisoner’s dilemma, a Nash
equilibrium is not necessarily a global optimum. The two prisoners could both improve
their situation if both decided—simultaneously!—to not betray each other.

So how shall we escape the trap of symmetry? Proposition 7.5 provides guidance: the
local optima of the parameter landscape are precisely the entropy-tight pairs of trees and
quantiles vectors; but in the limit k → ∞, they all have the same value and are all global
optima.

So let us start with the equidistant sampling vector ted = (1, . . . , 1) and tinker with it
locally—just enough to jump to the next entropy-tight pair, i.e., the next comparison tree.
We consider for s = 2h the sampling vector t̃ = (3, 1, 0, 0, 1, 1, 1, 1, . . .), i.e., the first four
entries are special, the remaining ones are 1. The corresponding sample size is k = 2s− 1.

For the trees, we also start with λcomplete, the complete binary search tree. For s > 4
it contains the subtree with root P2 and children P1 and P3, that is the leftmost subtree of
three internal nodes. This subtree is replaced in λ̃ by the tree with root P1 followed by P2
and P3. This process is shown in Figure 49.

Figure 49: The tinkered-with tree λ̃ for s = 25 = 32 and
how it results from the corresponding com-
plete BST. The depth vector of the resulting
tree is λ̃ = (4, 5, 6, 6, 5, 5, 5, . . . , 5) instead of
5 for all classes.

Let us compute the number of comparisons we get with t̃ and λ̃. Recall that κ = 2s

and that aC = λTτ, so

aC(λ̃, t̃) = ld(s) −
4

2s
+ 2 · 1

2s
= ld(s) −

1

s
. (7.135)

For the discrete entropy we find

H(t̃) = −hdκ
(
1
s

)
−
4

κ

(
hdκ

(
4
κ

)
− hdκ

(
1
s

))
− 2 · 1

κ

(
hdκ

(
1
κ

)
− hdκ

(
1
s

))
(7.136)

= −hdκ
(
1
s

)
−
2

3s
(7.137)

Interactions between Parameters: The Jellyfish Paradox · 7.8

281

= H2s −
2

3s
−
3

2
. (7.138)

For the overall number of comparisons, we thus make both numerator and denominator
slightly smaller. When we compare the quotient to the corresponding one for ted and
λcomplete, − ld(s)/hdκ(1/s), we find that the symmetric choice needs very slightly more
comparisons for s > 402, see Figure 50.

−1.5

−1

−0.5

0
·10−5

2728 29 210 211

s ≈ 402

0.0000005 improvement

ld(s)
−hd2s(

1
s)

−
ld(s)− 1

s

−hd2s(
1
s)−

2
3s

Figure 50: Benefit of using the tinkered with
comparison tree and sampling vec-
tor (λ̃, t̃) over the symmetric choice
(λcomplete, ted). For s > 401 the func-
tion is positive.

Of course, the above formula is only valid for s a power of two. The smallest s for
which our tinkered pair is in fact better than the symmetric choice is thus s = 512: we
reduce the leading-term coefficient by half of a millionth! This improvement, no matter how
ridiculously small, clearly disproves our Plausible Statement 7.23. Our intuitions about
the value of symmetry have been ruthlessly shattered to pieces.

� � �

The tinkered tree from above is better than the complete BST; but can we do even better?
Let us see if we can come up with a maybe less plausible, but more true statement than
our first attempt about the optimal pair of tree and sampling vector. The essence of the
above construction was to apply the rule

on the lowest level of the complete binary search tree. If one application of that rule could
do good, how much better will repeated application on all three-node-subtrees do? The
resulting tree is shown in Figure 51; we will call it the jellyfish tree.

Figure 51: The jellyfish tree for s = 25 = 32. It results from replac-
ing all balanced three-node trees on the lower level by a
linear list of the three nodes. The depth vector is always
of the form λ = ld(s) + (−1, 0, 1, 1, −1, 0, 1, 1, . . .)

7 Results and Discussion

282

The jellyfish tree and the sampling vector (3, 0, 1, 1, 3, 0, 1, 1, . . .) form an entropy-tight
pair. Using these, the expected number of comparisons is

aC = ld(s) −
s

4
· 1
s

= ld(s) −
1

4
(7.139)

and

H = −hdκ
(
1
s

)
−
s

4
· 2
3s

= −hdκ
(
1
s

)
−
1

6
. (7.140)

The behavior of the quotient of these two is very similar to Figure 50, in fact we again
get an improvement when s > 402. For s = 512, the leading term is smaller than for the
symmetric tree and sampling by 0.00007; better than above, even though still negligible. Is
the jellyfish optimal?

To find a definitive answer for at least the special case s = 512 and κ = 2s, let us
consider all possibilities; it is just a finite problem. The number of BSTs on n internal
nodes is Cn, the nth Catalan number. The number of t vectors is

(
κ−1
s−1

)
because σ = t+ 1

is isomorphic to the integer compositions of κ with exactly s nonzero summands. We
obtain these compositions, in unary notation, by laying out κ ones in a row and then
throwing in s− 1 commas at a random subset of the κ− 1 gaps between the ones. For our
parameter values, we had better not wait for a dull enumeration of all cases to finish in
this life: there are roughly 2.19 · 10303 search trees to consider, times 2.24 · 10306 sampling
vectors.

We can of course do better than that. First, we need not enumerate all trees, it suffices
to consider the best tree for each t. We can compute this tree with the algorithms described
in Section 7.7.3. Moreover, there is a lot of symmetry in the problem that we can exploit.

Lemma 7.24 (Sorted leaf-depth trees): Let λ ∈Ns. If there exists an extended binary tree λ
whose leaves are at depths λ, then there is also an extended binary tree λsort with leaves at
depth λsort, where λsort results from sorting λ ascendingly. J

Proof: Imagine we construct λ bottom-up and level-wise according to the sequence of leaf
depths λ. By assumption, there is a way to pair adjacent leaves for all maximal depth
entries, otherwise there would remain a dangling leaf. Each of these pairs forms the two
children of a new internal node. For the remaining construction, these internal nodes
are regarded as leaves of depth one less, and we apply the same procedure again. This
constructs the unique extended binary tree for a given leaf-depth profile—if one exists.
Otherwise it fails at some stage to form pairs, either because the number is odd, or because
maximal depth nodes are not adjacent.

In essence, the latter can never happen for sorted depth profiles, so finding a tree is
only easier there. Formally, we prove by induction on the number of different leaf depths
that we can mimic the construction on λ for λsort.

If all leaves are at the same level, the tree already has sorted leaf-depths. Otherwise,
we can merge maximal-depth nodes in pairs by assumption, in particular their number
is even, and obtain a new depth profile λ ′ with fewer different depths. By the inductive
hypothesis, we can construct a sorted-depth tree on λ ′sort.

Interactions between Parameters: The Jellyfish Paradox · 7.8

283

Now for our original depth vector λsort, we can thus perform the same merges of
maximal-depth leaves and then obtain λ ′sort. We then obtain λsort, the tree with leaf-depths
λsort from tree λ ′sort by adding the maximal-depth leaves as children of the rightmost leaves
in λ ′sort. This concludes the inductive step. �

By Lemma 7.24 it suffices to consider sorted sampling vectors, as for any tree with a
given depth profile, an equivalent one with sorted depths exists. Sorted vectors σ cor-
respond to integer partitions of κ into exactly s summands; for our example there are
4 453 575 699 570 940 947 378 ≈ 4.45 · 1021 such partitions [188]; better, but still way too
many to consider all.

The next observation is that many of these sampling vectors will now make a com-
parison tree optimal, for which they do not form an entropy-tight distribution. Given that
tree, we can do strictly better with another sampling vector, and the first vector cannot
possibly be optimal. In light of Fact 2.50 (page 88), we can restrict entries in σ to be pow-
ers of two; other sampling vectors cannot yield entropy tight distributions τ. The number
of partitions of 2 · 512 into 512 summands from the set {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} is
1 139 328. That is a number we can deal with.

Figure 52: An optimal comparison tree λ∗ for 512-way Quicksort with κ = 2s. It has 170 leaves at depth
8, 2 leaves at depth 9 and the remaining 340 leaves at depth 10. (The reader is cordially invited
to verify these numbers in the picture.) The corresponding complete BST has all leaves at
depth 9.

A hardly optimized implementation with symbolic computation in Mathematica took
two days to finally find the optimal tree and sampling vector pair: the tree is shown
in Figure 52, the corresponding sampling vector is (3, . . . , 3, 1, 1, 0 . . . , 0), where we have
170 times a 3, two ones and 340 times a 0. The overall number of comparisons for these
parameters is 1.49762 19880n lnn, which improves the leading-term coefficient by 0.000088
over the symmetric case, only a tiny bit better than the jellyfish tree.

Of course, the found pair is merely a representative for a whole class of trees and
vectors that share the same profile. We can freely permute the leaf-depth vector and t
simultaneously without changing costs, as long as a binary tree with such leaf depths
exists.

� � �

7 Results and Discussion

284

Even with the above tricks, the exhaustive search becomes infeasible for larger values of s
or k. The given parameters s = 512 and k = 1023 are the smallest where the symmetric
choice is no longer optimal, but at the same time, it is the largest that we can deal with
using our current methods. I am therefore reluctant to utter a conjecture based on so little
reliable information, and prefer to leave this problem open.

Open Problem 7.25 (Characterize Optimal Comparison Trees and Sampling Vectors):
Let s and sample size k be fixed. Consider the family of s-way Quicksort variants with pa-
rameter λ, where we set λk = λg = λ and t so that the overall number of comparisons for
the given comparison tree is minimized. Find a characterization for optimal comparison
trees λ. A result for the simplifying assumptions s = 2h for h ∈N and κ = k+ 1 = s2q for
q ∈N, is already welcome. Here we can choose τ as the entropy-tight distribution for λ.J

Summary. In the exact-quantiles case, the interaction of sampling vectors and comparison
trees reduces to optimality of all entropy-tight pairs. This changes for finite sample sizes.
Even Quicksort experts might find it surprising that the complete binary search tree is not
optimal in general with finite-size sampling. The actual optimal pairs deviate locally quite
a bit from symmetric choices. Their characterization remains an open problem.

Intriguing though it may be, the advantage of asymmetry kicks in only for astronomic
parameter values: we need s > 512 segments and sample size k > 1023. Moreover its net
effect is so tiny that it will most probably not be detectable even in targeted experiments.

� � �

With the intriguing comments on the jellyfish paradox we close our discussion of s-way
Quicksort with generic one-pass partitioning. We have shown that through careful analy-
sis, we can learn a lot about an algorithm, and that sometimes, intuitive algorithmic choices
can be wrong. Then it is good to have mathematical tools to support our decisions.

There is a danger of getting lost in the details of analysis. In Chapter 9, we will zoom
out a little and try to give concrete recommendations for practical parameter choices.

Before we do so, however, we consider the practically important situation of inputs
with equal keys. If our findings in this chapter were valid only for the case of random per-
mutations, they would be of limited value. Fortunately, we will see that many properties
carry over, if some additional precautions are taken.

285

Equal Keys8
Contents

8.1 Introduction . 286

8.2 Input Models with Equal Keys 288

8.3 Related Work . 290

8.4 Fat-Pivot Partitioning 294

8.5 Partitioning Costs 300

8.6 Recurrence for Expected-Profile Inputs 305

8.7 Quicksort Recursion Trees 308

8.8 Quicksort Under Stateless Cost Measures 322

8.9 Discussion . 333

8 Equal Keys

286

Efficient handling of equal keys in the input is a relevant issue in practice, so relevant
that productive-use implementations employ a partitioning method tailored specifically
to cope well with duplicates. Our study up to now completely ignored this: under the
random-permutation model all keys are distinct. We found that multiway Quicksort has
great potential to speed up future library sorting methods on distinct keys, but unless we
can make them perform similarly well on inputs with equal keys, practitioners will not
accept them: when Bentley and McIlroy designed their Quicksort version for the C library,
they found “that it was unthinkable to replace a library routine with a program that was inferior
on a common class of inputs: many users sort precisely to bring together equal elements” ([20],
p. 1256). It is the purpose of this chapter to study the average behavior of Quicksort in
sensible models of inputs with equal keys.

Chapter Overview. We briefly motivate the study of equal keys (Section 8.1) and present
models for random inputs with equal keys (Section 8.2). Next, we review previous work
on the analysis of Quicksort on inputs with equal keys in Section 8.3.

In Section 8.4 we discuss fat-pivot partitioning methods, i.e., methods that collect
elements equal to pivots in a separate segment. We analyze the costs of the proposed
methods in Section 8.5. To obtain the total costs, we again set up a distributional recurrence
(Section 8.6) that we solve asymptotically using the correspondence between Quicksort
and search trees; this connection is detailed in Section 8.7 and applied to the Quicksort
recurrence in Section 8.8. Finally, Section 8.9 contains a few comments on the algorithmic
implications of our analysis.

8.1 Introduction

The togetherness problem consists in grouping a list of elements w.r.t. a certain attribute.
This task arises for example in a database system serving an SQL query with a GROUP
BY clause. Consider for example the following query (taken from the SQL tutorial of
w3school.com, see http://www.w3schools.com/sql/sql_groupby.asp)

SELECT Shippers.ShipperName, COUNT(Orders.OrderID) AS NumberOfOrders
FROM Orders LEFT JOIN Shippers ON Orders.ShipperID=Shippers.ShipperID
GROUP BY ShipperName;

This query returns a list of all shippers and the number of orders they served. The
result is produced in three steps:

1 first, we produce the list of all pairs of shippers and corresponding orders
(using the JOIN operation);

2 then, we GROUP these pairs BY their first component, the shipper name; and

3 finally, we determine in one pass the length of each block of pairs with the same
shipper (COUNT). These lengths are the sought numbers of orders.

Unless we know up front which shippers we have, or that there will be only very few
shippers in total, the second step is most conveniently and efficiently done by sorting the

http://www.w3schools.com/sql/sql_groupby.asp

Ignoring Equals · 8.1.1

287

list of pairs according to their first component. In this sorting process, we expect to see a
lot of equal keys.

One might try to find a sorting method that handles such inputs particularly well,
but it is not so unlikely, and quite sensible in terms of development costs, that a general-
purpose sorting method like Quicksort is used also for such applications instead; the quote
from above supports this point.

Quicksort is extremely well-understood under the random-permutation model; in
comparison, its behavior on inputs with equal keys is a terra incognita. This not to say
that nothing has been done; we review previous work on Quicksort with equal keys in
Section 8.3. But we can still give a comprehensive overview of all relevant work on the
analysis of Quicksort with equals in those few pages.

One reason for this fact probably is that unlike for random permutations, there are
several sensible models for inputs with equal keys. The most natural model in my eyes
is that we have a random u-ary word, i.e., a uniformly chosen word over the alphabet
{1, . . . ,u} of length n. This is the model we will focus on in this chapter.

Most previous works consider what we call the exact-profile model: the input is a
random permutation of a fixed multiset of size n, taken from the numbers {1, . . . ,u}. In the
analysis, we then have to deal with a vector of parameters, namely the multiplicities of the
u numbers, and this seems only tractable for the simplest cases.

For drawing algorithmic conclusions, the exact-profile model is a bit unwieldy, and
in fact, researchers mostly used those results to derive the behavior in the random-u-ary-
word model. Skipping this detour in our analysis, we will, for the first time ever, be able
to analyze s-way Quicksort with pivot sampling on inputs with equal keys.

As a result we are able to confirm in part a conjecture of Sedgewick and Bentley [163]
from 1999; see Conjecture 8.5 (page 292).

8.1.1 Ignoring Equals

We have carefully designed partitioning methods that excel on random permutations, and
we might be unwilling to change these; how bad can the performance on an average input
with equal keys get? The quick answer is: really bad in general, but not too bad, if we are
a bit careful. We will not give a rigorous analysis of this case here, but discuss the order
of growth.

Assume first a method where all duplicates of a pivot end up in the same subproblem.
This is the case for all methods that use a single comparison tree, and hence (implicitly)
for methods with m = 0 or m = s like Lomuto partitioning. If we consider a random
input of size n under the random-u-ary-word model, there is at least one value v ∈ [u]

that occurs Xv > n
u times in the input. This block of equal keys is never split across two

segments by assumption; so we reduce the size of the v-block by at most s− 1 copies in
each partitioning step, namely only when a pivot has value v. We thus need at least n

u(s−1)

partitioning steps to put all v-copies in place. Since s is constant, this implies cost of at
least Ω

(
(n/u)2

)
.

8 Equal Keys

288

If u is constant, this is quadratic in n; a catastrophe. Later, we consider the case
where u grows with n, but not too quickly: u = O(n1/3). Then the above arguments still
imply costs Ω(n4/3). For large n it is very likely that we will have roughly n/u copies
of all values v, and so the true costs are probably closer to Θ(n5/3). We certainly need
something better than that.

We can substantially improve the behavior on equal keys, if we distribute duplicates
over two segments. Generic one-pass partitioning with its two comparison trees offers a
natural way to achieve that without any overhead. We discussed this in Section 4.3, and
the tie-breaking rule given there achieves that duplicates classified by λk go to the larger
of the two possible classes, and those classified by λg go to the smaller of two possible
classes. This generalizes Singleton’s idea to stop on equals [170].

The precise analysis of such partitioning schemes under the random-u-ary-word
model is challenging; note in particular that subproblems in this case are not random
u-ary words again, but tend to have fewer copies of the smallest and largest values which
potentially served as pivot in the previous partitioning step. Sedgewick [160] managed
to analyze single-pivot variants without sampling using the detour to exact-profile inputs,
but nobody has yet succeeded in generalizing these arguments to multiway partitioning
or Quicksort with pivot sampling.

Generic one-pass partitioning puts exactly the s− 1 pivot elements to their final place;
the sum of the sizes of the s subproblems is always n − (s − 1). Ignoring Insertionsort
cutoffs for the moment, this means that we need Ω(n) partitioning steps, and Ω(logn)
recursion depth. Even in the perfectly balanced case, this yields total costs in Ω(n logn).
One can show that the average costs are indeed linearithmic for reasonable methods.

A random permutation cannot be sorted using comparisons in less than linearithmic
time; but this bound only holds when all n! permutations of the input are different. If
u 6 n/e, the number of u-ary words, un is smaller than that, and only ld(un) = n ld(u)
bits of information are to be acquired. To get close to this cost in Quicksort, we obviously
have to explicitly deal with duplicates during partitioning.

In the following we focus on the case that all elements equal to a pivot are removed
before recursive calls.

8.2 Input Models with Equal Keys

We already defined models for random inputs with equal keys in Chapter 3: the expected-
profile model, the special case of random u-ary words, and the exact-profile model. Let us
briefly recapitulate and fix the notation.

In general we call two elements x and y equal if both x 6 y and y 6 x holds. In
the context of one partitioning step, we call an ordinary element a duplicate, if it is equal
to one of the pivot elements. If we say a partitioning method removes all duplicates, we
mean that it singles out all elements that are equal to one of the pivots, so that they are
not part of the input for any recursive call. Of course, a single such partitioning step does
not remove all equal elements from the input, only the duplicates of the current pivots.

Input Models with Equal Keys · 8.2

289

Expected-Profile Model. In the expected-profile model with parameters u ∈ N and
q ∈ (0, 1)u with Σq = 1, a random input of size n consists of n i. i.d. random variables
U1, . . . ,Un with Ui

D= D(q) for i = 1, . . . ,n. The domain [u] is called the universe, and q
the (probability vector of the) universe distribution. For q = (1u , . . . , 1u) the model is called
random-u-ary-word model.

We denote by Xv, for v ∈ [1..u], the number of elements Uj that have value v; the vector
X = (X1, . . . ,Xu) of all these multiplicities is called the profile of the inputU = (U1, . . . ,Un).
Clearly, X D= Mult(n,q) and E[X] = nq. This explains the name of the model: We do not
fix the profile, but the expectation of the profile.

The distribution function of the universe distribution is FU(v) = P[U 6 v] =
∑bvc
i=1 qi

for v ∈ [0,u + 1), and we denote its (generalized) inverse by F−1U : (0, 1) → [1..u] with
F−1U (x) = inf{v ∈ [1..u] : FU(v) > x}. If we abbreviate by cj :=

∑j
i=1 qi for j = 0, . . . ,u the

cumulative sums of q, we have

FU(v) = cbvc, 0 6 v < u+ 1, (8.1)

F−1U (x) = v ⇐⇒ x ∈ (cv−1, cv], 0 < x < 1, v ∈ [1..u]. (8.2)

The expected-profile model is a natural complement of the random-permutation
model: we draw elements i. i.d. from a discrete distribution in the former instead of a
continuous distribution in the latter. This adds the feature of equal elements, but not much
more; in particular for any given multiset of values, any ordering is equally likely to ap-
pear, since elements are still drawn i.i.d.

Gaming the Random u-ary Word Model. Random u-ary words are a rather special model
and it is true that one can “game” the model: by exploiting its properties we can speed up
sorting or partitioning. In a random u-ary word of length n � u, we have very close to
n/u occurrences of each letter with high probability. We can use this as a good guess of
where boundaries between segments will end up, so we start building our segments from
there. If one segment would reach into an adjacent one, we use cyclic shifts to move the
segments by a few places. The latter is costly, but happens not so often in expectation.

This strategy will thus be very effective w.r.t. scanned elements on an average random
u-ary word. However, it performs poorly on many other input distributions, in particular,
it will not be very successful on random permutations, unless we excessively sample to
get very good pivots.

If it can be exploited by such a simple strategy, one might question the relevance of
the random-u-ary-word model. But we should not forget that the random-permutation
model just as well has its particularities, not to say peculiarities. Sorting algorithms have
traditionally been tweaked for random permutations, at times shamefully neglecting other
possibilities. The absence of equal keys in random permutations once lead even practi-
tioners to overlook that the sorting method of BSD UNIX had quadratic running time on
inputs consisting of few different values [20].

We should strive for sorting algorithms that perform reasonably on all inputs, and ex-
cel on the most frequent ones. In many applications of sorting, equal keys occur naturally.
For Quicksort implementations that are not obviously flawed on other types of inputs, an
analysis in the random-u-ary-word model will give a good indication of how gracefully

8 Equal Keys

290

they handle equal keys in general; that is, unless we explicitly make algorithmic use of
the special structure of random u-ary words.

Exact-Profile Model. The second model is the exact-profile model. It has parameters
u ∈N, the universe size, and x ∈Nu, the fixed profile. An input under this model always
has size n = Σx, and is formed as a uniformly chosen random permutation of

1, . . . , 1︸ ︷︷ ︸
x1 copies

, 2, . . . , 2︸ ︷︷ ︸
x2 copies

, . . . , u, . . . ,u︸ ︷︷ ︸
xu copies

,

i.e., the multiset with xv copies of number v for v = 1, . . . ,u.

A Note on Notation. In the literature on Quicksort with equal keys, the universe size u is
commonly called n, whereas the number of elements in the input is denoted by N. I have
always found the use of the capital N typographically less pleasing, and in the context of
this work capital letters are used for random variables, so n is the input size throughout.
I hope the reader will find universe size u mnemonically enough to forgive the deviation
from tradition.

8.3 Related Work

A brief overview of previous work on Quicksort with equal keys appeared already in
Section 1.7; here we give some more technical details and also state a few results for later
reference.

Burge’s Trees. The earliest relevant work for Quicksort with equal keys appeared in 1976,
and it does not deal with Quicksort at all. Burge [27] analyzed the expected depth of
nodes in a binary search tree (BST) built from successively inserting elements from an
exact-profile input. Burge set up recurrences in x1, . . . , xu for the (left- and right-going)
depth of a key and used an ingenious differencing trick to obtain telescoping recurrences:
drop the first resp. the last component of the profile vector.

Burge’s BSTs used the peculiar convention that equal keys are kept in the tree: upon
insertion, keys greater or equal to the key of the current node are passed on to the right
subtree.

Sedgewick’s Lower Bound. Although Burge’s BSTs are a little different in their handling
of duplicates, the well-known connection between binary search trees and Quicksort al-
lowed Sedgewick, to transfer Burge’s techniques to Quicksort [160] in 1977: he analyzed
Quicksort under the exact-profile model, and additionally looked at random u-ary words
(he calls them n-ary files). Once we have the results for exact-profiles, the behavior on
u-ary words is obtained by suitably averaging over all multisets of size n with elements
from [u].

Related Work · 8.3

291

Sedgewick then studied the number of comparisons for fat-pivot partitioning methods,
i.e., methods that collect all elements equal to the pivot and remove them from recursive
calls. He argued that this is the most desirable situation and thus calls the corresponding
results lower bounds for any Quicksort program, that is, “any program which sorts by recur-
sively subdividing files of more than one element into three subfiles: a (nonempty) middle subfile
whose elements are all equal to some value j; a left subfile with no elements > j; and a right subfile
with no elements < j. The only further restrictions are that the value s [the pivot] must be chosen
by examining one element from the file, and that if the input file is randomly ordered, so must be the
subfiles” (Sedgewick [160], p. 244). Assuming ternary comparisons, i.e., comparisons that
tell us in one shot whether an element is strictly smaller, strictly larger, or equal to another
element, he obtained the following result.

Theorem 8.1 (Theorem 1 (Lower Bound) of Sedgewick [160]):
Assume we use a fat-pivot partitioning method that needs n− 1 comparisons to split
the input into three segments with elements strictly less, equal to and strictly larger
than the pivot. Quicksort with this method and a random pivot requires on average

n− u + 2 ·
∑

16i<j6u

xixj

xi + · · ·+ xj
(8.3)

(ternary) key comparisons under the exact-profile model with parameters u and x, and

2n

(
1+

1

u

)
Hu − 3(n+ u) (8.4)

(ternary) key comparisons to sort a random u-ary word of length n. J

The Origins of Quicksort Entropy. The sum in Equation (8.3) also appeared in a differ-
ent context: one year after Sedgewick’s article appeared, Allen and Munro published a
paper [2] on the move-to-root heuristic for self-organizing BSTs, in which they effectively
studied BSTs built from successive insertions under an expected-profile model.

Proposition 8.2 (Theorems 3.1 and 3.4 of Allen and Munro [2]): Let u ∈ N and q ∈
(0, 1)u with Σq = 1 be given. Assume we build a BST by repeatedly inserting i. i.d. D(q)

distributed elements into an initially empty BST, until all u values appear in the tree. Then
we search a D(q) distributed element in this tree. The expected search costs to find this
element are exactly

E[Aq] = 1+ 2 ·HQ(q) , (8.5)

with HQ(q) =
∑

16i<j6u

qiqj

qi + · · ·+ qj
. (8.6)

J

(The connection between these two results will become obvious in Section 8.7.)

8 Equal Keys

292

Following Sedgewick and Bentley [163, 164], we will call HQ the Quicksort entropy; the
reason for this name is another result from the paper of Allen and Munro [2], which they
attributed to Kurt Mehlhorn:

Lemma 8.3 (Quicksort-Entropy Bound, Theorem 3.2 of Allen and Munro [2]):
For any q ∈ (0, 1)u with Σq = 1 holds

HQ(q) 6 Hln(q) = ln(2) ·Hld(q). (8.7)
J

Quicksort is Optimal. In two presentations [163, 164] given in 1999 and 2002, respectively,
Sedgewick reported from joint work with Bentley on Quicksort. They showed a lower
bound for comparison-based sorting under the exact-profile model:

Theorem 8.4 (Information-Theoretic Lower Bound for Exact Profile [163, 164]):
To sort a permutation of the multiset {x1 × 1, . . . , xu × u} of n numbers from [u] with
profile x = (x1, . . . , xu) requires at least Hld(

x
n) ·n−n comparisons. J

Combining Theorem 8.1, Lemma 8.3 and Theorem 8.4, Sedgewick concluded that the aver-
age performance of classic fat-pivot Quicksort without sampling is optimal, up to a constant
factor of 2 ln 2 ≈ 1.3863, on any distribution of keys. Sedgewick further conjectured that
this constant can be brought down to one using pivot sampling.

Conjecture 8.5 (Sedgewick-Bentley Conjecture [163, 164]):
Let E[C(k)

n] be the expected number of comparisons used by classic Quicksort with fat-pivot
partitioning and median-of-k sampling under an exact-profile model with parameters u
and xwith Σx = n. Then holds

E[C(k)
n]

n
→ Hld

(
x

n

)
, (k→∞). (8.8)

J

Sedgewick’s Upper Bound. Sedgewick [160] further observed that the behavior of a
Quicksort variant (single-pivot, no sampling) on random u-ary words is determined to
a good deal by its behavior on binary inputs.

Proposition 8.6 (Corollaries on p. 251 and 255 of Sedgewick [160]):
If a Quicksort program (as in Theorem 8.1) requires on average more than α

(
n
2

)
= α

2n
2

comparisons on a random binary word, u = 2, then it will require on average at least

(
1−

1

u

)
α

u

(
n

2

)
−n + 2n

(
1+

1

u

)
Hu − 3(n+ u)

= Ω

(
n2

u

)
, as n→∞with u = O

(
n

logn

)
, (8.9)

Related Work · 8.3

293

comparisons on random u-ary words. Conversely, if the average number of comparisons
on a random binary word is less than 2nHn, then it will require at most

6

u
nHn +

(
2

(
1−

1

u

)
Hu−1 − 4+

39

2u

)
n = O

(
n logn
u

+n logu
)

, (n→∞), (8.10)

comparisons for a random u-ary word. J

Hennequin’s Analysis. Hennequin [77] included a chapter on equal keys in his doctoral
thesis. Like Sedgewick, he focused on single-pivot methods without sampling. Hennequin
studied three variants of partitioning methods:

1 unilateral methods (unilatéral) put all duplicates in one segment,

2 central methods correspond to our fat-pivot schemes, and

3 bilateral methods (bilatéral) distribute duplicates to the two segments, so that the
number of duplicates that go to the left segment is uniformly distributed.

Hennequin rephrased Sedgewick’s analysis of unilateral and fat-pivot methods in the lan-
guage of combinatorial structures and multivariate generating functions. He observed that
for fat-pivot methods, one can directly consider the random-u-ary-word model.

Hennequin shows that bilateral methods that preserve randomness have exactly the
same costs as for random permutations. This is in fact quite easy to see, since we effectively
choose the meeting point of k and g there uniformly among all positions of the array: For
a given profile x, we first chose the pivot value v with probability proportional to xv, then
the actual splitting point uniformly among the xv copies. This is a very nice observation,
but we should note that the bilateral scheme does not correspond to a natural partitioning
method; in particular, this is not the distribution we get from generic one-pass partitioning
with the tie-breaking rule.

Wegner’s Algorithms. Wegner [178] discussed several variants of Quicksort intended to
deal smoothly with equals. In particular the idea to collect equal keys at the outsides of
the array should be attributed to him. He called this partitioning scheme Head & Tail-Sort;
it uses the same invariant as the method of Bentley and McIlroy [20].

Wegner presented his ideas mainly as invariants and a table of how different cases are
dealt with, which unfortunately leaves some details of the algorithms unclear. He gave
a more detailed description in retrospect to a talk series of his on Quicksort [180]. He
discussed his methods mainly for the case of constant repetition factor x1 = · · · = xu =M,
with a focus on M = 1, i.e., the random permutation case. While it is important to not get
much worse for random permutations, the derivation of results for random u-ary words
would have been more interesting.

More on BSTs from Equal Keys. Kemp [98] studied binary search trees built from suc-
cessive insertions in both the exact-profile and expected-profile model. Unlike Burge, he

8 Equal Keys

294

considered the reasonable BST variant where insertion of keys already in the tree have no
effect. Kemp computed exact expressions for the expected values of various parameters
of the trees: the left- and right-going depth of the ith internal node, the depth of the ith
external node (level), the size of the subtree rooted at the ith internal node (frontier), as
well as internal and external path lengths.

Kemp [98] also studied all these parameters in the expected-profile model. Similar to
Sedgewick’s study of the special case of random u-ary words, Kemp averaged over all pos-
sible multisets and their costs, to obtain their values under the expected-profile model. He
gave exact expressions for the average left- and right-going depths. For the other param-
eters, the formulas became unmanageably large, so he gave asymptotic approximations
instead.

Archibald and Clément [4, 3] re-derive part of Kemp’s result, namely the left- and
right-going depth of certain nodes, by giving regular expressions for the languages of
insertion sequences that expose the number of left-to-right maxima resp. minima, which
they then count with generating functions. The depth of an arbitrary node can be obtained
by a shuffle product of the regular expressions for maxima among smaller keys and min-
ima among larger keys. With this approach they could also compute the variance of this
quantity.

8.4 Fat-Pivot Partitioning

In this section, we will sketch the design space of partitioning methods that remove all
duplicates from the input, i.e., methods that identify all elements equal to one of the pivots
and put them in a separate segment between the corresponding subproblem segments.
These segments of duplicates can then be excluded from recursive calls.

In terms of the memory layout pictures that we used in Chapter 4, the rectangles
labeled with pivots become wider, since they represent the segment of all duplicates of this
pivot. We will thus call partitioning methods that remove all duplicates fat-pivot methods.
In the context of single-pivot Quicksort this is often called three-way partitioning; in the
context of this work, however, three-way partitioning means a dual-pivot method; we will
thus exclusively use the term fat-pivot.

8.4.1 Existing Methods

In Chapter 4, we had a sizable collection of known partitioning methods. In contrast, I
could not find any genuine multiway fat-pivot partitioning methods in the literature. For
single-pivot Quicksort, there are mainly two sensible fat-pivot partitioning methods.

Dijkstra Partitioning. Sedgewick and Wayne [166, p. 299] present elegant code for a fat-
pivot partitioning method that grows the segments for small elements and another one
for duplicates from the left; the segments for large elements grows from the right. This
memory layout is one of schemes that Wegner [178] proposed: he calls this one Slidesort.
The memory layout has the structure of YBB Quicksort, but the segments have a different

New Concepts and Notations · 8.4.2

295

meaning. That method is known as solution for Dijkstra’s Dutch National Flag problem;
Dijkstra presents a very similar method as a first solution in his book [43, p. 114]; we will
therefore call this method Dijkstra partitioning. It is not used very much in Quicksort,
since it causes a dramatic increase in the number of swaps for the also common case of no
duplicates.

Bentley-McIlroy Partitioning. The most widely used fat-pivot partitioning method is
Bentley-McIlroy partitioning [20]. The memory layout was again given by Wegner [178]
before—he calls it Head & Tail-Sort—but it was the implementation of Bentley and McIl-
roy that popularized the scheme. Bentley-McIlroy partitioning is an extension of Hoare’s
(thin-pivot) partitioning scheme that collects elements equal to the pivot in two additional
outermost segments. After partitioning is finished, these segments have to be swapped
to the middle. This overcomes the above drawback, even though it seems expensive: the
method has hardly any overhead for inputs without duplicates, and with many duplicates
the additional swapping is well-invested effort.

Java 7 Quicksort. We certainly expect to find the first industrial implementation of dual-
pivot Quicksort to perform well on inputs with equal keys, otherwise its developers would
have done a poor job; and indeed, precautions have been taken. But if the reader expected
to find a three-way fat-pivot method there, he or she will be disappointed: the Quicksort
implementation in Java 7’s runtime library checks whether the two pivot values are equal,
and if so, it switches to Bentley-McIlroy partitioning using this single pivot value.

This is probably a pretty clever choice; and not only because it reuses a well-tested
method. That the two pivot values are equal is a good signal for an input with many
equals, where a fat-pivot method excels, and it avoids any overhead of such a method if
the pivots are not equal. It is not a genuine multiway method, though, and we reserve the
analysis of this hybrid method for future work.

� � �

In this work, we are interested in the potential of multiway partitioning for speeding up
Quicksort. Since there are no existing such methods to guide us, we will try to set up a
framework that remains as flexible as possible.

8.4.2 New Concepts and Notations

We can take generic one-pass partitioning as starting point also for fat-pivot methods.
With duplicates, we have a few more degrees of freedom, and that requires a few terms
and notations. Recall that we list all introduced notations in Appendix A.

Pivot Classes. We extend the set of classes by s − 1 pivot classes p1, . . . , ps−1, where pr
is the class of all (ordinary) elements classified as equal to Pr. Small, large and medium
classes are understood as open intervals then, i.e., si = (Pdme−i,Pdme−i+1) for 1 6 i 6
dme; lj = (Pbmc+j−1,Pbmc+j) for 1 6 j 6 s− bmc; for master-segment algorithms, i.e.,

8 Equal Keys

296

m ∈ [1..s] − 1
2 , we also have medium elements m = (Pbmc,Pdme). The vector of classes in

sorted order now is

C =

{
(sm, p1, sm−1, p2, . . . , s1, pm, l1, pm+1, . . . , ps−1, ls−m), for m ∈ [1..s];

(sdme, p1, . . . , s2, pbmc, m, pdme, l2, pdme+1, . . . , ps−1, ls−bmc), for m ∈ [1..s] − 1
2 .

(8.11)

This looks more complicated than it is; the new C is the old one, but with pivot classes
inserted between the other classes. As before, we write s without index to mean small
of any order; likewise l is any large element and p is an element equal to any one of the
pivots without specifying which. The p-elements are exactly the duplicates.

Different Flavors of Comparisons. (Thin-pivot) generic one-pass partitioning used the
extended binary search trees λk, λg ∈ Λs to classify elements by searching them in the tree.
We allowed nodes to specify whether the comparison is strict (<) or non-strict (6). The
search ended in a leaf labeled with one of the classes given in Equation (4.3) on page 156.
With the pivot classes, new types of operations are thinkable. Lookup in a search tree can
be implemented based on

I ternary comparisons, which tell us the outcome <, = or > in one shot; on

I binary queries, asking any yes-no-question regarding the relative order of two ele-
ments, i.e., x 6 y, x < y, or their reverse cousins, and in particular x = y; or on

I binary comparisons, allowing only 6- or <-queries.

All models appear in the literature and it depends on the application which is more appro-
priate. Ternary comparisons are the default comparison interface (for objects) in Java and
for comparator functions in C, whereas the sorting algorithms of the C++ STL are based
solely on <-queries.

At the level of usual CPU instructions, one typically—at least for MMIX, x86 and
MIPS—has a compare instruction that subtracts two numbers and yields the result smaller,
equal or larger; this corresponds to a ternary comparison. To react with changed control
flow to such a result, usually conditional branches are used, and those are inherently
binary: if some condition holds, jump to a different address, otherwise stay. However
multiway branches are also possible with jump-register instructions, as used, e.g., to im-
plement switch-case statements of high-level languages. We will try not to hastily choose
one model over the other, and keep the analysis as general as possible.

Generalized Classification Trees. A search in an extended binary search tree, where pivot
classes correspond to the internal nodes of the tree, is a sensible and natural method for
classification in presence of equals. It is by far not the only possible choice, though. In
full generality, any procedure that determines the class of an element by comparisons is
viable; we might even mix binary queries and ternary comparisons.

New Concepts and Notations · 8.4.2

297

< >

<

=

= >

6=

<P1

s2 P2

=P1

p1

p2 l1

s1

Figure 53: Example of a generalized comparison tree for s = 3 and m = 2

to determine the class c(U) ∈ {s2, p1, s1, p2, l1}. The method
mixes binary queries and ternary comparisons; it first compares
U < P1, and unless this is so, executes a ternary comparison of
U and P2. If U is strictly smaller than P2, the last step checks
U = P1. Note that in the degenerate case P1 = P2, all duplicates
are classified as p2, even though they are first compared with P1.

All such methods can be described by a generalized comparison tree, where internal
nodes represent either a ternary comparison or a binary query with one of the pivot ele-
ments, and classes appear in the leaves. An example is given in Figure 53. Note that these
trees are not search trees any more: the same pivot can appear several times and leaves
might appear out of order.

The only thing we require is that for any possible element U and all possible values of
the pivots, there must be a unique path from the root to a leaf with a valid class for that
element. If several pivots happen to have the same value, several pivot classes are possible
for one value; a generalized comparison tree will assign a uniquely defined class in that
case, as well. As before, we think of classes as labels assigned to an element; we do no
require the classes to form a partition of the universe in the set-theoretic sense.

We can use two different generalized comparison trees λk and λg for elements reached
by index k resp. g.

Class and Subproblem Sizes. Each of the η = n− k ordinary elements belongs to one
of the classes given in Equation (8.11). As before, we denote small and large ordinary
element counts by I; more specifically, the number of elements of class c is Ir(c) with

r(c) =

{
dme− i+ 1, for c = si, 1 6 i 6 dme,
bmc+ j, for c = lj, 1 6 j 6 s− bmc.

(5.3) revisited

For the number of duplicates, we use the vector E, with Er the number of elements in class
pr, for r = 1, . . . , s− 1. Recall that if all pivot values are distinct, this is simply the number
of elements equal to Pr; if some pivots are equal, though, the generalized comparison trees
decide which pivot class is chosen, and there is not simple relation between Er and the
number of ordinary elements that are equal to Pr in general.

With a single comparison tree λ, all such elements count for a single pivot class, leaving
some other pivot classes empty, but which one is chosen depends on λ. If we use more
than one comparison tree, Ewill additionally depend on how many elements are classified
with each tree, if the trees disagree over the class to be assigned to a certain value.

8 Equal Keys

298

In total, I and E are all ordinary elements, i.e., ΣI+ ΣE = η. Before recursive calls,
we have to add again the sampled-out elements. For the rth subproblem, there are tr
sampled-out elements, but some of them might be equal to Pr−1 or Pr. These are put in
place, so that a potentially smaller random number, Br ∈ [0..tr], of sampled-out elements
adds to the size Jr = Ir +Br of the subproblem.

8.4.3 Generic Multiway Fat-Pivot Partitioning

Recall generic one-pass partitioning from Chapter 4. From the perspective of the code
(Algorithm 9 on page 152), the classes are simply labels assigned to elements that indicate
in which segments they belong. Apart from the distinction between small and large labels,
Algorithm 9 does not use further information, e.g., that the segments are arranged in
sorted order; Algorithm 9 does not explicitly use the pivot values, either.

We can therefore use Algorithm 9 also as basis for a generic fat-pivot partitioning
method; we only have to define a mapping from the actual classes C including the pivot
classes to virtual classes that we use in the code. We leave the details of an all-embracing
general setup for future work. Instead, we consider the two concrete methods from above
and sensible ways to generalize them.

8.4.4 Fat-Separator Methods

Dijkstra partitioning as described by Sedgewick and Wayne [166, p. 299] corresponds to
s = 2 and the following mapping of classes:

Actual Class s1 p1 l1

Virtual Class s̃2 s̃1 l̃1

We thus use Algorithm 9 with parameters s̃ = 3 and m̃ = 2. λk and λg both consist of a
single ternary-comparison node.

We will call methods like Dijkstra partitioning that leave the pivot-class segments in
place between the subproblem segments fat-separator methods.

Clearly this scheme can be extended to multiway partitioning right away. We will
always have s̃ = 2s− 1 and we are free to choose an m̃ ∈ {0, 0.5, . . . , s̃− 0.5, s̃}, so we can
characterize fat-separator methods by giving s, m̃, λk, and λg.

8.4.5 Fat-Outsides Methods

The method discussed by Bentley and McIlroy [20] collects all duplicates of the pivot at the
outsides of the array, so we call it a fat-outsides method. Although it is a binary partitioning
method that creates two subproblems, Bentley-McIlroy partitioning uses a total of s̃ = 4

segments during partitioning, m̃ = 2 of which grow from the left. The method is also a
split-pivot method: for the pivot used as master-pivot in partitioning, we have two segments,
one on each side. We obtain this behavior in Algorithm 9 with the following definition of
virtual classes:

Fat-Outsides Methods · 8.4.5

299

Mapping for λk

Actual Class p1 s1 l1

Virtual Class s̃2 s̃1 l̃1

Mapping for λg

Actual Class s1 l1 p1

Virtual Class s̃1 l̃1 l̃2

Note that elements at λk are never classified as l2, likewise at λg there is no s2. The
comparison trees are again both a single ternary node.

When Algorithm 9 has done its work, the array is partitioned according to the virtual
classes; but they are not in order w.r.t. the actual classes. Therefore, a cleanup phase after
partitioning is needed to bring the segments into order. In the case of Bentley-McIlroy
partitioning this can be done by simply swapping blocks.

We can generalize the fat-outsides idea easily to multiway partitioning: we collect all
pivot-class segments at the outsides of the array. Instead of the somewhat complicating
split-pivot scheme of Bentley-McIlroy partitioning, we will use only one segment per pivot
class. Then we have again s̃ = 2s− 1.

We can in principle freely choose how many pivot segments we put to the left, and
how many non-pivot segments grow from the left. To have a specific framework to work
with, we will in the following always assume that for an s-way fat-outsides method we
use

m̃ = ds̃/2e = s and

bm̃/2c = bs/2c pivot segments grow at the left outside;

we thus determine all parameters by s. The analyses in this chapter do not need this
assumption, and future work might consider a more general framework, but for the sake
of a concise discussion, we refrain from doing so at the moment. Similarly, let us focus
here on comparison trees built solely from ternary-comparison nodes. Comparison trees
are then (isomorphic to) simple BSTs, as in the thin-pivot case.

Let us consider two simple examples to illustrate our convention.

Fat-Outsides YBB Partitioning. The rules above for s = 3 imply s̃ = 5, m̃ = 3; moreover
the p1-segment is at the left outside, that for p2 is at the right outside. For classification, we
use (λk, λg) = (,), where each node is a ternary-comparison node. After classification
we apply the following mapping to the classes:

Actual Class p1 s2 s1 l1 p2

Virtual Class s̃3 s̃2 s̃1 l̃1 l̃2

After partitioning, we have the two pivot-class segments that have to be swapped with
parts of the s2- resp. l1-segments.

Fat-Outsides Waterloo Partitioning. For s = 4, we get s̃ = 7, m̃ = 4. As for Algorithm 8,
we use (λk, λg) = (,). The virtual-class mapping looks as follows.

8 Equal Keys

300

Actual Class p1 p2 s2 s1 l1 l2 p3

Virtual Class s̃4 s̃3 s̃2 s̃1 l̃1 l̃2 l̃3

In the cleanup phase, we first rotate the p2-elements over the s2- and s1-segments using
cyclic shifts of three elements each. After that, we swap the p1-elements with the rightmost
s2-element, and do likewise for p3 and l2 on the right side.

8.5 Partitioning Costs

In this section, we discuss the costs of partitioning using the methods sketched above
under the expected-profile model. Since we build on generic one-pass partitioning for
doing the actual work in partitioning, we can build on Chapter 5 for the actual results
on the costs of partitioning. Of course, all formulations in that chapter are for the virtual
parameters, and in the uniform input model. Therefore a few things are different in this
chapter:

I The class probabilities are more complicated than in the uniform model. We have to
separately deal with pivot classes and non-pivot classes. This is done in Section 8.5.2.

I The solution of the recurrence will only be given for so-called stateless cost measures.
We introduce that notion in Section 8.5.1. From our cost measures, only scanned
elements and comparisons with λk = λg are stateless.

I Most work in partitioning is done using Algorithm 9, but not everything; for fat-
outsides methods we also have a cleanup phase that does not come for free.

8.5.1 Stateless Cost Measures

Recall the notion of element-wise cost measures from Definition 5.2 (page 170): for all our
cost measures, the partitioning costs were a sum of costs for single elements, which in turn
depend only on the class of that element and the current state of the partitioning algorithm.
In the simplest cases, element costs are the same for all states, so that costs depend only
on the classes.

Definition 8.7 (Stateless Cost Measure): If the partitioning costs TM(n,q) w.r.t. cost mea-
sure M fulfill

TM(n,q) = βTE+ γTI (8.12)

for two constant coefficient vectors β ∈ Rs−1>0 and γ ∈ Rs>0, we call M stateless cost
measure. J

Here I and E are the number of elements in ordinary and pivot classes, see Section 8.4.2.
Two examples of stateless cost measures are the number of scanned elements and the
number of comparisons with a single (generalized) comparison tree, i.e., when λk = λg.

In the following, we always assume a stateless cost measure, and in particular, we
assume that the same generalized comparison tree λ = λk = λg is used to classify all
elements.

Stochastic Model · 8.5.2

301

8.5.2 Stochastic Model

In this section, we introduce notation for fat-pivot Quicksort under an expected-profile
input. In particular, we build on the notation from Section 8.2.

Distribution of Pivot Values. The distribution of the pivot values determines sizes and
universes for subproblems and is thus an important ingredient for the analysis. As in
the rest of this work, we assume pivots are chosen by generalized pivot sampling with
parameter t, see Section 4.4. We can express the distribution of the pivot values P in
terms of an underlying continuous vector Π: we define the following random variables
depending on the pivot-sampling parameter t, respectively, σ = t+ 1.

D
D
= Dir(σ) , (8.13)

Π = Π(D) =

(r∑

i=1

Di

)s

r=0

. (8.14)

The subvector Π1,s−1 = (Πr)
s−1
r=1 is exactly the vector of pivot values in the uniform model

studied in the rest of this work. We add the sentinel elements Π0 = 0 and Πs = 1 for
notational convenience.

To obtain the actual pivot values, which are chosen as the appropriate order statistics
of k elements i. i.d. from [u], we can apply the inversion method of random sampling, i.e.,
we apply the (generalized) inverse distribution function to uniform order statistics, see,
e.g., Devroye [38, Section V.3.4]. The latter are precisely given by Π, so we find

P = P(q) = F−1U (Π) =
(
F−1U (Πr)

)s
r=0

, (8.15)

with the convention that P0 = F−1U (0) = 0 and Ps = F−1U (1) = u+ 1.

P
[P

r
=
2]

P
[P

r
=
2]

fΠr
(z)

0

q1 q2 q3 q4 q5 q6 q7 q8 q9

1

Figure 54: Illustration of pivot sampling under
an expected-profile model with u =

9. We have Pr = f−1U (Πr), where
Πr

D= Beta(σ1 + · · · + σr,σr+1 +
· · ·+ σs), so Πr is the x-coordinate
of point uniformly chosen in the
area under the curve, and Pr is the
index of the interval this point lies
in.

Class Probabilities. As indicated above, the class probabilities are considerably more
complex than in the random-permutation case. First, we denote for two values p,p ∈ [u]

the probability to fall strictly between them by

v(p,p) = P
[
U ∈ (p,p)

]
=

p−1∑

r=p+1

qr = max{cp−1 − cp, 0} . (8.16)

8 Equal Keys

302

Since all elements equal to any of the pivots are put in place during partitioning, the
probability of an ordinary element to end up in the rth recursive call is exactly v(Pr−1,Pr)
conditional on P, for r = 1, . . . , s. We denote the vector of these probabilities by

V = V(q) =
(
v(Pr−1,Pr)

)s
r=1

. (8.17)

The counter-probability 1−ΣV to all these is the probability to hit one of the pivot values,
which in the random permutation case was zero, so that each element fell almost surely
into one of the s regular classes. Here we additionally have the pivot classes p1, . . . , ps−1 as
introduced in Section 8.4.2. There we also defined Er as the (random) number of elements
in pr, and E = (E1, . . . ,Er−1) as the vector of those.

Figure 55: Relation of the quantities in-
troduced in our stochastic
model for s = 3.

P1 = 2 P2 = 6
0 q1 q2 q3 q4 q5 q6 q7 q8 q9 1

Π1 Π2
D1 D2 D3

V1 H1 V2 H2 V3

To specify the distribution of E, we have to determine the hitting probabilities Hr which
is the probability that an ordinary element U is of type pr. The hitting probabilities are
determined by the generalized comparison tree λ and the pivot values P.

H = H(q)(P, λ) = (H1, . . . ,Hr−1) (8.18 .1)

with Hr , =

{
qPr , if Pr is classified as pr by λ w.r.t. P;

0, otherwise.
(8.18 .2)

The second case applies if a Pr is equal to another pivot, say Pl and is dominated by it in λ,
i.e., elements equal to Pr = Pl are classified as pl instead of pr.

Class Probabilities with Two Trees. At this point, it becomes evident that using two dif-
ferent generalized comparison trees λk 6= λg would make the analysis very complicated.
Assume the two trees disagree over the class of a certain element U = Pr for a certain
choice of pivot values P ∈ [u]s−1. Then the hitting probabilities H(P, λk) at λk are different
from those at λg. All of our analysis in Chapter 5 was based on the idea that conditioning
on the pivot values fixes the class probabilities. This is no longer true in this case.

Note that the probability to hit any one of the pivots, ΣH = 1 − ΣV, is itself a random
quantity, even in the uniform case q = (1u , . . . , 1u), since the number of distinct pivot
values is random.

Segment Sizes. The classes of all (ordinary) elements are i. i.d. by definition, so the car-
dinalities of the segment sizes I of elements falling between the pivots P together with the

(Ternary) Comparisons · 8.5.3

303

number E of duplicates has a multinomial distribution:

(I,E) D
= Mult(η;V,H), (8.19)

where as usual η = n− k is the number of ordinary elements.
Most of the random variables introduced here implicitly depend on q, and I = I(n,q)

and E = E(n,q) depend additionally on n. We usually omit that dependence, to keep the
notation readable.

Expected Stateless Toll Costs. Conditional on the pivot values P, we have by Equa-
tion (8.19) the expectations E[Er | Pr] = Hr · η = Hr · n ± O(1), and similarly, for the
non-pivot segments E[Ir | Vr] = Vr ·n±O(1). We can thus state

E[Tn,q |P] = Rq · η = Rq ·n ± O(1) , (8.20 .1)

with Rq = βT ·H + γT ·V. (8.20 .2)

Unconditional Expectations. Upon unconditioning in Equation (8.20 .2), we find

E[Tn,q] = aq ·n ± O(1) , (8.21 .1)

with aq = E[Rq] = βT ·E[H] + γT ·E[V] ; (8.21 .2)

but the latter expectations, E[H] and E[V], are quite unwieldy in general. For example,
consider the term for Hr if it is not dominated:

E[qPr] =

u∑

v=1

qv ·P[Pr = v] (8.22)

=
(8.2)

u∑

v=1

qv ·P
[
Πr ∈ (cv−1, cv]

]
(8.23)

=

u∑

v=1

qv ·
∫cv
cv−1

xσ1+···+σr−1(1− x)σr+1+···+σs

B(σ1 + · · ·+ σr,σr+1 + · · ·+ σs)
dx (8.24)

=

u∑

v=1

qv · Icv−1,cv(σ1 + · · ·+ σr,σr+1 + · · ·+ σs) , (8.25)

with Ix,y(α,β) the incomplete regularized beta function. Luckily, we can get asymptotic
results without dealing explicitly with these terms.

8.5.3 (Ternary) Comparisons

Recall that we assume λ = λk = λg ∈ Λs, i.e., we use the same comparison tree λ for
both classification locations in Algorithm 9. We further restrict ourselves here to nodes
with ternary comparisons only. Then λ is (isomorphic to) an ordinary BST. The number
of comparisons is a stateless cost measure with γ = λ, the vector of leaf depths, and β is

8 Equal Keys

304

the vector of internal node depths, where in both cases we define depth as the number of
internal nodes on the path from the root to a node, including the node itself. Figure 56
gives an example. Note that we draw explicit leaves for the pivot classes, which one would
omit for an ordinary BST.

Figure 56: Exemplary generalized comparison tree for a simple dual-pivot
Quicksort. The five classes C = (s2, p1, s1, p2, l1) have
(ternary) comparison costs β = (1, 2) and γ = (1, 2, 2); these
correspond to the depths in the tree.

< = >

< = >

P1

s2 p1 P2

s1 p2 l1

8.5.4 Scanned Elements (Partitioning)

The scanned-elements costs of an execution of Algorithm 9 depends only on the final sizes
of the classes and thus is a stateless cost measure. The coefficient vectors β and γ are easy
to derive from the mapping of classes to virtual classes and the charging scheme from
Section 5.4.3. Let us consider some examples.

Fat-Separator Three-Way Partitioning. For the fat-separator method with s = 3 and m̃ = 3

we have the following classes mapping:

Original Class s2 p1 s1 p2 l1
Segment Size I1 E1 I2 E2 I3

Virtual Class s̃3 s̃2 s̃1 l̃1 l̃2
Scanned Elements 3 2 1 1 2

We can read off β = (2, 1) and γ = (3, 1, 2). It is obvious at this level that this method
will incur significantly more scanned elements than (thin-pivot) YBB partitioning if there
are no equal elements, since we still have to keep track of both start and end of the two
(empty) pivot segments.

Scanned Elements vs. Cache Misses. For the extreme case sketched above, the number
of scanned elements will not sensibly predict the number of cache misses: if there are no
duplicates whatsoever, having the second scanning index does not really cost anything
since its element is for sure in the cache.

The above statement probably holds just as well if we have just enough duplicates to
fill a cache line, and then having the almost-empty pivot-segment around is costly.

Fat-Outsides YBB. If we instead put the pivot-segments to the outsides, we have to add
the cleanup costs that we discuss below. Ignoring them for a moment, we find that for the

Scanned Elements (Cleanup) · 8.5.5

305

partitioning process alone we get (β(p))TE+ γTI scanned elements, where β(p) = (3, 2)
and γ = (2, 1, 1). The scanned elements-cost for partitioning are then exactly the same as
for (thin-pivot) YBB partitioning if no equal keys are present.

General Fat-Outsides Methods. The latter is true in general: for fat-outsides methods, we
always have γ = αSE, where the latter was given in Equation (5.23) on page 176.

8.5.5 Scanned Elements (Cleanup)

For fat-outsides methods, we have to perform a cleanup phase. We assume that we do so
using cyclic shifts, element by element, working inside-out. (That way, we avoid touching
any duplicate more than once.)

For a pr-segment at the left end of the array, i.e., for r = 1, . . . , bs/2c, we have to move
each pr-element over exactly r segments to the right, i.e., with a cyclic shift involving r+ 1
elements. Afterwards, we have to advance the corresponding r+ 1 scanning indices, so
one such operation has costs of r+ 1 scanned elements.

Similarly, for pr with r = bs/2c+ 1, . . . , s− 1 its segment grows from the right, and
each such duplicate is put into place with a cyclic shift of s− r+ 1 elements, contributing
s− r+ 1 scanned elements. In total, the costs of the cleanup step for fat-outsides methods
in terms of scanned elements are (β(c))TE with

β(c) = (2, 3, . . . , bs/2c+ 1, s− bs/2c, s− bs/2c− 1, . . . , 2). (8.26)

Fat-Outsides YBB. Continuing the example from above, we thus find that the total number
of scanned elements incurred in a partitioning round with the fat-outsides method for
s = 2 is βTE+ γTI scanned elements, where β = β(p) +β(c) = (5, 4) and γ = (2, 1, 1).

� � �

Building on our work on generic one-pass partitioning, it was quite easy to analyze the
cost of fat-pivot partitioning. We are now ready to proceed to the technically challenging
part of Quicksort with equal keys: the solution of the recurrence for total costs.

8.6 Recurrence for Expected-Profile Inputs

In this section we assume the expected-profile model for inputs and a fat-pivot partitioning
method, i.e., all elements equal to a pivot are moved to their final landing positions and
are not part of a recursive call.

Randomness Preservation. In this scenario, subproblems for recursive calls correspond
to a subrange of the universe, and the elements that are part of this subproblem are i. i.d.
distributed from the corresponding subdistribution: this distribution is simply the original
universe distribution, conditioned on the event that the element lies is this subproblem’s

8 Equal Keys

306

slice of the universe. This means that inputs for recursive calls follow again an expected-
profile model, so that we can set up a recurrence relation for the costs of Quicksort.

Note that the assumption that all duplicates of pivots are removed is vital: If some
duplicates were allowed to remain in the subproblem inputs, the new probability of this
value in the subproblem would change, and it will depend on n.

On top of that, we require the used partitioning method to have the usual form of
randomness preservation as discussed in Section 4.5; all methods discussed in Section 8.4
do so.

8.6.1 Distributional Recurrence

As for the random-permutation model, we can formulate a recurrence for the random
costs of Quicksort. Here is the recurrence; explanations of occurring terms will follow:

Cn,q
D
= Tn,q +

s∑

r=1

C(r)
Jr,Zr , (n > w, Σq = 1), (8.27 .1)

Cn,q
D
= Wn,q, (n 6 w, Σq = 1), (8.27 .2)

C0,() = 0, (8.27 .3)

where the independence assumptions are as for Equation (6.1), i.e., the C(r)
n,q are indepen-

dent copies of Cn,q for all n and q, which are also independent of J = J(n), Z = Z(n) and
Tn,q. The base cases for n 6 w are the sorting cost with Insertionsort; as we consider w a
constant, their value will not influence the leading term.

The distributional recurrence is visually quite similar to Equation (6.1) for the random-
permutation case, but the second parameter q introduces some additional features. Also,
the distribution of J is different. We have I 6 J 6 I+ t, but J is random even for fixed I.
The reason is that the tr sampled-out elements between Pr−1 and Pr might be equal to
Pr−1, equal to Pr, or lie between the two. Only the latter ones are included in the array
segment for the recursive call. The contribution of sampled-out elements to Jr is thus
binomially distributed:

J = J(n,q) = I(n,q) +B(q), (8.28)

B = B(q) D
=

(
Bin
(
tr,

Vr

qPr−1 + Vr + qPr

))s

r=1

. (8.29)

Z is the vector of “zoomed-in” distributions for the subproblems. The entries Zr are
themselves vectors, namely the (potentially empty) subranges of q for values between
Pr−1 and Pr. Z is formally given by

Z = Z(q) =
(
z(Pr−1,Pr)

)s
r=1

, (8.30)

z(p,p) =
1

v(p,p)
·qp+1,p−1 =

(
qr

v(p,p)

)p−1

r=p+1

. (8.31)

Distributional Recurrence · 8.6.1

307

We have z(0,u+ 1) = q, the initial distribution. There are two special cases where two
adjacent pivots do not allow for elements in between them: if they are equal, and if they
differ by exactly 1. For this degenerate case Pr − Pr−1 6 1, our Zr is not well-defined
since the sub-universe size is 0. Luckily, also the corresponding segment size is Ir = 0 and
Jr = 0 since the tr sampled-out elements must equal Pr−1 or Pr, as well. These degenerate
recursive calls thus always concern an empty segment and simply do nothing. Their costs
are handled by the initial values of the recurrence.

Back-of-the-Envelope Remarks. Even though nicely hidden in the notation for J and Z in
Equation (8.27), the inner workings are somewhat involved; after all we needed a page of
text to introduce all constituents. Let us thus complement this with a very rough order-of-
growth estimate of E[Cn,q].

A fat-pivot method removes in each partitioning step at least one value from the uni-
verse, so we can have at most u partitioning steps. Any reasonable partitioning method
has costs linear in the number of elements it is applied to, so the overall costs for sorting
are Θ(u · n) in the worst case. This, of course, depends crucially on our assumption that
all equal elements are removed, which means that each partitioning step removes in ex-
pectation a Θ(1u)-fraction of the input. It is no wonder then that overall costs are linear
in n. If we are lucky with pivot choices, we divide the universe into s sub-universes of
approximately equal size in each step, and we are done in roughly logs(u) steps, yielding
Θ(n log(u)) overall cost in the best case.

As in the random-permutation model, we expect the worst-case complexity to be rare
enough, so that costs are in Θ(n log(u)) also in the average case. Of course, we are inter-
ested in the constant of proportionality to be able to compare algorithms.

Outlook. The best one can hope for is an explicit solution for E[Cn,q], in terms of n and
q, as well as s and t. Given the complex nature of the recurrence, it seems hard to obtain
such a solution, and we will resort to asymptotic approximations. This is easier said than
done since we have two parameters in the recurrence.

What comes to our rescue here is that for large n, we can separate parts in E[Cn,q] that
depend on q from those that depend on n, and investigate them in isolation. This trick
comes at the price of two arguably bearable restrictions: The first one limits the ways how
q may vary with n, in particular, u may not grow to fast w.r.t. n. The second restriction
concerns the allowable cost measures; in the present form, the separation trick only works
for stateless cost measures (Definition 8.7).

The separation of n and q depends on the connection between Quicksort costs and
search costs in corresponding search trees. In the following section we present the general
class of search trees corresponding to s-way Quicksort with pivot sampling and Insertion-
sort cutoff.

8 Equal Keys

308

8.7 Quicksort Recursion Trees

At first sight, Quicksort and search trees are two very different things, one being a sorting
method, the other a data structure to implement dictionaries. But there is a close relation-
ship between the cost of sorting an array with Quicksort and the cost of building a search
tree of the elements in the array: “Goethe famously said that ‘architecture is frozen music.’
In exactly that sense, I assert that ‘data structures are frozen algorithms.’ And if we freeze the
Quicksort algorithm, we get the data structure of a binary search tree” (Bentley [19], p. 37). In
less flowery words, to each execution of Quicksort we can associate a recursion tree, which
turns out to be a search tree. Moreover, the process of growing the recursion tree during
execution mimics exactly the growth of a corresponding search tree upon insertion of new
elements.

7 4 2 9 1 3 8 5 6

4 2 1 3 5 6 9 87
7

2 1 3 5 6 84
4

9
9

1 3 62
2

5
5

8
8

1
1

3
3

6
6

Figure 57: Execution trace of a simple Quicksort variant and its corresponding recursion tree.
Here we assume that the first element is selected as pivot and the relative order of
elements in subproblems is retained from the original input. The recursion tree then
coincides with the BST that results from successively inserting the original input.

The correspondence is obvious for a most basic Quicksort implementation: single-
pivot Quicksort with pivots selected as first elements of the list, and where partitioning is
done so that the relative order of elements smaller resp. larger than the pivot is unaltered.
Then the recursion tree is exactly the binary search tree that results from successively in-
serting the elements in the order they appear in the original input, see Figure 57. Moreover
a moment’s reflection shows that the very same comparisons are used in both processes,
even though in a different order. This allows us to analyze whichever structure is more
convenient, and the number of comparisons is then the same in the other.

Section Outline. The analogy extends to our generic s-way Quicksort with a generaliza-
tion of BSTs. It is the purpose of this section to make this generalization explicit, and to
do some groundwork used later in our analysis of Quicksort with equal keys.

We formally define the notion of recursion trees for Quicksort in Section 8.7.1, and
then introduce a corresponding class of search trees in Section 8.7.2: t-fringe-balanced
s-ary search trees with leaf-buffer size w, or (s, t,w, λ)-trees for short.

As nice as the correspondence between Quicksort and search trees may be, it has its
limits: as we will discuss in detail in Section 8.8, the equivalence in costs of Quicksort

Recursion Trees · 8.7.1

309

and search trees only holds under stateless cost measures. In Section 8.7.4, we introduce
a generic model for search costs in (s, t,w, λ)-trees that corresponds to stateless cost mea-
sures for Quicksort. In the remainder of this section, we then study these search costs for
trees built from expected-profile inputs.

8.7.1 Recursion Trees

In the following, we always assume a generic s-way Quicksort with pivot-sampling param-
eter t and Insertionsort cutoff w. We further assume to simplify presentation that the k
sample elements are chosen deterministically, say, as the first k elements in the input; under
our input models, this assumption is w.l.o.g. for the distribution of costs of Quicksort.

We first define a superclass of recursion trees, which are simply s-ary search trees that
allow an arbitrary number of elements in leaves.

Definition 8.8 (s-Ary Search Trees with Big Leaves): An s-ary search tree (with big leaves) T
for a (potentially empty) multiset of keys {U1, . . . ,Un} from an ordered universe is either

I a leaf labeled with the sequence U1, . . . ,Un (in some order), or

I an inner node labeled with P = (P1, . . . ,Ps−1) that has s child subtrees T1, . . . ,Ts
attached to it.

We require P1 = Ui1 6 · · · 6 Ps−1 = Uis−1 for a subset {i1, . . . , is−1} ⊆ [n] of the
indices, and for r = 1, . . . , s− 1, Tr must be an s-ary search tree (with big leaves) for
the multiset of all Ui with Pr−1 < Ui < Pr, where we set P0 = −∞ and Ps = +∞. J

We now define recursion trees for a given Quicksort implementation.

Definition 8.9 (Recursion Tree): The recursion tree T(U) on an input U = (U1, . . . ,Un) is
defined as follows.

I If n 6 w, T(U) is a single leaf containing U.

I If n > w, let P = (P1, . . . ,Ps−1) denote the s− 1 chosen pivot values, in ascending
order. Then T(U) consists of the internal node containing P, with the s children
T(U(1)), . . . ,T(U(s)), where U(r) is the input for the rth recursive call. J

Note that the leaves remain unsorted. It is an immediate observation that T(U) for a fat-
pivot Quicksort is an s-ary search tree with big leaves: all values in a subtree left of a pivot
value x are strictly smaller than x, and all values in subtrees right of x are strictly larger.

For Quicksort with pivot sampling, certain s-ary search tree shapes cannot arise as
recursion trees. If the input consists of distinct elements for example, the sampled-out
elements guarantee a minimum size for subtrees. In the following, we define a subclass of
s-ary search trees that corresponds exactly to the recursion trees of Quicksort.

8.7.2 t-Fringe-Balanced s-Ary Search Trees with Leaf-Buffer Size w

In recursion trees, the keys of inner nodes are the pivot values from the corresponding
partitioning steps of Quicksort, so we have to simulate the sampling process of Quicksort

8 Equal Keys

310

in search trees. Upon constructing a search tree by inserting elements one at a time, we
thus cannot decide immediately if a new element becomes a key in an inner node or not.
We therefore collect a number of elements in the leaves and wait for an appropriate number
of elements to arrive. If a leaf has collected enough elements, it is split: From the sample of
elements now available, we select pivots with the same procedure as in Quicksort. These
become the keys of a new inner node, and stay so for good. New child leaves of this new
node hold the elements that did not become pivots.

Algorithm 12: Procedure to insert a key x into an (s, t,w, λ)-fringe-balanced tree T.

stwlTreeInsert〈s,t,w,λ〉(T, x)

1 if T is Leaf (U)

2 Append x to U
3 if |U| 6 w
4 return Leaf (U)

5 else // Split the leaf
6 P := PivotsFromSample〈t〉(U1, . . . ,Uk)
7 C1, . . . ,Cs := new empty list
8 for each U in U \P // all elements except pivots
9 c := classify x with comparison tree λ w.r.t. P
10 if not c == pr for some r ∈ [1..s− 1]

11 Add U to Cr(c)
12 end if
13 end for
14 return Inner

(
P; Leaf (C1), . . . , Leaf (Cs)

)

15 end if
16 else T is Inner(P;T1, . . . ,Ts)
17 c := classify x with comparison tree λ w.r.t. P
18 if c == pr for some r ∈ [1..s− 1]

19 return “Already present as Pr.”
20 else
21 Tr(c) := stwlTreeInsert(Tr(c), x) // Continue insertion in subtree.
22 return Inner(P;T1, . . . ,Ts)
23 end if
24 end if

We formalize this procedure as an insertion algorithm for s-ary search trees with big
leaves, see Algorithm 12. Growing trees with Algorithm 12 enforces certain shapes upon
the lowest subtrees, i.e., at the fringe of the tree. The resulting class of search trees is hence
called fringe-balanced.

t-Fringe-Balanced s-Ary Search Trees with Leaf-Buffer Size w · 8.7.2

311

Definition 8.10 ((s, t,w,λ)-Fringe-Balanced Trees): Let s ∈ N>2, t ∈ Ns
0, w ∈ N with

w > k− 1 = Σ(t+ 1) − 2 and λ a generalized comparison tree over s− 1 pivots.
The t-fringe-balanced s-ary search tree with leaf-buffer size w and interior comparison tree λ,
for short (s, t,w, λ)-fringe-balanced tree, for a sequence of elements U1, . . . ,Un is the ex-
tended s-ary search tree, whose leaves can hold up to w elements, and that is built by
inserting U1, . . . ,Un successively into an initially empty tree using stwlTreeInsert〈s,t,w,λ〉
(Algorithm 12). J

Subclasses of these search trees have been studied extensively in the literature, unfortu-
nately under varying names: locally balanced search trees [176], fringe-balanced trees [145],
diminished trees [74], and iR / SR trees [88, 89]. Section 1.7.6 contains an overview of previ-
ous work. I will always say fringe-balanced trees, since it is the most vivid term and has been
widely adopted in the analysis-of-algorithms community. In usual definitions of fringe-
balanced, see, e.g., Drmota [47], the leaves hold up to k− 1 elements, just enough so that a
sample of k is available for splitting. Sampling is usually restricted to equidistant choices
t = (t, . . . , t). We extended the usual definition slightly; to avoid confusion, we call our
generalized version (s, t,w, λ)-trees in the following.

Note that in our insertion procedure, we use λ to classify elements, and for splitting
leaves, we use the very same procedure to select pivots as in Quicksort.

Algorithm 13: Procedure to search a key x in a (s, t,w, λ)-tree T.

stwlTreeSearch〈s,t,w,λ〉(T, x)

1 if T is Leaf (U)

2 Search x linearly in U
3 else T is Inner(P;T1, . . . ,Ts)
4 c := classify x with comparison tree λ w.r.t. P
5 if c == pr for some r ∈ [1..s− 1]

6 return “Found as Pr.”
7 else
8 stwlTreeSearch(Tr(c), x) // Continue in subtree.
9 end if
10 end if

To define search costs precisely, we assume the procedure given in Algorithm 13 is
used. Searching in an (s, t,w, λ)-tree works as in an ordinary s-ary search tree, but there
are two small differences compared to s-ary trees as described, e.g., by Mahmoud [112]:
First, elements in our leaves are not sorted, so we have to sequentially search through all
elements in a leaf. The second difference is in how search proceeds “inside” inner nodes.
Usually, one strategy is fixed for good, e.g., binary searching among the keys. We keep
some flexibility here and allow a generalized comparison tree λ to be specified.

8 Equal Keys

312

Equal Keys. As for Quicksort, search trees are usually studied under the random-
permutation model. We there effectively ask for parameters of a tree that results form
inserting n distinct keys in random order. Recalling that we are in the equal-keys chapter,
we have to be clear about the behavior of our trees for duplicate insertions. When we
insert an element x with stwlTreeInsert that was already inserted before, what happens
depends on where the element is: If x is a key in one of the inner nodes, the new insertion
is without effect. Insertion will end in line 19 of Algorithm 12. If x appears in a leaf,
however, the new duplicate is added to that leaf no matter what; see line 2.

This different handling of duplicates might seem peculiar at first sight, but it is the
right way for our purposes: duplicates do play a role for selecting pivots—elements of the
universe with higher probability contribute more duplicates in a random sample and are
thus more likely selected as pivot—but once pivots have been selected, all its duplicates
are put in place in this partitioning step, no matter how many of them we have.

8.7.3 Recursion Trees and stwl-Trees

We now show a generalization of the classic correspondence between Quicksort and search
trees.

Proposition 8.11: Consider generic s-way Quicksort with pivot-sampling parameter t, In-
sertionsort cutoff w, and a fat-pivot partitioning method using a single (generalized) com-
parison tree λ = λk = λg. Moreover, assume that elements for recursive calls retain their
relative order during partitioning and that the first k elements are chosen as sample. Then
for any input U = (U1, . . . ,Un) holds: Sorting U with Quicksort and inserting U succes-
sively into an initially empty (s, t,w, λ)-tree executes the same set of classification calls. J

Proof: We prove the claim by induction on n. If n 6 w, Quicksort passes control directly
to Insertionsort, which does no classifications. In the tree, all elements are gathered in the
single leaf and no classifications happen. So assume the claim holds for inputs with less
than n elements.

If now n > w, Quicksort chooses pivots P from the first k elements, and classifies all
other elements w.r.t. P. It partitions the input into segments U(1), . . .U(s) of all elements
that are strictly between the pivots.

Now consider what happens upon inserting the (w+ 1)st element in the tree. This is
the first time a leaf will overflow and we now split it. The keys for the inner node, the root
of the tree, are chosen from the first k inserted elements using pivot sampling, so we get
the same values P as were chosen as pivots in Quicksort. The other elements from the leaf
are classified w.r.t. P and inserted into new leaves. Also, any later insertions must first
consider the root, so each of these elements is classified w.r.t. P. So we execute the same
set of classifications in both processes.

Towards applying the inductive hypothesis for recursive calls resp. subtrees, we only
have to note that the relative order of elements is retained in both processes, so the ele-
ments inserted in the rth child of the root are exactly U(r), in the same order. The claim
thus follows by induction. �

Recursion Trees and stwl-Trees · 8.7.3

313

The assumption that partitioning maintains the relative order among segments is not ful-
filled for usual in-place partitioning methods. How they affect this relative order is, in-
deed, rather opaque. We can avoid this complication by only considering a distributional
equivalence.

Proposition 8.12: Consider generic s-way Quicksort with pivot-sampling parameter t, In-
sertionsort cutoff w, and a fat-pivot partitioning method using a single (generalized) com-
parison tree λ = λk = λg. Let U = (U1, . . . ,Un) be n i. i.d. (real) random variables, and
denote by T = T(U) the random recursion tree of Quicksort on this input. Further, denote
by T ′ the (s, t,w, λ)-tree for U. Then holds T

D= T ′. J

Remark: One could extend the above result to the set of classifications used during con-
struction of the two trees, as in Proposition 8.11, but we will not need that. Since the
shapes of the final trees do not depend on λ, the above equality in distribution also holds
if different comparison trees are used in Quicksort and the search tree. J

Proof: Conditional on the multiset of values in U, i.e., conditional on the profile of the
input, U is uniformly distributed among all permutations of this multiset. This is a conse-
quence of elements being chosen i. i.d. We will show that for a fixed tree and conditional
on a fixed profile of the input, the same number of permutations of the multiset of values
leads to this tree in both worlds. The tree thus has the same probability to occur as re-
cursion tree and as (s, t,w, λ)-tree conditional on any profile; it then does so in particular
after unconditioning, i.e., when the profile is not fixed, and the claim follows.

So let T be an arbitrary fixed s-ary search tree with leaf-buffer size w and let X be
a multiset of values. We show inductively that the same number of permutations of X
generate T as recursion tree and as (s, t,w, λ)-tree.

For n 6 w, T must be a single leaf containing the n unsorted values. In the (s, t,w, λ)-
tree, the leaf collects elements in insertion order, so only the single permutation giving
elements in this order generates T. For recursion trees, we similarly have elements in
input order, so there is also just this single permutation leading to T.

Now assume the claim holds for inputs of up to n− 1 elements and let n > w. Then
T consists of a root node with keys P = (P1, . . . ,Ps−1) and children T1, . . . ,Ts. Subtree
Tr, for r = 1, . . . , s, contains only keys from the open interval (Pr−1,Pr), where we set
P0 = −∞ and Ps = +∞ for notational convenience.

A permutation of X yields key values P in the root if and only if generalized pivot
sampling on the first k elements, which form the sample both for recursion trees and
(s, t,w, λ)-trees, yields the pivots P1, . . . ,Ps−1, i.e., when the (σ1 + · · · + σr)th smallest
element is Pr for r = 1, . . . , s− 1. The precise number of such permutations for inputs with
duplicates is inconvenient to describe, but obviously the same number results for both tree
processes, since they do the same thing. This suffices for our claim.

Now for r = 1, . . . , s define X(r) = X∩ (Pr−1,Pr) as the multiset of values in the range
of the rth subtrees. The profile of the input from which Tr is constructed is exactly X(r):
for recursion trees, because all such elements are put in the segment for the rth subprob-
lem, and for (s, t,w, λ)-trees because exactly these elements are recursively inserted in this
subtree.

8 Equal Keys

314

Each element U now belongs to exactly one class: either U ∈ (Pr−1,Pr) or U = Pr

for some r. As long as we keep the relative order of elements within one class and do
not change the set of sample elements, we can permute elements without affecting the
outcome: in both worlds still the same pivots are chosen and the same subproblem inputs
are generated. Again, determining the precise number of these permutations that lead to T

is cumbersome, but surely their number is the same for recursion trees and (s, t,w, λ)-trees.
Finally, since pivots are not passed to subproblems, it holds |X(r)| 6 n− 1 and by the

inductive hypothesis we have the same probability to obtain T1, . . . ,Ts as our subtrees for
recursion trees as for (s, t,w, λ)-trees, conditional on the pivot values P. Together with
the above observations, we find that the same number of permutations of X results in the
recursion tree T as do generate (s, t,w, λ)-tree T with successive insertion. This concludes
the inductive step, and thus the proof. �

The equality in distribution allows us to study recursion trees of Quicksort by analyzing
instead a randomly grown (s, t,w, λ)-tree.

8.7.4 Generic Search Costs

Recall that a search in an s-ary search tree has to use a comparison tree λ “inside” the
nodes to find the class of an element. Depending on the class, we can announce that an
element is present, or that we have to continue searching in a subtree, cf. Algorithm 13.
In general, classification costs may differ a lot depending on the resulting class: in lucky
cases, we know the class after a single query, in other cases we might have to compare
with all s− 1 pivots.

To account for this, we let search costs depend on all classes of the searched element
on the path from the root down the tree; to be precise, the search costs are the sum
of contributions of nodes on the path from the root, where following an rth child edge
contributes γr, ending the search as rth pivot in an internal node yields a summand βr,
and terminating the search in a leaf adds ζ. Formally, we express this in terms of search-
cost vectors.

Definition 8.13 (Search-Cost Vector): Let β ∈ Rs−1>0 and γ ∈ Rs>0 and ζ ∈ R>0 be given,
and let T be an s-ary search tree with leaf-buffers, containing keys in [1..u]. The search-cost
vector Γ = Γ(T) ∈ Ru w.r.t. (β,γ, ζ) is defined inductively for each v ∈ [1..u] as

Γv(T) =

ζ, if T is a single leaf;
s−1∑

r=1

βr1{v∈pr} +

s∑

r=1

1{v∈(Pr−1,Pr)}
(
γr + Γv(Tr)

)
,

if T is a root with keys P
and subtrees T1, . . . ,Ts.

(8.32)
J

This definition allows us to express costs conveniently. If we search, one after another, for
a sequence of elements that has the profile X ∈Nu

0 in a tree with search-cost vector Γ, the
total search costs are ΓTX. A single search for U D= D(q) has expected costs E[ΓU] = Γ

Tq.

Search Costs in Expected-Profile Models · 8.7.5

315

8.7.5 Search Costs in Expected-Profile Models

Consider a universe distribution q ∈ (0, 1)u. Let Γ(n,q) denote the search-cost vector of
a random (s, t,w, λ)-tree built from n i. i.d. D(q) distributed elements U = (U1, . . . ,Un).
By Proposition 8.12, we may also interpret the tree as a recursion tree of Quicksort, so we
can set up a recurrence equation similar to Equation (8.27), in particular using the same
random variables J and Z:

Γv(n,q) D
=

s−1∑

r=1

1{v∈pr}βr +

s∑

r=1

1{v∈(Pr−1,Pr)}
(
γr + Γv(Jr,Zr)

)
, (n > w), (8.33 .1)

Γv(n,q) = ζ, (n 6 w), (8.33 .2)

Γv(0, ()) = 0. (8.33 .3)

The number n of elements inserted to create T occurs only as argument of Γv; all other
quantities do not depend on n. With a fixed q, we can therefore hope for Γv(n,q) to
converge to a well-defined limit Γv(q) as n→∞.

In fact, the creation process of T becomes stationary once all elements of [u] appear
in an internal node: further insertions are then ignored as duplicates. Let us assume we
continue the insertion process until saturation. For simplicity, we may assume a process
that never inserts duplicates of elements that already appear in internal nodes, then the
tree is stationary after at most u(w+ 1) insertions. In the resulting tree T∗, all leaves are
empty, because all elements v ∈ [u] appear in an internal node. Let Γv(q) denote the
random search costs for element v in T∗. They fulfill a recurrence very similar to Γv(n,q),
namely by formally letting n→∞:

Γv(q)
D
=

s−1∑

r=1

1{v∈pr}βr +

s∑

r=1

1{v∈(Pr−1,Pr)}
(
γr + Γv(Zr)

)
, (8.34 .1)

Γv(()) = 0. (8.34 .2)

We will later bound the probability for Γ(n,q) 6= Γ(q) when n is much larger than u,
which effectively shows that Γ(n,q) converges in probability to Γ(q). Note that Γ(q) does
not depend on ζ, but only on β and γ.

8.7.6 Distributional Recurrence for Weighted Path Length

To analyze the average-case behavior of Quicksort, we will not need search-cost vectors
in full, but the product Γ(q)Tq. This is the expected search cost when searching a random
element U D= D(q). As we will work with this quantity a lot later, we give it a name:
Aq = Γ(q)Tq = EU[ΓU(q)]. In other words, Aq is a weighted internal path length of
random recursion trees: we sum up the costs of all paths from the root to any key in the
tree, weighted by the corresponding key’s probability, and for the cost of a path, an rth
child edge contributes γr and ending as rth pivot in a node yields a summand βr. Starting

8 Equal Keys

316

with Equation (8.34), we find for the random path length Aq the recurrence

Aq
D
= Tq +

s∑

r=1

VrA
(r)
Zr

, (8.35 .1)

A() = 0, (8.35 .2)

with Tq = βT ·H + γT ·V, (8.35 .3)

where (A(r)
q) are independent copies of (Aq), which are also independent of (V,Z, Tq).

Note that EU[1{U∈(Pr−1,Pr)}] = v(Pr−1,Pr) = Vr by definition.
The recurrence is written in this deceptively concise form by hiding complexity in the

quantities V and Z, whose distribution is given in Sections 8.5.2 and 8.6.1.

8.7.7 Expected Weighted Path Length for Random U-ary Words

A general solution for the expected weighted path length E[Aq] seems hard to obtain. For
the special case s = 2, t = (0, 0) and w = 1, i.e., for ordinary binary search trees, the
solution is known (Proposition 8.2 on page 291). This case is simpler since we never ever
have more than one copy of any value in the tree; this is no longer true for any other
parameter choice.

We derive an asymptotic result for the special case of a uniform universe distribution.

Theorem 8.14:
Assume T∗ is a random (s, t,w, λ)-fringe-balanced tree built from inserting i. i.d.
uniformly in {1, . . . ,u} distributed elements until saturation, i.e., until each value
v ∈ {1, . . . ,u} occurs as key in an internal node. Let Au be the average search cost
in T∗, averaged over the values v, where following an rth child edge contributes a
summand γr and terminating the search as rth pivot in an internal node yields a
summand βr. Then holds

E[Au] =
γTτ

H
ln(u) ± O(1). (8.36)

The discrete entropy H is given by Equation (2.193), and τ = t+1
k+1 as usual. J

The proof will use our distributional master theorem, Theorem 2.76 (page 116); indeed,
were it not for vector-parameter q, also the general Equation (8.35) would be in the required
form. Before we take on the proof, let us briefly see which restrictions are necessary to get
rid of the vector-valued parameter.

Self-Similar Families of Distributions. Let us restrict allowable universe distributions to
a family of distributions with a fixed number of parameters. One parameter will be the
size of the universe u; the limit u → ∞ is a natural choice for asymptotic statements. For
general universe distributions, sub-distributions can differ vastly even if their sub-universe

Expected Weighted Path Length for Random U-ary Words · 8.7.7

317

is of the same size. If Aq may only depend on u, we need that, except for maybe a few
global parameters that remain the same throughout the recursion, sub-distributions are fully
determined by u. Such families of distributions have a strong self-similarity; in particular, all
sub-distributions over u = 2 elements have to be the same, i.e., qi+1/qi = µ for any i. This
already determines the shape of q as

q = q(µ,u) ∝ (µ,µ2, . . . ,µu−1,µu), (8.37)

for a µ > 0, properly rescaled so that Σq = 1. By symmetry, we can require µ ∈ (0, 1], i.e.,
probabilities are decreasing with the index. For a fixed µ > 0, we define Au := Aq(µ,u).
Note that D(q(µ,u)) is a truncated geometric distribution with parameter µ, and these are
the only distributions where we can hope for a simple recurrence for Au.

Assume q fulfills Equation (8.37), for a µ > 0. Then P[Zr = z(p,p)] = P[Vr = v(p,p)]
and the recurrence for Au becomes

Au
D
= Tu +

s∑

r=1

VrAPr−Pr−1−1, (u > 1) (8.38 .1)

A0 = A−1 = 0, (8.38 .2)

with Tu = βTH + γTV, (8.38 .3)

with the same independence assumptions as before. For µ 6= 1, we can only conclude that
E[Au] = O(1) with the master theorem.

Random u-ary Words. Let us study in detail the case µ = 1, so that q = (1u , . . . , 1u)
and D(q) = U[1..u] is a uniform distribution. We refer to this case as the random-u-
ary-word model, because inputs are formed from i.i.d. uniformly chosen letters from the
alphabet [u]. When duplicates are allowed, this is arguably the most natural model to
assume, unless further knowledge is available; it is certainly the one with maximal entropy.
As we expect the cost of Quicksort to scale with the entropy of the input (Conjecture 8.5),
the uniform distribution is the worst case among all the choices for universe distributions.

The additional symmetry in the uniform case allows further simplifications of Equa-
tion (8.38). Since cp =

∑p
i=1 qi = p · u and du·Πe

u = Π+ [0, 1u), we have the stochastic
representations

P = F−1U (Π) (8.39)

=
(8.2)
du ·Πe, (8.40)

Hr =

{
1
u , if Pr is classified as pr ;

0, otherwise,
(8.41)

= O(u−1), (u→∞), (8.42)

8 Equal Keys

318

and using interval-arithmetic notation

Vr = max{cPr−1 − cPr−1 , 0} (8.43)

= max
{
Pr

u
−
Pr−1
u

−
1

u
, 0
}

(8.44)

=
(8.40)

Πr −Πr−1 + [0, 1u) − [0, 1u) −
1
u (8.45)

= Dr + (− 2u , 0) (8.46)

= Dr ± O(u−1), (u→∞). (8.47)

All error bounds hold uniformly for all realizations of random variables. Inserting these
into Equation (8.38) we can simplify the recurrence for Au

Au
D
= Tu +

s∑

r=1

VrAuVr , (8.48 .1)

A0 = A−1 = 0, (8.48 .2)

and we obtain an asymptotic approximation for the toll function

Tu = γTD ± O(u−1), (8.49)

E[Tu] = γTτ ± O(u−1). (8.50)

With these preparations we can start.

Proof of Theorem 8.14: Equation (8.48) has the form (Equation (2.325)) required for The-
orem 2.76 (page 116), our DMT with coefficients, with parameters K = γTτ, α = 0, β = 0,
Zr = Dr and Ar(z) = Vr. From Equation (8.48) one might be tempted to choose Zr = Vr,
but recall that V = V(q(u)) depends on u and is thus no viable choice. Towards applying
Theorem 2.76, we have to establish Equations (2.326) and (2.327). The latter is very simple:

E
[
Vr
∣∣ Vr ∈ [z, z+ 1

u)
]
∈ [z, z+ 1

u) = z ± O(1u), (8.51)

so the coefficients condition (2.327) is fulfilled with ar(z) = z and δ = 1. The same error
bound is obtained for the density-convergence condition (2.326).

Lemma 8.15: For 1 6 r 6 s and uniformly for z ∈ (0, 1) holds that

u ·P
[
Vr ∈ (z− 1

u , z]
]

= fDr(z) ± O(u−1), (u→∞), (8.52)

where fDr(z) = z
tr(1− z)k−tr−1

/
B(tr + 1,k− tr) is the (marginal) density of Dr. J

The proof is essentially by computing. We give the steps in detail below as the lemma
is central to the analysis and since some of the transformations are instructive; the casual
reader might prefer to skip these. Note that simply by inserting definitions, we already
have Vr = Dr ±O(u−1), which even holds always, not only in distribution; see Equa-
tion (8.47). This is essentially what we need to show; only that the error bound is just too
weak for the density-convergence condition. To get Equation (2.326), we have to work a
little harder.

Expected Weighted Path Length for Random U-ary Words · 8.7.7

319

Proof of Lemma 8.15: The density of our Beta resp. Dirichlet distributed variables is
Lipschitz-continuous, see Lemma 2.29 (page 73). By Proposition 2.12–(a) on page 52,
it suffices to consider z ∈ { 0u , 1u , 2u , . . . , u−1u } instead of all z ∈ (0, 1) to prove the claim. For
the remainder of this proof, we therefore assume z = v

u for v ∈ [0..u− 1]. For these values
of z, we simply have P

[
Vr ∈ [z, z+ 1

u)
]
= P[Vr = z].

We deal separately with the different cases for r. The border case r = 1 and r = s are
somewhat simpler, so let us start with those. Starting with Equation (8.44), we find that
uniformly for z ∈ (0, 1) holds

P[V1 = z] = P[P1 − 1 = zu] (8.53)

=
(8.40)

P
[
duΠ1e = u(z+ 1

u)
]

(8.54)

= P
[
Π1 ∈ (z, z+ 1

u]
]

(8.55)

= P
[
D1 ∈ (z, z+ 1

u]
]

(8.56)

=

∫z+1/u

z

xt1(1− x)k−t1−1

B(t1 + 1,k− t1)
dx (8.57)

=
Proposition 2.12–(c)

fD1(z)

u
± O(u−2), (u→∞). (8.58)

Similarly, we find

P[Vs = z] = P[u+ 1− Ps−1 − 1 = zu] (8.59)

= P
[
duΠs−1e = u(1− z)

]
(8.60)

= P
[
Πs−1 ∈ (1− z− 1

u , 1− z]
]

(8.61)

= P
[
Ds ∈ [z, z+ 1

u)
]

(8.62)

=
fDs(z)

u
± O(u−2), (u→∞). (8.63)

That was simple enough; for the middle subproblems, 2 6 r 6 s− 1, the difference of two
random pivot values is involved. In essence, we again use the smoothness of densities,
namely that Dirichlet-densities are Lipschitz-continuous for integral parameters, to get an
approximation for the difference of two discrete pivot values, Pr−1 and Pr, in terms of the
difference of the continuous relative ranks Πr−1 and Πr, whose difference is by definition
Dr = Πr −Πr−1, i.e., Beta distributed. Unlike above, fixing the difference of Pr−1 and Pr
still allows many different choices p for, say, Pr−1, that we have to sum over. To get this
under control, we will need one more detour of translating from continuous to discrete and
back again. Here are the details; all error bounds are understood uniformly in z ∈ (0, 1).

P[Vr = z] = P[Pr − Pr−1 − 1 = zu] (8.64)

=

u∑

p=1

P
[
Pr−1 = p ∧ Pr = p+ zu+ 1

]
(8.65)

=

u−zu−1∑

p=1

P
[
duΠr−1e = p ∧ duΠre = p+ zu+ 1

]
(8.66)

8 Equal Keys

320

=

u−zu−1∑

p=1

P
[
Πr−1 ∈ (pu − 1

u , pu] ∧ Πr ∈ (pu + z, pu + z+ 1
u]
]
, (8.67)

and with the aggregated Dirichlet vector D(r) = (D1 + · · ·+Dr−1,Dr,Dr+1 + · · ·+Ds),
with distribution D(r) D= Dir(σ(r)) for the correspondingly aggregated parameter vector
σ(r) = (σ1 + · · ·+ σr−1,σr,σr+1 + · · ·+ σs), we continue,

=

u−zu−1∑

p=1

P
[
D(r)
1 ∈ (pu − 1

u , pu] ∧ D(r)
1 +D(r)

2 ∈ (pu + z, pu + z+ 1
u]
]

(8.68)

=

u−zu−1∑

p=1

∫ p
u

x= p
u−

1
u

∫ p
u+z+

1
u

y= p
u+z

xσ
(r)
1 −1(y− x)σ

(r)
2 −1(1− y)σ

(r)
3 −1

B(σ(r))
dydx, (8.69)

=
Proposition 2.12–(c)

u−zu−1∑

p=1

(
(pu)

σ(r)
1 −1zσ

(r)
2 −1(1− z− p

u)
σ(r)
3 −1

u2 · B(σ(r))
± O(u−3)

)
(8.70)

=
zσ

(r)
2 −1

u · B(σ(r))
· 1u
(1−z)u−1∑

p=1

(
p
u

)σ(r)
1 −1(

1− z− p
u

)σ(r)
3 −1 ± O(u−2) ; (8.71)

and by Proposition 2.12–(b), with a = 0, b = 1− z, n = (1− z)u, this is

=
zσ

(r)
2 −1

u · B(σ(r))
·

(∫1−z

ρ=0
ρσ

(r)
1 −1(1− z− ρ)σ

(r)
3 −1 ± O

(
(1− z)u−1

)
)
± O(u−2),

(8.72)

with the substitution x = ρ
1−z , i.e., ρ = (1− z)x, the integral becomes

=
zσ

(r)
2 −1

u · B(σ(r))
·
∫1

x=0

(
(1− z)x

)σ(r)
1 −1(

(1− z)(1− x)
)σ(r)

3 −1
(1− z)dx ± O(u−2)

(8.73)

=
zσ

(r)
2 −1

u · B(σ(r))
(1− z)σ

(r)
1 +σ(r)

3 −1 · B(σ(r)1 ,σ(r)3) ± O(u−2) (8.74)

=
ztr(1− z)k−tr−1

u · B(tr + 1,k− tr)
± O(u−2) (8.75)

=
fDr(z)

u
± O(u−2). (8.76)

This concludes the proof of Lemma 8.15 �

With Lemma 8.15 the conditions of the DMT are fulfilled and we are ready to apply it. We
start by computing the constant H as

H = 1−

s∑

r=1

E[D0r ·Dr] = 0, (8.77)

Expected Weighted Path Length for Random U-ary Words · 8.7.7

321

so we are in Case 2. With Proposition 2.54 (page 90), we find

H̃ = −

s∑

r=1

E[D0r ·Dr lnDr] = H(t), (8.78)

and thus E[Au] ∼ γTτ
H

lnu by Theorem 2.76.
To get the claimed error term O(1) we proceed as in Section 6.3 for the ordinary

Quicksort recurrence and apply the DMT two more times: First, the error term O(u−1)

in the asymptotic approximation for our toll function E[Ru] does not cause larger errors:
Any toll function in O(u−ε) yields H < 0 and thus a contribution in O(1) overall; this with
the very same computations as in Section 6.3.

The second application is on Ru := Au − γTτ
H

lnu. Unfolding the recurrence, we find

Ru
D
= TR(u) +

s∑

r=1

VrRuVr (8.79)

with TR(u) = Tu +

s∑

r=1

Vr ·
γTτ

H
ln(uVr) −

γTτ

H
ln(u), (8.80)

so the remainder Ru fulfills a recurrence of the same shape, only with a different toll
function. If E[TR(u)] = O(u−ε) for a constant ε > 0, we know from above that E[Ru] =

O(1). With Equations (8.47) and (8.50) we find

E[TR(u)] = γTτ ± O(u−1) +
γTτ

H

s∑

r=1

E
[
Dr · ln

(
u
(
Dr ±O(u−1)

))

︸ ︷︷ ︸
=ln(u)+ln(Dr)±O

(
logu
u

)

]
± O

(
logu
u

)

−
γTτ

H
ln(u) (8.81)

= γTτ

(
1−

∑s
r=1E[Dr ln(Dr)]

H

)
± O

(
logu
u

)
(8.82)

=
Proposition 2.54

0 ± O

(
logu
u

)
(8.83)

= O(u−ε) , (8.84)

for any ε ∈ (0, 1). So indeed, E[Ru] = O(1).
Together, this shows that indeed E[Au] =

γTτ
H
±O(1) as u → ∞, and the proof of

Theorem 8.14 is complete. �

� � �

We have seen that we can extend the connection between Quicksort and search trees to
our s-way Quicksort with sampling by considering fringe-balanced search trees. We then
analyzed search costs in the latter when generated from inputs with equal keys. In the next
section, we close the remaining gap between this result on search trees and the analysis of
Quicksort.

8 Equal Keys

322

8.8 Quicksort Under Stateless Cost Measures

In this section, we derive an asymptotic approximation of Cn,q for large n. The key idea is
to separate the influence of n from that of q; intuitively speaking, we can approximate the
costs of Quicksort by the costs of searching n random elements from the universe distribu-
tion in a random recursion tree of Quicksort. The general result in Theorem 8.16 below
remains implicit, but for random u-ary words we state an explicit result in Theorem 8.17.

The concepts of expected-profile models with many duplicates and degenerate inputs
are formally introduced below.

Theorem 8.16 (Expected-Profile Quicksort Recurrence):
Consider Quicksort with an s-way fat-pivot partitioning method and pivot-sampling
parameter t, under an expected-profile model with many duplicates, in the sense of
Definition 8.18. Further assume a stateless cost measure, i.e., partitioning costs are
Tn,q = βTE+γTI, where β ∈ Rs−1>0 and γ ∈ Rs>0 are constant vectors. Denote by Cn,q,
for n ∈N, the (random) costs to sort an input of size nwith universe distribution q.

1 The expected costs satisfy

E[Cn,q] = E[Aq] ·n ± O(n1−ε), (n→∞), (8.85)

for a constant ε > 0 and the coefficient E[Aq] as given (recursively) by Equa-
tion (8.35). Note that E[Aq] depends only on the universe distribution q = q(n)

and t, but not on n.

2 Conditional on the event that the input is not degenerate (in the sense of Defini-
tion 8.20), we have the following stochastic representation:

Cn,q
D
= ΓT ·X ± O(n1−ε), (n→∞), (8.86)

where Γ = Γ(q(n)) ∈ R
un
>0 and X ∈ N

un
0 are independent, X D= Mult(n,q(n)),

and the distribution of Γ is given recursively by Equation (8.34). The error term
holds uniformly for all values of the random variables.

If µn = minr q(n)r = Ω(n−ρ), the error bounds hold for all ε ∈ (0, 1− 3ρ). J

Remark (Limit Distribution): Assume we fix a universe distribution q independent of n.
Then holds for non-degenerate inputs

Cn,q/n
D
= ΓTX/n ± O(n−ε)

a.s.−→ ΓTq = Aq (8.87)

by the strong law of large numbers and the continuous mapping theorem. Asymptotically
for non-degenerate inputs and fixed q, the distribution of Cn,q is thus determined by Aq.
It is basically dominated by a few elements at the beginning, and highly concentrated.

Random u-Ary Words · 8.8.1

323

Also note that Aq is a discrete distribution as there are only finitely many different
recursion trees for a fixed universe size. This reflects the discrete nature of expected-profile
models, as opposed to the continuous nature of the uniform model (random-permutation
model). J

8.8.1 Random u-Ary Words

In the uniform case q(u) = (1u , . . . , 1u), i.e., the random-u-ary-word model, we know an
asymptotic approximation for E[Aq] (Theorem 8.14). Combining this with Theorem 8.16
yields our main analysis result. (We state it as another theorem, even though it is techni-
cally a direct corollary.)

Theorem 8.17 (Quicksort on Random u-ary Words):
Consider Quicksort with an s-way fat-pivot partitioning method and pivot-sampling
parameter t, under the random-u-ary-word model, where u = un depends on n, so
that un = ω(1) and un = O(n1/3−ε) as n → ∞. Further assume a stateless cost
measure (in the sense of Definition 8.7) and denote by Cn the costs to sort a random un-
ary word of length n. Then

E[Cn] =
γTτ

H
·n ln(un) ± O(n), (n→∞), (8.88)

with discrete entropy H given by Equation (2.193), and τ = t+1
k+1 as usual. �

� � �

The rest of this section is devoted to the proof of Theorem 8.16; before we start, we
formally introduce expected-profile models with many duplicates and degenerate inputs
(Section 8.8.3), and how they relate to search costs in recursion trees (Section 8.8.2).

8.8.2 Quicksort Costs Value-Wise

A stateless cost measure effectively allows us to reorder parts of the input freely without
affecting costs, as long as no pivot choices are affected: such a shuffling only affects the
relative order of ordinary elements during partitioning, whose cost contribution is de-
termined by their class only; it does not depend on their position in the input. We can
thus state the costs of Quicksort in an alternative form. The usual Quicksort recurrence
expresses total costs partition-wise: as the sum of partitioning costs over all partitioning
stages. In terms of the recursion tree of Quicksort, we sum the contribution βTE+ γTI

over all nodes. Under a stateless cost measure, we can instead express costs also value-wise,
i.e., summing over all elements of the universe.

This “transposition” of cost contributions allows then to further exploit the i. i.d. as-
sumption for our input model. Before we proceed to the formal statement of this alterna-
tive representation of costs, let us first see it work on an example.

8 Equal Keys

324

Example. In the recursion tree of Quicksort (Definition 8.9), we create a node with the
used pivot values for each partitioning step, and a leaf for subproblems with size at most
w, containing the remaining elements. Assume for this example that the universe size is
u = 8 and n is large. It is then very likely that X > w+ 1, i.e., each of the eight values
occurs at least w+ 1 times. Let us assume this for the rest of the example.

Then each of the eight values is used as a pivot in exactly one partitioning step; all
duplicates of this element will be removed in this step, and only there. Leaves will thus
always be empty, i.e., Insertionsort is always called for empty subranges.

Assume that we use a dual-pivot Quicksort with the single comparison tree shown in
Figure 56 (page 304). One possible outcome for the recursion tree is shown in Figure 58.

Figure 58: Exemplary recursion tree of a dual-pivot Quicksort with universe
size u = 8. Each node represents a partitioning step, with the two
pivot values given in the node. Child links correspond to child
recursive calls, where subranges of the array appear in the order
of the tree. Empty leaves are not shown.

3 5

1 2 4 4 8 8

6 7

The cost of a partitioning step are βTE + γTI, for I and E the number of ordinary
elements with the given classes. If we count as costs the number of ternary comparisons,
we have β = (1, 2) and γ = (1, 2, 2). The segment sizes I and E are essentially given by the
profile X of the input, but the number of ordinary elements can be a little smaller due to
sampled-out elements. This offset cannot exceed the sample size k, which is a constant.

For the first partitioning step, corresponding to pivots (3, 5), we have E = (X3,X5)±
(k− 1) and I = (X1 + X2,X4,X6 + X7 + X8)± t. In total, we will overestimate the costs of
each partitioning step by at most c · k for a constant c, if we include sampled-out elements
in our computation. The (random) total costs for sorting, conditional on the recursion tree
from Figure 58, are then

Cn =

(X1 +X2)γ1 + X3β1 + X4γ2 + X5β2 + (X6 +X7 +X8)γ3 ± c · k
+ X1β1 + X2β2 ± c · k
+ X4β1 ± c · k

+ (X6 +X7)γ1 + X8β1 ± c · k
+ X6β1 + X7β2 ± c · k .

(8.89)

Here each line corresponds to one partitioning step and each column corresponds to one
class, in order s2, p1, s1, p2, l1. Note that the used comparison tree decides that in case
P1 = P2, all elements are treated as p1, see Figure 56; that is why, e.g., the third line says
X4β1. By re-aligning rows so that each Xi gets a column of its own this is the same as

Cn =

X1γ1 + X2γ1 + X3β1 + X4γ2 + X5β2 + X6γ3 + X7γ3 + X8γ3 ± c · k
+ X1β1 + X2β2 ± c · k

+ X4β1 ± c · k
+ X6γ1 + X7γ1 + X8β1 ± c · k
+ X6β1 + X7β2 ± c · k .

(8.90)

Many Duplicates and Degeneracy · 8.8.3

325

If we read this sum column-wise, we find that, up to the given error terms, overall sorting
costs are the cost of searching each element in the recursion tree, where following an rth
child pointer costs γr and ending in a node as an rth pivot costs βr. For example, when
searching 6 in the tree from Figure 58, we first go right, then left and then find 6 as the first
pivot. The costs are thus γ3 + γ1 + β1, and this is coefficient of X6 in overall costs, since
there are X6 occurrences of the value 6 in the input. In vector form, we can write search
costs as ΓTX, where in the above example

Γ =
(
γ1 +β1, γ1 +β2, β1, γ2 +β1, β2, γ3 + γ1 +β1, γ3 + γ1 +β2, γ3 +β1

)
.

(8.91)

Of course, Γ is just the search-cost vector corresponding to our recursion tree; cf. Sec-
tion 8.7.4. Note that the above transformation is exact except for the given error term; in
particular, it holds for any realization of the random variables, not only in distribution.

General Case. The arguments used in the example extend to the general case, but a few
issues need to be addressed:

1 The recursion tree was fixed in the example, but it is really a random object, that
depends on the input, as well.

2 We have to bound the error we make by charging costs for sampled-out elements.

3 We have to bound the probability of degenerate cases, where not all elements occur
at least w times.

8.8.3 Many Duplicates and Degeneracy

To address the above issues, we consider the following rather general model for how q,
and thus u, may evolve with growing n.

Definition 8.18 (Expected-Profile Model with Many Duplicates):
Let (q(n))n∈N be a sequence of stochastic vectors, where q(n) has un entries, i.e., q(n) ∈
(0, 1)un and Σq(n) = 1, for all n ∈N. An input of size n ∈N under the expected-profile model
for (q(n)) consists of the n i. i.d. D(q(n)) distributed random variables U = (U1, . . . ,Un).

The expected-profile model is said to have many duplicates if for µn := minr q(n)r holds
µn = Ω(n−1/3+ε) with a constant ε > 0. J

The condition for many duplicates is a little unintuitive, but the lower bound on µn is
effectively an upper bound on un, as stated below. Bounding the universe size surely
means many equal elements.

Fact 8.19: In any expected-profile model holds un 6 1
µn

for all n. In particular, an
expected-profile model with many duplicates has un = O(n1/3−ε). J

Proof: Since µn is the smallest entry of q(n) we have 1 = Σq(n) > unµn, so un 6 1/µn.
The second part follows directly from the definition. �

8 Equal Keys

326

The converse is of course not true: even if the universe size remains fixed, distributions
over it can assign some values arbitrarily little weight. We have to exclude this case, so we
state the bound on µn. In light of this, it would be more appropriate to call our condition
many duplicates of each kind; for conciseness, we refrain from doing so.

The precise value of the bound is chosen so that degenerate inputs, in the sense of the
following definition, are rare enough.

Definition 8.20 (Degenerate Inputs): Let ν ∈ [0, 1) and k ∈ N. An input vector U =

(U1, . . . ,Un) ∈ [1..u]n of size n is called (ν,k)-degenerate if not all u elements of the universe
appear at least k times in the first nT = dnνe elements U1, . . . ,UnT of U. If the parameters
are clear from the context or not important, we call U simply degenerate. J

The idea behind this definition is that, in general, the recursion tree and the profile of the
input are not independent: if we fix a recursion tree, we have a slightly higher expected
number of duplicates of the pivots higher up in the tree than those further down in the
tree. For non-degenerate inputs, however, the recursion tree will depend only on the first
nT elements, and the (asymptotically) larger portion of the profile is indeed independent
of the tree.

Choosing nT large enough so that the first k occurrences of all values are among the
first nT elements with high probability, and at the same time small enough to not make a
large error in ignoring these elements’ cost for the search costs, we obtain our main result
for stateless cost measures and expected-profile inputs with many duplicates.

8.8.4 Proof of Theorem 8.16

The proof will basically have to address the three issues listed above. We first show that
degenerate inputs are so unlikely that we can basically ignore them, and use this to sepa-
rate the distribution of recursion trees and search costs. We then address the sampled-out
elements, and put the results together.

Probability of Degenerate Profiles. Bounding the probability of degenerate profiles is
essentially a standard application of the Chernoff bound (our Lemma 2.35). To obtain a
meaningful statement, we give an asymptotic result.

Lemma 8.21 (Non-Degenerate With High Probability): Assume an expected-profile
model with µn = minr q(n)r = Ω(n−ρ) for ρ ∈ [0, 12) and let k ∈ N and ν ∈ (2ρ, 1).
Then holds: the probability of an input of size n to be (ν,k)-degenerate is in o(n−c) for
any constant c. J

Proof: Let ρ ∈ [0, 12), k and ν ∈ (2ρ, 1) by given. Set ε = ν− 2ρ > 0 and denote by Y = Y(n)

the profile of the first nT = dnνe elements of the input. Clearly Y(n) D= Mult(nT ;q(n)).
Assume w.l.o.g. that the minimal probability is always q(n)1 = µn. A standard application

Proof of Theorem 8.16 · 8.8.4

327

of the union bound and the Chernoff bound yields

P
[
¬Y(n) > k

]
= P

[
un∨

r=1

Y(n)r < k

]
(8.92)

6
un∑

r=1

P
[
Y(n)r < k

]
(8.93)

6 un ·P[Y(n)1 < k] ; (8.94)

with δ = µn − k
nT

, this is

= un ·P
[
X1
nT

< µn − δ

]
(8.95)

6
Lemma 2.35

2un exp

(
−2

(
µn −

k

nT

)2
nT

)
. (8.96)

By assumption µn = Ω(n−ρ), so for some constants nµ and cµ > 0 we have µn > cµn−ρ

for n > nµ, and by definition is nT = dnνe = n2ρ+ε ±O(1). Inserting these, we find

(
µn −

k

nT

)2
nT >

(
cµn

−ρ
(
1 ± O(n−ρ−ε)

))2
nν
(
1±O(n−ν)

)
(8.97)

= c2µn
ε
(
1 ± O(n−ρ−ε)

)
. (8.98)

By Fact 8.19, also un = O(nρ), so ln(un) = O(logn), and we obtain for any c > 0 that

nc ·P
[
¬Y(n) > k

]
6

(8.96)
2 exp

(
c ln(n) + ln(un) − 2

(
µn −

k

nT

)2
nT

)
(8.99)

=
(8.98)

2 exp
(
−2c2µn

ε
(
1 ± o(1)

))
(8.100)

→ 0, (n→∞) . (8.101)

This concludes the proof of the lemma. �

In Theorem 8.16, we assume an expected-profile model with many duplicates, i.e., 1
µn

=

O(nρ) with ρ ∈ [0, 13). For given ε ∈ (0, 1− 3ρ), we set

ν := 1− ε− ρ ∈ (2ρ, 1− ρ). (8.102)

Then, by Lemma 8.21, an input is (ν,w+ 1)-degenerate with probability in o(n−c) for all c.
This also means that the overall cost contribution of degenerate inputs to expected costs is
in o(n−c) for all c, and hence covered by the error term in Equation (8.85), since costs for
any input are at most quadratic.

We will thus, for the remainder of this proof, assume that the input is not (ν,w+ 1)-
degenerate, i.e., each of the values of the universe appears at least w+ 1 > k times among
the first nT = dnνe elements.

8 Equal Keys

328

Independence of Recursion Trees. We now turn to the distribution of the recursion trees.
By Proposition 8.12 (page 313), recursion trees for s-way Quicksort with sampling param-
eter t have the same distribution as naturally grown t-fringe-balanced s-ary search trees
with leaf-buffer size w.

The shape of the recursion tree is determined by at most u · k elements: we have at
most u partitioning rounds since each of the u elements of the universe becomes a pivot in
at most one partitioning step, and each of these chooses pivots after inspecting k elements.

Also, for each of the u values in the universe, at most the first w+ 1 occurrences in the
input, reading from left to right, can influence the tree. If a value v ∈ [u] is already con-
tained in an inner node, all further duplicates of v are ignored. Otherwise, all occurrences
of v are collected in a single leaf, which can hold up to w values, so there are never more
than w copies of v in the tree. At the latest upon inserting the (w+ 1)st occurrence of a
value v will the leaf overflow and a new internal node containing a pivot v is created; this
might also happen earlier if other values make the leaf overflow and v is chosen as pivot.

In our non-degenerate input, the first w + 1 duplicates appear among the nT first
elements U1, . . . ,UnT of the input, so all pivots are chosen based on these elements only.
Moreover, after these nT insertions, all u elements appear for sure in inner nodes, so all
leaves must be empty. The recursion tree has reached a stationary state, and cannot change
any further.

As before, we denote by Γ = Γ(q) the search-costs vector for the final recursion tree,
and further, by X̃ the profile of UnT+1, . . . ,Un. Since they are derived from disjoint ranges
of the i. i.d. input, Γ and X̃ are stochastically independent.

Contribution of Sampled-Out Elements. With a non-degenerate profile X > w+ 1, where
each element of the universe appears at least w+ 1 times, the transformation shown on the
example works for any fixed recursion tree. With the search costs ΓTX, we overestimate
the actual costs by at most c · k for each partitioning step, as we include the k sample
elements. Here c is the maximum of all entries in β and γ. As argued above, we have at
most u partitioning steps, so overall cost are Cn,q = ΓTX±O(u).

Height of Recursion Trees. As shown above, for non-degenerate inputs the elements after
the first nT elements are independent of the recursion tree. For the overall costs, also the
search costs for the first nT elements have to be taken into account. Clearly, these costs are
at most nT · u, since u is the maximal height of any recursion tree, but this bound is too
coarse. In fact, we can show that the height of recursion trees is logarithmic in n with high
probability, almost exactly as in the case of random permutations. We will use this below
to improve the error bound nT · u to O(nT logn).

Lemma 8.22 (Logarithmic Height of Recursion Trees With High Probability):
For any t ∈ Ns

0 there is a constant c so that Γ = Γ(n,q) 6 c ln(n) with probability at
least 1± o(n−d) for any constant d as n → ∞. This result is independent of q, and holds
in particular when q depends on n. J

A few exemplary values for c (assuming γ = 1) are given in Table 11.

Proof of Theorem 8.16 · 8.8.4

329

Table 11: Exemplary values for c, the coefficient of ln(n) from Lemma 8.22. The values
are computed by optimizing γ(α)/p(α, t) over all choices for α where γ(α) =
1

ln(1/α) + 1 and p(α, t) = 1−
∑s
r=1 Iα,1(tr + 1,k− tr) − 1

10 . The optimal choice
α∗ is also given.

t c α∗

(0, 0) 11.0 0.79
(1, 1) 7.7 0.76
(2, 2) 6.5 0.74
(3, 3) 5.81 0.72
(4, 4) 5.40 0.71
(0, 8) 34.91 0.92

(10, 10) 4.40 0.67
(100, 100) 3.24 0.58

t c α∗

(0, 0, 0) 6.1 0.70
(1, 1, 1) 4.50 0.64
(0, 1, 2) 5.39 0.68
(2, 2, 2) 3.94 0.61
(0, 0, 0, 0) 4.54 0.63
(0, 0, 0, 0, 0) 3.81 0.58
(0, 0, 0, 0, 0, 0) 3.38 0.53
(1, 1, 1, 1, 1, 1) 2.76 0.45

Proof: Let a sampling parameter t ∈ Ns
0 be given. We will follow the folklore proof

that the height of randomly grown BSTs is typically logarithmic: we determine a constant
probability p > 0 (independent of n) so that a single partitioning step yields a reasonably
balanced split; since long paths in the recursion tree cannot contain more than a certain
number of such balanced nodes, we can bound the probability of seeing such a path in a
recursion tree.

A few technicalities need to be addressed in the formal proof.

1 The formal definition of balanced nodes must be adaptable to the number of pivots.
We will thus introduce a parameter α ∈ (1/s, 1) and require subproblems at a node
v to contain at most αn(v) elements, where v(n) is the size of the sublist that v
corresponds to.

2 In our case of inputs with duplicates the probability to lose a given fraction of ele-
ments in one partitioning step depends on q. It suffices, however, to lower bound the
probability for a balanced node by a constant p; thereby we obtain a p that depends
only on t and α.

3 To obtain a term for p that we can actually evaluate, we resort to asymptotic approxi-
mations. These are only guaranteed to be a valid lower bound for sublist sizes larger
than a threshold n0.

We use the following notation in this proof. v denotes a node of the recursion tree. By
n(v) we mean the sublist size at v, i.e., the number of elements in the subproblem of the
recursive call that v corresponds to. d(v) denotes the depth of v, i.e., the number of nodes
on the path from the root to v, including endpoints. Finally, if n(v) > w, we use Jr(v) to
the denote the size of the rth subproblem at v; this is the subproblem size of v’s rth child.

We are now in the position to formalize the notion of balanced nodes: Let α ∈ (1/s, 1)
be a fixed number and n0 a constant (to be chosen in a moment). We call an inner node α-
balanced if n(v) 6 n0 or if Jr(v)/n(v) 6 α for all r = 1, . . . , s ((α,n0)-balanced would be

8 Equal Keys

330

more appropriate; the dependence on n0 is understood implicitly). An α-balanced node
hence has no subproblem with more than an α-fraction of the elements, or has a negligibly
small sublist anyway.

The key observation is that any path in a recursion tree for n elements can contain at
most

logα(n0/n) = log1/α(n/n0) =
1

ln(1/α)
ln(n/n0) 6

1

ln(1/α)
ln(n) (8.103)

α-balanced nodes before reaching a node v with n(v) 6 n0 since considering only
the size reduction at these α-balanced nodes already reduces the n initial elements to
6 αlogα(n0/n)n = n0 elements. From there on, at most n0 additional α-balanced nodes
can follow since each reduces the subproblem size at least by one.

We now show an upper bound for the probability that the root v is not α-balanced
assuming that n > n0. By the union bound we have

P[v not α-balanced] = P
[
∃r : J(n)r > αn

]
6
∑

r

P
[
J(n)r > αn

]
, (8.104)

so it suffices to consider each subproblem in isolation. Recall that Jr 6 Ir+ tr. Moreover for
an expected-profile input with universe distribution q and size n, the continuous spacings
D determine the class probabilities V, and always holds V 6 D (cf. Figure 55). Conditional
on D, Jr is hence stochastically smaller than J̃r

D= BetaBin(η, tr + 1,k− tr) + tr, i.e., for all
j holds P

[
Jr > j

∣∣D
]
6 P

[
J̃r > j

∣∣D
]
. By averaging over all choices for D the same relation

holds also unconditionally.
This is nothing but the precise formulation of the fact that (in stochastic order) sub-

problem sizes for inputs with duplicates are no larger than for random-permutation in-
puts, since we potentially exclude duplicates of pivots from recursive calls.

We know that J̃r converges in density to Beta(tr + 1,k − tr): by Equation (6.42) on
page 208 we have uniformly for z ∈ (0, 1) that

nP
[
J̃(n)r /n ∈ (z− 1

n , z]
]

= fDr(z) ± O(n−1), (8.105)

where fDr(z) = ztr(1− z)k−tr−1/B(tr + 1,k− tr) is the marginal density of Dr. With this
we obtain

P[J(n)r > αn] 6 P
[
J̃(n)r > αn

]
(8.106)

=
1

n

n∑

j=dαne
nP

[
J̃(n)r /n ∈

(j− 1
n

,
j

n

]]
(8.107)

=
(8.105)

1

n

n∑

j=dαne

(
fDr(j/n) ± O(n−1)

)
(8.108)

=
Proposition 2.12–(b)

∫1

α

fDr(z)dz ± O(n−1) (8.109)

= Iα,1(tr + 1,k− tr) ± O(n−1). (8.110)

Proof of Theorem 8.16 · 8.8.4

331

Combined with Equation (8.104), the probability for a balanced node is

P[v α-balanced] > 1 −

s∑

r=1

Iα,1(tr + 1,k− tr) ± O
(
n−1

)
(8.111)

We are now finally in the position to choose the constant n0: let n0 > w be a number so
that the error term O

(
n−1

)
in Equation (8.111) is less than, say, 0.1 in absolute value for

all n > n0. Note that n0 will depend on α and t.
Now for any node v with n(v) > n0, we have

P[v α-balanced] > p := 0.9 −

s∑

r=1

Iα,1(tr + 1,k− tr) (8.112)

Since p = p(α) is continuous and converges to .9 as α → 1, there is always a valid choice
α < 1 with p > 0.

We are free to choose any such α; as we will see below, the resulting constant c for the
achieved height bound has to satisfy c >

(
1+ 1

ln(1/α)

)/
p. It is not clear in general which

choice yields the best bounds, so we keep it as a parameter in the analysis. (Table 11 gives
exemplary values for c for some choices of t together with the numerically determined
best choices for α.)

We now bound the probability of having a tree of height > c lnn. First note that the
overall number of nodes is bounded by n (at least one pivot is removed in each step), so
the number of leaves in the recursion tree is trivially bounded by n. By the union bound,
the probability that any of these leaves has depth > h is at most n times the probability
that one leaf has depth > h. Let hence v be one of the leaves in the recursion tree and let
v1, . . . , vd(v) = v be the nodes on the path from the root v1 down to v; recall that d(v) is
the depth of leaf v.

The sublist corresponding to v is the result of d(v) − 1 successive partitioning steps,
each of which is either α-balanced or not. Let B1, . . . ,Bd(v)−1 be the corresponding indi-
cator random variables where Bi is 1 if and only if vi is α-balanced. We formally extend
these to an infinite sequence of random variables by setting P[Bi = 1] = 1 for all i > d(v).

Now recall that the number of α-balanced nodes on any path is at most n0 +
1

ln(1/α) lnn. For any h ∈N, we thus have

P[d(v) > h] 6 P

[
B1 + · · ·+Bh 6 n0 +

1

ln(1/α)
lnn

]
(8.113)

= P

[
B1 + · · ·+Bh 6 γ̃ lnn

]
, (8.114)

6 P

[
B1 + · · ·+Bh 6 γ lnn

]
, (8.115)

where γ̃ =
1

ln(1/α)
+
n0

lnn
(8.116)

γ =
1

ln(1/α)
+ 1 > γ̃, (n > en0). (8.117)

8 Equal Keys

332

Since pivots are chosen randomly and independently in each partitioning step, the Bi are
mutually independent, but they are not identically distributed. But we know that for
n(vi) > n0, we have P[Bi = 1] > p (Equation (8.112)), and this is trivially fulfilled for all
other i, as well, where P[Bi = 1] = 1 > p holds. Hence B1+ · · ·+Bh is stochastically larger
than Xh

D= Bin(h,p), i.e., P
[
B1 + · · ·+Bh > x

]
> P

[
Xh > x

]
. We hence have for n > en0

P
[
d(v) > h

]
6 P

[
Xh 6 γ lnn

]
(8.118)

= P

[
p−

Xh
h
> p− γ

ln(n)
h

]
; (8.119)

for h so that δ := p− γ ln(n)/h > 0, this is

6 P

[∣∣∣∣
Xh
h

− p

∣∣∣∣ > δ

]
(8.120)

6
Lemma 2.35

2 exp(−2δ2n). (8.121)

With h = c ln(n), we have δ = p − γ
c , which is independent of n, and positive for any

c > γ/p.
With this bound we finally find for any constant d that

nd ·P
[
T has height > c lnn

]
6 nd ·nP

[
d(v) > c lnn

]
(8.122)

6 2nd+1 exp(−2δ2n) (8.123)

→ 0, (n→∞), (8.124)

which implies the claim since the cost vector Γ(n,q) is at most a constant ‖γ‖∞ times
larger than the height. �

Height-Bound in Terms of q? For saturated trees, our bound on the height in terms of
n is meaningless. By very similar arguments as above we can indeed show that with
high probability as 1/µ → ∞ we have Γv(n,q) 6 c ln(1/µ) for µ the smallest probability
qv: Intuitively, after c ln(1/µ) balanced subdivisions of the unit interval, we are left with
segments of size less than µ, so after so many partitioning rounds, we have reduced the
subuniverse sizes to 1. The subproblems are then solved in one further partitioning step.

This bound is intuitively more appealing, but for our use case below, the logn bound
is actually more convenient: Theorem 8.16 only assumes that 1/µ does not grow too fast
with n, but we do not have any guarantee that it grows at all. The height-bound c log(1/µ)
only holds with high probability as 1/µ goes to infinity; we would then need a case
distinction on 1/µ.

Result. We now have all ingredients to compute the overall costs of Quicksort. Recall
that un = O(nρ) and nT ∼ nν with ν < 1− ρ. Since Γ 6 cu for a constant c, we have for

Discussion · 8.9

333

non-degenerate inputs the claimed stochastic representation:

Cn,q = ΓTX ± O(u) (8.125)

= ΓT X̃ ± O(u ·nT + u) (8.126)

= ΓT X̃ ± O(n1−ε) (8.127)
D
= ΓT X̂ ± O(n1−ε), (8.128)

where X̂ is independent of Γ and X̂ D= Mult(n,q(n)). Taking expectations over all non-
degenerate inputs and exploiting independence yields

E[Cn,q] = E
[
ΓT X̂

]
± O(n1−ε) (8.129)

= E[Γ]T ·E[X̂] ± O(n1−ε) (8.130)

=
(
E[Γ]T ·q(n)

)
︸ ︷︷ ︸

E[Aq]

·n ± O(n1−ε), (8.131)

with Aq as given in Section 8.7.6. As argued above, the contribution of degenerate inputs
is in o(n−c) for any c and thus covered by O(n1−ε), so Equation (8.131) holds also for the
unconditional expectation. This concludes the proof of Theorem 8.16.

� � �

Hibbard [78] described the intimate connection of Quicksort and search trees in 1962; it
was one of first nontrivial results on Quicksort in its history. We used it in the last technical
section of this work to show that for large expected-profile inputs, we can express the costs
of Quicksort as n times a path length of a search tree. With the results on path lengths
from Section 8.7, we obtain the first average-case analysis of Quicksort on an input model
with equal keys beyond the case of single-pivot Quicksort without sampling.

8.9 Discussion

The main analytical result of this chapter is Theorem 8.17 on page 323, which allows us
to obtain total costs from partitioning costs of any fat-pivot method in the random-u-ary-
word model. A technical restriction remains, namely that u must be in the range u = ω(1)

and u = O(n1/3−ε) as n→∞ for an ε > 0, but this covers the interesting range where we
have many equal keys.

Bentley-McIlroy vs. Dijkstra. As a warmup, let us apply our result to compare the two
well-known fat-pivot partitioning methods using a single pivot. What makes the widely
used Bentley-McIlroy method superior in practice to the much simpler Dijkstra partition-
ing?

Theorem 8.17 tell us that the only property of the partitioning method that influences
the leading term of costs is the costs per element of the s non-pivot classes; in terms of
stateless cost measures (Definition 8.7), this is the coefficient vector γ. We discussed the

8 Equal Keys

334

values of γ in Section 8.5. For the number of (ternary) comparisons, both methods have
γ = (1, 1), so they both perform

E[Cn,u] =
1

H
n ln(u) ± O(n), (n→∞, u = ω(1),u = O(n1/3−ε)), (8.132)

comparisons on average to sort a random u-ary word of length n. The number of compar-
isons will not make the difference.

How about scanned elements? Dijkstra partitioning is a fat-separator method and has
γ = (2, 1); the segment for small elements is scanned by indices k and k2; Bentley-McIlroy
partitioning in contrast is a fat-outsides method and has γ = (1, 1). As long as we do not
sample skewed pivots, Dijkstra partitioning incurs 50 % more scanned elements in the
asymptotic average. This is reasonable explanation for its practical superiority on inputs
with many equal keys.

The Conjecture of Sedgewick and Bentley. With the results of this chapter, we made
progress on Conjecture 8.5 of Sedgewick and Bentley: We confirmed that on random u-ary
words, median-of-k Quicksort is entropy-optimal up to the leading term for k→∞, in the
range of validity for u of our results. This directly follows from inserting 1/H → 1/ ln(2)
as k→∞ in Equation (8.132) and from noting that Hld(

1
u , . . . , 1u) = ld(u).

The same is true for s-way Quicksort with a balanced comparison tree as s→∞, and
in fact, for any family of Quicksort algorithms that in the limit attains the lower-bound on
random permutations.

The Potential of Multiway Partitioning. Our analysis has the aforementioned idiosyncra-
sies of requiring a stateless cost measure and a certain range for u; but apart from that
Theorem 8.17 is a very fine result. Its true beauty lies in its simplicity and similarity to
the solution for the Quicksort recurrence on random permutations (cf. Theorem 6.1 on
page 196): we merely have to replace ln(n) by ln(u). Intuitively, this makes sense: instead
of ln(n)/H levels in the recursion tree, we now have ln(u)/H, because in each step, not a
c/n fraction of the input is removed, but a c/u fraction. Yet I find it surprising that this
simplistic reasoning gives the exact result.

If we consider the number of (ternary) comparisons as cost measure, any choice of
parameters (s,m, t, λ) for generic one-pass partitioning with a single comparison tree λ
can be used as basis for a corresponding fat-pivot method; the simplest choice is a fat-
separator method as discussed in Section 8.4. Then Quicksort needs

E[Cn] =
λTτ

H
n ln(n) ± O(n) (8.133)

comparisons to sort a random permutation of length n, and

E[Cn,u] =
λTτ

H
n ln(u) ± O(n) (8.134)

Discussion · 8.9

335

comparisons to sort a random u-ary word as n → ∞, with u = ω(1) and u = O(n1/3−ε).
Simply replace ln(n) by ln(u).

When we compare the number of scanned elements, it becomes important where we
collect duplicates. We have seen in the competition between Dijkstra partitioning and
Bentley-McIlroy partitioning that fat-outsides methods are superior w.r.t. scanned ele-
ments, so let us focus on these. As discussed in Section 8.5, with such a partitioning
method Quicksort needs with αSE given in Equation (5.23) on page 176

E[SEn] =
αTSE τ

H
n ln(n) ± O(n) (8.135)

comparisons to sort a random permutation of length n, and

E[SEn,u] =
αTSE τ

H
n ln(u) ± O(n) (8.136)

comparisons to sort a random u-ary word as n → ∞, with u = ω(1) and u = O(n1/3−ε).
Simply replace ln(n) by ln(u).

This means that the two most effective optimizations of Quicksort—pivot sampling
and multiway partitioning—are also effective for inputs with equal keys: in fact, they
yield the very same relative speedup over basic Quicksort under the random-permutation
model and under the random-u-ary-word model. For the most parts, our conclusions in
Chapter 7 from the random-permutation results transfer directly to random u-ary words.
The same tricks help, and they even help the same.

336

337

Conclusion9
The thesis of my dissertation has been that multiway partitioning is a major improve-
ment for Quicksort, to be named in the same breath as pivot sampling and using Insertion-
sort for small subproblems, and not merely a gimmicky extension to keep Ph.D. students
busy. To make my thesis verifiable, I described the design space of one-pass in-place par-
titioning algorithms, keeping as many design decisions open as possible. To demonstrate
its generality I showed that all known such methods fit into my framework of generic s-way
one-pass partitioning.

I am too much of a theoretician to trust in running time studies to give a reliable answer
to my algorithmic question; so to test my thesis I conducted a mathematical average-
case analysis of Quicksort with generic one-pass partitioning. I am also too much of a
practitioner to believe that simple models for the cost of the execution of an algorithm
can accurately predict its running time on modern computers. I do believe, however, that
substantial improvements in running time that are stable across different machines, must
have a cause observable also in a model that abstracts substantially from reality and allows
a mathematical analysis.

As described in the introduction, memory speed has not fully kept pace with improve-
ments in processing power. This growing imbalance forces us to economize on memory
accesses in algorithms that were almost entirely CPU-bound in the past, and calls for new
cost models for the analysis of algorithms. For sorting algorithms that build on sequential
scans over their input, the proposed cost measure scanned elements serves as such a model
and gives a good indication of the amount of memory traffic caused by an algorithm. It
is exactly the amount of scanned elements where the dual-pivot Quicksort used in Java
outclasses classic Quicksort.

I showed in this work what further improvements w.r.t. scanned elements are possible
with multiway Quicksort. As has been demonstrated for particular implementations, it is
likely that these improvements will also lead to better running time in practice.

9 Conclusion

338

9.1 The Optimal Quicksort?

Sedgewick finished his thesis with the remark that “the final choice of implementation obvi-
ously depends on circumstances under which the program will be used, and the reader that has
persisted this far should have little difficulty making the proper choices for his application.” ([162],
p. 344). This applies equally well to my work, yet in light of the many parameters of generic
one-pass partitioning, it is natural to ask for more specific advise on how to choose them.

First of all, it seems plausible to consider as cost measure a convex combination of all
our cost measures. The relative weights are the relative importance of the cost measures,
and depend on the target machine; on current machines the weight of scanned elements
will be much larger than all others.

Combining hints from Chapter 7, I propose the following method to choose parame-
ters. Here, we assume that the sample size k is given; this will have to be optimized over
in running time studies, because the best value for k is very sensitive to the targeted input
size. The larger the inputs to sort, the larger k will get. For given k, a good choice is

s = 2dlog3(k+ 1)e , (9.1)

m = ds/2e , (9.2)

t = optimal sampling vector w.r.t. scanned-elements, (9.3)

λk = λg = extremal tree for s and m. (9.4)

We defined extremal trees in Definition 7.15 (page 254). Finding a close to optimal t can
be done with Algorithm 11 (page 246); Table 10 (page 248) contains optimal choices t for
s = 6. The outcome of our procedure to choose the parameters for the first few values of
k is shown in Table 12.

Table 12: Parameter choices resulting form the described procedure for the first values of k.

k s m t λk = λg

1 2 1 (0, 0)

2 2 1 (0, 1)

3 4 2 (0, 0, 0, 0)

4 4 2 (0, 0, 1, 0)

5 4 2 (0, 1, 1, 0)

6 4 2 (0, 1, 2, 0)

7 4 2 (0, 2, 2, 0)

8 4 2 (0, 2, 3, 0)

k s m t λk = λg

9 6 3 (0, 0, 2, 2, 0, 0)

10 6 3 (0, 0, 2, 3, 0, 0)

11 6 3 (0, 0, 3, 3, 0, 0)

12 6 3 (0, 0, 3, 3, 1, 0)

13 6 3 (0, 1, 3, 3, 1, 0)

14 6 3 (0, 1, 3, 4, 1, 0)

15 6 3 (0, 1, 4, 4, 1, 0)

When a good k has been found and s, m, t and λk/λg have been set appropriately, a
second running time study should be used to find a good Insertionsort cutoff w.

Open Problems and Future Work · 9.2

339

Note that dual-pivot Quicksort is never chosen by this scheme. The choices above are
quite strongly biased towards saving scanned elements on large inputs; in practice, the
number of executed instructions will also be important. Counting individual instructions
is too implementation-dependent to analyze in the style of this work, but it is possible
that the Java 7 implementation is more efficient in that respect than using more pivots.
Nevertheless, I consider it likely that we will eventually see a clever implementation of
four- or six-way Quicksort outperform Java’s current implementation.

9.2 Open Problems and Future Work

The following directions for future research seem interesting.

I The code we gave for generic one-pass partitioning was intended to describe the
method precisely, so that we can refer to it in the analysis. But for any specific choice
of its parameters, more elegant and efficient code can be found.

It seems promising to develop such implementations for the parameter choices listed
above and see if we can make them competitive with Java’s dual-pivot Quicksort.

I Quicksort is related to search trees as we discussed in Chapter 8. If it is nowadays
advisable to use multiway Quicksort, it might also be advisable to use multiway
search trees for dictionary data structures.

Of course, search trees with large fanout have been used successfully for decades, in
particular in scenarios where the data is too large fit into main memory. General-
purpose implementations in programming libraries, however, still use binary-search-
tree based implementations. For such smaller in-memory scenarios, a B-tree or simi-
lar structures might add too much overhead, but a simpler implementation based on
s-ary search trees with, say s = 4, might perform very well.

I On the analysis-side, a feasible method to determine (or approximate) the linear term
of costs is still lacking.

I Moreover, the analysis of Quicksort on equal keys covers only the random-u-ary-
word case because I could not determine E[Aq] in general, i.e., the expected node
depth in fringe-balanced search trees built from i.i.d. keys. For ordinary BSTs, this
problem has long been solved, and I determined an (asymptotic) solution for keys
that are uniformly distributed in a universe. This problem is much easier than the
analysis of Quicksort, and an asymptotic analysis might be possible for general q.

Shortly after finishing this dissertation, I found an asymptotic approximation of
E[Aq] at least for binary fringe-balanced trees [183]. The method was to show lower
and upper bounds for E[Aq] in terms of the universe entropy Hln(q) that coincide
asymptotically as Hln(q)→∞. We then obtain E[Aq] ∼ 1

H
·Hln(q). Once again, we

find the same relative speed-up by sampling, and finally a proof of Conjecture 8.5!

The proof heavily depends on the fact that the toll function does not depend on q in
binary trees; it is unfortunately not directly applicable to the multiway case.

9 Conclusion

340

List of Open Problems. On top of these broad directions for future work, a few more
well-separated problems appeared as open problems when we encountered them in this
work. Since they are scattered throughout the text, we link them here for convenience.

Open Problem 5.10 Limit Distributions for Master-Segment Methods 184
Open Problem 5.12 Analysis of Comparison-Optimal Partitioning 188
Open Problem 5.13 Branch Misses in Insertionsort . 189
Open Problem 7.12 Characterize Optimal Sampling Vectors 245
Open Problem 7.21 Average Redundancy of Huffman Codes 269
Open Problem 7.25 Characterize Optimal Comparison Trees and Sampling Vectors . 284

� � �

341

Index of NotationA
In this section, we collect the notations used in this work. Some might be seen as standard, but
I prefer including a few more than necessary to a potential misunderstanding caused by omitting
them. Others are specifically chosen to build a convenient language to express the statements to
made herein.

A.1 Generic Mathematical Notation

N, N0, Z, Q, R, C . . natural numbers N = {1, 2, 3, . . .}, N0 = N∪ {0}, integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .}, rational numbers Q = {p/q : p ∈ Z ∧ q ∈N},
real numbers R, and complex numbers C.

R>1, N>3 etc. restricted sets Xpred = {x ∈ X : x fulfills pred}.

0.3 repeating decimal; 0.3 = 0.333 . . . = 1
3 ;

numerals under the line form the repeated part of the decimal number.

<z, =z real and imaginary part of z ∈ C.

ln(n), ld(n) natural and binary logarithm; ln(n) = loge(n), ld(n) = log2(n).

x to emphasize that x is a vector, it is written in bold;
components of the vector are not written in bold: x = (x1, . . . , xd);
we write y ∈ x also for vectors to mean y ∈ {x1, . . . , xd};
unless stated otherwise, all vectors are column vectors.

X to emphasize that X is a random variable it is Capitalized.

[a,b) real intervals, the end points with round parentheses are excluded, those
with square brackets are included.

[m..n], [n] integer intervals, [m..n] = {m,m+ 1, . . . ,n}; [n] = [1..n].

[stmt], [x = y] Iverson bracket, [stmt] = 1 if stmt is true, [stmt] = 0 otherwise.

A Index of Notation

342

x+ 1, 2x, f(x) element-wise application on vectors;
(x1, . . . , xd) + 1 = (x1 + 1, . . . , xd + 1) and 2x = (2x1 , . . . , 2xd); for any
function f : C→ C write f(x) = (f(x1), . . . , f(xd)) etc.

Σx “total” of a vector; for x = (x1, . . . , xd), we have Σx =
∑d
i=1 xi.

xT , xTy “transpose” of vector/matrix x; for x,y ∈ Rn, we write
xTy =

∑n
i=1 xiyi.

B<ε(z), B6ε(z) open resp. closed ε-neighborhood of z (in C if not stated otherwise), also
called ε-ball around z;
B<ε(z) := {z ′ ∈ C : |z ′ − z| < ε}, B6ε(z) := {z ′ ∈ C : |z ′ − z| 6 ε}.

1(s)I characteristic vector of a subset I ⊆ [s], see Equation (2.4) on page 40; if s
is clear from the context we write 1I only.

Hn nth harmonic number; Hn =
∑n
i=1 1/i.

O(f(n)), ±O(f(n)), Ω, Θ, ∼
asymptotic notation; see Section 2.1.1.

x± y x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as
with O-terms, we use one-way equalities z = x± y instead of z ∈ x± y.

∆d (d− 1)-dimensional standard open simplex, see Equation (2.16).

x ∝ y x is proportional to y, ∃λ > 0 : x = λ ·y.

Γ(z) the gamma function, see Equation (2.8).

ψ(z) the digamma function, see Equation (2.12).

B(α1, . . . ,αd) d-dimensional beta function; defined in Equation 2.19 (page 47).

ab, ab factorial powers notation of Graham et al. [72];
“a to the b falling resp. rising.”

A.2 Stochastics-related Notation

P[E], P[X = x] probability of an event E resp. probability for random variable X to attain
value x.

E[X] expected value of X; we write E[X | Y] for the conditional expectation of X
given Y, and EX[f(X)] to emphasize that expectation is taken w.r.t.
random variable X.

X D= Y equality in distribution; X and Y have the same distribution.

1E, 1{X65} indicator variable for event E, i.e., 1E is 1 if E occurs and 0 otherwise;
{X 6 5} denotes the event induced by the expression X 6 5.

B(p) Bernoulli distributed random variable; p ∈ [0, 1].

U(a,b) uniformly in (a,b) ⊂ R distributed random variable.

D(p) discrete random variable with weights p; for p ∈ [0, 1]d, for I D= D(p), we
have I ∈ [1..d] and P[I = i] = pi for i ∈ [d] and 0 otherwise.

Input to the Algorithm · A.3

343

Beta(α,β) Beta distributed random variable with shape parameters α ∈ R>0 and
β ∈ R>0; X D= Beta(α,β) is equivalent to (X, 1−X) D= Dir(α,β).

Dir(α) Dirichlet distributed random variable; α ∈ Rd>0; see Section 2.4.4.

Bin(n,p) binomial distributed random variable with n ∈N0 trials and success
probability p ∈ [0, 1];
X D= Bin(n,p) is equivalent to (X,n−X) D= Mult(n;p, 1− p).

Mult(n,p) multinomially distributed random variable; n ∈N0 and p ∈ [0, 1]d with
Σp = 1, see Section 2.4.6.

Gamma(k, θ), Gamma(k)
Gamma distributed random variable with shape parameter k ∈ R>0 and
scale parameter θ ∈ R>0; Gamma(k) = Gamma(k, 1); see Section 2.4.3.

BetaBin(n,α,β) beta-binomial distributed random variable; n ∈N0, α,β ∈ R>0;
X D= BetaBin(n,α,β) is equivalent to (X,n−X) D= DirMult(n;α,β).

DirMult(n,σ) Dirichlet-multinomial distributed random variable; n ∈N0, σ ∈ Rs>0,
see Section 2.4.7.

X(i) ith order statistic of a set of random variables X1, . . . ,Xn,
i.e., the ith smallest element of X1, . . . ,Xn.

Hf(p) generalized entropy-like function; for p ∈ [0, 1]s we have
Hf(p) =

∑s
r=1 pr · f(pr).

Hln = Hln(p) base e (Shannon) entropy; Hln(p1, . . . ,pd) = −
∑d
r=1 pr lnpr.

ED(α)[f(X)] items of Dirichlet-calculus; ED(α)[f(X)] = E[f(X)] with X D= Dir(α); see
Section 2.4.5.

A.3 Input to the Algorithm
n length of the input array, i.e., the input size.

A input array containing the items A[1], . . . , A[n] to be sorted; initially,
A[i] = Ui.

Ui ith element of the input, i.e., initially A[i] = Ui.
Except for Chapter 8, we assume U1, . . . ,Un are i. i.d. U(0, 1) distributed
(the uniform model).

A.4 Notation for the Algorithm
s number of segments, s > 2; determines the number of pivots to be s− 1.

t, σ, T pivot-sampling parameter, see Section 4.4; t ∈Ns, σ = t+ 1; for
random-parameter pivot sampling, we write T instead of t to emphasize
that it is a random variable.

k, κ sample size k ∈N>s−1; κ = k+ 1 (abbreviation for convenience),
κ = Σ(t+ 1) = Σσ.

A Index of Notation

344

τ quantiles vector for sampling, τ = σ
κ = t+1

k+1 ; τ is a κ-discretized
distribution.

w Insertionsort threshold w > k; for n 6 w, Quicksort recursion is
truncated and we sort the subarray by Insertionsort.

m the meeting point of scanning indices k and g;
m ∈ {0, 0.5, 1, 1.5, . . . , s− 0.5, s};
for m ∈ {0, . . . , s} we have a master-pivot method, m segments grow from
the left end of A and k and g meet on the final position of the master
pivot Pm;
for m ∈ {1, . . . , s}− 1

2 we have a master-segment method, k and g meet
inside the master segment, which is the dme-th from the left.

P1, . . . ,Ps−1; P0, Ps . (random) values of chosen pivots in the first partitioning step,
ordered by value 0 6 P1 6 P2 6 · · · 6 Ps−1 6 1;
P0 := 0 and Ps := 1 are used for notational convenience.

k = k1; k2, . . . ,kdme . scanning indices (index variables) used to separate (partial) segments
that start growing from the left end of the array.
NB: The main pointer k = k1 is the innermost pointer, so in terms of their
index values, we always have kdme 6 kdme−1 6 · · · 6 k1;
for notational convenience, we define km+1 := left;
for m = 0, we understand k as a constant k = left.

g = g1; g2, . . . ,gs−bmc
index variables used to separate (partial) segments that start growing
from the right end of the array. The main pointer g = g1 is the innermost
pointer, in terms of index values, we have g1 6 . . . 6 gs−bmc. For
notational convenience, we define gs−bmc+1 := right; for m = s, we
understand g as a constant g = right.

s1, . . . , sdme si is the class of elements that are “small of order i”;
under the uniform model si ⊆ [Pdme−i,Pdme−i+1] ⊆ (0, 1) for
1 6 i 6 dme;
we say element U ∈ si is of type si.

l1, . . . , ls−bmc lj is the class of elements that are “large of order j”;
under the uniform model lj ⊆ [Pbmc+j−1,Pbmc+j] ⊆ (0, 1) for
1 6 j 6 s− bmc;
we say element U ∈ lj is of type lj.

m (master-segment case only) class of medium elements;
for m ∈ [1..s] − 1

2 used as alternative name m := s1 = l1.

p1, . . . , ps−1 (Chapter 8 only) pr is the class of elements equal to rth pivot Pr.

C the vector of all classes;
for m ∈ [0..s], we have C = (sm, . . . , s1, l1, . . . , ls−m) and
for m ∈ [1..s] − 1

2 , it is C = (sdme, . . . , s2, m, l2, . . . , ls−bmc);
in Chapter 8, we extend C to contain the pivot classes, see Equation (8.11);
we write

∑
c∈C etc. to iterate over all classes.

Notation Specific to the Analysis (Uniform Model) · A.5

345

λk, λg, λ(c) λk, λg ∈ Λs; comparison trees for the left and right main indices k and g.
We write λ(c) for a class c ∈ C to denote the number of comparison
needed to identify an element as belonging to this class.

λ vector of leaf depths; for comparison tree λ, we write λ for the vector of
the depths of all leaves in left-to-right order; λ(c) equals the r(c)th
component of λ; in vector notation, we have λ = λ(C).

Λ, Λs Λs is the set of (shapes of) extended binary trees over s leaves, we omit s
if clear from context; upon assigning values P1 6 · · · 6 Ps−1 to the s− 1
internal nodes in in-order, we obtain a binary search tree.

A.5 Notation Specific to the Analysis (Uniform Model)
η η = n− k, the number of ordinary elements in the first partitioning step

for an input array of length n.

K1, . . . ,Kdme Ki is the set of all index values attained by variable ki during the first
partitioning step; note that like the index variables ki, the position sets
Ki are numbered starting from the middle of the array.

G1, . . . ,Gs−bmc Gi is the set of all (index) values attained by variable gi during the first
partitioning step.

Wn (random) costs of sorting a random permutation of size n with
Insertionsort.

c(U) c(U) is class assigned to U during classification; we write U ∈ c(U);
the class in general depends on the used comparison tree.

sampled-out element the k− (s− 1) elements of the sample that are not chosen as pivots.

ordinary element . . . the n− k elements that have not been part of the sample.

Fk, Fg the (random) number of ordinary elements that are classified using λk
resp. λg during the first partitioning step;
Fk + Fg = η;
see Section 5.5.

Cn, Sn, BCn, SEn . . (random) number of comparisons / swaps / Bytecodes / scanned
elements of Quicksort on a random permutation of size n;
in Chapter 6, Cn is used as general placeholder for any of the above cost
measures.

TC, TS, TBC, TSE (random) number of comparisons / swaps / Bytecodes / scanned
elements of the first partitioning step on a random permutation of size n;
we write TC(n) etc. when we want to emphasize dependence on n.

Tn generic placeholder for one of TC(n), TS(n), TBC(n), TSE(n).

aC, aS, aBC, aSE . . . coefficient of the linear term of E[TC(n)], E[TS(n)], E[TBC(n)] and
E[TSE(n)]; see Theorem 7.1 (page 222).

hdκ(x) the harmonic-difference function, hdκ(x) = Hxκ −Hκ; see Section 2.5.2.

H = H(t) discrete entropy; H(t) = Hhdκ(τ) where κ = Σ(t+ 1) and τ = t+1
κ .

A Index of Notation

346

J ∈Ns (random) vector of subproblem sizes for recursive calls;
for initial size n, we have J ∈ {0, . . . ,n− (s− 1)}s with ΣJ1 = n− (s− 1).

I ∈Ns (random) vector of segment sizes, i.e., the number of ordinary elements of
the s classes; for initial size n, we have I ∈ {0, . . . ,n− k}s with ΣI = n− k;
J = I+ t and I D= DirMult(η,σ); conditional on D we have
I D= Mult(η,D).

D ∈ [0, 1]s (random) spacings of the unit interval (0, 1) induced by the pivots
P1 . . . ,Ps−1, i.e., Di = Pi − Pi−1 for 1 6 i 6 s; D D= Dir(σ) D= Dir(t+ 1).

A.6 Notation for the Analysis with Equal Keys
The notations in this section are specific to the analysis in Chapter 8.

u universe size u ∈N.

q universe probabilities/distribution; q ∈ (0, 1)u with qi > 0 and Σq = 1;
we assume U1, . . . ,Un ∈ [1..u] are i. i.d. D(q) distributed.

c0, . . . , cu cumulative sums of q; cj :=
∑j
i=1 qi for j = 0, . . . ,u.

D continuous spacings;
same as for uniform model, see Section A.5.

Π continuous pivot values, cumulative sums of D:
Π = Π(D) =

(∑r
i=1Di

)s
r=0

.

P pivot values P = F−1U (Π) =
(
F−1U (Πr)

)s
r=0

, for FU the cumulative
distribution function of D(q).

v(p,p) probability to fall strictly between p and p; see Equation (8.16).

V non-pivot class probabilities V =
(
v(Pr−1,Pr)

)s
r=1

.

z(p,p) subdistribution for elements between p and p; see Equation (8.31).

Z zoomed-in distributions; see Equation (8.30).

H hitting probabilities, Hr, 1 6 r 6 s− 1 is the probability of an ordinary
element to belong to class pr; see Equation (8.18).

E Er is the number of ordinary elements equal to Pr for r = 1, . . . , s− 1;
E = (E1, . . . ,Es−1).

I segment sizes as for uniform model, but with probabilities V;
(I,E) D= Mult(η;V,H).

B Br ∈ [0..tr] for r ∈ [1..s] is the number of sampled-out elements U from
the rth segment that are not equal to a pivot, i.e., U ∈ (Pr−1,Pr).

J subproblem sizes for recursive calls; J = I+B.

β, γ β ∈ Rs−1>0 , γ ∈ Rs>0; constant coefficient vectors for stateless cost
measures; in a stateless cost measure, partitioning costs are
Tn = βTE+ γT I.

Notation for the Analysis with Equal Keys · A.6

347

Γ Γ ∈ Ru>0; search-costs vector in recursion tree; Γv is the random cost of
searching value v ∈ [u] in the random recursion tree of Quicksort; see
Equation (8.34).

Aq random path length of recursion tree, with the cost for paths as described
in Section 8.7.6; Aq = ΓU for U D= D(q); see Equation (8.35).

348

349

BibliographyB
[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.

Communications of the ACM, 31(9):1116–1127, August 1988. doi: 10.1145/48529.48535. (Cited
on pages 29 and 126.)

[2] B. Allen and I. Munro. Self-organizing binary search trees. Journal of the ACM, 25(4):526–535,
October 1978. doi: 10.1145/322092.322094. (Cited on pages 291 and 292.)

[3] M. Archibald and J. Clément. Average depth in a binary search tree with repeated keys.
In Colloquium on Mathematics and Computer Science, volume 0, pages 309–320, 2006. (Cited on
pages 26, 122, and 294.)

[4] M. L. Archibald. Combinatorial problems related to sequences with repeated entries. Ph.D. thesis,
University of the Witwatersrand, Johannesburg, South Africa, 2005. (Cited on page 294.)

[5] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Academic Press, 6th edition,
2005. (Cited on page 204.)

[6] N. Auger, C. Nicaud, and C. Pivoteau. Good predictions are worth a few comparisons.
In N. Ollinger and H. Vollmer, editors, Symposium on Theoretical Aspects of Computer Science
(STACS), volume 47 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–
12:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. ISBN 978-3-95977-001-9. doi:
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.12. (Cited on pages 130 and 182.)

[7] M. Aumüller. On the Analysis of Two Fundamental Randomized Algorithms. Doktorarbeit (Ph. D.
thesis), TU Ilmenau, 2015. (Cited on pages 25, 33, and 163.)

[8] M. Aumüller and M. Dietzfelbinger. Optimal partitioning for dual pivot Quicksort. In F. V.
Fomin, R. Freivalds, M. Kwiatkowska, and D. Peleg, editors, International Colloquium on Au-
tomata, Languages and Programming (ICALP), volume 7965 of LNCS, pages 33–44. Springer,
2013. (Cited on pages 7, 33, and 262.)

[9] M. Aumüller and M. Dietzfelbinger. Optimal partitioning for dual-pivot Quicksort. ACM
Transactions on Algorithms, 12(2):1–36, November 2015. doi: 10.1145/2743020. (Cited on pages 7,
30, 31, 33, and 142.)

B Bibliography

350

[10] M. Aumüller, M. Dietzfelbinger, and P. Klaue. How good is multi-pivot Quicksort?, 2015.
URL http://arxiv.org/abs/1510.04676. (Cited on pages 33, 127, 142, 154, 162, 163, 171, 173,
185, 186, 230, 237, 254, 262, 263, and 270.)

[11] M. Aumüller, M. Dietzfelbinger, C. Heuberger, D. Krenn, and H. Prodinger. Counting zeros
in random walks on the integers and analysis of optimal dual-pivot Quicksort. February
2016. URL http://arxiv.org/abs/1602.04031. (Cited on pages 33 and 79.)

[12] J. Backus. Can programming be liberated from the von neumann style? A functional style
and its algebra of programs. Communications of the ACM, 21(8):613–641, August 1978. doi:
10.1145/359576.359579. (Cited on page 8.)

[13] M. L. Balinski and H. P. Young. Fair Representation. Brookings Institution Press, 2nd edition,
2001. ISBN 978-0-8157-0111-8. (Cited on page 245.)

[14] N. Batir. On some properties of digamma and polygamma functions. Journal of Mathematical
Analysis and Applications, 328(1):452–465, apr 2007. doi: 10.1016/j.jmaa.2006.05.065. (Cited on
page 94.)

[15] P. J. Bayer. Improved Bounds on the Cost of Optimal and Balanced Binary Search Trees. Master’s
Thesis, Massachusetts Institute of Technology, 1975. (Cited on page 91.)

[16] C. J. Bell. An Investigation into the Principles of the Classification and Analysis of Data on an
Automatic Digital Computer. Doctoral dissertation, Leeds University, 1965. (Cited on page 18.)

[17] J. Bentley. Programming pearls: how to sort. Communications of the ACM, 27(4):287–291, April
1984. (Cited on page 13.)

[18] J. Bentley. Programming Pearls. Addison-Wesley, 2nd edition, 2000. ISBN 0201657880. (Cited
on pages 10, 138, and 234.)

[19] J. Bentley. The most beautiful code I never wrote. In Beautiful Code, chapter 3, pages 29–40.
O’Reilly, 2007. ISBN 13: 978-0-596-51004-6. (Cited on page 308.)

[20] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software: Practice and Experience,
23(11):1249–1265, 1993. (Cited on pages 9, 11, 15, 17, 26, 286, 289, 293, 295, and 298.)

[21] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In Sympo-
sium on Discrete Algorithms (SODA), pages 360–369, 1997. (Cited on page 26.)

[22] H. Bergeron, E. M. F. Curado, J. P. Gazeau, and L. M. C. S. Rodrigues. A note about
combinatorial sequences and Incomplete Gamma function. page 6, September 2013. URL
http://arxiv.org/abs/1309.6910. (Cited on page 54.)

[23] P. Biggar, N. Nash, K. Williams, and D. Gregg. An experimental study of sorting and branch
prediction. Journal of Experimental Algorithmics, 12:1, June 2008. (Cited on pages 31, 131, 182,
and 189.)

[24] H. Bing-Chao and D. E. Knuth. A one-way, stackless quicksort algorithm. BIT, 26(1):127–130,
March 1986. doi: 10.1007/BF01939369. (Cited on pages 13, 33, and 223.)

[25] G. Brassard. Crusade for a better notation. ACM SIGACT News, 17(1):60–64, June 1985. (Cited
on page 41.)

http://arxiv.org/abs/1510.04676
http://arxiv.org/abs/1602.04031
http://arxiv.org/abs/1309.6910

Bibliography

351

[26] G. Brodal and G. Moruz. Tradeoffs between branch mispredictions and comparisons for
sorting algorithms. In Workshop on Algorithms and Data Structures (WADS), volume 3608 of
LNCS, pages 385–395. Springer, 2005. (Cited on page 31.)

[27] W. H. Burge. An analysis of binary search trees formed from sequences of nondistinct keys.
Journal of the ACM, 23(3):451–454, July 1976. doi: 10.1145/321958.321965. (Cited on pages 26,
122, and 290.)

[28] D. Cantone and G. Cincotti. QuickHeapsort, an efficient mix of classical sorting algorithms.
Theoretical Computer Science, 285(1):25–42, August 2002. doi: 10.1016/S0304-3975(01)00288-2.
(Cited on page 32.)

[29] H.-H. Chern and H.-K. Hwang. Phase changes in randomm-ary search trees and generalized
quicksort. Random Structures & Algorithms, 19(3-4):316–358, October 2001. (Cited on pages 17
and 22.)

[30] H.-H. Chern, H.-K. Hwang, and T.-H. Tsai. An asymptotic theory for Cauchy–Euler differ-
ential equations with applications to the analysis of algorithms. Journal of Algorithms, 44(1):
177–225, 2002. (Cited on pages 16, 17, 22, 63, and 160.)

[31] J. Clément, J. A. Fill, T. H. Nguyen Thi, and B. Vallée. Towards a realistic analysis of the
QuickSelect algorithm. Theory of Computing Systems, August 2015. doi: 10.1007/s00224-015-
9633-5. URL http://link.springer.com/10.1007/s00224-015-9633-5. (Cited on page 29.)

[32] J. Clément, T. H. Nguyen Thi, and B. Vallée. Towards a realistic analysis of some popular
sorting algorithms. Combinatorics, Probability and Computing, 24(01):104–144, January 2015.
doi: 10.1017/S0963548314000649. (Cited on page 29.)

[33] M. Codish, L. Cruz-Filipe, M. Nebel, and P. Schneider-Kamp. Applying sorting networks
to synthesize optimized sorting libraries. In International Symposium on Logic-Based Program
Synthesis and Transformation (LOPSTR), pages 127–142, May 2015. doi: 10.1007/978-3-319-
27436-2_8. (Cited on page 147.)

[34] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W
function. Advances in Computational Mathematics, 5(1):329–359, December 1996. doi: 10.1007/
BF02124750. (Cited on page 97.)

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 3rd edition, 2009. ISBN 978-0-262-03384-8. (Cited on pages 15, 27, 41, 139, and 205.)

[36] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, September 2005. ISBN
978-0-471-74882-3. (Cited on page 83.)

[37] H. A. David and H. N. Nagaraja. Order Statistics. Wiley-Interscience, 3rd edition, 2003. ISBN
0-471-38926-9. (Cited on page 72.)

[38] L. Devroye. Non-Uniform Random Variate Generation. Springer New York, 1986. (available
on author’s website http://luc.devroye.org/rnbookindex.html). (Cited on pages 71, 72,
and 301.)

[39] L. Devroye. On the expected height of fringe-balanced trees. Acta Informatica, 30(5):459–466,
May 1993. doi: 10.1007/BF01210596. (Cited on page 18.)

http://link.springer.com/10.1007/s00224-015-9633-5
http://luc.devroye.org/rnbookindex.html

B Bibliography

352

[40] L. Devroye. Universal limit laws for depths in random trees. SIAM Journal on Computing, 28
(2):409–432, January 1998. ISSN 0097-5397. doi: 10.1137/S0097539795283954. (Cited on page 19.)

[41] L. Devroye and P. Kruszewski. The botanical beauty of random binary trees. pages 166–177.
1996. doi: 10.1007/BFb0021801. (Cited on page 19.)

[42] E. W. Dijkstra. Recursive programming. Numerische Mathematik, 2(1):312–318, December 1960.
doi: 10.1007/BF01386232. (Cited on page 135.)

[43] E. W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1st edition, 1976. ISBN
0-13-215871-X. (Cited on pages 141 and 295.)

[44] E. W. Dijkstra. Computing science: achievements and challenges. ACM SIGAPP Applied
Computing Review, 7(2):2–9, 1999. (Cited on pages 135 and 136.)

[45] E. W. Dijkstra. The notational conventions I adopted, and why. circulated privately, July
2000. URL https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1300.
html. (Cited on page xi.)

[46] DLMF. NIST Digital Library of Mathematical Functions. Release 1.0.10; Release date 2015-
08-07. URL http://dlmf.nist.gov. (Cited on pages 44, 45, 47, 48, 53, 54, 58, 59, 60, and 93.)

[47] M. Drmota. Random Trees. Springer, 2009. ISBN 978-3-211-75355-2. (Cited on pages x, 18,
and 311.)

[48] M. Durand. Holonomie et applications en l’analyse d’algorithmes et combinatoire. Mémoire
de DEA (Master’s Thesis), École Polytechnique, 2000. URL http://algo.inria.fr/durand.
(Cited on page 17.)

[49] M. Durand. Asymptotic analysis of an optimized quicksort algorithm. Information Processing
Letters, 85(2):73–77, 2003. (Cited on pages 15, 17, and 160.)

[50] W. F. Eddy and M. J. Schervish. How many comparisons does Quicksort use? Journal of
Algorithms, 19(3):402–431, November 1995. doi: 10.1006/jagm.1995.1044. (Cited on pages 21
and 22.)

[51] F. Eggenberger and G. Pólya. Über die Statistik verketteter Vorgänge. Zeitschrift für Ange-
wandte Mathematik und Mechanik, 3(4):279–289, 1923. doi: 10.1002/zamm.19230030407. (Cited
on page 79.)

[52] B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn, and D. Wood. The theory of fringe
analysis and its application to 2–3 trees and b-trees. Information and Control, 55(1-3):125–174,
October 1982. doi: 10.1016/S0019-9958(82)90534-4. (Cited on page 18.)

[53] A. Elmasry and J. Katajainen. Lean programs, branch mispredictions, and sorting. In
E. Kranakis, D. Krizanc, and F. Luccio, editors, International Conference on Fun with Algo-
rithms (FUN), volume 7288 of LNCS, pages 119–130, 2012. doi: 10.1007/978-3-642-30347-0_14.
(Cited on page 31.)

[54] A. Elmasry, J. Katajainen, and M. Stenmark. Branch mispredictions don’t affect mergesort. In
International Symposium on Experimental Algorithms (SEA), pages 160–171, 2012. doi: 10.1007/
978-3-642-30850-5{_}15. (Cited on page 31.)

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1300.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1300.html
http://dlmf.nist.gov
http://algo.inria.fr/durand

Bibliography

353

[55] M. H. van Emden. Increasing the efficiency of quicksort. Communications of the ACM, pages
563–567, 1970. (Cited on pages 14, 16, and 201.)

[56] Encyclopedia of Mathematics. Laplace theorem, 2012. URL http://www.
encyclopediaofmath.org/index.php?title=Laplace_theorem&oldid=26551. (Cited on
page 81.)

[57] M. A. Ertl. The memory wall fallacy, 2001. URL https://www.complang.tuwien.ac.at/
anton/memory-wall.html. (Cited on page 9.)

[58] J. A. Fill and S. Janson. The number of bit comparisons used by Quicksort: An average-case
analysis. In Symposium on Discrete Algorithms (SODA), pages 300–307. SIAM, January 2004.
ISBN 0-89871-558-X. (Cited on pages 27 and 29.)

[59] J. A. Fill and S. Janson. The number of bit comparisons used by Quicksort: An average-case
analysis. Electronic Journal of Probability, 17:1–22, 2012. doi: 10.1214/EJP.v17-1812. (Cited on
pages 27, 28, and 29.)

[60] J. A. Fill, P. Flajolet, and N. Kapur. Singularity analysis, Hadamard products, and tree recur-
rences. Journal of Computational and Applied Mathematics, 174(2):271–313, February 2005. doi:
10.1016/j.cam.2004.04.014. (Cited on pages 16 and 63.)

[61] P. Flajolet. D · E ·K = (100)8. Random Structures & Algorithms, 19(3-4):150–162, October 2001.
doi: 10.1002/rsa.10022. (Cited on page 6.)

[62] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM Journal on
Discrete Mathematics, 3(2):216–240, 1990. (Cited on pages 16, 212, 217, and 218.)

[63] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and
Rice’s integrals. Theoretical Computer Science, 144(1-2):101–124, jun 1995. ISSN 03043975. doi:
10.1016/0304-3975(94)00281-M. (Cited on page 27.)

[64] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
ISBN 978-0-52-189806-5. (available on author’s website: http://algo.inria.fr/flajolet/
Publications/book.pdf). (Cited on pages ix, 28, 42, 54, 60, 61, 62, 181, 182, 212, 217, and 218.)

[65] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs, 2014. URL http://www.agner.
org/optimize/#manuals. (Cited on page 130.)

[66] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach to minimal storage tree
sorting. Journal of the ACM, 17(3):496–507, July 1970. (Cited on page 14.)

[67] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
ACM Transactions on Algorithms, 8(1):1–22, January 2012. doi: 10.1145/2071379.2071383. (Cited
on page 126.)

[68] T. Furtak, J. N. Amaral, and R. Niewiadomski. Using SIMD registers and instructions to
enable instruction-level parallelism in sorting algorithms. In Symposium on Parallel Algorithms
and Architectures (SPAA), pages 348–357. ACM Press, 2007. doi: 10.1145/1248377.1248436.
(Cited on page 147.)

[69] R. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information Theory, 24
(6):668–674, November 1978. doi: 10.1109/TIT.1978.1055959. (Cited on page 269.)

http://www.encyclopediaofmath.org/index.php?title=Laplace_theorem&oldid=26551
http://www.encyclopediaofmath.org/index.php?title=Laplace_theorem&oldid=26551
https://www.complang.tuwien.ac.at/anton/memory-wall.html
https://www.complang.tuwien.ac.at/anton/memory-wall.html
http://algo.inria.fr/flajolet/Publications/book.pdf
http://algo.inria.fr/flajolet/Publications/book.pdf
http://www.agner.org/optimize/#manuals
http://www.agner.org/optimize/#manuals

B Bibliography

354

[70] A. M. Garsia and M. L. Wachs. A new algorithm for minimum cost binary trees. SIAM
Journal on Computing, July 1997. doi: 10.1137/0206045. (Cited on page 264.)

[71] I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products. Academic Press, 7th
edition, 2007. ISBN 978-0-12-373637-6. (Cited on page 48.)

[72] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation For Computer
Science. Addison-Wesley, 1994. ISBN 978-0-20-155802-9. (Cited on pages 43, 56, 57, 62, and 342.)

[73] D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms. Modern Birkhäuser
classics. Birkhäuser, 3rd edition, 1990. ISBN 9780817635152. (Cited on pages ix and 240.)

[74] D. H. Greene. Labelled formal languages and their uses. Ph.D. thesis, Stanford University,
January 1983. (Cited on pages 18 and 311.)

[75] Y. Gurevich. What does O(n) mean. ACM SIGACT News, 17(4):61–63, March 1986. (Cited on
page 42.)

[76] P. Hennequin. Combinatorial analysis of Quicksort algorithm. Informatique théorique et appli-
cations, 23(3):317–333, 1989. (Cited on pages 20, 23, 160, and 212.)

[77] P. Hennequin. Analyse en moyenne d’algorithmes : tri rapide et arbres de recherche. Thèse (Ph. D.
Thesis), Ecole Politechnique, Palaiseau, 1991. (Cited on pages 4, 9, 17, 19, 20, 22, 23, 64, 159, 160,
162, 197, 212, 214, 215, 224, 235, 243, 249, 262, and 293.)

[78] T. N. Hibbard. Some combinatorial properties of certain trees with applications to searching
and sorting. Journal of the ACM, 9(1):13–28, January 1962. doi: 10.1145/321105.321108. (Cited
on pages 13, 17, and 333.)

[79] C. A. R. Hoare. Algorithm 65: Find. Communications of the ACM, 4(7):321–322, July 1961.
(Cited on page 4.)

[80] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM, 4(7):321, July 1961.
(Cited on pages 13 and 136.)

[81] C. A. R. Hoare. Algorithm 63: Partition. Communications of the ACM, 4(7):321, July 1961.
(Cited on page 136.)

[82] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, January 1962. (Cited on pages 4,
10, 13, 16, 22, 135, 136, 145, 147, and 223.)

[83] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Pearson, 2nd edition, 2001. (Cited on page 192.)

[84] G. van den Hove. On the Origin of Recursive Procedures. The Computer Journal, 58(11):
2892–2899, November 2015. doi: 10.1093/comjnl/bxu145. (Cited on page 136.)

[85] R. R. Howell. On asymptotic notation with multiple variables. Technical report, Kansas State
University, 2007. URL http://people.cis.ksu.edu/~rhowell/asymptotic.pdf. (Cited on
page 42.)

[86] T. C. Hu and K. C. Tan. Path length of binary search trees. SIAM Journal on Applied Mathe-
matics, 22(2):225–234, March 1972. doi: 10.1137/0122024. (Cited on page 265.)

http://people.cis.ksu.edu/~rhowell/asymptotic.pdf

Bibliography

355

[87] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetical
codes. SIAM Journal on Applied Mathematics, 21(4):514–532, December 1971. doi: 10.1137/
0121057. (Cited on page 264.)

[88] S.-H. S. Huang and C. K. Wong. Binary search trees with limited rotation. BIT, (4):436–455,
December 1983. doi: 10.1007/BF01933619. (Cited on pages 18 and 311.)

[89] S.-H. S. Huang and C. K. Wong. Average number of rotations and access cost in iR-trees. BIT,
24(3):387–390, September 1984. doi: 10.1007/BF02136039. (Cited on pages 18 and 311.)

[90] D. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the
IRE, 40(9):1098–1101, September 1952. doi: 10.1109/JRPROC.1952.273898. (Cited on page 264.)

[91] H.-K. Hwang and R. Neininger. Phase change of limit laws in the Quicksort recurrence
under varying toll functions. SIAM Journal on Computing, 31(6):1687–1722, January 2002. doi:
10.1137/S009753970138390X. (Cited on page 22.)

[92] V. Iliopoulos and D. B. Penman. Dual pivot Quicksort. Discrete Mathematics, Algorithms
and Applications, 04(03):1250041, September 2012. doi: 10.1142/S1793830912500413. (Cited on
page 25.)

[93] E. L. Ince. Ordinary Differential Equations. Longmans, Green & Co London, 1927. (Cited on
page 63.)

[94] Java Core Library Development Mailing List. Replacement of quicksort in java.util.arrays
with new dual-pivot quicksort, 2009. URL http://permalink.gmane.org/gmane.comp.
java.openjdk.core-libs.devel/2628. (Cited on page 24.)

[95] N. L. Johnson and S. Kotz. Urn Models and Their Application. John Wiley & Sons, 1977. ISBN
0-471-44630-0. (Cited on page 79.)

[96] K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In T. Erlebach and
Y. Azar, editors, ESA 2006, volume 4168 of LNCS, pages 780–791. Springer, 2006. (Cited on
pages 31, 130, 182, and 235.)

[97] R. Kemp. Fundamentals of the Average Case Analysis of Particular Algorithms. Wiley-Teubner,
Stuttgart, 1984. ISBN 3-519-02100-5. (Cited on page ix.)

[98] R. Kemp. Binary search trees constructed from nondistinct keys with/without specified
probabilities. Theoretical Computer Science, 156(1-2):39–70, March 1996. doi: 10.1016/0304-
3975(95)00302-9. (Cited on pages 26, 122, 293, and 294.)

[99] M. Klawe and B. Mumey. Upper and lower bounds on constructing alphabetic binary
trees. SIAM Journal on Discrete Mathematics, 8(4):638–651, November 1995. doi: 10.1137/
S0895480193256651. (Cited on pages 264 and 266.)

[100] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3 of Computer
Science and Information Processing. Addison-Wesley, 1973. ISBN 0-201-03803-X. (Cited on
pages 14 and 18.)

[101] D. E. Knuth. Structured programming with go to statements. ACM Computing Surveys, 6(4):
261–301, December 1974. doi: 10.1145/356635.356640. (Cited on pages 14, 138, and 161.)

http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628

B Bibliography

356

[102] D. E. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News, 8(2):18–24,
April 1976. ISSN 01635700. (Cited on page 41.)

[103] D. E. Knuth. The Art Of Computer Programming: Searching and Sorting. Addison Wesley, 2nd
edition, 1998. ISBN 978-0-20-189685-5. (Cited on pages ix, 4, 13, 18, 19, 20, 24, 33, 87, 91, 99, 122,
124, 147, 249, and 264.)

[104] D. E. Knuth. The Art of Computer Programming: Volume 1, Fascicle 1. MMIX, A RISC Computer
for the New Millennium. Addison-Wesley, 2005. ISBN 0-201-85392-2. (Cited on page 124.)

[105] S. Kushagra, A. López-Ortiz, A. Qiao, and J. I. Munro. Multi-pivot Quicksort: Theory and
experiments. In Meeting on Algorithm Engineering and Experiments (ALENEX), pages 47–60.
SIAM, 2014. (Cited on pages 7, 10, 25, 30, 34, 127, 145, 146, 223, 256, and 262.)

[106] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting. In
Symposium on Discrete algorithms (SODA), pages 370–379, January 1997. (Cited on page 29.)

[107] A. LaMarca and R. E. Ladner. The influence of caches on the performance of sorting. Journal
of Algorithms, 31(1):66–104, April 1999. doi: 10.1006/jagm.1998.0985. (Cited on pages 29, 30, 31,
34, and 127.)

[108] A. G. LaMarca. Caches and Algorithms. Ph. D. Thesis, University of Washington, 1996. (Cited
on page 29.)

[109] E. Landau. Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, 1909. URL https:
//archive.org/stream/handbuchderlehre01landuoft. (Cited on pages 41 and 42.)

[110] O. Lau. Was lange währt c’t, 17:172–177, 2011. URL http://shop.heise.de/katalog/
was-lange-wahrt-5. (Cited on pages 4 and 5.)

[111] M. van Leeuwen. Why do we use “non-increasing” instead of decreasing? Mathematics
Stack Exchange, 2012. URL http://math.stackexchange.com/q/115951. version: 2012-03-
03. (Cited on page 40.)

[112] H. M. Mahmoud. Evolution of Random Search Trees. Wiley, 1992. ISBN 0-471-53228-2. (Cited on
pages x, 19, and 311.)

[113] H. M. Mahmoud. Sorting: A distribution theory. John Wiley & Sons, 2000. ISBN 1-118-03288-8.
(Cited on pages x, 22, 86, 105, and 121.)

[114] H. M. Mahmoud. Pólya Urn Models. Chapman & Hall, 2008. ISBN 978-1-4200-5983-0. (Cited
on pages 18, 79, and 80.)

[115] A. W. Marshall, I. Olkin, and B. C. Arnold. Inequalities: Theory of Majorization and Its
Applications. Springer Series in Statistics. Springer, 2011. ISBN 978-0-387-40087-7. doi:
10.1007/978-0-387-68276-1. (Cited on page 85.)

[116] C. Martínez and S. Roura. Optimal sampling strategies in Quicksort and Quickselect. SIAM
Journal on Computing, 31(3):683–705, 2001. doi: 10.1137/S0097539700382108. (Cited on pages 16,
33, 102, and 235.)

https://archive.org/stream/handbuchderlehre01landuoft
https://archive.org/stream/handbuchderlehre01landuoft
http://shop.heise.de/katalog/was-lange-wahrt-5
http://shop.heise.de/katalog/was-lange-wahrt-5
http://math.stackexchange.com/q/115951

Bibliography

357

[117] C. Martínez, M. E. Nebel, and S. Wild. Analysis of branch misses in Quicksort. In
R. Sedgewick and M. D. Ward, editors, Meeting on Analytic Algorithmics and Combinatorics
(ANALCO), pages 114–128. SIAM, 2015. doi: 10.1137/1.9781611973761.11. (Cited on pages xvii,
31, 36, 129, 131, 182, 191, and 193.)

[118] J. D. McCalpin. Sustainable memory bandwidth in high performance computers. Techni-
cal report, University of Virginia, Charlottesville, Virginia, 1991-2007. URL http://www.cs.
virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html. continually updated tech-
nical report. (Cited on page 8.)

[119] J. D. McCalpin. Memory bandwidth and machine balance in current high performance com-
puters. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newslet-
ter, pages 19–25, December 1995. URL http://www.cs.virginia.edu/~mccalpin/papers/
balance/index.html. (Cited on page 8.)

[120] C. J. H. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and
B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, pages 195–248.
Springer, Berlin, 1998. (Cited on page 76.)

[121] C. J. H. McDiarmid and R. B. Hayward. Strong concentration for Quicksort. In Symposium
on Discrete Algorithms (SODA), pages 414–421. SIAM, September 1992. (Cited on page 20.)

[122] C. J. H. McDiarmid and R. B. Hayward. Large deviations for Quicksort. Journal of Algorithms,
21(3):476–507, November 1996. doi: 10.1006/jagm.1996.0055. (Cited on page 20.)

[123] C. C. McGeoch and J. D. Tygar. Optimal sampling strategies for quicksort. Random Structures
& Algorithms, 7(4):287–300, December 1995. (Cited on pages 33 and 235.)

[124] M. D. McIlroy. A killer adversary for quicksort. Software: Practice and Experience, 29(4):341–
344, April 1999. doi: 10.1002/(SICI)1097-024X(19990410)29:4<341::AID-SPE237>3.0.CO;2-R.
(Cited on page 15.)

[125] S. A. McKee. Reflections on the memory wall. In Conference on Computing Frontiers (CF),
pages 162–167, 2004. (Cited on pages 7 and 9.)

[126] C. L. McMaster. An analysis of algorithms for the Dutch National Flag Problem. Communi-
cations of the ACM, 21(10):842–846, October 1978. (Cited on page 141.)

[127] K. Mehlhorn and P. Sanders. Algorithms and Data Structures – The Basic Toolbox. Springer,
Berlin, Heidelberg, 2008. ISBN 978-3-540-77977-3. (Cited on page 126.)

[128] M. Merkle. Logarithmic convexity and inequalities for the gamma function. Journal of Math-
ematical Analysis and Applications, 203(2):369–380, October 1996. doi: 10.1006/jmaa.1996.0385.
(Cited on page 93.)

[129] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies, volume 2625
of LNCS. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN 978-3-540-00883-5. doi:
10.1007/3-540-36574-5. (Cited on page 29.)

[130] D. Motzkin. A stable quicksort. Software: Practice and Experience, 11(6):607–611, June 1981.
doi: 10.1002/spe.4380110604. (Cited on page 32.)

http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html
http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html
http://www.cs.virginia.edu/~mccalpin/papers/balance/index.html
http://www.cs.virginia.edu/~mccalpin/papers/balance/index.html

B Bibliography

358

[131] B. M. Mumey. Some new results on constructing optimal alphabetic binary trees. M. Sc. Thesis,
University of British Columbia, 1992. (Cited on pages 264 and 267.)

[132] G. O. Munsonius. On the asymptotic internal path length and the asymptotic wiener index
of random split trees. Electronic Journal of Probability, 16, June 2011. doi: 10.1214/EJP.v16-889.
(Cited on page 168.)

[133] D. R. Musser. Introspective Sorting and Selection Algorithms. Software: Practice and Experi-
ence, 27(8):983–993, 1997. (Cited on pages 15 and 32.)

[134] S. Nagaraj. Optimal binary search trees. Theoretical Computer Science, 188(1-2):1–44, November
1997. doi: 10.1016/S0304-3975(96)00320-9. (Cited on pages 87, 264, and 265.)

[135] P. Naur. The European side of the last phase of the development of ALGOL 60. pages 92–139,
June 1978. doi: 10.1145/800025.1198353. (Cited on page 136.)

[136] M. E. Nebel and S. Wild. Pivot sampling in dual-pivot Quicksort. In M. Bousquet-Mélou
and M. Soria, editors, International Conference on Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms (AofA), volume BA of DMTCS-HAL Proceedings Series,
pages 325–338, 2014. (Cited on pages xvii, 7, 34, and 161.)

[137] M. E. Nebel, S. Wild, and C. Martínez. Analysis of pivot sampling in dual-pivot Quicksort.
Algorithmica, 75(4):632–683, August 2016. doi: 10.1007/s00453-015-0041-7. (Cited on pages xvii,
7, 9, 31, 34, 35, 127, 173, 199, and 235.)

[138] R. Neininger. On a multivariate contraction method for random recursive structures with
applications to Quicksort. Random Structures & Algorithms, 19(3-4):498–524, October 2001.
doi: 10.1002/rsa.10010. (Cited on page 21.)

[139] R. Neininger. On a multivariate contraction method for random recursive structures with
applications to Quicksort. Random Structures & Algorithms, 19(3-4):498–524, 2001. (Cited on
page 169.)

[140] R. Neininger and L. Rüschendorf. A general limit theorem for recursive algorithms and
combinatorial structures. The Annals of Applied Probability, 14(1):378–418, 2004. (Cited on
page 21.)

[141] K. W. Ng, G.-L. Tian, and M.-L. Tang. Dirichlet and Related Distributions. Wiley, 2011. ISBN
978-0-470-68819-9. (Cited on pages 46 and 47.)

[142] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort: A RISC machine
sort. ACM SIGMOD Record, 23(2):233–242, June 1994. doi: 10.1145/191843.191884. (Cited on
page 126.)

[143] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST Handbook of
Mathematical Functions. Cambridge University Press, 2010. (Cited on page 45.)

[144] V. V. Petrov. Sums of Independent Random Variables. Springer, 1975. ISBN 3-540-06635-7. (Cited
on page 81.)

[145] P. V. Poblete and J. I. Munro. The analysis of a fringe heuristic for binary search trees. Journal
of Algorithms, 6(3):336–350, September 1985. doi: 10.1016/0196-6774(85)90003-3. (Cited on
pages 18 and 311.)

Bibliography

359

[146] S. T. Rachev and L. Rüschendorf. Probability metrics and recursive algorithms. Advances in
Applied Probability, 27(3):770–799, 1995. (Cited on page 21.)

[147] P. Ramanan. Testing the optimality of alphabetic trees. Theoretical Computer Science, 93(2):
279–301, February 1992. doi: 10.1016/0304-3975(92)90334-C. (Cited on page 267.)

[148] M. Regnier. A limiting distribution for Quicksort. Informatique théorique et applications, 23(3):
335–343, 1989. (Cited on page 20.)

[149] A. W. Roberts and D. E. Varberg. Convex Functions. Academic Press, 1973. (Cited on pages 49
and 85.)

[150] U. Rösler and L. Rüschendorf. The contraction method for recursive algorithms. Algorithmica,
29(1-2):3–33, February 2001. doi: 10.1007/BF02679611. (Cited on page 21.)

[151] U. Rösler. A limit theorem for “Quicksort”. Informatique théorique et applications, 25(1):85–100,
1991. (Cited on page 20.)

[152] U. Rösler. A fixed point theorem for distributions. Stochastic Processes and their Applications,
42(2):195–214, September 1992. doi: 10.1016/0304-4149(92)90035-O. (Cited on page 21.)

[153] S. Roura. Divide-and-Conquer Algorithms and Data Structures. Tesi doctoral (Ph. D. thesis,
Universitat Politècnica de Catalunya, 1997. (Cited on pages 15, 100, and 102.)

[154] S. Roura. Improved Master Theorems for Divide-and-Conquer Recurrences. Journal of the
ACM, 48(2):170–205, 2001. (Cited on pages 15, 38, 100, 102, 197, and 207.)

[155] K. Rutanen, G. Gómez-Herrero, S.-L. Eriksson, and K. Egiazarian. A general definition of the
Big-Oh notation for algorithm analysis. 1(1):1–39, September 2013. URL http://arxiv.org/
abs/1309.3210. (Cited on page 42.)

[156] W. Rytter. Trees with minimum weighted path length. In D. P. Mehta and S. Sahni, editors,
Handbook Of Data Structures And Applications, chapter 14. Chapman & Hall, 2004. ISBN 158-
488435-5. (Cited on page 264.)

[157] P. Sanders and S. Winkel. Super scalar sample sort. In S. Albers and T. Radzik, editors,
European Symposium on Algorithms (ESA), LNCS, pages 784–796. Springer Berlin/Heidelberg,
2004. (Cited on page 162.)

[158] R. Sedgewick. Quicksort. Ph. D. thesis, Stanford University, 1975. (Cited on page 14.)

[159] R. Sedgewick. The analysis of Quicksort programs. Acta Informatica, 7(4):327–355, 1977. (Cited
on pages 15, 17, and 25.)

[160] R. Sedgewick. Quicksort with equal keys. SIAM Journal on Computing, 6(2):240–267, 1977.
(Cited on pages 15, 26, 122, 288, 290, 291, and 292.)

[161] R. Sedgewick. Implementing Quicksort programs. Communications of the ACM, 21(10):847–
857, 1978. (Cited on pages 10, 15, 137, and 147.)

[162] R. Sedgewick. Quicksort. Reprint of the author’s Ph. D. thesis, Garland Publishing, 1980.
(Cited on pages x, 4, 10, 14, 15, 17, 23, 124, 137, 139, 142, 159, 160, 161, 197, 212, 223, 235, 262, and 338.)

http://arxiv.org/abs/1309.3210
http://arxiv.org/abs/1309.3210

B Bibliography

360

[163] R. Sedgewick and J. Bentley. New research on theory and practice of sorting and searching
(talk slides), 1999. URL http://www.cs.princeton.edu/~rs/talks/Montreal.pdf. (Cited on
pages 26, 287, and 292.)

[164] R. Sedgewick and J. Bentley. Quicksort is optimal (talk slides), 2002. URL http://www.cs.
princeton.edu/~rs/talks/QuicksortIsOptimal.pdf. (Cited on pages 26 and 292.)

[165] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley-
Longman, 1st edition, 1996. ISBN 978-0-201-40009-0. (Cited on pages ix and 137.)

[166] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley, 4th edition, 2011. ISBN 978-0-32-
157351-3. (Cited on pages 139, 294, and 298.)

[167] R. Seidel. Data-specific analysis of string sorting. In Symposium on Discrete Algorithms (SODA),
pages 1278–1286. SIAM, January 2010. ISBN 978-0-898716-98-6. (Cited on pages 28 and 29.)

[168] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):
379–423, July 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x. (Cited on page 82.)

[169] P. W. Shor. My explanation of the Hu-Tucker algorithm, 2004. URL http://www-math.mit.
edu/~shor/PAM/hu-tucker_algorithm.html. Accessed: 2015-11-01. (Cited on page 264.)

[170] R. C. Singleton. Algorithm 347: an efficient algorithm for sorting with minimal storage [M1].
Communications of the ACM, 12(3):185–186, March 1969. (Cited on pages 13, 15, 147, and 288.)

[171] H. H. Sohrab. Basic Real Analysis. Springer Birkhäuser, 2nd edition, 2014. ISBN 978-1-4939-
1840-9. (Cited on pages 50, 51, 52, and 73.)

[172] W. Szpankowski. Average Redundancy for Known Sources: Ubiquitous Trees in Source
Coding. 0(1), 2008. (Cited on page 269.)

[173] K.-H. Tan. An asymptotic analysis of the number of comparisons in multipartition quicksort. Ph.D.
thesis, Carnegie Mellon University, January 1993. (Cited on pages 4, 9, 22, 23, 161, and 262.)

[174] K. H. Tan and P. Hadjicostas. Some properties of a limiting distribution in Quicksort. Statistics
& Probability Letters, 25(1):87–94, October 1995. (Cited on pages 22 and 24.)

[175] B. Vallée, J. Clément, J. A. Fill, and P. Flajolet. The number of symbol comparisons in Quick-
Sort and QuickSelect. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas,
and W. Thomas, editors, International Colloquium on Automata, Languages and Programming
(ICALP), volume 5555 of LNCS, pages 750–763. Springer, 2009. (Cited on page 29.)

[176] A. Walker and D. Wood. Locally balanced binary trees. The Computer Journal, 19(4):322–325,
April 1976. doi: 10.1093/comjnl/19.4.322. (Cited on pages 18 and 311.)

[177] L. M. Wegner. Sorting a linked list with equal keys. Information Processing Letters, 15(5):
205–208, December 1982. doi: 10.1016/0020-0190(82)90118-1. (Cited on page 32.)

[178] L. M. Wegner. Quicksort for equal keys. IEEE Transactions on Computers, C-34(4):362–367,
April 1985. doi: 10.1109/TC.1985.5009387. (Cited on pages 26, 293, 294, and 295.)

[179] L. M. Wegner. A generalized, one-way, stackless quicksort. BIT, 27(1):44–48, March 1987.
doi: 10.1007/BF01937353. URL http://link.springer.com/10.1007/BF01937353. (Cited on
page 32.)

http://www.cs.princeton.edu/~rs/talks/Montreal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
http://www-math.mit.edu/~shor/PAM/hu-tucker_algorithm.html
http://www-math.mit.edu/~shor/PAM/hu-tucker_algorithm.html
http://link.springer.com/10.1007/BF01937353

Bibliography

361

[180] L. M. Wegner. Sorting – the Turku lectures, 2014. ISBN 978-952-12-3020-2. URL http:
//tucs.fi/publications/view/?pub_id=bWegner_LutzMx14a. (Cited on page 293.)

[181] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter. Efficient sorting using registers and
caches. Journal of Experimental Algorithmics, 7:9, December 2002. doi: 10.1145/944618.944627.
(Cited on page 126.)

[182] S. Wild. Java 7’s Dual Pivot Quicksort. Master’s Thesis, University of Kaiserslautern,
2012. URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-
34638. (Cited on pages 5, 7, 33, 124, 125, 141, 142, 157, 159, 180, 183, and 223.)

[183] S. Wild. Sorting discrete i.i.d. inputs: Quicksort is optimal, 2016. URL https://arxiv.org/
abs/1608.04906. (Cited on pages x and 339.)

[184] S. Wild and M. E. Nebel. Average case analysis of Java 7’s dual pivot Quicksort. In L. Epstein
and P. Ferragina, editors, European Symposium on Algorithms (ESA), volume 7501 of LNCS,
pages 825–836. Springer, 2012. URL http://arxiv.org/abs/1310.7409. (Cited on pages xvii,
7, 10, 24, 34, and 173.)

[185] S. Wild, M. E. Nebel, R. Reitzig, and U. Laube. Engineering Java 7’s dual pivot Quicksort
using MaLiJAn. In P. Sanders and N. Zeh, editors, Meeting on Algorithm Engineering and
Experiments (ALENEX), pages 55–69. SIAM, 2013. (Cited on pages xvii, 34, 124, and 235.)

[186] S. Wild, M. E. Nebel, and R. Neininger. Average case and distributional analysis of Java 7’s
dual pivot Quicksort. ACM Transactions on Algorithms, 11(3):22:1–22:42, 2015. (Cited on
pages xvii, 22, 34, 153, 173, 179, 183, and 197.)

[187] S. Wild, M. E. Nebel, and H. Mahmoud. Analysis of Quickselect under Yaroslavskiy’s dual-
pivoting algorithm. Algorithmica, 74(1):485–506, 2016. doi: 10.1007/s00453-014-9953-x. (Cited
on pages xvii and 35.)

[188] WolframAlpha. partitions of 1024 with 512 parts, 2015. URL http://www.wolframalpha.
com/share/clip?f=d41d8cd98f00b204e9800998ecf8427e494e9cmads. (Cited on page 283.)

[189] W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the obvious. ACM
SIGARCH Computer Architecture News, 23(1):20–24, March 1995. (Cited on pages 7 and 9.)

[190] A. C.-C. Yao. On random 2-3 trees. Acta Informatica, 9(2):159–170, 1978. doi: 10.1007/
BF00289075. (Cited on page 18.)

[191] V. Yaroslavskiy. Dual-Pivot Quicksort. 2009. URL http://iaroslavski.narod.ru/
quicksort/DualPivotQuicksort.pdf. (Cited on pages 10, 24, and 25.)

http://tucs.fi/publications/view/?pub_id=bWegner_LutzMx14a
http://tucs.fi/publications/view/?pub_id=bWegner_LutzMx14a
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-34638
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-34638
https://arxiv.org/abs/1608.04906
https://arxiv.org/abs/1608.04906
http://arxiv.org/abs/1310.7409
http://www.wolframalpha.com/share/clip?f=d41d8cd98f00b204e9800998ecf8427e494e9cmads
http://www.wolframalpha.com/share/clip?f=d41d8cd98f00b204e9800998ecf8427e494e9cmads
http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf
http://iaroslavski.narod.ru/quicksort/DualPivotQuicksort.pdf

	Contents
	Preface
	Curriculum Vitae
	0 Appetizer
	1 Introduction
	1.1 History
	1.2 Little Glossary of Quicksort Terms
	1.3 Recent Developments
	1.4 The Memory Wall
	1.5 Multiway Quicksort
	1.6 Aim and Scope of this Dissertation
	Outline
	1.7 Related Work
	1.7.1 Towards Classic Quicksort
	1.7.2 Sedgewick's Work
	1.7.3 Practical Tweaks in the Nineties
	1.7.4 Off-the-Shelf Theorems for Solving Recurrences
	1.7.5 Analysis of Pivot Sampling
	1.7.6 Quicksort and Search Trees
	1.7.7 Limit Distributions
	1.7.8 Multiway Quicksort
	1.7.9 Equal Keys
	1.7.10 Bit Complexity and Symbol Comparisons
	1.7.11 Memory Hierarchy
	1.7.12 Branch Misses
	1.7.13 Academic Quicksort Variants
	1.7.14 My Previous Work

	2 Mathematical Tools
	2.1 Continuous Basics
	2.1.1 Asymptotic Notation
	2.1.2 Special Functions
	2.1.3 Convexity
	2.1.4 Lipschitz- and Hölder-Continuity

	2.2 Discrete Basics
	2.2.1 Binomial Coefficients
	2.2.2 Harmonic Numbers

	2.3 Generating Functions
	2.3.1 Singularity Analysis
	2.3.2 Euler Differential Equations and the Operator Method

	2.4 Random Basics
	2.4.1 Categorical Distribution
	2.4.2 Exponential Distribution
	2.4.3 Gamma Distribution
	2.4.4 Beta and Dirichlet Distributions
	2.4.5 Dirichlet-Calculus
	2.4.6 Binomial and Multinomial Distributions
	2.4.7 Beta-Binomial and Dirichlet-Multinomial Distributions
	2.4.8 Shannon Entropy
	2.4.9 Entropy and Binary Search Trees

	2.5 Discrete Entropy
	2.5.1 Entropy of Dirichlet Vectors
	2.5.2 Properties of the Harmonic-Difference Function
	2.5.3 Properties of the Discrete Entropy

	2.6 A Master Theorem for Distributional Recurrences
	2.6.1 The Continuous Master Theorem
	2.6.2 Distributional Recurrences
	2.6.3 A Simple Distributional Master Theorem
	2.6.4 Self-Contained Proof of an Educational DMT
	2.6.5 The Distributional Master Theorem

	3 Models and Assumptions
	3.1 Models of Input Distributions
	3.1.1 The Random-Permutation Model
	3.1.2 The Expected-Profile Model
	3.1.3 The Exact-Profile Model
	3.1.4 Enforcing Random Order

	3.2 Cost Models
	3.2.1 Information Costs: The Comparison Model
	3.2.2 Rearrangement Costs: Swaps and Write Accesses
	3.2.3 Primitive Instruction Counts
	3.2.4 The Memory Hierarchy: Scanned Elements and Cache Misses
	3.2.5 Pipelined Execution: Branch Mispredictions

	4 Quicksort
	4.1 From Partitioning to Sorting
	4.2 Famous Quicksort Variants
	4.2.1 Classic Quicksort
	4.2.2 Lomuto's Partitioning
	4.2.3 Yaroslavskiy-Bentley-Bloch Quicksort
	4.2.4 Sedgewick's Dual-Pivot Method and Kciwegdes Partitioning
	4.2.5 Waterloo Quicksort
	4.2.6 Algorithmic Improvements

	4.3 Generic One-Pass Partitioning
	4.3.1 Master-Pivot Schemes
	Algorithm 9: Partition
	4.3.2 Master-Segment Schemes
	4.3.3 Known Methods as Generic One-Pass Instances

	4.4 Choosing Pivots From a Sample
	4.4.1 Generalized Pivot Sampling
	4.4.2 Random-Parameter Pivot Sampling

	4.5 Randomness Preservation in the Presence of Pivot Sampling
	4.6 Other Partitioning Methods
	4.6.1 Removing Duplicates
	4.6.2 Linear Memory Or Several Passes
	4.6.3 Hennequin's Generalized Quicksort
	4.6.4 Relation to Concurrent Work of Aumüller et al.

	5 Analysis of Generic Partitioning
	5.1 Toll-Function Notation
	5.2 Stochastic Description of Partitioning Under Pivot Sampling
	5.2.1 Class Probabilities
	5.2.2 Segment Sizes and Subproblem Sizes
	5.2.3 Distribution of Pivot Values
	5.2.4 Random-Parameter Pivot Sampling

	5.3 Generic Model: Element-wise Charging Schemes
	5.3.1 General Charging Schemes
	5.3.2 Relation to Classification Strategies
	5.3.3 Separating State Frequencies From Element Costs
	5.3.4 FSM-based Element-Wise Charging Schemes

	5.4 Charging Schemes for Our Cost Measures
	5.4.1 The State Automaton For One-Pass Partitioning
	5.4.2 Key Comparisons
	5.4.3 Scanned Elements
	5.4.4 Write Accesses
	5.4.5 Swaps resp. Cyclic Shifts

	5.5 Execution Frequencies of Inner Loops
	5.5.1 Master-Pivot Algorithm
	5.5.2 Master-Segment Algorithms
	5.5.3 A Note on Limit Distributions

	5.6 Class-State Co-Occurrences
	5.7 Comparison-Optimal Partitioning
	5.8 Branch Misses
	5.8.1 Conditional Independence
	5.8.2 A Generic Comparison-Branch Location

	6 The Quicksort Recurrence
	6.1 Recursive Description of Costs
	6.1.1 Nitpicks on Generalized Pivot Sampling
	6.1.2 Recurrence for Expected Costs
	6.1.3 Relation to Combinatorial Form for Subproblem Size Probabilities

	6.2 Back-of-the-Envelope Approaches
	6.2.1 Van Emden's Entropy-Reduction Argument
	6.2.2 A Continuous Recurrence
	6.2.3 Explicit Solution of Continuous Recurrence
	6.2.4 A Master-Theorem-Style Argument
	6.2.5 Leading Term by Ansatz

	6.3 Solution with the Distributional Master Theorem
	6.4 Random-Parameter Pivot Sampling
	6.5 Solution with Generating Functions
	6.5.1 A Differential Equation for the Generating Function
	6.5.2 Differential-Operator Transformation
	6.5.3 A General Solution to the Differential Equation
	6.5.4 Coefficient Asymptotics

	7 Results and Discussion
	7.1 Average Costs
	7.2 Disclaimer
	7.3 Simulating Multiway Partitioning by Binary Partitioning
	7.3.1 Waterloo vs. Classic
	7.3.2 Entropy-Equivalent Sampling
	7.3.3 s-Way vs. Binary Partitioning

	7.4 The Optimal Meeting Point for Indices
	7.4.1 Comparisons
	7.4.2 Scanned Elements
	7.4.3 Summary

	7.5 Optimal Pivot Sampling
	7.5.1 Optimal Sample Sizes?
	7.5.2 Entropy-Tight Pairs
	7.5.3 Linear Costs With Exact-Quantile Pivots
	7.5.4 Scanned Elements
	7.5.5 An Optimality Criterion for Finite Sample Sizes and Gibb's Gap
	7.5.6 Two Comparisons Trees: Non-Linear Costs
	7.5.7 Optimal t: Heuristics and Tables

	7.6 The Optimal Number of Pivots
	7.6.1 Key Comparisons
	7.6.2 Sampling with a Limit Density
	7.6.3 Scanned Elements
	7.6.4 Exponential-Decay Sampling
	7.6.5 Optimal s for fixed k

	7.7 Optimal Comparison Trees
	7.7.1 The Single-Tree Case
	7.7.2 Two Comparison Trees
	7.7.3 The Optimal Alphabetic Tree Problem
	7.7.4 Entropy-Bounds for Comparison Trees
	7.7.5 Optimal Choices for A Single Tree
	7.7.6 The Benefit of Two Trees
	7.7.7 Concluding Remarks on Optimal Comparison Trees

	7.8 Interactions between Parameters: The Jellyfish Paradox

	8 Equal Keys
	8.1 Introduction
	8.1.1 Ignoring Equals

	8.2 Input Models with Equal Keys
	8.3 Related Work
	8.4 Fat-Pivot Partitioning
	8.4.1 Existing Methods
	8.4.2 New Concepts and Notations
	8.4.3 Generic Multiway Fat-Pivot Partitioning
	8.4.4 Fat-Separator Methods
	8.4.5 Fat-Outsides Methods

	8.5 Partitioning Costs
	8.5.1 Stateless Cost Measures
	8.5.2 Stochastic Model
	8.5.3 (Ternary) Comparisons
	8.5.4 Scanned Elements (Partitioning)
	8.5.5 Scanned Elements (Cleanup)

	8.6 Recurrence for Expected-Profile Inputs
	8.6.1 Distributional Recurrence

	8.7 Quicksort Recursion Trees
	8.7.1 Recursion Trees
	8.7.2 t-Fringe-Balanced s-Ary Search Trees with Leaf-Buffer Size w
	8.7.3 Recursion Trees and stwl-Trees
	8.7.4 Generic Search Costs
	8.7.5 Search Costs in Expected-Profile Models
	8.7.6 Distributional Recurrence for Weighted Path Length
	8.7.7 Expected Weighted Path Length for Random U-ary Words

	8.8 Quicksort Under Stateless Cost Measures
	8.8.1 Random u-Ary Words
	8.8.2 Quicksort Costs Value-Wise
	8.8.3 Many Duplicates and Degeneracy
	8.8.4 Proof of Theorem 8.16

	8.9 Discussion

	9 Conclusion
	9.1 The Optimal Quicksort?
	9.2 Open Problems and Future Work

	A Index of Notation
	A.1 Generic Mathematical Notation
	A.2 Stochastics-related Notation
	A.3 Input to the Algorithm
	A.4 Notation for the Algorithm
	A.5 Notation Specific to the Analysis (Uniform Model)
	A.6 Notation for the Analysis with Equal Keys

	B Bibliography

