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I prove that the average number of comparisons for median-of-k Quicksort (with fat-
pivot a.k.a. three-way partitioning) is asymptotically only a constant αk times worse
than the lower bound for sorting random multisets of n elements with Ω(nε) dupli-
cates of each value (for any ε > 0). The constant is αk = ln(2)/

(
Hk+1 −H(k+1)/2

)
,

which converges to 1 as k →∞, so median-of-k Quicksort is asymptotically optimal
for inputs with many duplicates. This partially resolves a conjecture by Sedgewick
and Bentley (1999, 2002) and constitutes the first progress on the analysis of
Quicksort with equal elements since Sedgewick’s 1977 article.

1. Introduction
Sorting is one of the basic algorithmic tasks that is used as a fundamental stepping stone for a
multitude of other, more complex challenges. Quicksort is the method of choice for sorting in
practice. Any undergraduate student learns as a justification for its quality that the average
number of comparisons is Θ(n logn) for a random permutation of n distinct elements, putting
it into the same complexity class as, e.g., Mergesort. By choosing random pivots we can make
this average the expected behavior regardless of the order of the input. Moreover, the hidden
constants in Θ(n logn) are actually small: Quicksort needs 2 ln(2)n ld(n)±O(n) comparisons in
expectation, i.e., asymptotically only a factor 2 ln(2) ≈ 1.39 more than the information-theoretic
lower bound for any comparison-based sorting method.1 By choosing the pivot as median
of k sample elements in each step, for k a fixed, odd integer, this constant can be reduced
to αk = ln(2)/

(
Hk+1 −H(k+1)/2

)
[37], where Hk = ∑k

i=1 1/i. Note that αk converges to 1 as
k →∞, so Quicksort’s expected behavior is asymptotically optimal on random permutations.

It is also well-known that Quicksort rarely deviates much from this expected behavior.
Folklore calculations show that Quicksort needs, e.g., at most 7 times the expected number
of comparisons with probability at least 1 − 1/n2. This result can be strengthened [32] to
guarantee at most α times the expected costs for any α > 1 with probability 1−O(n−c) for all
constants c (independent of α). Median-of-k Quicksort is hence optimal not only in expectation,
but almost always!

These guarantees certainly justify the wide-spread use of Quicksort, but they only apply to
inputs with n distinct elements. In many applications, duplicates (i.e., elements that are equal
w.r.t. the order relation) appear naturally. The SQL clause GROUP BY C, for example, can be
implemented by first sorting rows w.r.t. column C to speed up the computation of aggregating
functions like COUNT or SUM. Many rows with equal C-entries are expected in such applications.

∗David R. Cheriton School of Computer Science, University of Waterloo, Email: wild@uwaterloo.ca
1I write ld for log2 (logarithmus dualis), and ln for loge (logarithmus naturalis).
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At the KnuthFest celebrating Donald Knuth’s 10000002th birthday, Robert Sedgewick gave
a talk titled “Quicksort is optimal” [40],2 presenting a result that is at least very nearly so:
Quicksort with fat-pivot (a.k.a. three-way) partitioning uses 2 ln 2 ≈ 1.39 times the number of
comparisons needed by any comparison-based sorting method for any randomly ordered input,
with or without equal elements. He closed with the conjecture that this factor can be made
arbitrarily close to 1 by choosing the pivot as the median of k elements for sufficiently large k.
This statement is referred to as the Sedgewick-Bentley conjecture.

The Sedgewick-Bentley conjecture is a natural generalization of the distinct-keys case (for
which the statement is known to hold true), and sorting experts will not find the claim surprising,
since it is the theoretical justification for a long-established best practice of general-purpose
sorting: as observed many times in practice, Quicksort with the fat-pivot partitioning method
by Bentley and McIlroy [4]3 and ninther (a.k.a. pseudomedian of nine) pivot sampling comes
to within ten percent of the optimal expected comparison count for inputs with or without
equal keys.

In this paper, I confirm the Sedgewick-Bentley conjecture for inputs with “many duplicates”,
i.e., where every key value occurs Ω(nε) times for an arbitrary constant ε > 0. To do so I show
a bound on the constant of proportionality, namely the same αk mentioned above. (Sedgewick
and Bentley did not include a guess about the constant or the speed of convergence in their
conjecture). While Quicksort can certainly be outperformed for particular types of inputs, the
combination of simple, efficient code and almost universal proven optimality is unsurpassed; it
is good news that the latter also includes inputs with equal keys.

Confirming the Sedgewick-Bentley conjecture is not a surprising outcome, but it has been
surprisingly resistant to all attempts to formally prove it: no progress had been made in the
nearly two decades since it was posed (see Section 5 for some presumable reasons for that),
so restricting the problem might be sensible. I would like to remark that my restriction of
many duplicates is a technical requirement of the analysis, but we have no reason to believe
that Quicksort performs much different when it is violated. More importantly, it is not the
purpose of this paper to suggest sorting inputs with many duplicates as a natural problem per
se, for which tailored methods shall be developed. (One is tempted to choose a hashing-based
approach when we know that the number u of different values is small, but my results show
that precisely for such instances, Quicksort will be competitive to any tailored algorithm!) It
must be seen as an idiosyncrasy of the present analysis one might try to overcome in the future.

It is a strength of Quicksort is that it smoothly adapts to the actual amount of duplication
without requiring explicit detection and special handling of that case. The concept is analogous
(but orthogonal) to adaptive sorting methods [14] that similarly take advantage of existing
(partial) order in the input. The purpose of this paper is thus to finally deliver a mathemat-
ical proof that median-of-k Quicksort is an optimal “entropy-adaptive” (a.k.a. distribution
sensitive [43]) sorting method, at least for a large class of inputs.

Methods. For the analysis we will work in an alternative input model: instead of fixing the
exact multiplicities of a multiset, we fix a discrete probability distribution over [1..u] and draw
n elements independently and identically distributed (i.i.d.) according to that distribution. We

2Sedgewick presented the conjecture in a less widely-known talk already in 1999 [39]. Since they never published
their results in an article, I briefly reproduce their arguments in Section 4.

3The classic implementation by Bentley and McIlroy [4] from 1993 is used as default sorting methods in
important programming libraries, e.g., the GNU C++ Standard Template Library (STL) and the Java
runtime library (JRE). Since version 7, the JRE uses dual-pivot Quicksort instead, but if the two sampled
pivots are found equal, it falls back to fat-pivot partitioning by Bentley and McIlroy.
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will see that going from fixed to expected multiplicities only increases the average sorting costs,
so the i.i.d. model provides an upper bound.

The analysis of Quicksort on discrete i.i.d. inputs proceeds in two steps: First, I use that
costs of (median-of-k) Quicksort correspond to costs of searching in a (k-fringe-balanced) binary
search tree (BST). A concentration argument shows that for inputs with many duplicates, the
search tree typically reaches a stationary state after a short prefix of the input, and is thus
independent of the (larger) rest of the input.

The second step is to determine the expected search costs in a k-fringe-balanced BST built
by repeatedly inserting i.i.d. elements until all u values appear in the tree; (I call the tree
saturated then). I show that the search costs are asymptotically αk times the entropy of the
universe distribution. To do so I derive lower and upper bounds from the recurrence of costs
(with the vector of probability weights as argument) using the aggregation property of the
entropy function. To the best of my knowledge, the analysis of search costs in fringe-balanced
trees with equal keys is novel, as well.

Most used techniques are elementary, but keeping the error terms under control (so that
Ω(nε) duplicates suffice for any ε > 0) made some refinements of classical methods necessary
that might be of independent interest.

Outline. We start with some notation and a collection of known results (Section 2), and
introduce the input models (Section 3). Section 4 is devoted to related work on sorting in the
presence of equal elements. We continue in Section 5 with a formal statement of the main result
and a briefly discussion why some previous attempts did not succeed. In Sections 6 – 9, we study
the cost of fat-pivot Quicksort on discrete i.i.d. inputs as outlined above: Section 6 demonstrates
that it suffices to study search costs in trees to analyze Quicksort, and Section 7 gives a stochastic
description of these trees. In Section 8, we exploit the assumption of many equal keys to
separate the influence of the input size from the influence of different universe distributions
(the “first step” from above). In Section 9 we then derive an asymptotic approximation for the
search costs in fringe-balanced trees (second step). We establish a lower bound for the i.i.d.
model in Section 10. Section 11 proves the main result by combining all pieces. The results are
summarized and put into context in Section 12.

Appendix A collects all notation used in this paper for reference. In Appendix B, we formally
prove that fringe-balanced search trees have logarithmic height with high probability in the
presence of equal keys.

2. Preliminaries
We start with some common notation and a precise description of fat-pivot Quicksort with
median-of-k sampling, as well as the corresponding a search tree variant, the k-fringe-balanced
trees. We collect further known results that will be used later onhere for the reader’s convenience:
some classical tail bounds (Section 2.5), a fact on the height concentration of randomly
built search trees (Section 2.6), and a few properties of the entropy function used later on
(Section 2.7).

2.1. Notation
This section contains the most important notation; a comprehensive list is given in Appendix A
for reference.

I write vectors in bold font x = (x1, . . . , xn) and always understand them as column vectors
(even when written in a row in the text). By default, all operations on vectors are meant
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component-wise. By Σx, I denote x1 + · · ·+ xn, the total of x. The profile (or multiplicities
vector) a multiset M over [u] = {1, . . . , u} is a vector x = (x1, . . . , xu) where every values
v ∈ [u] occurs xv times in M .

I use Landau-symbols (O, Ω etc.) in the formal sense of Flajolet and Sedgewick [15, Section
A.2] and write f(n) = g(n)±O(h(n)) to mean |f(n)− g(n)| = O(h(n)). (I use ± to emphasize
the fact that we specify f(n) up to an additive error of h(n) without restricting the sign of the
error.)

For a random variable X, E[X] is its expectation and P[X = x] denotes the probability
of the event X = x. For q ∈ [0, 1]u with Σq = 1, I write U D= D(q) to say that U is a
random variable with P[U = i] = qi for i ∈ [u]; generally, D= denotes equality in distribution.
Mult(n, q) is a multinomial distributed variable with n trials from D(q), and Beta(α, β) is a
beta distributed variable with parameters α, β > 0. By H or Hld I denote the binary Shannon
entropy H(q) = ∑u

i=1 qi ld(1/qi); likewise Hln is the base e entropy.
I say an event E = E(n) occurs with high probability (w.h.p.) if for any constant c holds

P[E(n)] = 1 ± O(n−c) as n → ∞. Note that other sources use w.h.p. if any such c ∈ N
exists, which is a much weaker requirement. Similarly for X1, X2, . . . a sequence of real random
variables, I say “Xn = O(g(n)) w.h.p.” if for every constant c there is a constant d so that
P[|Xn| ≤ d|g(n)|] = 1±O(n−c) as n→∞.

2.2. Reference Version of Fat-Pivot Quicksort
By “fat-pivot” I mean a partitioning method that splits the input into three parts: elements
(strictly) smaller than the pivot, elements equal to the pivot, and elements (strictly) larger
than the pivot. Instead of only one pivot element in binary partitioning, we now obtain a “fat”
pivot segment that separates the left and right subproblems. This idea is more commonly
known as three-way partitioning, but I prefer the vivid term fat pivot to make the distinction
between fat-pivot partitioning and partitioning around two pivots clear. The latter has become
fashionable again in recent years [23, 48, 47]. Since all duplicates of the pivot are removed
before recursive calls, the number of partitioning rounds is bounded by the number of different
values in the input.

To simplify the presentation, I assume in this work that partitioning retains the relative
order of elements that go to the same segment. A corresponding reference implementation
operating on linked lists is given in Algorithm 1. It uses the median of k sample elements as
pivot, where the sample size k = 2t+ 1, t ∈ N0, is a tuning parameter of the algorithm. We
consider k a fixed constant in the analysis.

I always mean Algorithm 1 when speaking of Quicksort in this paper. Moreover, by its
costs I always mean the number of ternary key comparisons, i.e., the number of calls to
cmp. Apart from selecting the median, one partitioning step in Algorithm 1 uses exactly n
ternary comparisons. Some of these will be redundant because they already happened while
determining the median of the sample. We ignore this optimization here.

Algorithm 1 serves as precise specification for the analysis but it is not the method of choice
in practice. However, our results apply to practical methods, as well (see the discussion in
Section 6.1).

2.3. Quicksort and Search Trees
It has become folklore that the comparison costs of (classic) Quicksort are the same as the
internal path length of a BST, which equals the cost to construct the tree by successive
insertions. Hibbard [18] first described this fact in 1962, right after Hoare’s publication of
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Algorithm 1. Fat-pivot median-of-k Quicksort.

Quicksortk(L)
1 if (L.length) ≤ k − 1
2 return Insertionsort(L)
3 end if
4 P := Median(L[1..k])
5 L1, L2, L3 := new List
6 while ¬L.empty
7 U := L.removeFirstElement()
8 case distinction on cmp(U,P )
9 in case < do L1.append(U)

10 in case = do L2.append(U)
11 in case > do L3.append(U)
12 end cases
13 end while
14 L1 := Quicksortk(L1)
15 L3 := Quicksortk(L3)
16 return L1.append(L2).append(L3)

Quicksort itself [19, 20]. Formally we associate a recursion tree to each execution of Quicksort:
Each partitioning step contributes a node labeled with the used pivot value. Its left and right
children are the recursion trees of the left and right recursive calls, respectively. Figure 1 shows
an example.

7 4 2 9 1 3 8 5 6

4 2 1 3 5 6 9 87
7

2 1 3 5 6 84
4

9
9

1 3 62
2

5
5

8
8

1
1

3
3

6
6

Figure 1: Execution trace of Quicksort without
pivot sampling and its recursion tree.
The recursion tree coincides with the
BST obtained by successively inserting
the original input.An animated version
of this example (and its extensions to
finge-balancing and equal keys) is avail-
able online: youtu.be/yi6syj9nksk.

Recursion trees obviously fulfill the search tree property; in fact, the recursion tree is exactly
the binary search tree that results from successively inserting the input elements into an initially
empty tree (in the order they appear in the original input) if Quicksort always uses the first
element of the list as pivot and partitions so that the relative order of elements smaller resp.
larger than the pivot is retained (as is done in Algorithm 1). Even the same set of comparisons
is then used in both processes, albeit in a different order.

2.4. Fringe-Balanced Trees
The correspondence extends to median-of-k Quicksort with an appropriate fringe-balancing rule
for BSTs. This is a little less widely known, but also well researched [11]. Upon constructing a
k-fringe-balanced search tree, we collect up to k − 1 elements in a leaf. (This corresponds to
truncating the recursion in Quicksort for n ≤ k−1 and leave small subproblems for Insertionsort.)
Once a leaf has collected k = 2t+ 1 elements, it is split: Simulating the pivot selection process
in Quicksort, we find the median from the k elements in the leaf and use it as the label of a
new inner node. Its children are two new leaves with the elements that did not become pivots:
the t smaller elements go to the left, the t larger to the right. Because of the dynamic process

https://youtu.be/yi6syj9nksk
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of splitting leaves, the correspondence is best shown in motion; the supplementary animation
(youtu.be/yi6syj9nksk) includes fringe-balanced trees.

More formally, a k-fringe-balanced tree, for k = 2t+ 1 an odd integer, is a binary search
tree whose leaves can store between 0 and k − 1 elements. An empty fringe-balanced tree is
represented as Leaf (), a single empty leaf. The k-fringe-balanced tree T corresponding to a
sequence of elements x1, . . . , xn is obtained by successively inserting the elements into an initially
empty tree using Algorithm 2; more explicitly, with T0 = Leaf () and Ti = Insertk(Ti−1, xi) for
1 ≤ i ≤ n, we have T = Tn.

Algorithm 2. Insert into k-fringe-balanced tree.

Insertk(T , x)
1 if T is Leaf (U)
2 Append x to U
3 if |U | ≤ k − 1 then return Leaf (U) end if

// Else: Split the leaf
4 P := Median(U1, . . . , Uk)
5 C1, C2 := new empty list
6 for each U in U
7 case distinction on cmp(U,P )
8 in case U < P do append U to C1
9 in case U > P do append U to C2

// In case U == P , we drop U .
10 end cases
11 end for
12 return Inner

(
P,Leaf (C1),Leaf (C2)

)
13 else T is Inner(P, T1, T2)
14 case distinction on cmp(x, P )
15 in case x == P do return T // tree unchanged
16 in case x < P do return Inner

(
P, Insertk(T1, x), T2

)
17 in case x > P do return Inner

(
P, T1, Insertk(T2, x)

)
18 end cases
19 end if

Growing trees with Algorithm 2 enforces a certain balance upon the lowest subtrees, i.e., at
the fringe of the tree, hence the name fringe-balanced. Searching an element in a fringe-balanced
tree works as in an ordinary BST, except for the leaves, where we sequentially search through
the buffer;Algorithm 3 shows pseudocode for completeness. (Note that elements collected in
leaves are not sorted.)

Algorithm 3. Search in fringe-balanced trees.

Search(T , x)
1 if T is Leaf (U)
2 return SequentialSearch(U , x)
3 else T is Inner(P, T1, T2)
4 case distinction on cmp(U,P )
5 in case U == P do return “Found”
6 in case U < P do return Search(T1, x)
7 in case U > P do return Search(T2, x)
8 end cases
9 end if

https://youtu.be/yi6syj9nksk


2. Preliminaries 7

Duplicate Insertions. Since our analysis of Quicksort with equal keys builds on the precise
performance of fringe-balanced trees, we put a particular emphasis is on the treatment of
duplicate insertions in Algorithm 2. If a key x is already present during insertion and x appears
as key of an inner node, the (repeated) insertion has no effect; but if x is found in a leaf,
another copy of x is appended to the buffer of that leaf.

This unequal treatment might seem peculiar at first sight, but does exactly what we need:
duplicates do play a role for selecting pivots—likely values contribute more duplicates to a
random sample and are thus more likely to be selected as pivot—but once a pivot has been
selected, all its copies are removed in this single partitioning step no matter how many there
are.

2.5. Tail Bounds
For the reader’s convenience, we collect a few basic tail bounds here: a classical and a less
known Chernoff concentration bound, and a bound for the far end of the lower tail of the
binomial distribution Bin(n, p).
Lemma 2.1 (Chernoff Bound): Let X D= Bin(n, p) for n ∈ N and p ∈ (0, 1) and let δ ≥ 0.
Then

P
[∣∣∣∣Xn − p

∣∣∣∣ ≥ δ
]
≤ 2 exp(−2δ2n). �

This bound appears, e.g., as Theorem 2.1 of McDiarmid [31].
The following lemma is a handy, but less well-known bound for the multinomial distribution

that appears—indeed rather hidden—as Lemma 3 in a paper by Devroye [6] from 1983. (Its
proof is also discussed on math stack exchange: math.stackexchange.com/q/861058.)
Lemma 2.2 (Chernoff Bound for Multinomial): Let X D= Mult(n,p) for n ∈ N and
p ∈ (0, 1)u with Σp = 1. Further, let δ ∈ (0, 1) with δ ≥

√
20u/n be given. Then

P
[

u∑
i=1

∣∣∣∣Xi

n
− pi

∣∣∣∣ ≥ δ

]
≤ 3 exp(−δ2n/25). �

Finally, we also use the following elementary observation.
Lemma 2.3 (Far-End Left-Tail Bound): Let X(n) D= Bin(n, p(n)) be a sequence of random
variables and k ∈ N a constant, where p(n) satisfies p(n) = ω

( logn
n

)
as n→∞ and is bounded

away from 1, i.e., there is a constant ε > 0 so that p(n) ≤ 1− ε for all n. Then P[X(n) ≤ k] =
o(n−c) as n→∞ for any constant c.

Proof: For better readability, we drop the superscript from p(n) when n is clear from the
context. Let c be an arbitrary constant.

P
[
X(n) ≤ k

]
· nc = nc

k∑
i=0

(
n

i

)
pi(1− p)n−i

≤ nc
k∑
i=0

1
i!

(
p

1− p

)i
︸ ︷︷ ︸
≤( 1−ε

ε
)i

ni(1− p)n

≤ nc+k(1− p)n ·O(1)

= exp
(
n ln(1− p) + (c+ k) ln(n)

)
·O(1)

http://math.stackexchange.com/q/861058
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using ln(x) ≤ x− 1, this is
≤ exp

(
−np±O(logn)

)
·O(1)

→ 0

since p = ω( logn
n ). This proves the claim. �

The requirement that p(n) is bounded away from 1 can be lifted, but it simplifies the proof. For
the application in the present paper the version is sufficient as is.

2.6. Logarithmic Tree Height w.h.p.
It is a folklore theorem that randomly grown search trees have logarithmic height with high
probability. For the present work, the following result is sufficient.

Proposition 2.4 (Probability of Height-Degeneracy): For any fixed (odd) k holds: the
probability that a k-fringe-balanced search tree built from n randomly ordered elements (with
or without duplicates) has height > 13 lnn is in O(1/n2) as n→∞. �

We give a formal proof of Proposition 2.4 and a more general discussion in Appendix B.

2.7. Properties of the Entropy Function
This section collects a few useful properties of the entropy function. We start with some
observations that follow from well-known results of real analysis. Proofs are given in my Ph.D.
thesis [47].

Lemma 2.5 (Elementary Properties of the Entropy Function):
Let Hln : [0, 1]u → R≥0 with Hln(x) = ∑u

i=1 xi ln(1/xi) be the base e entropy function.

(a) Hln(x) = ln(2)Hld(x).
(b) For all x ∈ [0, 1]u with Σx = 1 we have that 0 ≤ Hln(x) ≤ ln(u).
(c) Hln is Hölder-continuous in [0, 1]u for any exponent h ∈ (0, 1), i.e., there is a constant

C = Ch such that |f(y)− f(x)| ≤ Chu · ‖y − x‖h∞ for all x,y ∈ [0, 1]u.
A possible choice for Ch is given by

Ch =
(∫ 1

0

∣∣ln(t) + 1
∣∣ 1

1−h

)1−h
(1)

For example, h = 0.99 yields Ch ≈ 37.61. �

A beta distributed variable Π can be seen as a random probability. We can then ask for the
expected entropy of a Bernoulli trial with probability Π. (The special case of Lemma 2.6 when
t = 0 appears Section 5.0 of Bayer [3] and as Exercise 6.2.2–37 of Knuth [27].)

Lemma 2.6 (Expected Entropy of Beta Variables): Let t ∈ N0. For Π D= Beta(t+ 1, t+
1) and k = 2t+ 1 we have

E
[
Hln(Π, 1−Π)

]
= Hk+1 −Ht+1. (2)
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Proof: We need the following integral, which is a special case of Equation (4.253-1), p. 540, of
Gradshteyn and Ryzhik [16] with r = 1:∫ 1

0
za−1(1− z)b−1 ln(z) dz = B(a, b)

(
ψ(a)− ψ(a+ b)

)
, (a, b > 0). (3)

Here ψ(z) = d
dz ln(Γ (z)) is the digamma function.

The proof is now simply by computing. By symmetry we have E[Hln(Π, 1 − Π)] =
−2E[Π ln(Π)]; using the above integral and the relation ψ(n+ 1) = Hn − γ (Equation (5.4.14)
of the DLMF [9]) we find that

E[Π ln(Π)] =
∫ 1

0
x ln(x) xt(1− x)t

B(t+ 1, t+ 1) dx

= B(t+ 2, t+ 1)
B(t+ 1, t+ 1)

∫ 1

0
ln(x) xt+1(1− x)t

B(t+ 2, t+ 1) dx

=
(3)

t+ 1
k + 1

(
ψ(t+ 2)− ψ(k + 2)

)
= t+ 1

2t+ 2
(
Ht+1 −Hk+1

)
= 1

2
(
Ht+1 −Hk+1

)
.

Inserting yields the claim. �

Finally, using the Chernoff bound for the multinomial distribution (Lemma 2.2), we obtain the
following concentration property of the entropy of a normalized multinomial variable.

Lemma 2.7 (Concentration of Entropy of Multinomials): Let u ∈ N and p ∈ (0, 1)u
with Σp = 1, and X D= Mult(n,p). Then it holds that

E
[
Hln

(
X

n

)]
= Hln(p) ± ρ, (4)

where we have for any δ ∈ (0, 1) with δ ≥
√

20u/n, h ∈ (0, 1) and Ch as in Equation (1) that

ρ ≤ Chδ
h(1− 3e−δ2n/25) + 3u ln(u)e−δ2n/25.

If u = O(nν) as n → ∞ for a constant ν ∈ [0, 1), then Equation (4) holds with an error
of ρ = o(n−(1−ν)/2+ε) for any fixed ε > 0.

Proof: We start with the multinomial Chernoff bound: for any δ ≥
√

20u/n we have that

P
[
‖X − x‖∞ ≥ δn

]
≤ P

[
u∑
i=1

∣∣∣∣Xi

n
− qi

∣∣∣∣ ≥ δ

]
≤

Lemma 2.2
3 exp(−δ2n/25). (5)

To use this in estimating E
[∣∣Hln

(
X
n

)
−Hln(p)

∣∣], we divide the domain of Xn into the region of
values with ‖ · ‖∞-distance at most δ from p, and all others. By Lemma 2.5, Hln is Hölder-
continuous for any exponent h ∈ (0, 1) with Hölder-constant Ch. Using this and the boundedness

http://dlmf.nist.gov/5.4.E14
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of Hln (Lemma 2.5–(b)) yields

E
[∣∣∣∣Hln

(
X

n

)
−Hln(p)

∣∣∣∣] ≤
(5)

sup
ξ:‖ξ‖∞<δ

∣∣Hln(p+ ξ)−Hln(p)
∣∣ · (1− 3e−δ2n/25)

+ sup
x

∣∣Hln(x)−Hln(p)
∣∣ · 3e−δ2n/25

≤
Lemma 2.5

Chδ
h ·
(
1− 3e−δ2n/25) + 3 ln(u)e−δ2n/25.

This proves the first part of the claim.
For the second part, we assume u = O(nν), thus u ≤ dnν for a constant d and large enough

n. We obtain an asymptotically valid choice of δ when δ = ω(n(ν−1)/2); then for large enough
n we will have δ >

√
20dn(ν−1)/2 ≥

√
20u/n.

Let now an ε > 0 be given and set ε̃ = ε+ ν/2. We may further assume that ε̃ < 1
2 since

the claim is vacuous for larger ε̃. We choose a Hölder exponent h ∈ (0, 1) so that h > 1−2ε̃
1−ν

(this is possible since 1−2ε̃
1−ν < 1 for ε̃ > ν/2); this is equivalent to the relation

ν − 1
2 < −

1
2 − ε̃
h

.

We can thus pick c between these two values, e.g., c =
(
ν−1

2 −
1/2−ε̃
h

)/
2. Since c > −(ν − 1)/2,

the choice δ = nc guarantees δ ≥
√

20u/n for large enough n and we can apply Equation (4).
As we now show, these choices are sufficient to prove the claim ρ = o(n−1/2+ε̃). To streamline

the computations, we note that (by its definition) we can write h as

h = 1− 2ε̃
1− ν + 4

1− ν λ for some constant λ > 0 and

h = 1− 2ε̃
1− ν − 2λ′′ = 1− 2ε̃

1 + ν − 2λ′ for constants λ′′ > 0 resp. λ′ > ν,

which implies h · c+ (1
2 − ε̃) = −λ < 0 and 2c+ 1 = λ′ > 0. With these preparations we find

(for n large enough to have u ≤ dnν and δ ≥
√

20u/n) that

ρ · n1/2−ε̃ ≤ Chδ
hn1/2−ε̃(1− 3 exp(−δ2n/25)

)
+ 3n1/2−ε̃ ln(u) exp(−δ2n/25)

≤ Chn
−λ︸ ︷︷ ︸

→0

·
(
1− 3 exp(−nλ′/25)︸ ︷︷ ︸

→0

)
+ 3ν ln(dn) exp

(
−3nλ′ + (1

2 − ε̃) ln(n)
)

︸ ︷︷ ︸
→0

→ 0, (n→∞),

which implies the claim. �

3. Input Models
This section formally defines the input models and some related notation.

3.1. Multiset Model
In the random multiset permutation model (a.k.a. exact-profile model), we have parameters
u ∈ N, the universe size, and x ∈ Nu, the fixed profile. An input under this model always has
size n = Σx, and is given by a uniformly chosen random permutation of

1, . . . , 1︸ ︷︷ ︸
x1 copies

, 2, . . . , 2︸ ︷︷ ︸
x2 copies

, . . . , u, . . . , u︸ ︷︷ ︸
xu copies

,
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i.e., the multiset with xv copies of the number v for v = 1, . . . , u. The random multiset
permutation model is a natural generalization of the classical random permutation model
(which considers permutations of an ordinary set). I write C(k)

x for the (random) number
of (ternary) comparisons used by Algorithm 1 to sort a random multiset permutation with
profile x; I will in the following use Cx (omitting k) for conciseness.

3.2. I.I.D. Model
In the (discrete) i.i.d. model (a.k.a. probability model [26] or expected-profile model [47])
with parameters u ∈ N and q ∈ (0, 1)u with Σq = 1, an input of size n consists of n i. i.d.
(independent and identically distributed) random variables U1, . . . , Un with Ui

D= D(q) for
i = 1, . . . , n. The domain [u] is called the universe, and q the (probability vector of the)
universe distribution.

I denote by Xv, for v ∈ [u], the number of elements Ui that have value v; the vector
X = (X1, . . . , Xu) of all these multiplicities is called the profile of the input U = (U1, . . . , Un).
Clearly, X has a multinomial distribution, X D= Mult(n, q), with mean E[X] = nq.

The discrete i.i.d. model is a natural complement of the random-permutation model: we
draw elements from a discrete distribution in the former whereas the latter is equivalent to
drawing i.i.d. elements from any continuous distribution. By Cn,q = C(k)

n,q, I denote the number
of (ternary) comparisons used by Algorithm 1 to sort n i. i.d. D(q) elements (again usually
omitting the dependence on k).

3.3. Relation of the Two Models
The two input models—random multiset permutations with profile x resp. n = Σx i. i.d.
elements with distribution q = x/n—are closely related. Both can be described using an urn
with (initially) n balls, where for every v ∈ [u] exactly xv balls bear the label v. The multiset
model corresponds to drawing n balls from this urn without replacement (ultimately emptying
the urn completely), so that the profile of the input is always x. The i.i.d. model corresponds
to drawing n balls from the the urn with replacement; this leaves the urn unchanged and the n
draws are mutually independent.

In our reference Quicksort (Algorithm 1), we use the first k elements, i.e., the first k balls
drawn from the urn, to determine the pivot: it is the median of this sample. By that, we try to
estimate the median of all n balls (initially) in the urn, so as to obtain a balanced split. In the
multiset model, the k elements are drawn without replacement, whereas in the i.i.d. model, they
are drawn with replacement from the urn. The algorithm is of course the same in both cases
(and indeed chooses sample elements without replacement), but the mutual independence of
elements in the i.i.d. model implies that the sampling process is (in this latter case) equivalent
to sampling with replacement.

Now it is well-known that sampling without replacement yields a better (i.e., less variable)
estimate of the true median than sampling with replacement, and thus leads to more favorable
splits in Quicksort! The above reasoning applies for recursive calls, as well, so that on average
the multiset model is no more costly for Quicksort than the i.i.d. model: E[Cx] ≤ E[Cn,x/n].
We will thus focus on analyzing the i.i.d. model.4

4The full version of this paper will discuss the multiset model and the above reasoning in more detail.



12 Quicksort Is Optimal For Many Equal Keys

4. Previous Work
In the multiset sorting problem, we are given a permutation of a fixed multiset, where value
v ∈ [u] appears xv ∈ N times, for a total of n = Σx elements. Neither u nor x are known to
the algorithm. We consider only comparison-based sorting; unless stated otherwise, all results
concern the number of ternary comparisons, i.e., one comparison has as result <, = or >.

4.1. Multiset Sorting
Multiset sorting attracted considerable attention in the literature. Munro and Raman [35] prove
a lower bound of n ldn −∑u

i=1 xi ldxi − n ld e ± O(logn) (ternary) comparisons, which can
equivalently be written in terms of the entropy as H(x/n)n− n ld e±O(logn). We reproduce
their main argument in Section 10 and extend it to i.i.d. inputs.

The conceptually simplest algorithm coming close to this bound is to insert elements into a
splay tree, collecting all duplicates in linear lists inside the nodes. By “static optimality” of
splay trees (Theorem 2 of Sleator and Tarjan [45]), this needs O(H(x/n)n) comparisons and so
is optimal up to a constant factor. That factor is at least 2 (using semi-splaying), and we need
linear extra space.

Already in 1976, Munro and Spira [34] described simple variants of Mergesort and Heapsort
that collapse duplicate elements whenever discovered. They are optimal up to an O(n) error
term w.r.t. comparisons, but do not work in place. (Their Heapsort requires a non-standard
extract-min variant that does not work in place.)

The first in-place method was the adapted Heapsort of Munro and Raman [35]; it does
not use the element-collapsing technique, but rather removes all duplicates from the heap
in one bulk extract-min operation. None of these methods made it into practical library
implementations since they incur significant overhead w.r.t. existing sorting methods when
there are not many equal keys in the input.

4.2. Quicksort on Multiset Permutations
Building on Burge’s analysis of BSTs [5], Sedgewick analyzed several Quicksort variants on
random permutations of multisets in his 1977 article [38]. For fat-pivot Quicksort without
sampling, he found the exact average-case result (when every permutation of the multiset is
equally likely): 2HQ(x) + n − u ternary comparisons, where HQ(x) = ∑

1≤i<j≤u xixj/(xi +
· · · + xj) is the so-called “Quicksort entropy”. Interestingly, Sedgewick found fat-pivot
partitioning not advisable for practical use at that time; this only changed with the success of
the implementation of Bentley and McIlroy [4].

Two decades later, Sedgewick and Bentley [39, 40] combined this exact, but some-
what unwieldy result with the bound HQ(q) ≤ H(q) ln 2 and concluded that with at most(
2 ln(2)H(x/n) + 1

)
n ternary comparisons on average, fat-pivot Quicksort is asymptotically

optimal in the average case for sorting a random permutation of any fixed multiset5—up to
the constant factor 2 ln 2. The bound HQ(q) ≤ H(q) ln 2 was noted in a seemingly unrelated
context by Allen and Munro [1, Theorem 3.2] that appeared just one year after Sedgewick’s
Quicksort paper [38]. Allen and Munro studied the move-to-root heuristic for self-organizing
BSTs, which they found to have the same search costs in the long run as a BST built by

5 Sedgewick and Bentley [39, 40] compare this number against ld
((

n
x1,...,xu

))
= ld

(
n!/(x1! · · ·xu!)

)
, i.e., the

logarithm of the number of different input orderings (given by the multinomial coefficient). This information-
theoretic argument lower bounds the number of needed yes/no questions (i.e., binary comparisons), but more
elaboration is necessary for ternary comparisons. The lower bound of Munro and Raman [35] (cf. Section 10)
uses a reduction to distinct elements and yields the desired bound for ternary comparisons.



5. New Results 13

inserting elements drawn i.i.d. according to the access distribution until saturation. We will
consider this connection between Quicksort and search trees in detail in Section 6.

Katajainen and Pasanen considered Quicksort-based approaches for multiset sorting. They
argued (indirectly) that a fat-pivot Quicksort uses on average 2n ln(n) −∑u

v=1 xv ld(xv) ±
O(n) comparisons (their Theorem 3), since “Due to the three-way partitions, all redundant
comparisons between a pivot and elements equal to the pivot are avoided” [24]. Note however
that this only shows that we use at most H(x/n)n+ ( 2

ld e − 1)n lnn±O(n) comparisons, which
is not entropy-optimal.

In a companion paper [25] they described a stable Quicksort version with exact median
selection and showed that it needs O(H(x/n)n) comparisons even in the worst case; however
the constant of proportionality is one plus the constant for deterministic median selection, and
thus at least 3 [10].

4.3. Fringe-Balanced Trees
The concept of fringe balancing (see Section 2.4) appears under a handful of other names in the
literature: locally balanced search trees [46], diminished trees [17], and iR / SR trees [21, 22].
I use the term fringe-balanced trees since it is the most vivid term and since it is by now widely
adopted in the analysis-of-algorithms community, see, e.g., the relatively recent monograph [11]
by Drmota. The name “fringe balanced” itself has its origins in a technique called fringe
analysis, which Poblete and Munro [36] applied to BSTs that use what they called a “fringe
heuristic”. The earliest occurrence of “fringe balanced” seems to be in the title of a paper by
Devroye [8]; curiously enough, Devroye did not use this term in the main text of the paper.

Along with the different names come slight variations in the definitions; I remark that our
definition (deliberatively) differs a bit in the base cases from usual definitions to precisely mimic
Quicksort recursion trees.

Many parameters like path length, height and profiles of fringe-balanced trees have been
studied when the trees are built from a random permutation of n distinct elements, see, e.g.,
Drmota [11]. The case of equal elements has not been considered except for the unbalanced
case k = 1, i.e., ordinary BSTs; see Kemp [26], Archibald and Clément [2].

5. New Results
We now state the main claim of this paper. Note that the error terms of asymptotic approxi-
mations in the results mentioned above only involved n, so there was no need to specify an
explicit relation between the profile of the multiset x = (x1, . . . , xu), the universe size u, and the
number of elements n; here we are not so fortunate. We hence include n as sub- or superscript
whenever the dependence on the input size is important.

Theorem 5.1 (Main Result): Let (un)n∈N be a sequence of integers and (q(n))n∈N be a
sequence of vectors with q(n) ∈ (0, 1)un and Σq(n) = 1 for all n ∈ N. Assume further that
(q(n)) has “many duplicates”, i.e., there is a constant ε > 0 so that minv∈[un] q

(n)
v n = Ω(nε) as

n→∞. Abbreviate the corresponding (binary) entropy by Hn = H(q(n)).
The number Cn,q(n) of (ternary) comparisons used by median-of-k Quicksort with fat-pivot

partitioning to sort n elements drawn i.i.d. according to D(q(n)) fulfills

E[Cn,q(n) ] = αkHnn ± O
((
H1−δ
n + 1

)
n
)
, (n→∞),

for any constant δ < 2
k+5 . This number is asymptotically optimal up to the factor αk.
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Previous Approaches And Why They Fail for k > 1. Sedgewick’s analysis [38] is based
on explicitly solving the recurrence for the expected number of comparisons. Since it has a
vector, namely the profile x, as parameter, tricky differencing operations are required to obtain
a telescoping recurrence. They rely on symmetries that are only present for the most basic
version of Quicksort: it has now been 40 years since Sedgewick’s article appeared, and not the
slightest generalization of the analysis to, say, median-of-3 Quicksort, has been found.

Following our approach outlined in the introduction, we can alternatively compute the
expected costs to search each element of the multiset in a BST built by inserting the same
elements in random order. The random number of comparisons can thus be written as the scalar
product Γ Tx, where Γ is the node-depth vector of the BST (cf. Section 6). For an ordinary
BST, once an element is present in the tree, any further insertions of the same value are without
effect; so we obtain the same tree no matter how many duplicates of this element later follow.
This means that the resulting tree has exactly the same shape as when we insert elements drawn
i.i.d. according to D(q) with q = x/n until saturation. The expected search costs in the latter
case are found to be precisely 2HQ(q) + 1 by a comparatively simple argument6 [1]; multiplying
by n gives the Quicksort costs.

For median-of-k Quicksort we obtain k-fringe-balanced trees, and now a certain number of
duplicate insertions do affect the shape of the tree; after all, this is the way the balancing is
achieved in first place (see Section 2.4). As the multiset model corresponds to drawing elements
without replacement, the probabilities for the values change after each insertion. Analyzing the
search cost then essentially reduces to solving the vector-recurrence for Quicksort with pivot
sampling that has resisted all attempts for 40 years. One might conclude that the case k = 1
can be explicitly solved precisely because we were effectively working in the i.i.d. model instead
of the multiset model.

My Assumption. The only hope I see to make progress for k > 1 is thus to cling to the
i.i.d. model even though it is not equivalent to the multiset model anymore. We thereby
retain independent insertions and the analysis of search costs in fringe-balanced trees becomes
conceivable. However, we face a new problem: How often we search each value v is now a
random variable Xv and the random number of comparisons is Γ TX, the product of two random
variables. Since Γ is the node-depth vector of a tree built by inserting a multiset with profile
X (in random order), the two random variables are not independent.

My assumption—Ω(nε) expected occurrences of each value—is a simple sufficient condition
to circumvent this complication (see Section 8). It is possible to slightly weaken it (at the
price of a more clumsy criterion): We can tolerate values with minuscule multiplicities in O(nδ)
as long as δ < ε (so that we have a nonempty separating range (δ, ε)), and the total number of
these rare values is O(n1−ε).

6. Quicksort and Search Trees with Duplicates
The correspondence discussed in Sections 2.3/2.4 extends to inputs with equal keys if we
consider a weighted path length in the tree, where the weight of each node is the multiplicity
Xv of its key value v. This is best seen in a concrete example.

6Assume we search v ∈ [u]. We always have one final comparison with outcome =; the remaining comparisons
are on the search path and compare v to some j 6= v. We compare v to j iff among the values between v
and j, j was the first to be inserted into the tree, which happens with probability qj/(qv + · · ·+ qj). Adding
up the indicator variables for these events and multiplying by the probability qv to search that value v, we
obtain 1 +

∑u

v=1 qv
∑

j 6=v
qj

qv+···+qj
= 1 + 2

∑
1≤i<j≤u

qiqj

qi+···+qj
= 2HQ(x/n) + 1.
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Example. Let the universe size be u = 5 with profile X = (X1, . . . , X5). Assume that X ≥ k
so that each of the five values is used as a pivot in exactly one partitioning step, and the leaves
in the final tree will be empty. Assume we obtain the recursion tree shown in Figure 2.

4

2

1 3

5

Figure 2: Exemplary recursion tree for u = 5. Each node repre-
sents a partitioning step, with the given pivot value.
Child links correspond to child recursive calls. Empty
leaves are not shown. The node-depths vector for this
tree is Γ = (3, 2, 3, 1, 2).

The traditional recurrence for Quicksort sums up the costs of all partitioning steps. Each
such uses one comparison per element, plus the comparisons for selecting the pivot, say, at
most c · k; ignoring the latter, we essentially sum up the subproblem sizes of all recursive calls.
For our recursion tree this yields

X1 + X2 + X3 + X4 + X5 ± c · k
X1 + X2 + X3 ± c · k
X1 ± c · k

X3 ± c · k
X5 ± c · k

comparisons, (each row corresponding to one partitioning step). For example, the step with
pivot 2 gets as input all elements smaller than 4, i.e., X1 +X2 +X3 many, so the number of
comparisons used in this step is X1 +X2 +X3 ± c · k (for some constant c depending on the
median-selection algorithm).

The key observation is that we can also read the result column-wise, aligning the rows by
key values: up to the given error terms, we find that sorting costs are the cost of searching
each input element in the (final) recursion tree! For example, searching 3 in the tree from
Figure 2, we first go left, then right and then find 3 as the pivot, so the costs are 3—which is
precisely the coefficient of X3 in the overall costs. In vector form, we can write the search costs
as Γ TX, where Γ is the node-depths vector of the recursion tree, i.e., the vector of depths
of nodes sorted by their keys. In the example Γ = (3, 2, 3, 1, 2). This is nothing else than a
weighted path length; (more precisely, a weighted internal path length where we include both
endpoints to determine the length of a path).

6.1. Recursion Trees
We formalize the result of the above example in two lemmas. The first one formally captures
the correspondence of Quicksort and search trees.

Lemma 6.1 (Recursion Trees): For any input U = (U1, . . . , Un) (with or without dupli-
cates) the following processes execute the same set of (ternary) key comparisons and produce
the same tree shape:

(1) sorting U with Algorithm 1 and storing the recursion tree, ignoring any calls to Inser-
tionsort,

(2) inserting U successively into an initially empty k-fringe-balanced tree using Algorithm 2.

Proof: We prove the equivalence by induction on n. If n ≤ k − 1, Quicksort stops (it passes
control directly to Insertionsort which we ignore), so the recursion tree consists of one leaf only.
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Likewise in the search tree, all elements are gathered in the single leaf and no comparisons
happen. So assume the claim holds for inputs with less than k elements.

If now n ≥ k, Quicksort chooses a pivot P from the first k elements, compares all elements
to P , and divides the input into segments U (1) and U (2) containing the elements strictly smaller
resp. strictly larger than P . All duplicates of P are put in place and vanish from the recursion
tree.

Now consider what happens upon inserting the kth element in the search tree. This is the
first time a leaf is split and the key for the inner node (the root of the tree) is chosen from
the first k inserted elements overall. We thus choose same value P that was chosen as pivot in
Quicksort. The other elements from the leaf are compared to P and inserted into one of the
two new leaves (unless they are duplicates of P ). Any later insertions must start at the root,
so each of these elements are also compared to P before the insertion continues in one of the
subtrees, or stops if a duplicate of P is found.

So we execute the same set of comparisons in both processes at the root of the tree. Towards
applying the inductive hypothesis for recursive calls resp. subtrees, we note that the relative
order of elements is retained in both processes, so the elements inserted in the left/right child
of the root are exactly U (1) resp. U (2) in both cases. The claim thus follows by induction. �

The proof relies on the fact that Algorithm 1 retains the relative order of elements, but practical
non-stable, in-place implementations (e.g., those in [4, 41]) do not fulfill this requirement.
However, a weaker version of Lemma 6.1 remains valid for any fat-pivot partitioning method:
the two processes always have the same distribution of the number of comparisons and tree
shapes over randomly ordered inputs. In this general case, sorting the input corresponds
to inserting a (different, but uniquely determined) permutation of the input into a fringe-
balanced tree; my Ph.D. thesis [47] gives some more details on that. Such a distributional
version of Lemma 6.1 is sufficient for all results in this paper, so our results apply to practical
implementations, as well.

6.2. Search Costs
The second lemma relates the costs to build a search tree to the cost of searching in the final
tree.

Lemma 6.2 (Search Costs): Let U = (U1, . . . , Un) be an input (with or without duplicates),
let T be built from U by successive insertions using Algorithm 2 and let BU be the number
of comparisons done in this process. Assume there are I inner nodes in T . Searching each
element of U in T using Algorithm 3 (ignoring the sequential search in leaves) uses BU ± c · Ik
comparisons.

Proof: The elements in the leaves of T require the exact same comparisons for insert and
search to find the path to their leaf. (We ignore the sequential search within the leaf). So
consider the key v ∈ [u] of an inner node. The first occurrences of v in U are simply added to
the leaf that later becomes the inner node with label v. Each of these entails one comparison
more when searching for it in T as we paid when inserting it (namely the last comparison with
v that identifies them as equal). However, there are be at most k such elements before the leaf
overflows, and for the remaining duplicate insertions of v, we do the last comparison (same as
in the search). So searching pays up to I · k comparisons more. On the other hand, whenever a
leaf overflows, we need a certain number of comparisons to select the median, say at most c · k
for some constant c. So insertion pays up to I · ck comparisons more than insertion. �
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In general, I can be as large as n/2, but it is certainly bounded by the number u of distinct
keys in the input. Together this yields the formal generalization of our example.

Corollary 6.3 (Quicksort and Search Costs): Let U = (U1, . . . , Un) be an input over
universe [u]. Let T be built from U by successive insertions using Algorithm 2 and denote by
Γ its node-depth vector. The cost of Algorithm 1 on U (ignoring Insertionsort) is Γ TX ± cuk
for X the profile of U . �

Up to an error term of O(u), we can thus consider search costs in fringe-balanced trees instead
of sorting costs in Quicksort. For a special class of such trees, we will be able to determine the
search costs: the saturated fringe-balanced trees. They are the subject of the next section.

7. Saturated Fringe-Balanced Trees
Consider a k-fringe-balanced tree T built by successively inserting elements drawn i.i.d. D(q)
(for a fixed universe distribution q) into an initially empty tree. How does this tree evolve if we
continue inserting indefinitely? Since the universe [u] is finite and duplicate insertions do not
alter T , the process reaches a stationary state almost surely. We call the trees corresponding
to such stationary states saturated trees (w.r.t. the given, fixed universe). The expected search
costs in saturated trees will play a key role in the analysis of Quicksort.

We start by developing a stochastic description of the shape of a random saturated tree T
and set up a recurrence equation for the expected search costs.

7.1. Stochastic Description
Let q ∈ (0, 1)u with Σq = 1 be given. The distribution function of the universe distribution
U D= D(q) is FU (v) = P[U ≤ v] = ∑bvc

i=1 qi for v ∈ [0, u + 1), and I denote its (generalized)
inverse by F−1

U : (0, 1)→ [1..u] with F−1
U (x) = inf{v ∈ [1..u] : FU (v) ≥ x}.

Let P be the label of the root of T ; the distribution of P is a key ingredient to (recursively)
describe saturated trees. (P is also the pivot chosen in the first partitioning step of median-of-k
Quicksort.) When the first leaf overflows, P is chosen as the median of the first k = 2t + 1
inserted values, which are i.i.d. D(q) distributed, so it is given by

P
D= f−1

U (Π), (6)

where Π has a Beta(t+1, t+1) distribution, i.e., it has density fΠ(z) = zt(1−z)t/B(t+1, t+1).
B(a, b) = Γ (a)Γ (b)/Γ (a+ b) is the beta function. This is the generalized inversion method of
random sampling, see Devroye [7, Sec.V.3.4], illustrated in our Figure 3, which is based on
the fact that Beta(t+ 1, t+ 1) is the distribution of the median of 2t+ 1 i. i.d. uniformly in
(0, 1) distributed random variables (see, e.g., [7, Sec. I.4.3]). For convenient notation, we write
D = (D1, D2) = (Π, 1−Π) for the induced spacings; see Figure 4.

We further denote by V1 and V2 the probability that a random element U D= D(q) belongs
to the left resp. right subtree of the root, and by H = P[U = P ] the probability to “hit” the
root’s value. These quantities are fully determined by P (see also Figure 4):

V1 = q1 + · · ·+ qP−1, (7 .1)
V2 = qP+1 + · · ·+ qu, (7 .2)
H = qP . (7 .3)
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P[P = 3]P[P = 3]

fΠ(z)

0
q1 q2 q3 q4 q5 q6

1

Figure 3: Illustration of pivot sampling in the i.i.d.
modelwith u = 6. Π is the x-coordinate
of a point uniformly chosen in the gray
area (the area under the curve), and P
is the index of the interval this point
lies in.

P = 30 q1 q2 q3 q4 q5 q6 1

Π
D1 D2

V1 H V2

Figure 4: Relation of the different quantities in
the stochastic description.

(In the boundary case P = 1, we have V1 = 0, and similarly V2 = 0 for P = u.) Finally, we
denote by Z and Z the “zoomed-in” universe distributions in the left resp. right subtree:

Z =
(
q1
V1
, . . . ,

qP−1
V1

)
, (8 .1)

Z =
(
qP+1
V2

, . . . ,
qu
V2

)
. (8 .2)

Z is not well-defined for P = 1; we set it to the empty vector Z = () in this case. Similarly
Z = () for P = u.

7.2. Search Costs
Let T be a random k-fringe-balanced tree resulting from inserting i.i.d. D(q) elements until
saturation. Each value v ∈ [u] then appears as the key of one inner node of T ; let Γv denote
its depth, i.e., the (random) number of nodes on the path (including endpoints) from the root
to the node containing v in the (random) tree T . The vector Γ = (Γ1, . . . , Γu) is called the
(random) node-depths vector of T (see Figure 2 (page 15) for an example). Finally, we write
Aq = Γ Tq. This is the average depth of a node drawn according to D(q) in the (random)
tree T ; note that we average the costs over the searched key, but consider the tree fixed; so Aq
is a random variable since T remains random: the (weighted) average node depth in a random
saturated k-fringe-balanced tree.

The expected node depth, or equivalently, the expected search cost in the tree, can be
described recursively: The root contributes one comparison to any searched element, and
with probability H the search stops there. Otherwise, the sought element is in the left or
right subtree with probabilities V1 resp. V2, and the expected search costs in the subtrees are
given recursively by AZ and AZ . With the notation from above, this yields a distributional
recurrence for Aq:

Aq
D= 1 + V1A

(1)
Z

+ V2A
(2)
Z
, (u ≥ 1), (9 .1)

A() = 0, (9 .2)

where (A(1)
q ) and (A(2)

q ) are independent copies of (Aq), which are also independent of (V1, V2,
Z,Z).
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8. Quicksort With Many Duplicates
As discussed in Section 5, the attempts to analyze median-of-k Quicksort in full generality have
failed; I therefore confine myself to the following restricted i.i.d. model.

Definition 8.1 (Many Duplicates): Let (q(n))n∈N be a sequence of stochastic vectors, where
q(n) has un entries, i.e., q(n) ∈ (0, 1)un and Σq(n) = 1, for all n ∈ N. An input of size n ∈ N
under the i.i.d. model for (q(n))n∈N consists of the n i. i.d. D(q(n)) distributed random variables.
(q(n))n∈N is said to have many duplicates if there is a constant ε > 0 so that µn = Ω(n−1+ε) as
n→∞ where µn := minr q(n)

r is the smallest probability.

This condition ensures that every value occurs Ω(nε) times in expectation. (It might hence
be more appropriate to say many duplicates of each kind, but I refrain from doing so for
conciseness.) With many duplicates, we expect few degenerate inputs in the following sense.

Definition 8.2 (Profile-Degenerate Inputs): Let ν ∈ [0, 1) and k ∈ N. An input vector
U = (U1, . . . , Un) ∈ [u]n of size n is called (ν, k)-profile-degenerate if not all u elements of
the universe appear at least k times in the first nT = dnνe elements U1, . . . , UnT of U . If the
parameters are clear from the context or are not important, we call U simply profile-degenerate.

For non-degenerate inputs, the recursion tree will depend only on the first nT elements, and
the profile of the remaining n− nT elements is independent of this tree. By choosing nT large
enough to have non-degenerate inputs w.h.p., but small enough to keep the contribution of the
first nT elements to the search costs negligible, we obtain the following theorem.

Theorem 8.3 (Separation Theorem): Consider median-of-k Quicksort with fat-pivot parti-
tioning under a discrete i.i.d. model with many duplicates. The expected number of comparisons
fulfills

E[Cn,q(n) ] = E[Aq(n) ] · n ± O(n1−ε), (n→∞), (10)

for a constant ε > 0 ; more precisely, we need ε ∈ (0, ε̃) when µn = minr q(n)
r = Ω(n−1+ε̃).

Recall that E[Aq(n) ] is the expected search cost in a saturated k-fringe-balanced tree built from
D(q(n)). It depends only on the universe distribution q(n) (and k), but not (directly) on n. We
have therefore separated the influence of n and q (for inputs with many duplicates), and can
investigate E[Aq] in isolation in the next section. The remainder of this section is devoted to
the proof of the separation theorem.

Proof of Theorem 8.3: By Corollary 6.3 we can study search costs in fringe-balanced trees;
the main challenge is that this tree is built form the same input that is used for searching. In
other words, Γ and X are not independent; for non-degenerate inputs, they are however almost
so.

We start noting the following basic fact that we will use many times: In any discrete i.i.d.
model, un ≤ 1

µn
for all n. In particular, an i.i.d. model with many duplicates has un = O(n1−ε).

This is easy to see: Since µn is the smallest entry of q(n) we have 1 = Σq(n) ≥ unµn, so
un ≤ 1/µn. The second part follows directly from Definition 8.1.

Probability of degenerate profiles. We can bound the probability of degenerate inputs using
Chernoff bounds. An elementary far-end lower-tail bound (Lemma 2.3) actually yields the
following slightly stronger asymptotic result.
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Lemma 8.4 (Non-Degenerate w.h.p.): Assume an i.i.d. model with µn = minv q(n)
v =

Ω(n−ρ) for ρ ∈ [0, 1) and let k ∈ N and ρ < ν < 1. Then the probability of an input of size n
to be (ν, k)-profile-degenerate is in o(n−c) as n→∞ for any constant c.

Proof: Let ρ ∈ [0, 1), k and ν ∈ (ρ, 1) be given. Set ε = ν − ρ > 0 and denote by Y = Y (n)

the profile of the first nT = dnνe elements of the input. Clearly Y (n) D= Mult(nT ; q(n)). Assume
w.l.o.g. that the minimal probability is always q(n)

1 = µn. A standard application of the union
bound yields

P
[
¬Y (n) ≥ k

]
= P

[
un∨
v=1

Y (n)
v < k

]

≤
un∑
v=1

P
[
Y (n)
v < k

]
≤ un · P[Y (n)

1 < k]. (11)

Now Y (n)
1

D= Bin(nT , µn) with µn = Ω(n−ρ) = Ω(n−ρ/νT ) = ω
( lognT

nT

)
, and we always have

µn ≤ 1
2 < 1, so we can apply Lemma 2.3: for any given constant c, we have P[Y (n)

1 < k] =
o
(
n
−(c+1)/ν
T

)
. Since un = o( n

logn) = o(n) we find that

nc · P
[
¬Y (n) ≥ k

]
≤

(11)
nc un P[Y (n)

1 < k]

= o
(
nc+1) · o(n− c+1

ν
T

)
= o(1),

since nT ∼ nν . So the input is (ν, k)-degenerate with high probability. �

In Theorem 8.3, we assume an i.i.d. model with many duplicates, i.e., µn = Ω(n−1+ε̃) with
ε̃ ∈ (0, 1], and an ε ∈ (0, ε̃) is given. We set

ν := (1− ε̃) + (1− ε)
2 = 1− ε̃+ ε

2 ∈ (1− ε̃, 1− ε).

Then, by Lemma 8.4, an input of size n is (ν, k)-degenerate with probability in o(n−c) for all c.
This also means that the overall cost contribution of degenerate inputs to expected costs is
in o(n−c) for all c, and hence covered by the error term in Equation (10), since costs for any
input are at most quadratic in n.

We will thus, for the remainder of this proof, assume that the input is not (ν, k)-degenerate,
i.e., each of the values of the universe appears at least k times among the first nT = dnνe
elements.

Independence of Profiles and Trees. We now turn to the distribution of the recursion trees.
The shape of the recursion tree is determined by at most u · k elements: we have at most u
partitioning rounds since each of the u elements of the universe becomes a pivot in at most one
partitioning step, and each partitioning step inspects k elements for choosing its pivot.

Also, for each of the u values in the universe, at most the first k occurrences in the input,
reading from left to right, can influence the tree: if a value v ∈ [u] is already contained in an
inner node, all further duplicates of v are ignored. Otherwise, all occurrences of v must appear
in a single leaf, which can hold up to k − 1 values, so there are never more than k − 1 copies of
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v in the tree. The leaf will overflow at the latest upon inserting the kth occurrence of v, and
then a new internal node with pivot v is created.

In a non-degenerate input, the first k duplicates appear among the first nT elements
U1, . . . , UnT of the input, so all pivots are chosen based on these elements only. Moreover, after
these nT insertions, all u values appear as labels of inner nodes. All leaves are empty then
and remain so for good: the recursion tree has reached a saturated state.

We denote by Γ = Γ (q(n)) the node-depths vector for the final recursion tree and by X̃ the
profile of UnT+1, . . . , Un. Since they are derived from disjoint ranges of the i.i.d. input, Γ and
X̃ are stochastically independent.

Overall Result. We now have all ingredients to compute the overall costs of Quicksort. Recall
that un = O(n1−ε̃) and nT ∼ nν with 1− ε̃ < ν < 1− ε. Since a recursion tree cannot have a
path longer than u, we always have Γ ≤ cu for a fixed constant c that depends only on the
cost measure, i.e., Γv = O(n1−ε̃) for all v ∈ [u]. However, this estimate is very pessimistic; we
know that randomly grown trees have logarithmic height w.h.p. (Section 2.6 resp. Appendix B),
so Γv = O(logn) for all v with high probability. To be concrete, the height is > 13 lnn with
probability in O(n−2) by Proposition 2.4.

We therefore further split the set of non-profile-degenerate inputs into “height-degenerate”
ones where the height of the resulting recursion tree is> 13 lnn and all other ones. This gives the
following stochastic representation conditional on the input being not (ν, k)-profile-degenerate.

Cn,q(n) = Γ TX ± O(u)
= Γ T X̃ ± nT ‖Γ ‖∞ ± O(u)
D= Γ T X̂ ± 2nT ‖Γ ‖∞ ± O(u)

= Γ T X̂ ± O
(
nT
(
1{not height-deg.} · logn+ 1{height-deg.} · u

))
= Γ T X̂ ± O

(
nν
(
1{not height-deg.} · logn+ 1{height-deg.} · n1−ε̃)),

where X̂ is independent of Γ and X̂ D= Mult(n, q(n)). We thus find that

Cn,q(n)
D= Γ T X̂ ± O(n1−ε), (input neither profile- nor height-degenerate). (12)

Taking expectations over all non-degenerate inputs in Equation (12), exploiting independence,
and inserting P[height-deg.] = O(1/n2) (Proposition 2.4) yields

E[Cn,q(n) ] = E
[
Γ T X̂

]
± O

(
n1−ε)

= E[Γ ]T · E[X̂] ± O
(
n1−ε)

=
(
E[Γ ]T · q(n))︸ ︷︷ ︸

E[Aq(n) ]

·n ± O(n1−ε), (13)

with Aq(n) as given in Equation (9) on page 18. As argued above, the contribution of profile-
degenerate inputs is in o(n−c) for any c and thus covered by O(n1−ε), so Equation (13) holds
also for the unconditional expectation. This concludes the proof of Theorem 8.3. �
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9. Expected Search Costs in Saturated Trees
The remaining step of the analysis consists in computing E[Aq], the expected search costs in
saturated k-fringe-balanced trees built from i.i.d. D(q) elements. Previous work only covers
the unbalanced BST case (k = 1), where the result is known exactly: E[Aq] = 2HQ(q) + 1 ≤
2Hln(q) + 1 where HQ(q) = ∑

1≤i<j≤u qiqj/(qi + · · ·+ qj) [1, Theorems 3.1 and 3.4].
Since the recurrence equation for the expected search costs (Equation (9) on page 18) seems

hard to solve, we try to relate it to a quantity that we already know: the entropy of the universe
distribution. The entropy function satisfies an aggregation property: intuitively speaking, we do
not change the entropy of the final outcomes if we delay some decisions in a random experiment
by first deciding among whole groups of outcomes and then continuing within the chosen group.
Indeed, this property was Shannon’s third fundamental requirement when he introduced his
entropy function in 1948 [44, p. 393].

The aggregation property can nicely be formalized in terms of trees, see Lemma 6.2.2E of
Knuth [27, p. 444], and we can use it in a search tree to express the entropy of node access
probabilities as the entropy of the split corresponding to the root plus the entropies of its
subtrees, weighted by their respective total probabilities. More specifically in our setting, we
have q ∈ [0, 1]u with Σq = 1 and we condition on the value P ∈ [u] in the root. Using the
notation from Section 7.1 —the zoomed-in distributions of the subtrees Z, the probability to
go into these subtrees V , and the probability to access the root H—we find that

H(q) = H(V1, H, V2) +
2∑
r=1

VrH(Zr) . (14)

(By linearity, H can be w.r.t. any base; we will use it with Hln below.)
If we likewise condition on the root value P in the recursive description of the search costs,

we find for the expected search costs that

E[Aq] = 1 +
2∑
r=1

VrE[AZr ] . (15)

H(q) and E[Aq] fulfill the same form of recurrence, only with a different toll function: 1
instead of H(V1, H, V2)! We thus try to relate these two toll functions by obtaining bounds
on H(V1, H, V2), and then extend this relation inductively to H(q) and E[Aq]. The technical
difficulties in doing so are that H(V1, H, V2) is very sensitive to q, so we have to do a case
distinction to obtain bounds on it. We hence cannot give matching upper and lower bounds for
H(V1, H, V2), which necessitates the introduction of second order terms to account for the slack
(cf. the constant d below). Separately deriving upper and lower bounds on E[Aq] from that
in terms of H(q), and making them match asymptotically in the leading term, we obtain the
following result.

Theorem 9.1 (Expected Search Costs): Let a sequence of universe distributions (q(n))n∈N
be given for which Hn := Hld(q(n))→∞ as n→∞. The expected search costs of a saturated
k-fringe-balanced tree (with k = 2t+ 1) built from i.i.d. D(q(n)) keys is given by

E[Aq(n) ] = αkHld(q(n)) ± O
(
Hn

t+2
t+3 log

(
Hn
))
, (n→∞).
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Proof: We start with the upper bound. We actually derive a whole class of upper bounds
characterized by a parameter ε.

Lemma 9.2 (Upper Bound): Let E[Aq] satisfy Equation (15), and let ε ∈ (0, 1) be given.
Define

c = cε = 1
H̃ − 4εh̃

,

d = dε = (t+ 1) B(t+ 1, t+ 1)
εt+2(1− ε)t ,

where H̃ = Hk+1 −Ht+1

and h̃ = Hk −Ht .

If c ≥ 0, we have that E[Aq] ≤ c · Hln(q) + d for all stochastic vectors q.

Proof: Let ε with c = cε ≥ 0 be given. Note that d = dε ≥ 0 holds for all ε. The proof is
by induction on u, the size of the universe. If u = 0, i.e., q = (), we have E[Aq] = 0, see
Equation (9 .2). Since d ≥ 0 and here Hln(q) = 0, the claim holds.

Now assume that u ≥ 1 and the claim holds for all (strictly) smaller universe sizes. We start
by taking expectations in Equation (9) and conditioning on the pivot value P :

E[Aq] = 1 + EP

[ 2∑
r=1

E[VrAZr | P ]
]

= 1 + EP

[ 2∑
r=1

Vr E[AZr | P ]
]

using the inductive hypothesis

≤ 1 + EP

[ 2∑
r=1

Vr (cHln(Zr) + d)
]

= 1 + c · E
[ 2∑
r=1

VrHln(Zr)
]

+ d · E[ΣV ]

=
(14)

c · Hln(q) + 1 − c · E
[
Hln(V , H)

]
+ d · E[ΣV ]︸ ︷︷ ︸

$

(16)

It remains to show that $ ≤ d. We consider two cases depending on the maximal probability
λ = max1≤v≤u qv.

1. Case λ < ε:
In this case, all individual probabilities are smaller than ε, so it is plausible that we can
bound the expected entropy of partitioning E[Hln(V , H)] from below. The subuniverse
probabilities Vr are quite close to the continuous spacings Dr: by definition (see also
Figure 4 on page 18) we have in interval-arithmetic notation

Vr = Dr + (−2ε, 0), (r = 1, 2). (17)

For the expected partitioning entropy, this means

E[Hln(V,H)] ≥
2∑
r=1

E
[
Vr ln(1/Vr)

]
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using Equation (17) and x log(1/x) ≥ (x− ε) log(1/(x+ ε′)) for ε, ε′ ≥ 0 and x ∈ [0, 1],
this is

≥
2∑
r=1

E
[
(Dr − 2ε) ln(1/Dr)

]
= E

[
Hln(D)

]
+ 2ε

2∑
r=1

E
[
ln(Dr)

]
=

Lemma 2.6, (3)
H̃ + 2ε

2∑
r=1

(
ψ(t+ 1)− ψ(k + 1)

)
= H̃ − 4ε(Hk −Ht)
= H̃ − 4εh̃
= 1/c .

Hence c satisfies c ≥ 1
/
E[Hln(V , H)] ≥ 0, which implies

$ ≤ 1 − 1
E[Hln(V , H)] · E

[
Hln(V , H)

]
+ d · E[ΣV ]︸ ︷︷ ︸

≤1≤ d.

The inductive step is proven in this case.

2. Case λ ≥ ε:
In the second case, there is a likely value v ∈ [u] with qv ≥ ε. We will show a lower bound
for having this value as label of the root.
We have Π D= Beta(t+ 1, t+ 1) and hence fΠ(z) = zt(1−z)t

B(t+1,t+1) . Recall that P = f−1
U (Π)

(Figure 3), so we can bound the probability to draw v from below by the smallest value
of the integral over any ε-wide strip of the density:

P[P = v] ≥ min
0≤ζ≤1−ε

∫ ζ+ε

z=ζ
fΠr(z) dz

= min
0≤ζ≤1−ε

∫ ζ+ε

z=ζ

zt(1− z)t
B(t+ 1, t+ 1) dz

=
∫ ε

z=0

zt(1− z)t
B(t+ 1, t+ 1) dz

≥
∫ ε

0

zt(1− ε)t
B(t+ 1, t+ 1) dz

= εt+1(1− ε)t
(t+ 1) B(t+ 1, t+ 1) . (18)

For the expected hitting probability, we thus have for any q with a qv ≥ ε that

E[H] ≥ qv · P[P = v] ≥
(18)

εt+2(1− ε)t
(t+ 1) B(t+ 1, t+ 1) = 1/d, (19)

so d ≥ 1
/
E[H]. This implies

$ − d ≤ 1− c · E
[
Hln(V , H)

]
+ d · E[ΣV ]− d

≤ 1− (1− E[ΣV ]) · 1
E[H]

= 0.

This concludes the inductive step for the second case.
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The inductive step is thus done in both cases, and the claim holds for all stochastic vectors q
by induction. �

The lower bound on E[Aq] uses basically the same techniques; only a few details differ.

Lemma 9.3 (Lower Bound): Let E[Aq] satisfy Equation (15), and let ε ∈ (0, 1/e) be given.
Define

c = cε = 1
H̃ + 4ε+ ε ln(1/ε)

,

d = dε =
(
cε ln(3) − 1

)(t+ 1) B(t+ 1, t+ 1)
εt+2(1− ε)t ,

where H̃ = Hk+1 −Ht+1 .

If d ≥ 0, we have that E[Aq] ≥ c · Hln(q)− d all stochastic vectors q.

Proof: Let ε ∈ (0, 1/e) with d = dε ≥ 0 be given; c = cε ≥ 0 holds for any ε. The proof is
similar to that of Lemma 9.2, so we emphasize the differences and skip identical parts. If u = 0,
i.e., q = (), the claim holds since d ≥ 0.

Now assume u ≥ 1 and that the claim holds for all (strictly) smaller universe sizes. As for
the upper bound, we find from the recurrence using the inductive hypothesis

E[Aq] ≥ 1 + EP

[ 2∑
r=1

Vr (cHln(Zr)− d)
]

=
(14)

c · Hln(q) + 1 − c · E
[
Hln(V , H)

]
− d · E[ΣV ]︸ ︷︷ ︸

$

, (20)

and it remains to show that $ ≥ −d. We consider the same two cases for λ = max1≤v≤u qv.

1. Case λ < ε:
In this case, we bound the expected entropy of partitioning, E[Hln(V , H)], from above.
Similar to the computation for the upper bound, we find

E[Hln(V , H)] =
2∑
r=1

E
[
Vr ln(1/Vr)

]
+ E

[
H ln(1/H)

]
using Equation (17) and (x−ε) log(1/(x−ε)) ≤ x ln(1/x)+ε′ for 0 ≤ ε ≤ ε′ and x ∈ [0, 1],
and that x ln(1/x) is increasing for x ∈ [0, 1/e], this is

≤
2∑
r=1

E
[
Dr ln(1/Dr) + 2ε

]
+ ε ln(1/ε)

=
(2)

H̃ + 4ε + ε ln(1/ε)

So c satisfies c ≤ 1
/
E[Hln(V , H)], which implies

$ ≥ 1 − 1
E[Hln(V , H)] · E

[
Hln(V , H)

]
− d · E[ΣV ]︸ ︷︷ ︸

≤1
≥ −d.

The inductive step is proven in this case.
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2. Case λ ≥ ε:
In the second case, there is a likely value v ∈ [u] with qv ≥ ε. By the same arguments as
in the proof of Lemma 9.2, we find

E[H] ≥
(19)

εt+2(1− ε)t
(t+ 1) B(t+ 1, t+ 1) ,

so that d ≥
(
c ln(3)− 1

)/
E[H]. This implies

$ + d = 1 − c · E
[
Hln(V , H)︸ ︷︷ ︸
≤ln(3)

]
+ d

(
1− E[ΣV ]

)

≥ 1 − c · ln(3) + c ln(3)− 1
E[H] · E[H]

= 0.

This concludes the inductive step also in the second case, so the claim holds for all
stochastic vectors q by induction. �

We observe that cε converges to 1/H̃ for both bounds as ε → 0, so there is hope to show
E[Aq] ∼ Hln(q)/H̃. We have to be precise about the limiting process and error terms, though.

Let (q(i))i∈N be a sequence of universe distributions for which Hi := Hln(q(i)) → ∞ as
i→∞. Now, consider cε and dε from Lemma 9.2. As functions in ε, they satisfy for ε→ 0

cε = 1
H̃
± O(ε) , dε = O(ε−t−2) (21)

Since the bounds above hold simultaneously for all feasible values of ε, we can let ε depend on
Hi. If we set

ε = εi = Hi−
1
t+3 (22)

we have εi → 0 as i→∞ and so cεi > 0 for large enough i. Then we have by Lemma 9.2

E[Aq(i) ] ≤ cεiHi + dεi =
(21)

Hi
H̃
± O

(
Hi

t+2
t+3
)
, (i→∞). (23)

Now consider the lower bound. For cε and dε from Lemma 9.3 we similarly find as ε→ 0
that

cε = 1
H̃
± O(ε log ε) , dε = O(ε−t−2). (24)

With the same εi as above (Equation (22)) we have dεi ≥ 0 for large enough i, so by Lemma 9.3
it holds that

E[Aq(i) ] ≥ Hi
H̃
± O

(
Hi

t+2
t+3 logHi

)
, (i→∞). (25)

Together with Equation (23), this concludes the proof of Theorem 9.1. �
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10. Lower Bound For I.I.D. Sorting
We follow the elegant argument of Munro and Raman [35] for multiset sorting to obtain a lower
bound for the discrete i.i.d. model. By averaging over the profiles, we obtain essentially the
result of their Theorem 4, but with a weaker error term.

Theorem 10.1 (Lower Bound): Let u = O(nν) for a constant ν ∈ [0, 1) and q ∈ (0, 1)u
with Σq = 1. For any constant ε > 0, Hld(q)n− n/ ln(2)± o

(
n(1+ν)/2+ε) ternary comparisons

are necessary in expectation as n→∞ to sort n i. i.d. D(q) elements by any comparison-based
algorithm.

We remark that one might expect to require at least Hld(q)n comparisons since this is the
entropy of a vector of n i. i.d. D(q) elements; but such entropy arguments must be taken with
care: for u much larger than n, u � n, we might have H(q) � ldn; then nH(q) � n ldn is
certainly not a lower bound for sorting. (Theorem 10.1 does not make a statement for such a
case since the error bound dominates then.)

Proof of Theorem 10.1: Let U1, . . . , Un be n i. i.d. D(q) numbers and V1, . . . , Vn be a random
permutation of [n]. The n vectors (Ui, Vi) are then all distinct, and all n! relative rankings
w.r.t. lexicographic order are equally likely.

Assume we can sort U1, . . . , Un with E[Cn,q] ternary comparisons on average. We use this
method to partially sort the n vectors (U1, V1), . . . , (Un, Vn) according to the first component
only. We can then complete the sorting using Mergesort (separately) on each of the u classes
of elements with same first component. (Any sorting method must already have determined
the borders between these classes while sorting according to U1, . . . , Un.) The total number of
comparisons we use is then no more than

E[Cn,q] +
u∑
v=1

E
[
Xv ld(Xv)

]
= E[Cn,q] + nE

[ u∑
v=1

Xv

n
ld
(
Xv

n

)
︸ ︷︷ ︸

=Hld(X/n)

]
+ n ld(n)

with ρ as in Lemma 2.7
= n ld(n) + E[Cn,q] + nHld(q) ± n

ρ

ln(2)
≥ n ld(n)− n/ ln(2) ± O(logn)

since the latter is the well-known lower bound on the average number of (ternary or binary)
comparisons for sorting a random permutation of n distinct elements, see, e.g., Equation 5.3.1–
(37) of Knuth [27]. It follows that

E[Cn,q] ≥ Hld(q)n− n

ln(2) ± n
ρ

ln(2) .

For u = O(nν) with ν ∈ [0, 1) we get asymptotically for any ε > 0

E[Cn,q] ≥ Hld(q)n− n

ln(2) ± o
(
n

1+ν
2 +ε). �
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11. Proof of Main Result
With all these preparations done, the proof of our main result reduces to properly combining
the ingredients developed above.

Proof of Theorem 5.1: Let the sequence (q(n))n∈N be given. By assumption the model has
many duplicates, i.e., µn = Ω(n−1+ε). We thus obtain from Theorem 8.3 that

E[Cn,q(n) ] = E[Aq(n) ] · n ± O(n1−δ′), (n→∞),

for any δ′ ∈ (0, ε). If Hn = H(q(n))→∞ as n→∞, we can continue with Theorem 9.1 right
away. To cover the case that (Hn)n∈N contains an infinite subsequence that is bounded, we add
an error bound of O(n); this dominates E[Aq(n) ] · n (making the claim is essentially vacuous)
for such inputs. So in any case we have that

E[Cn,q(n) ] = αkHn · n ± O(H1−δ
n n+ n+ n1−δ′)

= αkHn · n ± O(H1−δ
n n+ n), (n→∞)

for any δ ∈ (0, 1
t+3) = (0, 2

k+5). The optimality claim follows directly by comparing with the
lower bound in Theorem 10.1. �

12. Conclusion
Computer scientists are so accustomed to the random-permutation model that the possibility
of duplicate keys in sorting is easily overlooked. The following formulation (which is equivalent
to random permutations) makes the presence of an underlying restriction more obvious: we
sort n numbers drawn independently from the same continuous probability distribution. The
assumption of i.i.d. samples is as natural as declaring all orderings equally likely, and certainly
adequate when no specific knowledge is available; even more so for Quicksort where randomly
shuffling the input prior to sorting is best practice. The use of a continuous distribution, though,
is a restriction worth questioning; what happens if we use a discrete distribution instead?

The most striking difference certainly is that with a discrete distribution, we expect to see
equal elements appear in the input. There are more differences, though. If the distribution is
(absolutely) continuous (i.e., attains values in a real interval and has a continuous density),
almost surely all elements are different and the ranks form a random permutation [29], no
matter how the continuous distribution itself looks like. By contrast, different discrete universe
distributions each yield a different input model; in particular the universe size u can have a
great influence.

In this paper, I presented the first analysis of median-of-k Quicksort under the model
of independently and identically distributed numbers from a discrete universe distribution.
I showed that it uses asymptotically a factor αk = ln(2)/

(
Hk+1 −H(k+1)/2

)
more comparisons

than necessary in expectation. Analytical complications necessitated the restriction to the
case where every element is expected to appear Ω(nε) times for some ε > 0, but I conjecture
that the result generalizes beyond the limitations of the current techniques (see the comments
below).

The very same statement—asymptotically a factor αk over the lower bound—holds in the
i.i.d. model with a continuous distribution, so, apart from the above restriction, we can say
that median-of-k Quicksort is asymptotically optimal to within the constant factor αk for any
randomly ordered input. It is reassuring (and somewhat remarkable given the big differences in
the derivations that lead to it) that we obtain the same constant in both cases: the relative
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benefit of pivot sampling is independent of the presence or absence of equal keys. Table 1 shows
the first values of αk; most savings happen for small k.

k αk saving over k = 1
1 1.38629 —
3 1.18825 14.3 %
5 1.12402 18.9 %
7 1.09239 21.2 %
9 1.07359 22.6 %
∞ 1 27.9 %

Table 1: A few values of αk and the relative
improvement over the case without
sampling.

Exploiting the correspondence of Quicksort and search trees, we can also express the
result in terms of trees: The expected search costs in search trees built from continuous i. i.d.
(or randomly permuted and distinct) data is of order logn, whereas for discrete i. i.d. data
(with many duplicates), it is of order H(q). Fringe-balancing allows to lower the constant of
proportionality, αk, and has the same relative effect in both cases.

A particularly simple example of distributions covered by our analysis is the uniform
distribution, q = ( 1

u , . . . ,
1
u), where u = un = O(n1−ε). This model coincides with the random

u-ary files studied by Sedgewick [38] in his 1977 article. Since the entropy of the discrete
uniform distribution is simply H(q) = ld(u), we obtain E[Cn,q] ∼ αkn ld(u)—the same form as
for random permutation only with ldn replaced by ldu. For the special case of the uniform
distribution, we can also strengthen the error bound of Theorem 9.1 for E[Aq] to O(1) using
different techniques; see my Ph.D. thesis [47, Sec. 8.7.7] for details.

I surveyed previous results on multiset sorting, which uses a different input model. We
cannot directly relate the result, but we have seen (in Section 3.3) that the i.i.d. model yields
at least an upper bound. (A more fine-grained discussion of the relation of the two models is
deferred to a full version of this article.)

Since Hk+1 −H(k+1)/2 ∼ ln(k + 1)− ln((k + 1)/2) = ln(2) as k →∞, we have αk → 1, so
we have confirmed the conjecture of Sedgewick and Bentley for inputs with many duplicates:
by increasing k, we obtain sorting methods that are arbitrarily close to the asymptotically
optimal number of comparisons for randomly ordered inputs, and in particular for random
permutations of a multiset.

Extensions and Future Directions. The methods used in this paper can readily be generalized
to analyze skewed sampling, i.e., when we pick an order statistic other than the median of the
sample. It is known that the number of comparisons is minimal for the median [30], so this
might not be very interesting in its own right, but it can be used to analyze ninther sampling
and similar schemes [47, Sec. 6.4].

I conjecture that αkH(x/n)n is the correct leading term for any profile x ∈ Nu. If we have,
however, a discrete i.i.d. model with qv � n−1 so that v is unlikely to be present in the input at
all, a modified “entropy” must appear instead of H(q). (This case cannot occur in the multiset
model since xv ≥ 1.) In the limit when all individual qi are small, this modified entropy would
have to equal ld(n). Identifying such a unified expression is an interesting challenge.

Another line of future research is to extend the present analysis to multiway Quicksort,
e.g., the Yaroslavskiy-Bentley-Bloch dual-pivot Quicksort used in Java. The uniform case is
known [47], but the techniques of the present paper do not carry over: the partitioning costs
for such methods also depend on q, which means that we do not get matching lower and upper
bounds for E[Aq] using the method of Section 9 any more.
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Appendix
A. Index of Notation
In this appendix, I collect the notations used in this work.

A.1. Generic Mathematical Notation
N, N0, Z, Q, R, C . . . .natural numbers N = {1, 2, 3, . . .}, N0 = N ∪ {0}, integers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}, rational numbers Q = {p/q : p ∈ Z ∧ q ∈ N}, real
numbers R, and complex numbers C.

R>1, N≥3 etc. . . . . . . . restricted sets Xpred = {x ∈ X : x fulfills pred}.

ln(n), ld(n) . . . . . . . . . natural and binary logarithm; ln(n) = loge(n), ld(n) = log2(n).

x . . . . . . . . . . . . . . . . . . to emphasize that x is a vector, it is written in bold;
components of the vector are not written in bold: x = (x1, . . . , xd);
unless stated otherwise, all vectors are column vectors.

X . . . . . . . . . . . . . . . . . to emphasize that X is a random variable it is Capitalized.

[a, b) . . . . . . . . . . . . . . . real intervals, the end points with round parentheses are excluded, those with
square brackets are included.

[m..n], [n] . . . . . . . . . . integer intervals, [m..n] = {m,m+ 1, . . . , n}; [n] = [1..n].

‖x‖p . . . . . . . . . . . . . . .p-norm; for x ∈ Rd and p ∈ R≥1 we have ‖x‖p =
(∑d

r=1 |xr|
)1/p.

‖x‖∞ . . . . . . . . . . . . . .∞-norm or maximum-norm; for x ∈ Rd we have ‖x‖∞ = maxr=1,...,d |xr|.

x+ 1, 2x, f(x) . . . . . . element-wise application on vectors; (x1, . . . , xd) + 1 = (x1 + 1, . . . , xd + 1) and
2x = (2x1 , . . . , 2xd); for any function f : C→ C write
f(x) = (f(x1), . . . , f(xd)) etc.

Σx . . . . . . . . . . . . . . . . “total” of a vector; for x = (x1, . . . , xd), we have Σx =
∑d
i=1 xi.

xT , xTy . . . . . . . . . . . . “transpose” of vector/matrix x; for x,y ∈ Rn, I write xTy =
∑n
i=1 xiyi.

Hn . . . . . . . . . . . . . . . .nth harmonic number; Hn =
∑n
i=1 1/i.

O(f(n)), ±O(f(n)), Ω, Θ, ∼
asymptotic notation as defined, e.g., by Flajolet and Sedgewick [15, Section
A.2]; f = g ±O(h) is equivalent to |f − g| ∈ O(|h|).

x± y . . . . . . . . . . . . . . .x with absolute error |y|; formally the interval x± y = [x− |y|, x+ |y|]; as with
O-terms, I use “one-way equalities”: z = x± y instead of z ∈ x± y.

Γ (z) . . . . . . . . . . . . . . . the gamma function, Γ (z) =
∫∞

0 tz−1e−t dt.

ψ(z) . . . . . . . . . . . . . . . the digamma function, ψ(z) = d
dz ln(Γ (z)).
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B(α, β) . . . . . . . . . . . . .beta function; B(α, β) =
∫ 1

0 z
α−1(1− z)β−1 dz = Γ (α)Γ (β)/Γ (α+ β).

Ia,b(α, β) . . . . . . . . . . . incomplete regularized beta function;
Ia,b(α, β) =

∫ b
a
zα−1(1− z)β−1 dz

/
B(α, β).

A.2. Stochastics-related Notation
P[E], P[X = x] . . . . . . probability of an event E resp. probability for random variable X to attain

value x.
E[X] . . . . . . . . . . . . . . . expected value of X; I write E[X | Y ] for the conditional expectation of X

given Y , and EX [f(X)] to emphasize that expectation is taken w.r.t. random
variable X.

X D= Y . . . . . . . . . . . . . equality in distribution; X and Y have the same distribution.
1E , 1{X≤5} . . . . . . . . . indicator variable for event E, i.e., 1E is 1 if E occurs and 0 otherwise;

{X ≤ 5} denotes the event induced by the expression X ≤ 5.
B(p) . . . . . . . . . . . . . . .Bernoulli distributed random variable; p ∈ [0, 1].
D(p) . . . . . . . . . . . . . . .discrete random variable with weights p; for p ∈ [0, 1]d, for I D= D(p), we have

I ∈ [1..d] and P[I = i] = pi for i ∈ [d] and 0 otherwise.
Beta(α, β) . . . . . . . . . . beta distributed random variable with shape parameters α ∈ R>0 and

β ∈ R>0.
Bin(n, p) . . . . . . . . . . . binomial distributed random variable with n ∈ N0 trials and success

probability p ∈ [0, 1]; X D= Bin(n, p) is equivalent to
(X,n−X) D= Mult(n; p, 1− p).

Mult(n,p) . . . . . . . . . .multinomially distributed random variable; n ∈ N0 and p ∈ [0, 1]d with
Σp = 1.

HypG(k, r, n) . . . . . . . hypergeometrically distributed random variable; n ∈ N, k, r,∈ {1, . . . , n}.

H(p), Hld(p), Hln(p) Shannon entropy of information theory; Hld(p1, . . . , pd) =
∑d
r=1 pr ld(1/pr);

similarly Hln is the base-e entropy. Hln(p1, . . . , pd) =
∑d
r=1 pr ln(1/pr);

I write H for Hld.
stochastic vector . . . . .A vector p is called stochastic if 0 ≤ p ≤ 1 and Σp = 1.
w.h.p. (event) . . . . . . .Let E = E(n) be an event that depends on a parameter n. I say “E occurs

w.h.p.” if P[E(n)] = 1±O(n−c) as n→∞ for any constant c.
w.h.p. (bound) . . . . . .Let X1, X2, . . . be a sequence of real random variables. I say “Xn = O(g(n))

w.h.p.” if for every constant c there is a constant d so that
P[|Xn| ≤ d|g(n)|] = 1±O(n−c) as n→∞.

A.3. Notation for the Algorithm
n . . . . . . . . . . . . . . . . . . length of the input array, i.e., the input size.
u . . . . . . . . . . . . . . . . . . universe size u ∈ N.
x . . . . . . . . . . . . . . . . . .fixed profile in the multiset model; x ∈ Nu, Σx = n

q . . . . . . . . . . . . . . . . . . probability weights of the (discrete) i.i.d. model; q ∈ (0, 1)u, Σq = 1.
Ui . . . . . . . . . . . . . . . . . ith element of the input; in the i.i.d. model, Ui D= D(q), for all i and

(U1, . . . , Un) are (mutually) independent.
k, t . . . . . . . . . . . . . . . . sample size k = 2t+ 1 for t ∈ N0;
ternary comparison . . operation to compare two elements, outcome is either <, = or >.
X . . . . . . . . . . . . . . . . . profile of the input; Xv is the number of occurrences of value v in U1, . . . , Un;

X D= Mult(n, q).
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A.4. Notation for the Analysis
Cx . . . . . . . . . . . . . . . . . (random) number of (ternary) comparisons needed by Algorithm 1 to sort a

random permutation of a multiset with profile x; the dependence on k is left
implicit.

Cn,q . . . . . . . . . . . . . . . (random) number of (ternary) comparisons needed by Algorithm 1 to sort n
i. i.d. D(q) numbers; the dependence on k is left implicit.

Π . . . . . . . . . . . . . . . . . continuous pivot value; Π D= Beta(t+ 1, t+ 1)

D = (D1, D2) . . . . . . . continuous spacings of the unit interval (0, 1) induced by Π, i.e.,
D = (Π, 1−Π).

P . . . . . . . . . . . . . . . . . . (random) value of chosen pivot in the first partitioning step; P = F−1
U (Π), for

FU the cumulative distribution function of D(q).

V = (V1, V2) . . . . . . . . non-pivot class probabilities, see Equation (7).

H . . . . . . . . . . . . . . . . . hitting probability, Equation (7).

Z = (Z,Z) . . . . . . . zoomed-in distributions; see Equation (8).

Γ . . . . . . . . . . . . . . . . . .Γ ∈ Nu0 ; node-depths vector in search tree; Γv is the random cost of searching
value v ∈ [u].

Aq . . . . . . . . . . . . . . . . . random q-weighted average node depth of a k-fringe-balanced tree built from
inserting D(q) elements till saturation, Aq = Γ Tq; see Equation (9).

B. Height of Recursion Trees
In this appendix, we recapitulate the well-known folklore result that Quicksort recursion trees—
or equivalently binary search trees—have logarithmic height with high probability. We will
show that the same is true for fringe-balanced trees (and thus median-of-k Quicksort) and
inputs with equal keys; this is not surprising as the latter are more balanced than ordinary
BSTs, but a formal proof is in order for two reasons: we (a) employ a stricter notion of
“w.h.p.” (cf. Section 2.1) than often used, and (b) there is a pitfall in the folklore proof
using good-split-bad-split indicators that has not been rigorously addressed anywhere (to my
knowledge).

We start with a result of Mahmoud [28] (page 101) for ordinary binary search trees that is
a prototypical for the types of results we are after in this section. (We will confine ourselves to
slightly less accurate statements, though.)

Lemma B.1 (BSTs Have Log-Height with High Probability):
For any ε > 0 it holds: The probability that a binary search tree built from a random permutation
of n distinct elements has height ≥ (α + ε) lnn is at most Kcα+εn−ηα+ε = O(n−ηα+ε) where
K > 0 is some constant (independent of ε), cx = 1/

(
Γ (x)(1− 2/x)

)
, ηx = −

(
x ln(2/x) + x− 1

)
and α ≈ 4.31107 is the unique root of ηx for x ∈ (4, 5). �

By Lemma 6.1 this result translates immediately to the height of Quicksort recursion trees.
Mahmoud’s derivation is based on extensive knowledge on random BSTs (also given in [28]),

in particular he uses the exact expected number of leaves at any given level. Generalizing this
for fringe-balanced trees with duplicates seems a daunting task.

Variants of Lemma B.1 are sometimes covered in (advanced) algorithms courses and
textbooks, see, e.g., Exercise 4.20 of Mitzenmacher and Upfal [33] Section 2.4 of Dubhashi and
Panconesi [12], and Section 4.7 of Erickson [13]. There, a more intuitive argument is given by
bounding the probability of many “bad” splits at nodes using Chernoff bounds, however neither
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of these resources gives a detailed formal proof. The argument is appealingly simple, and fairly
easy to extend, but it indeed requires some care to really guarantee the needed independence.
We therefore give a detailed proof below and obtain the following result.

Lemma B.2 (Logarithmic Height of Recursion Trees With High Probability):
Let T be a k-fringe-balanced search tree built by inserting n i. i.d. D(q) numbers into an initially
empty tree. Then T has height O(logn) w.h.p.; more precisely T has height ≥ c lnn with
probability ≤ 2nη for n ≥ n0 = e30 000 (i.e., with probability O(nη)), where

η = 1− 2cδ2

δ = p− 1
c
·
( 1

ln(1/α) + 1
)

p = 0.99− 2Iα−0.01,1(t+ 1, t+ 1) = 0.99− 2 k!
t! t!

∫ 1

α−0.01
xt(1− x)t dx

where α ∈ (1
2 , 1) is a parameter that can be chosen arbitrarily as long as δ > 0. This result is

independent of q, and holds in particular when q depends on n.

k c η

1 12 −1.72
1 13 −2.86
1 20 −11.53
3 9 −1.94
3 10 −3.37
3 20 −19.02

k c η

5 7 −0.70
5 8 −2.24
5 20 −22.45
∞ 4 −2.03
∞ 5 −4.01
∞ 20 −33.71

Table B.1: A few exemplary values for the con-
stants in Lemma B.2.

The given value for n0 is clearly ridiculous; the intention of Lemma B.2 is to give a rigorous
proof of the asymptotic result. As we will see in the proof, one can trade larger c values for
smaller n0, and all constants could be improved by a stronger version of the Chernoff bound. It
is not my intention to do so here.

We note that for Quicksort, an alternative route is to analyze a modified version of the
algorithm that makes some technicalities vanish and performs no better than the original
Quicksort; see, e.g., Seidel [42]. Moreover, much stronger concentration results are known
for the overall number of comparisons in Quicksort, see McDiarmid and Hayward [32] or the
streamlined description in Section 7.6 of Dubhashi and Panconesi [12]. There the exponent of
the probability bound is arbitrarily large for one fixed bound c lnn. It seems not possible to
obtain such a stronger bound for the height of the tree, though.

Concentration results are typically framed in terms of randomized Quicksort. To emphasize
the relation between Quicksort recursion trees and search trees, our reference Quicksort (Al-
gorithm 1) is not randomized, but deterministically chooses the first elements for the sample.
Causing an exceptionally high recursion tree can hence be attributed to a specific input in our
scenario; the following definition expresses that idea.

Definition B.3 (Height-degenerate Inputs): An input of length n is called h-height-
degenerate (w.r.t. our reference fat-pivot median-of-k Quicksort) if the recursion tree of
Quicksortk on this input has a height > h ln(n).

From Lemma B.2 we immediately obtain the following fact.
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Corollary B.4 (Probability of Height-Degeneracy): For any k, the probability that an
input of n elements is 13-height-degenerate is in O(1/n2) as n→∞. �

We will in the following simply use “height-degenerate” to mean 13-height-degenerate.

∗ ∗ ∗

Proof of Lemma B.2: Let k = 2t + 1 be given. We will follow the folklore proof that the
height of randomly grown BSTs is typically logarithmic: we determine a constant probability
p > 0 (independent of n) so that a single partitioning step yields a reasonably balanced split;
since long paths in the recursion tree cannot contain more than a certain number of such
balanced nodes, we can bound the probability of seeing such a long path in a recursion tree.

Outline. A few technicalities need to be addressed in the formal proof:

1. To tweak constants, we will introduce a parameter α ∈ (1/2, 1) and require subproblems
at a node v to contain at most αn(v) elements, where n(v) is the size of the sublist that
v corresponds to.

2. The probability to lose a given fraction of elements depends on the subproblem size (a
discretization effect) and in our case of inputs with duplicates also on q. We can therefore
only lower bound the probability for a balanced node by a constant p. To obtain a term
for p that we can actually evaluate, we resort to asymptotic approximations, which are
only a valid lower bound for sublist sizes larger than a threshold n0.

3. Since the precise probability to lose a fraction of elements depends on the sublist size,
also the events that a certain node be balanced are dependent.

The last point is a problem since the standard Chernoff bounds requires mutual independence;
nevertheless this issue is not addressed in the sources cited above. Since the pivot choices
themselves are done independently, we only need a little trick to obtain independent events:
A node is only considered good when it is balanced and additionally a biased coin flip yields
heads, where the bias is chosen so that the overall probability for a good node is the same for
all nodes. This gives us a sequence of independent indicator variables to which we can apply
our machinery as usual.

Balanced nodes. We use the following notation in this proof. v denotes a node of the recursion
tree. By n(v) we mean the sublist size at v, i.e., the number of elements in the subproblem of
the recursive call that v corresponds to. d(v) denotes the depth of v, i.e., the number of nodes
on the path from the root to v, including endpoints. Finally, if n(v) ≥ k, we use Jr(v), r = 1, 2,
to the denote the size of the rth subproblem at v; this is the subproblem size of v’s left resp.
right child.

We are now in the position to formalize the notion of balanced nodes: Let α ∈ (1/2, 1) be a
fixed number and n0 ≥ k a constant (to be chosen later). We call an inner node α-balanced if
n(v) ≤ n0 or if Jr(v)/n(v) ≤ α for both r = 1, 2. ((α, n0)-balanced would be more appropriate;
the dependence on n0 is understood implicitly). An α-balanced node hence has no subproblem
with more than an α-fraction of the elements, or has a negligibly small sublist anyway.

The key idea is now that any path in a recursion tree for n elements can contain at most

logα(n0/n) = log1/α(n/n0) = 1
ln(1/α) ln(n/n0) ≤ 1

ln(1/α) ln(n)
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α-balanced nodes before reaching a node v with n(v) ≤ n0 since considering only the size
reduction at these α-balanced nodes already reduces the n initial elements to ≤ αlogα(n0/n)n = n0
elements. From there on, at most n0 additional α-balanced nodes can follow since each reduces
the subproblem size by at least one.

Balanced is not good enough. We are now formalizing the idea sketched above to obtain inde-
pendent indicator variables. For a node with n(v) ≥ n0, we define pb(v) = P[v α-balanced |n(v)].
Note that pb(v) only depends on n(v) and k, but since the number of its possible subproblems
sizes is finite, pb(v) will necessarily differ for different values of n(v), even without pivot sampling
(k = 1) and without our threshold (n0 = 0).

However, we will show below that we can find choices for n0 and α so that at least pb(v) ≥ p
for a given constant p = p(α) in all possible trees.

For such a p, we call a node v (α, p)-good if it is α-balanced and additionally B(v) = 1,
where B(v) D= B( p

pb(v)) which is independent of all other random variables. The distribution of
B(v) is conditional on the given tree via n(v), so one might imagine first drawing a random
recursion tree, and then assigning its nodes labels good or bad.

Since every good node is also balanced, we cannot have more than 1
ln(1/α) ln(n) + n0 good

nodes on any path in a recursion tree for input size n.

Probability of long paths. We can now bound the probability of having a tree of height
≥ c lnn. First note that the overall number of nodes is bounded by n (at least one pivot is
removed in each step), so the number of leaves in the recursion tree is trivially bounded by n.
By the union bound, the probability that any of these leaves has depth ≥ h is at most n times
the probability that one leaf has depth ≥ h. Let hence v be one of the leaves in the recursion
tree and let v1, . . . , vd(v) = v be the nodes on the path from the root v1 down to v; recall that
d(v) is the depth of leaf v.

The sublist corresponding to v is the result of d(v)− 1 successive partitioning steps, each of
which is either (α, p)-good or not. Let G1, . . . , Gd(v)−1 be the corresponding indicator random
variables where Gi is 1 if and only if vi is good. By construction, we have P[Gi = 1] =
pb(v) · p

pb(v) = p independently of the tree. We now extend G1, . . . , Gd(v)−1 to an infinite
sequence of random variables by i.i.d. B(p) variables for all i ≥ d(v); the Gi then form an
infinite sequence of i.i.d. random variables.

Now recall that the number of α-balanced nodes on any path is at most n0 + 1
ln(1/α) lnn.

For any h ∈ N, we thus have

P
[
d(v) ≥ h

]
≤ P

[
G1 + · · ·+Gh ≤ n0 + 1

ln(1/α) lnn
]

= P
[
Xh ≤ γ̃ lnn

]
≤ P

[
Xh ≤ γ lnn

]
,

where
Xh

D= Bin(h, p),

γ̃ = 1
ln(1/α) + n0

lnn,

γ = 1
ln(1/α) + 1 ≥ γ̃, (n ≥ en0).
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For n ≥ en0 and h so that δ := p− γ ln(n)/h > 0 we then have

P
[
d(v) ≥ h

]
≤ P

[
Xh ≤ γ lnn

]
= P

[
p− Xh

h
≥ p− γ ln(n)

h

]
;

≤ P
[∣∣∣∣Xh

h
− p

∣∣∣∣ ≥ δ

]
≤

Lemma 2.1
2 exp(−2δ2h).

With h = c ln(n), we have δ = p− γ
c , which is independent of n, and positive for any c > γ/p.

With this bound we finally find

P
[
T has height ≥ c lnn

]
≤ nP

[
d(v) ≥ c lnn

]
≤ 2n exp(−2cδ2 lnn)
= 2n1−2cδ2

,

which implies the claim.

A lower bound for balanced nodes: how to choose the constants. It remains to show that
we can actually find values n0 and p = p(α) (at least for some choices of α) so that so that
pb(v) ≥ p in all nodes v in all possible trees T .

To this end, we derive an upper bound for the probability 1− pb(v) that the root v of T
is not (α, n0)-balanced. For n ≤ n0, we are done since pb(v) = 1 and any p > 0 will do. So
assume n > n0. By the union bound we have

P[v not α-balanced] = P
[
∃r : J (n)

r ≥ αn
]
≤

∑
r

P
[
J (n)
r ≥ αn

]
, (26)

so it suffices to consider the subproblems r = 1, 2 in isolation.
Recall that after a pivot value P is chosen according to Equation (6) on page 17, the

probabilities Vr for any other element to belong to the rth subproblem are fully determined. P
in turn is fully determined by the choice ofD. Hence, conditionally onD, we have Bin(n−k, Vr)
elements that go to the rth subproblem, plus up to t from the sample. Moreover we always
have Vr ≤ Dr (cf. Figure 4). Conditional on D, J (n)

r is hence smaller than J̃r D= Bin(n,Dr) + t
in stochastic order, i.e., for all j we have that P

[
Jr ≥ j

∣∣D] ≤ P
[
J̃r ≥ j

∣∣D]. (By averaging
over all choices for D the same relation holds also unconditionally.)

This is nothing but the precise formulation of the fact that (in stochastic order) subproblem
sizes for inputs with duplicates are no larger than for random-permutation inputs, since we
potentially exclude duplicates of pivots from recursive calls.

The good thing aboutDr is that—unlike Jr—it does not depend on n: Dr
D= Beta(t+1, t+1)

in every node. Also—unlike Vr—it does not depend on q. Since J̃r is concentrated around
nDr, Jr is likely to be ≥ αn only for Dr > α. Precisely for a constant δ > 0 we have

P
[
J̃r ≥ (Dr + δ)n

∣∣∣∣Dr

]
≤ P

[∣∣∣∣ J̃rn −Dr

∣∣∣∣ ≥ δ
∣∣∣∣∣Dr

]
≤

Lemma 2.1
2 exp(−2δ2n)

≤ 2 exp(−2δ̃2n) for any δ̃ < δ.
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Using this and separately considering Dr larger resp. smaller α− δ yields

P
[
Jr ≥ αn

]
≤ P

[
J̃r ≥ αn

]
= ED

[
1{Dr<α−δ} · P[Jr ≥ αn |Dr = d, d < α− δ]

]
+ ED

[
1{Dr>α−δ} · P[Jr ≥ αn |Dr = d, d > α− δ]

]
≤ P[Dr < α− δ] · 2 exp(−2δ2n) + P[Dr > α− δ] · 1

if we choose, say δ = 0.01, we have 2 exp(−2δ2n) ≤ 0.005 for n ≥ n0 = 30 000

≤ P[Dr > α− 0.01] + 0.005 (n ≥ n0).

Plugging in above, we find that with n0 = 30 000, we can choose

p = 0.99 − 2 · Iα−0.01,1(t+ 1, t+ 1) ≤ P[v α-balanced] (n ≥ n0). (27)

Since p = p(α) is continuous and ≥ 0.97 for α = 1 there is always a valid choice α < 1 with
p > 0. We are free to choose any such α; the resulting constant c for the achieved height bound
then has to satisfy c >

(
1 + 1

ln(1/α)
)/
p. It is not clear in general which choice yields the best

bounds, so we keep it as a parameter in the analysis. �

Two further remarks are in order about Lemma B.2.

• Height-bound for any input.
The attentive reader might have noticed that we do not make use of the assumption that
the input consists of D(q) elements. In fact, the above proof works for any randomly
permuted input, since we actually compute the subproblem sizes in the most unfavorable
case: when all elements are distinct.
For randomized Quicksort, the random-order assumption is also vacuous; we thus have
proved the more general statement that randomized Quicksort has O(logn) recursion
depth w.h.p. for any input. In particular, this proves Proposition 2.4.

• Height-bound in terms of q.
For saturated trees, our bound on the height in terms of n is meaningless. By similar
arguments as above we can show that the height is in O(log(1/µ)) with high probability
as 1/µ→∞, where µ is the smallest probability qv: Intuitively, after c ln(1/µ) balanced
subdivisions of the unit interval, we are left with segments of size less than µ, so after so
many partitioning rounds, we have reduced the subuniverse sizes to 1. The subproblems
are then solved in one further partitioning step.
This bound is intuitively more appealing, but for our use case in the proof of the separation
theorem (Theorem 8.3), we are dealing with non-saturated trees and the logn bound
turns out to be more convenient. (There we only require that 1/µ does not grow too
fast with n, but we do not have any guarantee that it grows at all. The height-bound
c log(1/µ) only holds with high probability as 1/µ goes to infinity; we would then need a
case distinction on the growth rate of 1/µ . . . )
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