
Dual-Pivot and Beyond: The Potential of
Multiway Partitioning in Quicksort
Sebastian Wild

Abstract: Since 2011 the Java runtime library uses a Quicksort variant with two pivot
elements. For reasons that remained unclear for years it is faster than the previous
Quicksort implementation by more than 10%; this is not only surprising because the
previous code was highly-tuned and is used in many programming libraries, but also
since earlier theoretical investigations suggested that using several pivots in Quicksort is
not helpful.
In my dissertation I proved by a comprehensive mathematical analysis of all sensible
Quicksort partitioning variants that (a) indeed there is hardly any advantage to be
gained from multiway partitioning in terms of the number of comparisons (and more
generally in terms of CPU costs), but (b) multiway partitioning does significantly reduce
the amount of data to be moved between CPU and main memory. Moreover, this more
efficient use of the memory hierarchy is not achieved by any of the other well-known
optimizations of Quicksort, but only through the use of several pivots.

ACM CCS: Theory of computation → Design and analysis of algorithms → Data
structures design and analysis → Sorting and searching

Keywords: Quicksort, multiway partitioning, average-case analysis, cache misses,
external-memory model

1 Introduction

Sorting is one of the basic stepping stones for solving
more interesting tasks, and thus used in some form
or another in any software application. How to sort
most efficiently might be the most well-studied and best-
understood algorithmic problem and programmers can
rely on robust and efficient implementations in program-
ming libraries for sorting an array of elements in main
memory. Yet, a silent revolution took place in the prac-
tical side of this well-understood problem: All sorting
methods in Oracle’s Java runtime library have been
rewritten entirely within the last ten years [10, 11]! As
this code forms the base of the Android runtime library,
these new sorting methods might easily be among the
most executed algorithms in existence. (Estimates speak
of 2 billion active Android devices (2016 worldwide) [2].)

For such widely used libraries, new trends are adopted
very conservatively; any change has the potential to
affect existing use cases. Indeed – until ten years ago –
all major programming libraries used a sorting method
based on the Quicksort Implementation developed by
Jon Bentley and Douglas McIlroy in the early 1990s for
the C standard library [6]. Nevertheless, the running time

DualPivotQuicksort(A, left , right) // Sorts A[left ..right]

1 if right − left ≥ 1
2 P = min {A[left], A[right]} // Pivot 1
3 Q = max{A[left], A[right]} // Pivot 2
4 k = left + 1; ` = k; g = right − 1
5 while k ≤ g
6 if A[k] < P
7 Swap A[k] and A[`]; ` = ` + 1
8 else if A[k] ≥ Q
9 while A[g] > Q and k < g

10 g = g − 1
11 end while
12 Swap A[k] and A[g]; g = g − 1
13 if A[k] < P
14 Swap A[k] and A[`]; ` = ` + 1
15 end if
16 end if
17 k = k + 1
18 end while
19 ` = `− 1; g = g + 1
20 A[left] = A[`]; A[`] = P
21 A[right] = A[g]; A[g] = Q
22 DualPivotQuicksort(A, left , `− 1)
23 DualPivotQuicksort(A, ` + 1, g − 1)
24 DualPivotQuicksort(A, g + 1, right)
25 end if

Figure 1: The algorithmic core of dual-pivot Quicksort as used
in Java 7. Figure 3 shows the state of the array after line 18.

improvements by the new methods Dual-Pivot Quicksort
and Timsort (a Mergesort variant used for stable sorting)
eventually became too big to ignore.

Remarkably, this dual-pivot Quicksort was not proposed
by an algorithms expert; quite the contrary: young Rus-
sian software developer and puzzle enthusiast Vladimir
Yaroslavskiy, at the time working for Sun Microsystems,
played with faster sorts in his free time and discovered
the potential of multiway partitioning. Later joined by
Jon Bentley and Java expert Joshua Bloch, Yaroslavskiy
developed the implementation now used in the Java
library. It contains a handful of clever mechanisms for ro-
bust performance on all kinds of input distributions; for
random permutations of distinct elements the Java code
is essentially equivalent to the pseudocode in Figure 1.

Arguably, using two pivots is a natural generalization
of Quicksort and Figure 1 is a quite straight-forward
implementation of that idea. How could its potential
have escaped the eyes of so many researchers worldwide?
And more importantly: if two pivots are good, could
more pivots be even better?

These questions were the starting point of my research.
Before we can analyze in how far more pivots help or
harm, we have to understand why dual-pivot Quicksort is
faster than the “classic” single-pivot version. We can now
give a plausible explanation for that: The assumptions
of traditional models of running time are not fulfilled on
modern computers to the extend they were fulfilled 20
years ago, when Bentley and McIlroy designed their clas-
sic Quicksort implementation [6]. Dual-pivot Quicksort is
not a new idea, but when it was studied in the past [16, 8],
it was correctly found to not save comparisons and it
was – for the machines of the time adequately – con-
cluded to not improve Quicksort’s running time. So the
idea of multiway partitioning is not new; the news is that
it nowadays makes Quicksort faster. And the reason for
that is a continuing trend in computer hardware design,
that now also affects sorting in internal memory.

2 The “Memory Wall”

Moore’s Law predicts the number of transistors per area
in integrated circuits to double roughly every two years.
Although details and the sustainability of this growth
rate are certainly debatable, it reflects past improve-
ments of CPU peak performance to within a reasonable
accuracy. To profit from that applications also need to
get their data faster; but access times of main memory
and (net) transfer speeds of the connecting bus systems
could by far not keep up with this rate of growth: Accord-
ing to the historical data of John McCalpin’s STEAM
benchmark [13], CPU peak performance grew by 46%
per year over the last 25 years, whereas the observable
memory bandwidth (the amount of data transferable
between CPU and RAM in one time unit) grew only by
an annual 37% – the imbalance is growing exponentially!

1991 1995 2000 2005 2010 2015

100

101

102

Figure 2: Development of machine balance over the last 25
years. Each point is a result of the STEAM benchmark: x is
time, y is quotient of CPU peak performance (MFLOPS) di-
vided by net memory bandwith (MWps in “triad” benchmark)
on logarithmic scale. The line is the regression line of all points.
(Further details on the data are given in [17, Fig. 1].

Figure 2 shows the quotient of CPU peak performance
and memory bandwidth, the “machine balance”, for all
reported benchmark results: (These numbers average
over various types of machines and timestamps are not
uniform, but the qualitative trend is undeniable.)

Improving processing power and memory capacity does
not speed up a program if it has to wait for data to be
transfered. Hierarchies of faster caches and automatic
prefetching alleviate the problem only partially – if the
(net) bus bandwidth itself becomes the limiting factor,
they do not help either. John Backus recognized this
issue already in 1977; he called it the von-Neumann-
Bottleneck [4]; in 1995, William Wulf und Sally Mc-
Kee [19] coined the more drastic phrase to “hit a memory
wall” when a system’s overall performance is dominated
by memory speed. This extreme state is certainly not
(yet?) reached for most applications, but the balance is
shifting: in 1993, when Bentley and McIlroy published
their Quicksort implementation, a typical imbalance of
CPU speed vs. bandwidth was 7:1. Today it is rather
30:1.

3 Quicksort and Memory Bandwidth

What does it mean for sorting methods that memory
accesses became more expensive in relation to CPU time?
This is depends on details of the algorithms, so let us have
a closer look at Quicksort. Its core idea is to determine
the rank of an (arbitrary) pivot element by comparing it
with all others. That determines the position of the pivot
in the sorted array and we can deal recursively with
the smaller resp. larger elements. While determining
the rank, we simultaneously partition the array into
segments: smaller elements left and larger elements right.

The most-used partitioning strategy is il-
lustrated to the right. It is due to C. A. R.
Hoare [9] and Robert Sedgewick [15]
and was used up to version 6 of the
Java runtime library (and in many other
libraries). The method works in place
and uses sequential scans that guaran-
tee maximal locality of reference for
caches. Indeed all practically relevant
partitioning strategies do that. By mov-
ing outside-in, the scanning indices k
and g together scan the whole array ex-
actly once. Simpler codes like Lumoto’s
method [5, 7] do not have this property.

To analyze and compare bandwidth con-
sumption we need a precisely defined
model for the costs of an execution. The
model I propose for that purpose allows
access to the array only via iterators. An
iterator points to a certain array posi-
tion and allows to read and write the
value there. Unlike general pointers, we
can only move iterators to neighboring
positions. In the illustration to the right,
iterators are shown as rectangles with
a “window”; note that we have 2 active
iterators here.

The cost of an execution is the number of
scanned elements: the number of visited
elements summed over all iterators, or equivalently, the
overall number of iterator movements. This counts areas
twice if they are scanned twice. The number of scanned
elements was demonstrated to be roughly proportional to
the number of (Level 1) Cache Misses [14, 3]. For each
active iterator, we need one cache line and only every B
movements, a cache miss occurs (for B the cache’s block
size). Different iterators cause cache misses independently
unless very close in space and time. Our model is similar
to the classic external-memory model [1], but I want to
avoid the latter’s terminology to not suggest that data
movements are the only important operation; indeed,
CPU time and scanned elements need to be balanced.

4 Dual-Pivot Partitioning

< P P ≤ ◦ ≤ Q ≥ Q

`

k g

Figure 3: State after
YBB partitioning. k and
g together scan n ele-
ments, ` on average the
first third a second time.

The classic Hoare-Sedgewick
partitioning needs n scanned
elements since iterators k
and g together visit each el-
ement once; this coincides
with the number of key com-
parisons used in the process.
The known results for com-
parisons in classic Quicksort (e. g., [16]) thus also give
the scanned elements. For Yaroslavskiy-Bentley-Bloch
(YBB) partitioning (Figure 1), the average number of

scanned elements is 4
3n as illustrated in Figure 3. In

contrast, the average number of comparisons is 19
12n [18].

k g

k g

Figure 4: Simulating
3-way by 2-way
partitioning: first all
elements around Q,
then the left segment
around P .

We can obtain the same subdi-
vision into three segments by
two rounds of classic partition-
ing, see Figure 4. Compared to
YBB, we now scan the mid-
dle segment twice and need 5

3n
scanned elements instead of 4

3n –
YBB gets the same work done
with less overall bandwidth con-
sumption!

Comparing multiway Quicksort
to a simulation by classic par-
titioning is an insightful point
of view, but one has to account
for the pivot distributions (for more complex measures
of costs). Assuming all input permutations to be equally
likely, the rank of the pivot in classic Quicksort is uni-
formly distributed. In the simulation above this is no
longer true: the larger pivot Q is the maximum of two
elements, so its ranks tend to be larger. Effectively, we
draw Q as an order statistic of a sample (max of 2). P
in the second step happens to be uniform in its range,
though.

5 Dual-Pivot and Beyond

To assess the potential of multiway partitioning in gen-
eral, my dissertation extends the above ideas in several
ways. I describe a parametric template algorithm for
partitioning with any given number of pivots that gener-
alizes all practically relevant partitioning methods, and I
analyze this generic method in different models of costs
(including scanned elements and key comparisons). The
typical optimizations used in fast implementations are
also taken into account, in particular the choice of the
pivots from a small sample (e. g., median-of-3 for classic
Quicksort). All results are precise asymptotic approx-
imations including constant factors. Apart from those
results themselves, my dissertation also surveys many
techniques for the analysis of algorithms that help to
better understand Quicksort’s behavior.

The result of the analysis allows to predict the costs
(in different cost models) for any given Quicksort vari-
ant. Interesting is also the influence of the algorithmic
parameters, in particular s, the number of segments (cor-
responding to s− 1 pivots). If we consider the number
of comparisons, the traditional cost model, a larger s
seems to save comparisons, but most of this improve-
ment is actually spurious: it is due to better pivots that
we get automatically from sorting the s− 1 pivots. (A
three-pivot method must sort its pivots, but the cost of
that is not reflected in the leading-term approximation.
We thereby give it an unfair advantage over Quicksort
with one pivot.) If we compare s-way partitioning and its

simulation by classic binary partitioning, the number of
comparisons is almost the same. Multiway partitioning
does not reduce the number of comparisons significantly.

When we consider the number of scanned elements, how-
ever, multiway partitioning leads to a significant reduc-
tion (20% in the case of YBB partitioning as shown
above). If we do not allow pivots to be chosen from a
sample, the optimal number of pivots with respect to
scanned elements is 5 (leading to s = 6 segments), closely
followed by 3 pivots (supporting the partitioning method
of Kushagra et al. [12]). In the case of choosing pivots
from a large sample (using appropriate order statistics),
there is no finite optimal s: any further pivot improves
the leading-term approximation of costs and the number
of scanned elements converge to n log3(n). These theo-
retically optimal variants have limited use for realistic
input sizes, but are an important benchmark for practical
parameter choices.

6 Summary

Quicksort had a lively youth with new variants and
tweaks being proposed regularly. Robert Sedgewick stud-
ied many of them in his Ph. D. thesis [16] and by means
of mathematical analysis reduced the pool of options to
a few genuinely helpful optimizations, the most effective
ones being pivot sampling and a cutoff to Insertionsort
for small subproblems. Multiway partitioning was not
among them.

I showed that – similar to multiway Mergesort – multi-
way partitioning has genuine potential to save memory
transfers, and it is indeed the only optimization of Quick-
sort that does so. My dissertations gives a reassessment
of the relative merits of various Quicksort variants in the
spirit of Sedgewick’s thesis, but taking the increasing
relative costs of memory bandwidth into account, and
thus guiding the search for 21st century library sorting
methods.

Literature

[1] Alok Aggarwal and Jeffrey S. Vitter. The input/output
complexity of sorting and related problems. Communi-
cations of the ACM, 31(9):1116–1127, August 1988.

[2] Tomi T. Ahonen. Smartphone bloodbath market share
update q1: All the top 10 brands plus os shares plus
installed base. http://communities-dominate.blogs.com/brands/2016/
05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-
plus-os-shares-plus-installed-base.html, 2016.

[3] Martin Aumüller, Martin Dietzfelbinger, and Pascal
Klaue. How good is multi-pivot quicksort? ACM Trans-
actions on Algorithms, 13(1):1–47, 2016.

[4] John Backus. Can programming be liberated from the
von neumann style? A functional style and its algebra of
programs. Communications of the ACM, 21(8):613–641,
August 1978.

[5] Jon Bentley. Programming pearls: how to sort. Commu-
nications of the ACM, 27(4):287–291, April 1984.

[6] Jon L. Bentley and M. Douglas McIlroy. Engineer-
ing a sort function. Software: Practice and Experience,
23(11):1249–1265, 1993.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
MIT Press, 3rd edition, 2009.

[8] Pascal Hennequin. Analyse en moyenne d’algorithmes :
tri rapide et arbres de recherche. Thèse (Ph. D. Thesis),
Ecole Politechnique, Palaiseau, 1991.

[9] C. A. R. Hoare. Quicksort. The Computer Journal,
5(1):10–16, January 1962.

[10] Java Core Library Development Mailing List. Replace-
ment of quicksort in java.util.arrays with new dual-pivot
quicksort, 2009.

[11] JDK Bug System. Replace modified mergesort in
java.util.arrays.sort with timsort. https://bugs.openjdk.java.
net/browse/JDK-6804124, 2009.

[12] Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao,
and J. Ian Munro. Multi-pivot Quicksort: Theory and
experiments. In Meeting on Algorithm Engineering and
Experiments (ALENEX), pages 47–60. SIAM, 2014.

[13] John D. McCalpin. Sustainable memory bandwidth in
high performance computers. Technical report, University
of Virginia, Charlottesville, Virginia, 1991-2007. continu-
ally updated technical report.

[14] Markus E. Nebel, Sebastian Wild, and Conrado Mart́ınez.
Analysis of pivot sampling in dual-pivot Quicksort. Al-
gorithmica, 75(4):632–683, August 2016.

[15] Robert Sedgewick. Implementing Quicksort programs.
Communications of the ACM, 21(10):847–857, 1978.

[16] Robert Sedgewick. Quicksort. Reprint of the author’s
Ph. D. thesis, Garland Publishing, 1980.

[17] Sebastian Wild. Dual-Pivot Quicksort and Beyond: Anal-
ysis of Multiway Partitioning and Its Practical Poten-
tial. Doktorarbeit (Ph. D. thesis), Technische Universität
Kaiserslautern, 2016. ISBN 978-3-00-054669-3.

[18] Sebastian Wild and Markus E. Nebel. Average case
analysis of Java 7’s dual pivot Quicksort. In Leah Epstein
and Paolo Ferragina, editors, European Symposium on
Algorithms (ESA), volume 7501 of LNCS, pages 825–836.
Springer, 2012.

[19] William Allen Wulf and Sally A. McKee. Hitting the mem-
ory wall: Implications of the obvious. ACM SIGARCH
Computer Architecture News, 23(1):20–24, March 1995.

Dr. Sebastian Wild studied com-
puter science at Technische Universität
Kaiserslautern on a scholarship by Stu-
dienstiftung des deutschen Volkes and
graduated in 2012 with a Master of
Science. After that he did his Ph. D.
as wissenschaftlicher Mitarbeiter (em-
ployed doctoral candidate with teach-
ing duties) in the research group of
Prof. Dr. Markus Nebel. His findings in
the field of analysis of algorithms soon
led to publications and international
collaborations, including a Best Paper
Award [18] at the European Symposium

on Algorithms 2012. Sebastian was continually involved in teach-
ing. During his studies he was a student tutor and during his Ph. D.
years, he was responsible for organizing tutorials and involved in
the development of new courses. Sebastian is married and father
of three children.

Address: University of Waterloo, David R. Chariton School of
Computer Science, DC 2332, University Avenue 200 East, Wa-
terloo, ON N2T 2K6, Canada. E-Mail: wild @ uwaterloo.ca

http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html
http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html
http://communities-dominate.blogs.com/brands/2016/05/smartphone-bloodbath-market-share-update-q1-all-the-top-10-brands-plus-os-shares-plus-installed-base.html
https://bugs.openjdk.java.net/browse/JDK-6804124
https://bugs.openjdk.java.net/browse/JDK-6804124

	1
	1 Introduction
	2 The Memory Wall
	3 Quicksort and Memory Bandwidth
	4 Dual-Pivot Partitioning
	5 Dual-Pivot and Beyond
	6 Summary

