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In 2009, Oracle replaced the long-serving sorting algorithm in its Java 7 runtime
library by a new dual-pivot Quicksort variant due to Vladimir Yaroslavskiy. The decision
was based on the strikingly good performance of Yaroslavskiy’s implementation in
running time experiments. At that time, no precise investigations of the algorithm were
available to explain its superior performance — on the contrary: Previous theoretical
studies of other dual-pivot Quicksort variants even discouraged the use of two pivots.
Only in 2012, two of the authors gave an average case analysis of a simplified version
of Yaroslavskiy’s algorithm, proving that savings in the number of comparisons are
possible. However, Yaroslavskiy’s algorithm needs more swaps, which renders the
analysis inconclusive.

To force the issue, we herein extend our analysis to the fully detailed style of Knuth:
We determine the exact number of executed Java Bytecode instructions. Surprisingly,
Yaroslavskiy’s algorithm needs sightly more Bytecode instructions than a simple imple-
mentation of classic Quicksort — contradicting observed running times. Like in Oracle’s
library implementation we incorporate the use of Insertionsort on small subproblems
and show that it indeed speeds up Yaroslavskiy’s Quicksort in terms of Bytecodes; but
even with optimal Insertionsort thresholds the new Quicksort variant needs slightly
more Bytecode instructions on average.

Finally, we show that the (suitably normalized) costs of Yaroslavskiy’s algorithm
converge to a random variable whose distribution is characterized by a fixed-point
equation. From that, we compute variances of costs and show that for large n, costs are
concentrated around their mean.

1. Introduction
Quicksort is a divide and conquer sorting algorithm originally proposed by Hoare [1961a; 1961b].
The procedure starts by selecting an arbitrary element from the list to be sorted as pivot. Then,
Quicksort partitions the elements into two groups: those smaller than the pivot and those larger
than the pivot. After partitioning, we know the exact rank of the pivot element in the sorted list,
so we can put it at its final landing position between the groups of smaller and larger elements.
Afterwards, Quicksort proceeds by recursively sorting the two parts, until it reaches lists of length
zero or one, which are already sorted by definition.

We will in the following always assume random access to the data, i. e., the elements are given
as entries of an array. Then, the partitioning process can work in place by directly manipulating
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1. Introduction

the array. This makes Quicksort convenient to use and avoids the need for extra space (except for
the recursion stack). Hoare’s initial implementation [Hoare, 1961b] works in place and Sedgewick
[1975] studies several variants thereof.

In the worst case, Quicksort has quadratic complexity, namely if in every partitioning step, the
pivot is the smallest or largest element of the current subarray. However, this behavior occurs very
infrequently, such that the expected complexity is Θ(n logn). Hoare [1962] already gives a precise
average case analysis of his algorithm, which is nowadays contained in most algorithms textbooks,
[e. g. Cormen et al. 2009]. Sedgewick [1975; 1977] refines this analysis to count the exact number
of executed primitive instructions of a low level implementation. This detailed breakdown reveals
that Quicksort has the asymptotically fastest average running time on MIX among all the sorting
algorithm studied by Knuth [1998].

Only considering average results can be misleading. To increase our confidence in a sorting
method, we also require that it is likely to observe costs close to the expectation. The standard
deviation of the Quicksort complexity grows linearly with n [Hennequin, 1989; Knuth, 1998], which
implies that the costs are concentrated around their mean for large n. Precise tail bounds which
ensure tight concentration around the mean were derived by McDiarmid and Hayward [1996]; see
also Fill and Janson [2002].

Much more information is available on the full distribution of the number of key comparisons.
When suitably normalized, the number of comparisons converges in law [Regnier, 1989], with a
certain unknown limit distribution. Hennequin [1989] computed its first cumulants and proved
that it is not a normal distribution. The limiting distribution can be implicitly characterized by a
stochastic fixed-point equation [Rösler, 1991] and it is known to have a smooth density [Fill and
Janson, 2000; Tan and Hadjicostas, 1995].

Due to its efficiency in the average, Quicksort has been used as general purpose sorting method
for decades, for example in the C/C++ standard library and the Java runtime library. As sorting
is a widely used elementary task, even small speedups of such library implementations can be
worthwhile. This caused a run on variations and modifications to the basic algorithm. One very
successful optimization is based on the observation that Quicksort’s performance on tiny subarrays
is comparatively poor. Therefore, we should switch to some special purpose sorting method for
these cases [Hoare, 1962]. Singleton [1969] proposed using Insertionsort for this task, which indeed
“for small n [ . . . ] is about the best sorting method known” according to Sedgewick [1975, p. 22]. He
also gives a precise analysis of Quicksort where Insertionsort is used for subproblems of size less
than M [Sedgewick, 1977]. For his MIX implementation, the optimal choice is M = 9, which leads
to a speedup of 14 % for n = 10000.

Another very successful optimization is to improve the choice of the pivot element by selecting
the median of a small sample of the current subarray. This idea has been studied extensively
[Chern and Hwang, 2001; Durand, 2003; Emden, 1970; Hennequin, 1989; Hoare, 1962; Martínez
and Roura, 2001; Sedgewick, 1977; Singleton, 1969], and real world implementations make heavy
use of it [Bentley and McIlroy, 1993].

Precise analysis of the impact of a modification often helped in understanding and assessing
its usefulness, and in fact, many proposed variations turned out detrimental in the end (many
examples are exposed by Sedgewick [1975]). Partitioning with more than one pivot used to be
counted among those. Sedgewick [1975, p. 150ff] studies a dual-pivot Quicksort variant in detail,
but finds that it uses more swaps and comparisons than classic Quicksort.1 Later Hennequin
[1991] considers the general case of partitioning into s ≥ 2 partitions. For s = 3, his Quicksort uses
asymptotically the same number of comparisons as classic Quicksort; for s > 3, he attests minor
savings which, however, will not compensate for the much more complicated partitioning process
in practice. These negative results may have discouraged further research along these lines in the
following two decades.

1Interestingly, tiny changes make Sedgewick’s dual-pivot Quicksort competitive w. r. t. the number of comparisons; in fact
it even needs only 28/15n lnn+O(n) comparisons [Wild, 2012, Chapter 5], which is less than Yaroslavskiy’s algorithm!
Yet, the many swaps dominate overall performance.
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In 2009, however, Vladimir Yaroslavskiy presented his new dual-pivot Quicksort variant at
the Java core library mailing list.2 After promising running time benchmarks, Oracle decided
to use Yaroslavskiy’s algorithm as default sorting method for arrays of primitive types3 in the
Java 7 runtime library, even though literature did not offer an explanation for the algorithm’s good
performance.

Only in 2012, Wild and Nebel [2012] made a first step towards closing this gap by giving exact
expected numbers of swaps and comparisons for a simple version of Yaroslavskiy’s algorithm. We
will re-derive these results here as a special case.

The surprising finding is that Yaroslavskiy’s algorithm uses only 1.9n lnn+O(n) comparisons on
average — asymptotically 5 % less than the 2n lnn+O(n) comparisons needed by classic Quicksort.

The reason for the savings lies in the clever usage of stochastic dependencies: Yaroslavskiy’s
algorithm contains two opposite pairs of locations Ck (lines 11 and 15 of Algorithm 1) and Cg
(lines 16 and 17) in the code where key comparisons are done: At Ck, elements are first compared
with the small pivot p (in line 11) and then with the large pivot q (in line 15) — if still needed, i. e.,
only if the element is larger than p. This means that we need only one comparison to identify a
small element, whereas all other elements cost us a second comparisons. For Cg it is vice versa: We
first compare with q, and thus large elements are cheap to identify there.

By the way partitioning is organized, it happens that elements which are initially to the right
of the final position of q are classified at Cg; whereas elements to the left are classified at Ck. This
implies that the number of elements classified at Cg co-varies with the number of large elements:
Cg is executed more often if there are more elements larger than q (on average) and similarly, Ck is
visited often if there are many small elements. Consequently, the probability that one comparison
suffices to determine an element’s target partition is strictly larger than 1/3 — which would be the
probability if all elements are first compared to p (or all first to q). The asymmetric treatment of
elements is the novelty that makes Yaroslavskiy’s algorithm superior to the dual-pivot partitioning
schemes studied earlier.4

While the lower number of comparisons seems promising, Yaroslavskiy’s dual-pivot Quicksort
needs more swaps than classic Quicksort, so the high level analysis remains inconclusive. In this
paper, we extend our analysis to detailed instruction counts, complementing previous work on
classic Quicksort [Sedgewick, 1977]. However, instead of Knuth’s slightly dated mythical machine
MIX, we consider the Java Virtual Machine [Lindholm and Yellin, 1999] and count the number of
executed Java Bytecode instructions. Wild [2012] gives similar results for Knuth’s MMIX [Knuth,
2005], the successor of MIX.

The number of executed Bytecode instructions has been shown to resemble actual running time
[Camesi et al., 2006], even though just-in-time compilation can have a tremendous influence [Wild
et al., 2013] and some aspects of modern processor architectures are neglected.

Extending the results of Wild and Nebel [2012], the analysis in this paper includes sorting short
subproblems with Insertionsort. Moreover, all previous results on Yaroslavskiy’s algorithm only
concern expected behavior. In this article, we show existence and give characterizations of limit
distributions. A comforting result of these studies is that the standard deviation grows linearly for
Yaroslavskiy’s algorithm as well, which implies concentration around the mean.

This paper does not consider more refined ways to choose pivots, like selecting order statistics
of a random sample. We decided to defer a detailed treatment of Yaroslavskiy’s algorithm under
this optimization to a separate article [Nebel and Wild, 2014].

The rest of this paper is organized as follows. Section 1.1 presents our object of study. In
Section 2, we review basic notions used in the analysis later. We also define our input model and

2see e. g. the archive on http://permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628
3Primitive types are all integer types as well as Boolean, character and floating point types. For arrays of objects, the

library specification prescribes a stable sorting method, which Quicksort does not provide. Instead a variant of Mergesort
is used, there.

4For details consider [Wild and Nebel, 2012] or the corresponding talk at
http://www.slideshare.net/sebawild/average-case-analysis-of-java-7s-dual-pivot-quicksort.
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Algorithm 1 Yaroslavskiy’s Dual-Pivot Quicksort with Insertionsort.

QUICKSORTYAROSLAVSKIY (A, left,right)

// Sort A[left, . . . ,right] (including end points).
1 if right− left< M // i. e. the subarray has n ≤ M elements
2 INSERTIONSORT(A, left,right)
3 else
4 if A[left]>A[right]
5 p := A[right]; q := A[left]
6 else
7 p := A[left]; q := A[right]
8 end if
9 ` := left+1; g := right−1; k := `

10 while k ≤ g
11 if A[k]< p
12 Swap A[k] and A[`]
13 ` := `+1
14 else
15 if A[k]≥ q
16 while A[g]> q and k < g do g := g−1 end while
17 if A[g]≥ p
18 Swap A[k] and A[g]
19 else
20 Swap A[k] and A[g]; Swap A[k] and A[`]
21 ` := `+1
22 end if
23 g := g−1
24 end if
25 end if
26 k := k+1
27 end while
28 ` := `−1; g := g+1
29 A[left] := A[`]; A[`] := p // Swap pivots to final position
30 A[right] := A[g]; A[g] := q
31 QUICKSORTYAROSLAVSKIY (A, left ,`−1)
32 QUICKSORTYAROSLAVSKIY (A,`+1, g−1)
33 QUICKSORTYAROSLAVSKIY (A, g+1,right)
34 end if

collect elementary properties of Yaroslavskiy’s algorithm. In Section 3, we derive exact average
costs in terms of comparisons, swaps and executed Bytecode instructions. These are used in
Section 4 to identify a limiting distribution of normalized costs in all three measures, from which
we obtain asymptotic variances. Finally, Section 5 summarizes our findings and puts them in
context.

1.1. Yaroslavskiy’s Algorithm
Yaroslavskiy’s dual-pivot Quicksort is shown in Algorithm 1. The initial call to the procedure takes
the form QUICKSORTYAROSLAVSKIY(A,1,n), where A is an array containing the elements to be
sorted and n is its length. After selecting the outermost elements as pivots p and q such that p ≤ q,
lines 9 – 30 of Algorithm 1 comprise the partitioning method. After that, all small elements, i. e.,
those smaller than p (and q), form a contiguous region at the left end of the array, followed by p
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and the medium elements. Finally q separates the medium and large elements. After recursively
sorting these three regions, the whole array is in order.

Yaroslavskiy’s partitioning algorithm is an asymmetric generalization of Hoare’s crossing
pointers technique: The index pointers k and g start at the left and right ends, respectively, and
are moved towards each other until they cross. Additionally, pointer ` marks the position of the
rightmost small element, such that the array is kept invariably in the following form:

p q< p
`

≥ q
g

p ≤ ◦≤ q
k ←→ →

?

Our Algorithm 1 differs from Algorithm 3 of [Wild and Nebel, 2012] as follows:

• For lists of length less than M, we switch to INSERTIONSORT.5 A possible implementation is
given in Appendix B. The case M = 1 corresponds to not using Insertionsort at all.

• The swap of A[k] and A[g] has been moved behind the check A[g] ≥ p. Thereby, we never
use array positions in a key comparison after we have overwritten their contents in one
partitioning step; see Fact 2.3 below. (This is just to simplify discussions.)

• The comparison in line 15 has been made non-strict. For distinct elements this makes no
difference, but it drastically improves performance in case of many equal keys [Wild, 2012,
p. 54]. The reader might find it instructive to consider the behavior on an array with all
elements equal.

Note that partitioning an array around two pivots is similar in nature to the Dutch National
Flag Problem (DNFP) posed by Dijkstra [1976] as a programming exercise:

Given an array of n red, white and blue pebbles, rearrange them by swaps, such that
the colors form the Dutch national flag: red, white and blue in contiguous regions. Each
pebble may be inspected only once and only a constant amount of extra storage may be
used.

Dijkstra assumes an operation “buck” that tells us an element’s color in one shot, so any algorithm
must use exactly n buck-operations. Performance differences only concern the number of swaps
needed.

Interestingly, Meyer gave an algorithm for the DNFP which is essentially equivalent to Yar-
oslavskiy’s partitioning method. Indeed, it even outperforms the algorithm proposed by Dijk-
stra [McMaster, 1978]! Yet, the real advantage of Yaroslavskiy’s partitioning scheme — the reduced
expected number of key comparisons — is hidden by the atomic buck operation; its potential use in
Quicksort went unnoticed.

2. Preliminaries
In this section, we recall elementary definitions and collect some notation and basic facts used
throughout this paper.

By Hn := ∑n
i=1 1 / i, we denote the nth Harmonic Number. We use δij for the Kronecker delta,

which is defined to be 1 if i = j and 0 otherwise. We define x ln(x) = 0 for x = 0, so that x 7→ x ln(x)
becomes a continuous function on [0,∞).

The probability of an event E is denoted by P[E] and we write 1{E} for its indicator random
variable, which is 1 if the event occurs and 0 otherwise. For a random variable X , let E[X ], Var(X )
and L (X ) denote its expectation, variance and distribution, respectively. X D=Y means that X has
the same distribution as Y .
5Note that even if Sedgewick [1977] proposes to use one final run of Insertionsort over the entire input array, modern

cache hierarchies suggest to immediately sort small subarrays as done in our implementation.
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By ‖X‖p := E[|X |p]1/p, 1 ≤ p < ∞, we denote the Lp-norm of random variable X . For random
variables X1, X2, . . . and X , we say Xn converges in Lp to X

Xn
Lp−→ X iff lim

n→∞‖Xn − X‖p = 0 .

The Bernoulli distribution with parameter p is written as B(p). Provided that
∑b

r=1 pr = 1 and
b ≥ 1 is a fixed integer, we denote by M(n; p1, . . . , pb) the multinomial distribution with n trials
and success probabilities p1, . . . , pb ∈ [0,1]. For random probabilities V = (V1, . . . ,Vb), i. e., random
variables 0 ≤ Vr ≤ 1 (r = 1, . . . ,b) with

∑b
r=1 Vr = 1 almost surely, we write Y D= M(n;V1, . . . ,Vb) to

denote that Y conditional on V = v (i. e., conditional on (V1, . . . ,Vb) = (v1, . . . ,vb)) is multinomially
M(n;v1, . . . ,vb) distributed.

For k, r,b ∈N satisfying k ≤ r+ b, the hypergeometric distribution with k trials from r red and
b black balls is denoted by HypG(k, r, r+ b). Given an urn with r red and b black balls, it is the
distribution of the number of red balls drawn when drawing k times without replacement. The
mean and variance of a hypergeometrically HypG(k, r, r+b) distributed random variable G are given
by [Kendall, 1945, p. 127]

E[G] = k · r
r+b

, Var(G) = krb(r+b−k)
(r+b)2(r+b−1)

. (2.1)

As for the multinomial distribution, given random parameters K , R in {0, . . . ,n} we use Y D=
HypG(K ,R,n) to denote that Y conditional on (K ,R) = (k, r) is hypergeometrically HypG(k, r,n)
distributed.

2.1. Input Model
We assume the random permutation model: The keys to be sorted are the integers 1, . . . ,n and each
permutation of {1, . . . ,n} has equal probability 1/n! to become the input. Note that we implicitly
exclude the case of equal keys by that.

As sorting is only concerned with the relative order of elements, not the key values themselves,
we can equivalently assume keys to be i. i. d. real random variables from any (non-degenerate)
continuous distribution. Equal keys do not occur almost surely and the ranks of the elements
form in fact a random permutation of {1, . . . ,n} again [see e. g. Mahmoud 2000]. For the analysis of
Section 4, this alternative point of view will be helpful.

2.2. Basic Properties of Yaroslavskiy’s Algorithm
As typical for divide and conquer algorithms, the analysis is based on setting up a recurrence
relation for the costs. For such a recurrence to hold, it is vital that the costs for subproblems of
size k behave the same as the costs for dealing with an original random input of initial size k. For
Quicksort, we require the following property:

Property 2.1 (Randomness Preservation).
If the whole input is a (uniformly chosen) random permutation of its elements, so are the subprob-
lems Quicksort is recursively invoked on.

Hennequin [1989] showed that Property 2.1 is implied by the following property.

Property 2.2 (Sufficient Condition for Randomness Preservation).
Every key comparison involves a pivot element of the current partitioning step.

Now, it is easy to verify that Yaroslavskiy’s algorithm fulfills Property 2.2 and hence Property 2.1.

Since Yaroslavskiy’s algorithm is an in-place sorting method, it modifies the array A over time. This
dynamic component makes discussions inconvenient. Fortunately, a sharp look at the algorithm
reveals the following fact, allowing a more static point of view:
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Fact 2.3. The array elements used in key comparisons have not been changed since the beginning
of the current partitioning step. More precisely, if a key comparison involves an array element A[i],
then there has not been a write access to A[i] in the current partitioning step.

3. Average Case Analysis
Throughout Section 3, we assume that array A stores a random permutation of {1, . . . ,n}.

3.1. The Dual-Pivot Quicksort Recurrence
In this section, we obtain a general solution to the recurrence relation corresponding to dual-pivot
Quicksort. We denote by E[Cn] the expected costs — where different cost measures will be inserted
later — of Yaroslavskiy’s algorithm on a random permutation of {1, . . . ,n}. E[Cn] decomposes as

E[Cn] = costs of first partitioning step + costs for subproblems . (3.1)

As Yaroslavskiy’s algorithm satisfies Property 2.1, the costs for recursively sorting subarrays can
be expressed in terms of C with smaller arguments, leading to a recurrence relation. Every (sorted)
pair of elements has the same probability 1

/(n
2
)

of becoming pivots. Conditioning on the ranks of
the pivots, this gives the following recursive form for the expected costs E[Cn] of Yaroslavskiy’s
algorithm on a random permutation of size n:

E[Cn] =
E[Tn] + 1

/(n
2
) ∑
1≤p<q≤n

(
E[Cp−1]+E[Cq−p−1]+E[Cn−q]

)
, for n > M;

E[CIS
n ] , for n ≤ M,

(3.2)

where CIS
n denotes the costs of INSERTIONSORTing a random permutation of {1, . . . ,n} and Tn is the

cost contribution of the first partitioning step. This function Tn quantifies the “toll” we have to
pay for unfolding the recurrence once, therefore we will call Tn the toll function of the recurrence.
By adapting the toll function, we can use the same recurrence to describe different kinds of costs
and we only need to derive a general solution to this single recurrence relation as provided by the
following theorem:

Theorem 3.1. Let E[Cn] be recursively defined by (3.2). Then, E[Cn] satisfies

E[Cn] = 1(n
4
) n∑

i=M+4

( i
4
) i−2∑
j=M+2

(
E[T j+2] − 2 j

j+2 E[T j+1] +
( j
2
)( j+2

2
) E[T j]

)

+
(

n+1
5 +

(M+3
4

)− (M+4
5

)(n
4
) )

E[CM+3] − M−1
M+3

(
n+1

5 −
(M+4

5
)(n

4
) )

E[CM+2] , for n ≥ M+3. (3.3)

As an immediate consequence, E[Cn] — seen as a function of E[Tn] — is linear in E[Tn].

The proof for Theorem 3.1 uses several layers of successive differences of E[Cn] to finally obtain
a telescoping recurrence. Substituting back in then yields (3.3). The detailed computations are
given in Appendix A. This general solution still involves non-trivial double sums. For the cost
measures we are interested in, the following proposition gives an explicit solution for (3.2).

Proposition 3.2. Let E[Cn] be recursively defined by (3.2) and let E[Tn]= an+b for n ≥ M+1. Then,
E[Cn] satisfies

E[Cn] = 6
5 a(n+1)

(
Hn+1 −HM+2

) + 1
5 (n+1)

( 19
5 a+ 6(b−a)

M+2
) + a−b

2

+ 1
5 (n+1)

M∑
k=0

3M−2k(M+2
3

) E[CIS
k ] +

(M+4
5

)(n
4
) RM , for n ≥ M+3, (3.4)
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where
RM = 6

5 a+ 2(a−b)
M+3 + 5b−17a

2(M+4) − M−1
M+4 E[CM+3]+ M−1

M+3 E[CM+2] .

If E[CIS
n = 0] for all n, E[Cn] has the following asymptotic representation:

E[Cn] = 6
5 an lnn + ( 19

25 a+W
)
n + 6

5 a lnn + ( 153
50 a− 1

2 b+W
) + O

( 1
n
)
, n →∞, (3.5)

where

W = 6
5
(
aγ+ b−a

M+2 −aHM+2
)

and γ≈ 0.57721 is the Euler-Mascheroni constant.
Moreover, if the toll function E[Tn] has essentially the form given above, but with E[T2]= 0 6= 2a+b,

we get an additional summand −δM1 · 1
10 (2a+b) · (n+1) in (3.4). Equation (3.5) remains valid if we

set W = 6
5
(
aγ+ b−a

M+2 −aHM+2 −δM1(2a+b) / 10
)
.

The proof of Proposition 3.2 is basically “by computing”, the details are again deferred to
Appendix A.

Remark: For constant M, i. e., M =Θ(1) as n →∞, only the linear term of the expected costs is
affected by M. This means that for the leading term of E[Cn], the “base case strategy” for solving
small subproblems is totally irrelevant.

3.2. Basic Block Execution Frequencies
In this section, we compute for every single instruction of Yaroslavskiy’s algorithm how often
it is executed in expectation. Based on that, we can easily derive the expected number of key
comparisons, swaps, but also more detailed measures, such as the expected number of executed
Bytecode instructions. This is the kind of analysis Knuth popularized through his book series The
Art of Computer Programming [Knuth, 1998]. A corresponding analysis of classic single pivot
Quicksort was done by Sedgewick [1977]. Like the Quicksort variant discussed there, Algorithm 1
uses Insertionsort for sorting small subarrays. Our detailed implementation of Insertionsort and
its analysis are given in Appendix B.

Consecutive lines of purely sequential6 code always have the same execution frequencies;
contracting maximal blocks of such code yields the control flow graph (CFG). Figure 1 shows
the resulting CFG for Yaroslavskiy’s algorithm. Simple flow conservation arguments (a. k. a.
Kirchhoff ’s laws) allow to express execution frequencies of some blocks by the frequencies of others:
The execution frequencies of the 20 basic blocks of Figure 1 only depend on the following nine
frequencies: A, B, R, F, C(1), C(3), C(4), S(1) and S(3). The name C(i) indicates that this frequency
counts executions of the ith location in the code of Algorithm 1, where a key comparison is done.
Similarly, S(i) corresponds to the ith swap location.

The results are summarized in Tables 1 and 2 at the end of the section.

The expected execution frequencies allow a recursive representation of the following form, here
using the example of C(1):

E[C(1)
n ] =

E[TC(1) (n)] + 1
/(n

2
) ∑
1≤p<q≤n

(
E[C(1)

p−1]+E[C(1)
q−p−1]+E[C(1)

n−q]
)
, for n > M;

0, for n ≤ M,
, (3.6)

where TC(1) = TC(1) (n) is the frequency specific toll function — namely the corresponding frequency
during the first partitioning step only. For the other frequencies, we similarly denote by TA, TF , TC(3) ,
TC(4) , TS(1) and TS(3) the toll functions corresponding to A, F, C(3), C(4), S(1) and S(3), respectively.

6Purely sequential blocks contain neither (outgoing) jumps, nor targets for (incoming) jumps from other locations, except
for the last and first instructions, respectively.
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1 R
right− left< M

3 A

A[left]>A[right]

4 B
p := A[right];
q := A[left];

5 A−B
p := A[left];
q := A[right];

6 A

` := left+1; g := right−1; k := `;

7 A+C(1)

k ≤ g

8 C(1)

A[k]< p

10 C(1) −S(1)

A[k]≥ q

9 S(1)

Swap A[k], A[`];
` := `+1;

11 C(3)

A[g]> q
12 C(3)−C(4)+F

k < g

2 R− A

INSERTIONSORT (A, left,right);

13 C(3) −C(4)

g := g−1;

14 C(4)

A[g]≥ p

16 S(3)

Swap A[k], A[g];
Swap A[k], A[`];
` := `+1;

15 C(4) −S(3)

Swap A[k], A[g];

17 C(4)

g := g−1;
18 C(1)

k := k+1;

19 A
` := `−1; g := g+1;
A[left] := A[`]; A[`] := p;
A[right] := A[g]; A[g] := q;
QUICKSORTYAROSLAVSKIY (A, left ,`−1);
QUICKSORTYAROSLAVSKIY (A,`+1, g−1);
QUICKSORTYAROSLAVSKIY (A, g+1,right);

20 R

Return;

no yes

yes no

no

yes

no

yes

no

yes yes

yes

no
no

no yes

Figure 1: Control flow graph for Algorithm 1. The algorithm is decomposed into basic blocks of purely
sequential code. Possible transitions from one block to another are indicated by arrows. Blocks
with two outgoing arrows end with a conditional, the “yes” path is taken if the condition is
fulfilled, otherwise the “no” transition is chosen. We refer to blocks using the number shown in
the upper left corner. In the upper right corner, a block’s symbolic execution frequency is given.
For clarity of presentation, the recursive calls in block 19 are not explicitly shown, but only
sketched by the dashed arrows. Block 2 calls INSERTIONSORT which is given in Appendix B.
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3. Average Case Analysis

The frequencies F, C(1), C(3), C(4), S(1) and S(3) correspond to basic blocks in the body of the main
partitioning loop, i. e., blocks 8 – 18. All these blocks have in common that they are not executed
at all during calls with right− left ≤ 1, i. e., when n ≤ 2: In that case we have k > g directly after
block 6 and hence immediately leave the partitioning loop from block 7 to block 19. Therefore,
we have TF (2)= TC(1) (2)= TC(3) (2)= TC(4) (2)= TS(1) (2)= TS(3) (2)= 0. In the subsequent sections, we will
determine the toll functions for n ≥ 3.

For that, we will first compute their values given fixed pivot ranks P and Q, i. e., we determine
their distribution conditional on (P,Q)= (p, q). Here, we capitalized P and Q to emphasize the fact
that the pivot ranks are themselves random variables. Then, we get the unconditional expected
frequencies via the law of total expectation. Note that for permutations of {1, . . . ,n}, ranks and
values coincide and we will not always dwell on the difference to keep the presentation concise, but
unless stated otherwise, P and Q refer to the ranks of the two pivots.

3.2.1. The Crossing Point Lemma

The following lemma is the key to the precise analysis of the execution frequencies that depend on
how pointers k and g “cross”. As the pointers are moved alternatingly towards each other, one of
them will reach the crossing point first — waiting for the other to arrive.

Lemma 3.3 (Crossing Point Lemma). Let A store a random permutation of {1, . . . ,n} with n ≥ 2.
Then, Algorithm 1 leaves the outer loop of the first partitioning step with

k = q+δ = g+1+δ , where δ= 0 or δ= 1. (3.7)

(More precisely, (3.7) holds for the valuations of k, g and q upon entrance of block 19).
Moreover, δ= 1 iff initially A[q]> q holds, where q =max{A[1],A[n]} is the large pivot.

Proof of Lemma 3.3: Between two consecutive “k ≤ g”-checks in block 7, we move k and g towards
each other by at most one position each; so we always have k ≤ g+2 and we exit the loop as soon as
k > g holds. Therefore, we always leave the loop with k = g+1+δ for some δ ∈ {0,1}. In the end, q is
moved to position g in block 19. Just above in the same block, g has been incremented, so we have
g = q−1 upon entrance of block 19.

For the “moreover” part, we show both implications separately. Assume first that δ = 1, i. e.,
the loop is left with a difference of δ+1 = 2 between k and g. This difference can only show up
when both k is incremented and g is decremented in the last iteration. Hence, in this last iteration
we must have gone from block 10 to 11 and accordingly A[k] ≥ q must have held there — and by
Fact 2.3 A[k] still holds its initial value.

In case k < n, even strict inequality A[k] > q holds since we then have A[k] 6= A[n] = q by the
assumption of distinct elements. Now assume towards a contradiction, k = n holds in the last
execution of block 10. Since g is initialized in block 6 to right−1= n−1 and is only decremented in
the loop, we have g ≤ n−1. But this is a contradiction to the loop condition “k ≤ g”: n = k ≤ g ≤ n−1.
So, A[k]> q holds for the last execution of block 10.

By assumption, δ = 1, so k = q+1 upon termination of the loop. As k has been incremented
exactly once since the last test in block 10, we find A[q]> q there, as claimed.

Now, assume conversely that initially A[q]> q holds. As g stops at q−1 and is decremented in
block 17, we have g = q for the last execution of block 11. Using the assumption yields A[g]=A[q]> q,
since by Fact 2.3, A[q] still holds its initial value. Thus, we take the transition to block 12. Execution
then proceeds with block 14, otherwise we would enter block 11 again, contradicting the assumption
that we just finished its last execution. The transition from block 12 to 14 is only taken if k ≥ g = q.
With the following decrement of g and increment of k, we leave the loop with k ≥ g+2, so δ= 1.

Corollary 3.4. Let δ ∈ {0,1} be the random variable from Lemma 3.3.
It holds E[δ]= 1

3 and E[δ | (P,Q)= (p, q)]= n−q
n−2 .

10



3. Average Case Analysis

Proof: We first compute the conditional expectation. As δ ∈ {0,1}, we have E[δ|P,Q]=P[δ= 1|P,Q],
so it suffices to compute this probability. Now by Lemma 3.3, we have P[δ = 1 |P,Q] = P[A[q] >
q | (P,Q)= (p, q)]. We do a case distinction.

• For q < n, A[q] is one of the non-pivot elements. (We have 1 ≤ p < q < n.) Any of the n−2
non-pivot elements can take position A[q], and among those, n−q elements are strictly greater
than q. This gives a probability of n−q

n−2 for A[q]> q.

• For q = n, q is the maximum of all elements in the list, so we cannot possibly have A[q]> q.
This implies a probability of 0= n−q

n−2 .

By the law of total expectation, the unconditional expectation is given by:

E[δ] =
∑

1≤p<q≤n
P[(P,Q)= (p, q)] ·E[δ | (P,Q)= (p, q)] = 1

/(n
2
) ∑
1≤p<q≤n

n−q
n−2

= 1(n
2
)
(n−2)

( ∑
1≤p<q≤n

n −
∑

1≤p<q≤n
q

)
= 1(n

2
)
(n−2)

n
(n
2
) − 2

3 (n+1)
n−2

=
n− 2

3 (n+1)
n−2

= 1
3 .

The following expectations are used several times below, so we collect them here.

Lemma 3.5. E[P]= 1
3 (n+1) and E[Q]= 2

3 (n+1).

Proof: Conditioning on (P,Q)= (p, q), we find

E[Q] =
∑

1≤p<q≤n

1(n
2
) · q = 1(n

2
) n∑

q=2
q

q−1∑
p=1

1 = 2
3 (n+1) .

A similar calculation for P proves the lemma.

3.2.2. Frequency A

The frequency A = An equals the number of partitioning steps or equivalently the number of
(recursive) calls with right− left≥ M when initially calling QUICKSORTYAROSLAVSKIY(A,1,n) with
a random permutation stored in A. Therefore, the contribution TA of one partitioning step is
TA(n)= 1. By Proposition 3.2 with Tn = 1 and CIS

n = 0, we obtain the closed form

E[An] = 6
5(M+2) (n+1) − 1

2 + 3
10

(M+1
4

)/(n
4
)

. (3.8)

3.2.3. Frequency R

By R = Rn, we denote the number of calls to QUICKSORTYAROSLAVSKIY including those directly
passing control to INSERTIONSORT for small subproblems. Every partitioning step entails three
additional recursive calls on subarrays (see block 19). Moreover, we have one additional initial call
to the procedure. Together, this implies

Rn = 3An +1 . (3.9)

3.2.4. Frequency B

Frequency B counts how often we execute block 4. This block is reached at most once per partition-
ing step, namely iff A[left]>A[right]. For random permutations, the probability for that is exactly
1 /2, so we find

E[Bn] = 1
2 E[An] . (3.10)

11



3. Average Case Analysis

3.2.5. Frequency C(1)

C(1)(n) denotes the execution frequency of block 8 of Yaroslavskiy’s algorithm. Block 8 is the first
statement in the outer loop and the last block of this loop (block 18) is the only place where k
is incremented. Therefore, TC(1) is the number of different values that k attains during the first
partitioning step. The following corollary quantifies this number as TC(1) =Q−2+δ.

Corollary 3.6. Let us denote by K the set of values that pointer k attains at block 8. Similarly,
let G be the set of values of g in block 11. We have

K = {
2,3, . . . ,Q−1+δ}

, |K | = Q−2+δ ,

G = {
n−1,n−2, . . . ,Q+1,Q

}
, |G | = n−Q .

Proof: By Lemma 3.3, we leave the outer loop with k = Q +δ and g = Q −1. Since the last
execution of block 8, k has been incremented exactly once (in block 18), so the last value of k,
namely Q+δ, is not observed at block 8. Similarly, after the last execution of block 11, we always
pass block 17 where g is decremented. So the last value Q−1 for g is not attained in block 11.

Continuing with frequency C(1), note that Q and δ and hence TC(1) =Q−2+δ are random variables.
By linearity of the expectation E[TC(1) ]= E[Q]−2+E[δ] holds, so with Lemma 3.5 and Corollary 3.4,
we find

E[TC(1) (n)] = 1
3 (n+1) − 2 + 1

3 = 2
3 n−1 . (3.11)

3.2.6. Frequency S(1)

Frequency S(1) corresponds to block 9. Block 9 is executed as often as block 8 is reached with
A[k]< p. This number depends on the input permutation: TS(1) (n) is exactly the number of elements
smaller than p that happen to be located at positions in K , the range that pointer k scans. Denote
this quantity by s@K .

Lemma 3.7. Conditional on the pivot ranks P and Q, s@K is hypergeometrically HypG(P −1,Q−
2,n−2) distributed.

Proof: This is seen by considering the following (imaginary) generation process of the current
input permutation: Assuming fixed pivots (P,Q)= (p, q), we have to generate a random permutation
of the remaining n−2 elements E := {1, . . . ,n}\ {p, q}. To do so, we first choose a random subset S of
the free positions F := {2, . . . ,n−1} with |S| = p−1. Then we put a random permutation of {1, . . . , p−1}
into positions S and a random permutation of E\{1, . . . , p−1} into positions F \S. It is easily checked
that this generates all permutations of E with equal probability, if all choices are done uniformly.

Then by definition, s@K = |S∩K |. This seemingly innocent equation hides a subtle intricacy
not to be overlooked: K = {2, . . . , q−1+δ} (Corollary 3.6) is itself a random variable which depends
on the permutation via δ. Luckily, the characterization of δ from Lemma 3.3 allows to resolve this
inter-dependence. K = {2, . . . , q} if A[q]> q and K = {2, . . . , q−1} otherwise. Stated differently, we get
the additional position q in K iff the element at that position is large, which means position q
never contributes towards small elements at positions in K . As a result, s@K = s@K ′ = |S∩K ′|
for K ′ = {2, . . . , q−1}, which is constant for fixed pivot values p and q.

Drawing positions S for small elements one by one is then equivalent to choosing |S| balls out of
an urn with n−2 balls without replacement. If |K ′| of the n−2 balls are red, then s@K equals the
number of red balls drawn, which is hypergeometrically

HypG(|S|, |K ′|,n−2) = HypG(p−1, q−2,n−2)

distributed by definition.
The mean of hypergeometric distributions from (2.1) translates into the conditional expectation
E[s@K |P,Q]= (P−1)(Q−2)

/
(n−2). By the law of total expectation, we can compute the unconditional

12



3. Average Case Analysis

expected value:

E[TS(1) (n)] = E[s@K ] = E(P,Q)
[
E[s@K |P,Q]

] = 1
/(n

2
) ∑
1≤p<q≤n

(p−1)(q−2)
n−2 = 1

4 n− 5
12 . (3.12)

3.2.7. Frequency C(3)

Block 11 — whose executions are counted in C(3) — compares A[g] to q. After every execution of
block 11, pointer g is decremented: depending on whether we leave the loop or not, either in
block 13 or in block 17. Therefore, we execute block 11 for every value that g attains at block 11,
which by Corollary 3.6 amounts to TC(3) (n)= |G | = n−Q. Using Lemma 3.5, we find

E[TC(3) (n)] = 1
3 n− 2

3 . (3.13)

3.2.8. Frequency F

Frequency F counts how often we take the transition from block 12 to block 14. This transition is
taken when we exit the inner loop of Yaroslavskiy’s algorithm because the second part of its loop
condition, “k < g”, is violated, which means we had k ≥ g.

After this has happened, we always execute blocks 17 and 18, where we decrement g and
increment k. Moreover by Lemma 3.3, k is at most g+2 after the loop, and equality holds iff δ= 1.
So at block 12, we always have k ≤ g, which means the violation of the loop condition occurs for
k = g and can only happen in case δ= 1.

We can also show that it must happen whenever δ= 1: By Lemma 3.3, we have A[q] > q, and
k = q+1= g+2 after the loop. Therefore, during the last iteration of the loop, g = k = q and hence
A[k] = A[g] = A[q] > q holds. As a consequence, execution always proceeds through blocks 8, 10
and 11 to block 12. There, “k < g” is not fulfilled, so we take the transition to block 14. Together, we
obtain TF = δ and Corollary 3.4 gives

E[TF (n)] = 1
3 . (3.14)

3.2.9. Frequency C(4)

Frequency C(4) corresponds to block 14, which compares A[g] to p. From the control flow graph, it
is obvious that C(4) is the sum of the frequencies of the two incoming transitions, namely block 11
to 14 and block 12 to 14. The latter is exactly F.

For the former, recall from above that block 11 is executed once for all values G = {n−1,n−2, . . . ,Q}
that pointer g attains there. The transition from block 11 to block 14 is taken iff A[g]≤ q. As
1< g < n holds and all elements are distinct, A[g]= p cannot occur. Therefore, exactly the small and
medium elements that are located at positions in G cause this transition; denote their number by
sm@G . A very similar argument as in the proof of Lemma 3.7 shows that conditional on P and Q,
sm@G is hypergeometrically HypG(Q−2,n−Q,n−2) distributed.

Adding both contributions yields TC(4) = δ+ (sm@G ). Using Corollary 3.4 and equation (2.1)
shows

E[TC(4) (n)] = 1
3 + 1

/(n
2
) ∑
1≤p<q≤n

(q−2)(n−q)
n−2 = 1

6 n− 1
6 . (3.15)

3.2.10. Frequency S(3)

Frequency S(3) counts executions of block 16. Key to its analysis are the following two observations:

1. Block 16 and block 9 (with frequency S(1)) are the only locations inside the loop where pointer
` is changed. Therefore, TS(1) +TS(3) = |L | −1, where L is the set of values pointer that `
attains inside the loop (minus one as we leave the loop after the last increment of ` without
executing blocks 9 and 16 again).
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3. Average Case Analysis

Toll function TA TF TC(1) TC(3) TC(4) TS(1) TS(3)

Expected value (n ≥ 3) 1 1
3

2
3 n−1 1

3 n− 2
3

1
6 n− 1

6
1
4 n− 5

12
1

12 n− 1
4

Special value for n = 2 no 0 0 0 0 0 0

Toll function TC(QS) TS(QS) TW (QS) TBC(QS)

Expected value (n ≥ 3) 19
12 n− 17

12
1
2 n+ 7

6
11
12 n+ 31

12
217
12 n+ 265

4

Special value for n = 2 1 2 4 189
2

Table 1: Expected values for the toll functions for execution frequencies that characterize the block
execution frequencies of all blocks in Algorithm 1 (top) and the derived toll functions for the
expected number of comparison, swaps, write accesses and Bytecode instructions during the
first partitioning step (bottom).

Frequency M = 1 (exact solution for n ≥ 4) M ≥ 2 (asymptotic with error term O
( 1

n4

)
)

E[A] 2
5 n− 1

10
6

5(M+2) (n+1)− 1
2

E[B] 1
5 n− 1

20
3

5(M+2) (n+1)− 1
4

E[R] 6
5 n+ 7

10
18

5(M+2) (n+1)− 1
2

E[F] 1
10 n− 1

15
2

5(M+2) (n+1)− 1
6

E[C(1)] 4
5 (n+1)Hn − 83

50 n− 2
75

4
5 (n+1)

(
Hn+1 −HM+2

)+ ( 38
75 − 2

M+2
)
(n+1)+ 5

6

E[C(3)] 2
5 (n+1)Hn − 22

25 n+ 1
50

2
5 (n+1)

(
Hn+1 −HM+2

)+ ( 19
75 − 6

5(M+2)
)
(n+1)+ 1

2

E[C(4)] 1
5 (n+1)Hn − 39

100 n− 7
300

1
5 (n+1)

(
Hn+1 −HM+2

)+ ( 19
150 − 2

5(M+2)
)
(n+1)+ 1

6

E[S(1)] 3
10 (n+1)Hn − 127

200 n− 1
600

3
10 (n+1)

(
Hn+1 −HM+2

)+ ( 19
100 − 4

5(M+2)
)
(n+1)+ 1

3

E[S(3)] 1
10 (n+1)Hn − 49

200 n+ 13
600

1
10 (n+1)

(
Hn+1 −HM+2

)+ ( 19
300 − 2

5(M+2)
)
(n+1)+ 1

6

E[Tn]= an+b,
E[T2 ]= 0

6
5 a(n+1)(Hn −HM+2)+ ( 19

25 a− 6
5

a−b
M+2 −δM1

2a+b
10

)
(n+1)+ a−b

2 + O
( 1

n4

)
Table 2: Expected execution frequencies characterizing all block execution frequencies of Figure 1.

Those immediately follow from Proposition 3.2 and the toll functions of Table 1. For M = 1, we
give exact expectations (valid for n ≥ 4), for M ≥ 2 we confine ourselves to (extremely precise)
asymptotics. Note that exact values can be computed using equation (3.4) if needed.

2. In block 19, we move the small pivot to A[`], so `= P must hold there. Just above the swap, `
is decremented, so the last value of ` in the loop has been P +1. Moreover, ` is initialized to 2
(block 6), so L = {2, . . . ,P +1}.

Together, this implies TS(3) = P −1− (s@K ) and by (3.12) and Lemma 3.5:

E[TS(3) (n)] = E[P] − 1 − E[s@K ] = 1
3 (n+1) − 1 − ( 1

4 n− 5
12

) = 1
12 n− 1

4 . (3.16)

3.3. Key Comparisons
Theorem 3.8. In expectation, Yaroslavskiy’s algorithm (Algorithm 1) uses

E[Cn] =


19
10 (n+1)

(
Hn+1 −HM+2

)
+ ( 124

75 + 3
20 M− 9

5(M+2) − 12
5(M+2)HM+1

)
(n+1) + 3

2 + O
( 1

n4

)
,

for M ≥ 2;

19
10 (n+1)Hn − 711

200 n − 31
200 , for M = 1, n ≥ 4,

(3.17)
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3. Average Case Analysis

key comparisons to sort a random permutation of size n.

Proof: Key comparisons in the partitioning loop happen in basic blocks 3, 8, 10, 11 and 14.
Together this amounts to

C(QS)
n = C(1)

n + (C(1)
n −S(1)

n ) + C(3)
n + C(4)

n + An and, in expectation,

E[C(QS)
n ] =


19
10 (n+1)

(
Hn+1 −HM+2

) + ( 361
300 − 18

5(M+2)
)
(n+1) + 3

2 + O
( 1

n4

)
, for M ≥ 2;

19
10 (n+1)Hn − 711

200 n − 31
200 , for M = 1, n ≥ 4,

comparisons, where the second equation follows by summing the results from Table 2.
For M ≥ 2, we get additional comparisons from INSERTIONSORT, see Appendix B for details:

E[C(IS)
n ] = E[En]+E[Dn] = ( 3

20 (M+3)+ 9
5(M+2) − 12

5(M+2)HM+1
)
(n+1) .

Summing both contributions yields (3.17).

3.4. Swaps & Write Accesses
Theorem 3.9. In expectation, Yaroslavskiy’s algorithm performs

E[Sn] =


3
5 (n+1)

(
Hn+1 −HM+2

) + ( 19
50 + 4

5(M+2)
)
(n+1) − 1

3 + O
( 1

n4

)
, for M ≥ 2;

3
5 (n+1)Hn − 47

100 n − 61
300 , for M = 1, n ≥ 4,

(3.18)

swaps in partitioning steps while sorting a random permutation of size n.
Including the ones done in INSERTIONSORT on small subproblems, Yaroslavskiy’s algorithm

uses

E[Wn] =


11
10 (n+1)

(
Hn+1 −HM+2

)
+ ( 86

75 + 3
20 M+ 18

5(M+1) − 26
5(M+2)

)
(n+1) − 5

6 + O
( 1

n4

)
,

for M ≥ 2;

11
10 (n+1)Hn − 139

200 n − 257
600 , for M = 1, n ≥ 4,

(3.19)

write accesses to the array to sort a random permutation.

Proof: We find swaps in the partitioning loop of Yaroslavskiy’s algorithm in basic blocks 9, 15,
16 and 19, where blocks 16 and 19 each contain two swaps.7 Hence, the total number of swaps
during all partitioning steps is given by

S(QS) = S(1) + (C(4) −S(3)) + 2S(3) + 2A .

Now, (3.18) follows by inserting the terms from Table 2.
A clever implementation realizes the two consecutive swaps in block 16 with only three write

operations, see for example Appendix C. This yields an overall number of

W (QS)
n = 2S(1)

n + 2(C(4)
n −S(3)

n ) + 3S(3)
n + 4An and, in expectation,

E[W (QS)
n ] =


11
10 (n+1)

(
Hn+1 −HM+2

) + ( 209
300 + 2

M+2
)
(n+1) − 5

6 + O
( 1

n4

)
, for M ≥ 2;

11
10 (n+1)Hn − 139

200 n − 257
600 , for M = 1, n ≥ 4,

write operations during the partitioning steps. The contribution from INSERTIONSORT is (cf.
Appendix B):

E[W (IS)
n ] = E[En] + (E[Gn]−E[In]) = ( 3

20 (M+3)+ 18
5(M+1) − 36

5(M+2)
)
(n+1) .

Adding both together we obtain (3.19).
7Note that Wild and Nebel [2012] included an additional contribution of B for swapping the pivots if they are out of order.

However, this swap can be done with local variables only, we do not need to write the swapped values back to the array.
Therefore, this swap is not counted in this paper.
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Figure 2: The expected number of executed Bytecodes for INSERTIONSORT and Yaroslavskiy’s algo-
rithm with different choices for M. The numbers of Bytecodes shown are normalized by n, i. e.,
we show the number of executed Bytecode instructions per element to be sorted. The data
was obtained by naïvely evaluating the recurrence.

3.5. Executed Java Bytecode Instructions
Theorem 3.10. In expectation, the Java implementation of Yaroslavskiy’s algorithm given in
Appendix C executes

E[BCn] =


217
10 (n+1)

(
Hn+1 −HM+2

)
+ ( 4259

150 + 51
20 M+ 72

M+1 − 317
5(M+2) − 48

5(M+2)HM+1
)
(n+1) − 181

12 + O
( 1

n4

)
,

M ≥ 2;

217
10 (n+1)Hn − 1993

200 n − 2009
600 , n ≥ 4, M = 1,

(3.20)

Java Bytecode instructions to sort a random permutation of size n.

Proof: By counting the number of Bytecode instructions in each basic block and multiplying it
with this block’s frequency, we obtain:

BCn = 71A−1B+6R+15C(1) +10C(3) +11C(4) +9S(1) +8S(3) +3F +4D+17E+20G−7I .

For details, see Appendix C. Inserting the expectations from Table 2 results in (3.20).
The Bytecode count for M = 1 corresponds to entirely removing INSERTIONSORT from the code.

INSERTIONSORT would execute 13 Bytecodes even on empty and one-element lists until it finds out
that the list is already sorted. These obviously superfluous instructions are removed for M = 1.
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3.6. Optimal Choice for M

The overall linear term for the expected number of comparisons is( 124
75 + 3

20 M− 37
10(M+2) − 62+19M

10(M+2)HM+1
)
(n+1) .

This coefficient has a proper minimum at M = 5 with value −3.62024 . . . . Compared with −711/200=
−3.555 for M = 1 this a minor improvement though.

For the number of write operations, the linear term is( 86
75 + 3

20 M− 26
5(M+2) + 18

5(M+1) − 11
10HM+2

)
(n+1) .

The minimum −1.0983 of this coefficient is also located at M = 5. The corresponding coefficient for
M = 1 is −0.695. This improvement is more satisfying than the one for comparisons.

The linear term for the number of executed Bytecodes of Yaroslavskiy’s algorithm with M ≥ 2
attains its minimum −16.0887 . . . at M = 7. This is a significant reduction over −9.965 . . ., the linear
term without INSERTIONSORTing. Figure 2 shows the resulting expected number of Bytecodes
for small lists. For n ≤ 20, using INSERTIONSORT results in an improvement of over 10%. For
n = 100 we save 6.3%, for n = 1000 it is 4.2% and for n = 10000, we still execute 3.1% less Bytecode
instructions than the basic version of Yaroslavskiy’s algorithm.

It is interesting to see that both elementary operations favor M = 5, but the overall Bytecode
count is minimized for “much” larger M = 7. This shows that focusing on elementary operations can
skew the view of an algorithm’s performance. Only explicitly taking the overhead of partitioning
into account reveals that INSERTIONSORT is significantly faster on small subproblems.

Remark The actual Java 7 runtime library implementation uses M = 46, which seems far from
optimal at first sight. Note however that the implementation uses the more elaborate pivot
selection scheme tertiles of five [Wild et al., 2013], which implies additional constant overhead per
partitioning step.

4. Distribution of Costs
In this section we study the asymptotic distributions of our cost measures. We derive limit laws
after normalization and identify the order of variances and covariances. In particular, we find that
all costs are asymptotically concentrated around their mean.

As we confine ourselves to asymptotic statements of first order (leading terms in the expansions
of variances and covariances), it turns out that the choice of M does not affect the results of this
section: All results hold for any (constant) M (see [Neininger, 2001, proof of Corollary 5.5] for
similar universal behavior of standard Quicksort). Appendix E shows that the asymptotic results
are good approximations for practical input sizes n. A general survey on distributional analysis of
various sorting algorithms covering many classical results is found in [Mahmoud, 2000].

4.1. The Contraction Method
Our tool to identify asymptotic variances, correlations and limit laws is the contraction method,
which is applicable to many divide-and-conquer algorithms. Roughly speaking, the idea is to
appropriately normalize a recurrence equation for the distribution of costs such that we can hope
for convergence to a limit distribution. If we then replace all terms that depend on n by their limits
for n →∞, we obtain a map within the space of probability distributions that approximates the
recurrence.

Next a (complete) metric between probability distributions is chosen such that this map becomes
a contraction; then the Banach fixed-point theorem implies the existence of a unique fixed point for
this map. This fixed point is the candidate for the limit distribution of the normalized costs and the
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underlying contraction property is then exploited to also show convergence of the normalized costs
towards the fixed point. This convergence is shown within the same complete metric. If the metric
is sufficiently strong, it may imply more than convergence in law; in our case we additionally obtain
convergence of the first two moments, i. e., convergence of mean and variance. This enables us to
compute asymptotics for the variance of the cost as well. Note that a fixed-point representation for
a limit distribution is implicit, but it is suitable to compute moments of the limit distribution and
to identify further properties such as the existence of a (Lebesgue) density.

For the reader’s convenience we formulate a general convergence theorem from the contraction
method that is used repeatedly below and sufficient for our purpose. Let (Xn)n≥0 denote a sequence
of centered and square integrable random variables either in R or R2 whose distributions satisfy
the recurrence

Xn
D=

K∑
r=1

A(n)
r X (r)

I(n)
r

+b(n), n ≥ n0, (4.1)

where the random variables (A(n)
1 , . . . , A(n)

K ,b(n), I(n)) and (X (1)
n )n≥0, . . . , (X (K)

n )n≥0 are independent, and
X (r)

i is distributed as X i for all r = 1, . . . ,K and i ≥ 0. Furthermore, I(n) = (I(n)
1 , . . . , I(n)

K ) is a vector of
random integers in {0, . . . ,n−1} and K and n0 are fixed integers.

The coefficients A(n)
r and b(n) are real random variables in the univariate case, respectively

random 2×2 matrices and a 2-dimensional random vector in the bivariate case. We assume also
that the coefficients are square integrable and that the following conditions hold:

(A) (A(n)
1 , . . . , A(n)

K ,b(n))
`2−→ (A1, . . . , Ak,b),

(B)
∑K

r=1E
[‖At

r Ar‖op
] < 1,

(C)
∑K

r=1E
[
1{I(n)

r ≤`}‖(A(n)
r )t A(n)

r ‖op
] → 0 as n →∞ for all constants `≥ 0.

Here ‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the operator norm of a matrix and At the transposed matrix.
Note that in the univariate case we just have ‖At

r Ar‖op = A2
r . In (A) we denote by `2−→ conver-

gence in the Wasserstein-metric of order 2 which here is equivalent to the existence of vectors
(Ã(n)

1 , . . . , Ã(n)
K , b̃(n)) with the distribution of (A(n)

1 , . . . , A(n)
K ,b(n)) such that we have the L2 convergence

(Ã(n)
1 , . . . , Ã(n)

K , b̃(n))
L2−→ (A1, . . . , Ak,b) .

Note in particular that A1, . . . , Ak,b are square integrable as well. Then we consider distributions
of X such that

X D=
K∑

r=1
Ar X (r) +b , (4.2)

where (A1, . . . , AK ,b), X (1), . . . , X (K) are independent and X (r) are distributed as X for r = 1, . . . ,K . The
following two results from the contraction method are used:

(I) Under (B), among all centered, square integrable distributions there is a unique solution
L (X ) to (4.2).

(II) Assuming (A), (B) and (C), the sequence (Xn)n≥0 converges in distribution to the solution L (X )
from (I). The convergence holds as well for the second (mixed) moments of Xn.

These results are given by Rösler [2001, Theorem 3] for the univariate case and Neininger [2001,
Theorem 4.1] for the multivariate case.
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4.2. Distributional Analysis of Yaroslavskiy’s Algorithm
We come back to Yaroslavskiy’s algorithm (Algorithm 1). To apply the contraction method, we
have to characterize the full distribution of costs Tn in one partitioning step and then formulate a
distributional recurrence for the resulting distribution of costs Cn for the complete sorting. To obtain
a contracting mapping, we rewrite the derived recurrence for Cn in terms of suitably normalized
costs C∗

n ; here it will suffice to subtract the expected values computed in the last section and then
to divide by n.

For the distributional analysis, it proves more convenient to consider i. i. d. uniformly on [0,1]
distributed random variables U1, . . . ,Un as input. Note that U1, . . . ,Un are thus pairwise different
almost surely. As the actual element values do not matter, this input model is the same as
considering a random permutation.

Yaroslavskiy’s algorithm chooses U1 and Un as pivot elements. Denote by D = (D1,D2,D3) the
spacings induced by U1 and Un on the interval [0,1]; formally we have

(D1,D2,D3) = (U(1), U(2) −U(1), 1−U(2)) ,

for U(1) := min{U1,Un} and U(2) := max{U1,Un}. It is well-known that D is uniformly distributed in
the standard 2-simplex [David and Nagaraja, 2003, p. 133f], i. e., (D1,D2) has density

fD(x1, x2) =
{

2, for x1, x2 ≥ 0 ∧ x1 + x2 ≤ 1;
0, otherwise,

and D3 = 1−D1 −D2 is fully determined by (D1,D2). Hence, for a measurable function g : [0,1]3 →R

such that g(D1,D2,D3) is integrable, we have that

E[g(D1,D2,D3)] = 2
∫ 1

0

∫ 1−x1

0
g(x1, x2,1− x1 − x2) dx2 dx1 . (4.3)

Further we denote the sizes of the three subproblems generated in the first partitioning phase
by I(n) = (I(n)

1 , I(n)
2 , I(n)

3 ). Then we have I(n)
1 +I(n)

2 +I(n)
3 = n−2. Moreover, the spacings D1, D2 and D3 are

exactly the probabilities for an element Ui (1< i < n) to be small, medium or large, respectively. As
all these elements are independent, the vector I(n), conditional on D, has a multinomial distribution:

I(n) D= M(n−2; D1,D2,D3).

We will use the short notation I(n) = I = (I1, I2, I3) when the dependence on n is obvious. From the
strong law of large numbers and dominated convergence we have in particular for r ∈ {1,2,3}

I(n)
r
n

Lp−→ Dr (n →∞), 1≤ p <∞ . (4.4)

The advantage of this random model is that we can decouple values from ranks of pivots. With
D1 =U(1) and D1 +D2 =U(2), we choose the values of the two pivots; however, the ranks P and Q
are not yet fixed. Therefore given fixed pivot values, we can still independently draw non-pivot
elements (with probabilities D1, D2 and D3 to become small, medium and large, resp.), without
having to fuzz with a priori restrictions on the overall number of small, medium and large elements.
This makes it much easier to compute cost contributions uniformly in pivot values than in pivot
ranks. If we operate on random permutations of {1, . . . ,n}, values and ranks coincide, so fixing pivot
values there implies strict bounds on the number of small, medium and large elements.

4.2.1. Distribution of Toll Functions

In Section 3.2, we determined for each basic block of Yaroslavskiy’s algorithm, how often it is
executed in one partitioning step. There, we only used the expected values in the end, but we

19



4. Distribution of Costs

Quantity Distribution given I = (I1, I2, I3)

P = I1 +1

Q = n− I3

δ = 1{A[Q]>Q}
D= B

( I3
n−2

)
TA = 1

TB = 1{A[left]>A[right]}
D= B

( 1
2
)

TF = δ
D= B

( I3
n−2

)
TC(1) = Q−2+δ D= I1 + I2 +B

( I3
n−2

)
TC(3) = n−Q D= I3

TC(4) = δ+ (sm@G ) D= B
( I3

n−2
)+HypG(I1 + I2, I3,n−2)

TS(1) = s@K
D= HypG(I1, I1 + I2,n−2)

TS(3) = P −1− (s@K ) D= I1 −HypG(I1, I1 + I2,n−2)

Table 3: Exact distributions of the toll functions introduced in Section 3.2 or equivalently the distributions
of block execution frequencies in the first partitioning step.

already characterized the full distributions in passing. They are summarized in Table 3 for
reference.

Most of those distributions are in fact mixed distributions, i. e., their parameters depend on the
random variable I = (I1, I2, I3), namely the sizes of the subproblems for recursive calls. For example,
we find that δ conditional on the event (I1, I2, I3) = (i1, i2, i3) is Bernoulli B(i3 / (n−2)) distributed,
which we briefly write as δ D=B(I3 /(n−2)). Note that since I has itself a mixed distribution — namely
conditional on D — we actually have three layers of random variables: spacings, subproblem sizes
and toll functions. The key technical lemmas for dealing with these three-layered distributions are
given in Section 4.3.

4.2.2. Distributional Recurrence

Denote by Tn the (random) costs of the first partitioning step of Yaroslavskiy’s algorithm. By
Property 2.1, subproblems generated in the first partitioning phase are, conditional on their sizes,
again uniformly random permutations and independent of each other. Hence, we obtain the
distributional recurrence for the (random) total costs Cn:

Cn
D= C′

I1
+C′′

I2
+C′′′

I3
+ Tn , (n ≥ 3), (4.5)

where (I1, I2, I3,Tn), (C j
′ ) j≥0, (Cj

′′ ) j≥0, (Cj
′′′ ) j≥0 are independent and C j

′ , Cj
′′ , Cj

′′′ are identically dis-
tributed as C j for j ≥ 0. By Theorems 3.8, 3.9 and 3.10, we know the expected costs E[Cn], so with
C∗

0 := 0 and

C∗
n := Cn −E[Cn]

n
, for n ≥ 1, (4.6)

we have a sequence (C∗
n )n≥0 of centered, square integrable random variables. Using (4.5) we find,

cf. [Hwang and Neininger, 2002, eq. (27), (28)], that (C∗
n )n≥0 satisfies (4.1) with

A(n)
r = Ir

n
, b(n) = 1

n

(
Tn −E[Cn] +

3∑
r=1

E[CIr | Ir]
)
, (4.7)

so we can apply the framework of the contraction method. It remains to check the conditions (A),
(B) and (C) to prove that C∗

n indeed converges to a limit law; the detailed computations are given in
Appendix D. The key results needed therein are presented in the following section as technical
lemmas.
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4.3. Asymptotics of Mixed Distributions
The following convergence results for mixed distributions are essential for proving condition (A).

Lemma 4.1. Let (V1, . . . ,Vb) be a vector of random probabilities, i. e., 0≤Vr ≤ 1 for all r = 1, . . . ,b and∑b
r=1 Vr = 1 almost surely. Let

(L1, . . . ,Lb) := (L(n)
1 , . . . ,L(n)

b ) D= M(n;V1, . . . ,Vb), (4.8)

be mixed multinomially distributed. Furthermore for J1, J2 ⊂ {1, . . . ,b} let

Zn
D= HypG

( ∑
j∈J1

L j,
∑
j∈J2

L j, n
)

(4.9)

be mixed hypergeometrically distributed. Then we have the L2-convergence, as n →∞,

Zn

n
L2−→

( ∑
j∈J1

Vj

)
·
( ∑

j∈J2

Vj

)
. (4.10)

The proof exploits that the binomial and the hypergeometric distributions are both strongly con-
centrated around their means. The full-detail computations to lift this to conditional expectations
are given in Appendix D.

Lemma 4.2. For L1, . . . ,Lb from Lemma 4.1, we have for 1≤ i ≤ b the L2-convergence

L i
n ln

( L i
n

) L2−→ Vi ln(Vi) , as n →∞. (4.11)

(Recall that we set x ln(x) := 0 for x = 0.)
The proof is directly obtained by combining the law of large numbers with the dominated conver-
gence theorem; see Appendix D for details.

4.4. Key Comparisons
We have the following asymptotic results on the variance and distribution of the number of key
comparisons of Yaroslavskiy’s algorithm:

Theorem 4.3. For the number Cn of key comparisons used by Yaroslavskiy’s Quicksort when
operating on a uniformly at random distributed permutation we have

Cn −E[Cn]
n

→ C∗, (n →∞), (4.12)

where the convergence is in distribution and with second moments. The distribution of C∗ is
determined as the unique fixed point, subject to E[X ]= 0 and E[X2]<∞, of

X D= 1 + (D1 +D2)(D2 +2D3) +
3∑

j=1

(
D j X ( j) + 19

10 D j lnD j
)

, (4.13)

where (D1,D2,D3), X (1), X (2) and X (3) are independent and X ( j) has the same distribution as X for
j ∈ {1,2,3}. Moreover, we have, as n →∞,

Var(Cn) ∼ σ2
Cn2 with σ2

C = 2231
360 − 361

600π
2 = 0.25901. . . (4.14)

For the proof, we apply the contraction method to Xn = C∗
n as defined by (4.6), where the toll

function TC(n) is used. Details on checking conditions (A), (B) and (C), as well as the derivation
of the resulting fixed-point equation for C∗ and the computation of the variance are given in
Appendix D.
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4.5. Swaps
For the number of swaps in Yaroslavskiy’s algorithm we have the following asymptotic behavior of
variance and distribution.

Theorem 4.4. For the number Sn of swaps used by Yaroslavskiy’s algorithm when operating on a
random permutation we have

Sn −E[Sn]
n

→ S∗ , (n →∞) , (4.15)

where the convergence is in distribution and with second moments. The distribution of S∗ is
determined as the unique fixed point, subject to E[X ]= 0 and E[X2]<∞, of

X D= D1 + (D1 +D2)D3 +
3∑

j=1

(
D j X ( j) + 3

5 D j lnD j
)

, (4.16)

where (D1,D2,D3), X (1), X (2) and X (3) are independent and X ( j) has the same distribution as X for
j ∈ {1,2,3}. Moreover, we have, as n →∞,

Var(Sn) ∼ σ2
Sn2, with σ2

S = 7
10 − 3

50π
2 = 0.10782. . . (4.17)

The proof is similar to the one for Theorem 4.3, details are given in Appendix D.

4.6. Executed Bytecode Instructions
For the number of executed Java Bytecode instructions in Yaroslavskiy’s algorithm we have the
following asymptotic variance and distribution.

Theorem 4.5. For the number BCn of executed Java Bytecodes used by Yaroslavskiy’s algorithm
when sorting a random permutation, we have

BCn −E[BCn]
n

→ BC∗ , (n →∞) , (4.18)

where the convergence is in distribution and with second moments. The distribution of BC∗ is
determined as the unique fixed point, subject to E[X ]= 0 and E[X2]<∞, of

X D= 24+ (D3 −9)D2 −2D3(5D3 +2) +
3∑

j=1

(
D j X ( j) + 217

10 D j lnD j
)

, (4.19)

where (D1,D2,D3), X (1), X (2) and X (3) are independent and X ( j) has the same distribution as X for
j ∈ {1,2,3}. Moreover, we have, as n →∞,

Var(BCn) ∼ σ2
BCn2, with σ2

BC = 1469983
1800 − 47089

600 π2 = 42.0742. . . (4.20)

Again, the proof is similar to the one for Theorem 4.3 and details are given in Appendix D.

4.7. Covariance of Comparisons and Swaps
In this section we study the asymptotic covariance Cov(Cn,Sn) between the number of key compar-
isons Cn and the number of swaps Sn in Yaroslavskiy’s algorithm.

Theorem 4.6. For the number Cn of key comparisons and the number Sn of swaps used by Yaros-
lavskiy’s algorithm on a random permutation, we have for n →∞

Cov(Cn,Sn) ∼ σC,S n2 with σC,S = 28
15 − 19

100π
2 = −0.00855817. . . (4.21)

The correlation coefficient of Cn and Sn consequently is

Cov(Cn,Sn)√
Var(Cn)

√
Var(Sn)

∼ ρ ≈ −0.0512112. . .
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For the proof of Theorem 4.6, we consider the bivariate random variables Yn := ( Cn
Sn

)
and show

that their normalized versions Y ∗
n := 1

n
(
Yn −E[Yn]

)
converge to the (bivariate) distribution L (Λ1,Λ2),

which is, as before, characterized as the unique fixed point of a distributional equation. The
covariance of Cn and Sn is then obtained by multiplying both components of Y ∗

n , which converges
to E[Λ1 ·Λ2]. Full computations are found in Appendix D.

Note that Theorem 4.6 and its proof directly imply the asymptotic variance and limit distribution
of all linear combinations αCn+βSn, for α,β ∈R, which are, for α,β> 0, natural cost measures when
weighting key comparisons against swaps. The reason is that in the proof of Theorem 4.6 we show
the bivariate limit law (

Cn −E[Cn]
n

,
Sn −E[Sn]

n

)
→ (Λ1,Λ2),

which holds in distribution and with second mixed moments. Hence, the continuous mapping
theorem implies, as n →∞,

αCn +βSn − (αE[Cn]+βE[Sn])
n

→ αΛ1 +βΛ2,

in distribution and with second moments. Thus, we obtain, as n →∞,

Var(αCn +βSn) = α2Var(Cn) + β2Var(Sn) + 2αβCov(Cn,Sn)

∼ (α2σ2
C +β2σ2

S +2αβσC,S)n2.

Note that by this approach also the covariances between all the single contributions from Table 3
that contribute with linear order in the first partitioning step to the number of executed Java
Bytecodes used by Yaroslavskiy’s algorithm can be identified asymptotically in first order.

5. Conclusion
In this paper, we conducted a fully detailed analysis of Yaroslavskiy’s dual-pivot Quicksort —
including the optimization of using Insertionsort on small subproblems — in the style of Knuth’s
book series The Art of Computer Programming. We give the exact expected number of executed
Java Bytecode instructions for Yaroslavskiy’s algorithm.8 On top of the exact average case results,
we establish existence and fixed-point characterizations of limiting distribution of normalized costs.
From this, we compute moments of the limiting distributions, in particular the asymptotic variance
of the number of executed Bytecodes. The mere fact that such a detailed average and distributional
analysis is tractable, seems worth noting. For the reader’s convenience, we summarize the main
results of this paper in Table 4, where we also cite corresponding results on classic single-pivot
Quicksort for comparison.

As observed by Wild and Nebel [2012], Yaroslavskiy’s algorithm uses 5 % less key comparisons,
but 80 % more swaps in the asymptotic average than classic Quicksort. Unless comparisons are
very expensive, one should expect classic Quicksort to be more efficient in total. This intuition
is confirmed by our detailed analysis: In the asymptotic average, the Java implementation of
Yaroslavskiy’s algorithm executes 20 % more Java Bytecode instructions than a corresponding
implementation of classic Quicksort.

Strengthening confidence in expectations, we find that asymptotic standard deviations of all
costs remain linear in n; by Chebyshev’s inequality, this implies concentration around the mean.
Whereas the number of comparisons in Yaroslavskiy’s algorithm shows slightly less variance than
for classic Quicksort, swaps exhibit converse behavior. In fact, the number of swaps in classic
Quicksort is highly concentrated because it already achieves close to optimal average behavior: In

8 Bytecode instructions serve merely as a sample of one possible detailed cost measure; implementations in different low
level languages can easily be analyzed using the our block execution frequencies.
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Cost Measure Yaroslavskiy’s Quicksort Classic Quicksort
error with M = 7 with M = 6

Comparisons expectation O(logn) 1.9n lnn−2.49976n 2n lnn−2.3045n*

std. dev. o(n) 0.50893n 0.648278n†

Swaps (for M = 1) expectation O(logn) 0.6n lnn−0.107004n 0.3n lnn−0.585373n*

std. dev. o(n) 0.328365n 0.0237251n†

Writes Accesses expectation O(logn) 1.1n lnn−0.408039n 0.6n lnn+0.316953n*

Executed Bytecodes expectation O(logn) 21.7n lnn−3.56319n 18n lnn+6.21488n‡

std. dev. o(n) 6.48646n 3.52723n§

Correlation Coefficient for
o(1) −0.0512112 −0.86404$

Comparisons and Swaps

* see [Sedgewick, 1977, p. 334].
† see [Hennequin, 1989, p. 330].
‡ see [Wild, 2012, p. 123].

§ as in [Neininger, 2001, p. 515] for MIX,
but with Bytecode costs of [Wild, 2012].

$ see [Neininger, 2001, Table 1].

Table 4: Summary of the results of this paper and comparison with corresponding results for classic
Quicksort. M is chosen such that the number of executed Bytecodes in minimized. (For swaps,
results for M = 1 are given as Insertionsort is not swap-based.) Some asymptotic approximations
have been weakened for conciseness of presentation, see the main text for full precision. The
asymptotics use the well-known expansion of Harmonic Numbers [e. g. Graham et al. 1994,
eq. (6.66)]

the partitioning step of classic Quicksort, every swap puts both elements into the correct partition
and we never revoke a placement during one partitioning step. In contrast, in Yaroslavskiy’s
algorithm every swap puts only one element into its final location (for the current partitioning
step); the other element might have to be moved a second time later.

Another facet of this difference is revealed by considering the correlation coefficient between
swaps and comparisons. In classic Quicksort, swaps and comparisons are almost perfectly negatively
correlated. A “good” run w. r. t. comparisons needs balanced partitioning, but the more balanced
partitioning becomes, the higher is the potential for misplaced elements that need to be moved.
In Yaroslavskiy’s partitioning method, such a clear dependency does not exist for several reasons.
First of all, even if pivots have extreme ranks, sometimes many swaps are done; e. g. if p and q are
the two largest elements, all elements are swapped in our implementation. Secondly, for some pivot
ranks, comparisons and swaps behave covariantly: For example if p and q are the two smallest
elements, no swap is done and every element’s partition is found with one comparison only. In the
end, the number of comparisons and swaps is almost uncorrelated in Yaroslavskiy’s algorithm.

The asymptotic standard deviation of the total number of executed Bytecode instructions is
about twice as large in Yaroslavskiy’s algorithm as in classic Quicksort. This might be a consequence
of the higher variability in the number of swaps just described.

Concerning practical performance, asymptotic behavior is not the full story. Often, inputs in
practice are of moderate size and only the massive number of calls to a procedure makes it a
bottleneck of overall execution. Then, lower order terms are not negligible. For Quicksort, this
means in particular that constant overhead per partitioning step has to be taken into account. For
tiny n, this overhead turns out to be so large, that it pays to switch to a simpler sorting method
instead of Quicksort. We showed that using INSERTIONSORT for subproblems of size at most M
speeds up Yaroslavskiy’s algorithm significantly for moderate n. The optimal choice for M w. r. t.
the number of executed Bytecodes is M = 7.

Combining the results for INSERTIONSORT from Appendix B and a corresponding Bytecode
count analysis of a Java implementation of classic Quicksort [Wild, 2012], we can compare classic
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Quicksort and Yaroslavskiy’s algorithm exactly. As striking result we observe that in expectation,
Yaroslavskiy’s algorithm needs more Java Bytecodes than classic Quicksort for all n. Thus, the
efficiency of classic Quicksort in terms of executed Bytecodes is not just an effect of asymptotic
approximations, it holds for realistic input sizes, as well.

These findings clearly contradict corresponding running time experiments [Wild, 2012, Chap-
ter 8], where Yaroslavskiy’s algorithm was significantly faster across implementations and pro-
gramming environments. One might object that the poor performance of Yaroslavskiy’s algorithm is
a peculiarity of counting Bytecode instructions. Wild [2012, Section 7.1] also gives implementations
and analyses thereof in MMIX, the new version of Knuth’s imaginary processor architecture. Every
MMIX instruction has well-defined costs, chosen to closely resemble actual execution time on a
simple processor. The results show the same trend: Classic Quicksort is more efficient. Together
with the Bytecode results of this paper, we see strong evidence for the following conjecture:

Conjecture 5.1. The efficiency of Yaroslavskiy’s algorithm in practice is caused by advanced
features of modern processors. In models that assign constant cost contributions to single instruc-
tions — i. e., locality of memory accesses and instruction pipelining are ignored — classic Quicksort
is more efficient.

It will be the subject of future investigations9 to identify the true reason of the success of
Yaroslavskiy’s dual-pivot Quicksort.

9Indeed, progress has been made since this article was submitted. Kushagra et al. [2014] analyzed Yaroslavskiy’s algorithm
in the external memory model and show that it needs significantly less I/Os than classic Quicksort. Their results
indicate that with modern memory hierarchies, using even more pivots in Quicksort might be beneficial, since intuitively
speaking, more work is done in one “scan” of the input.
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APPENDIX

A. Solving the Dual-Pivot Quicksort Recurrence
The proof presented in the following is basically a generalization of the derivation given by
Sedgewick [1975, p. 156ff]. Hennequin [1991] gives an alternative approach based on generating
functions that is much more general. Even though the authors consider Hennequin’s method
elegant, we prefer the elementary proof, as it allows a self-contained presentation.

Two basic identities involving binomials and Harmonic Numbers are used several times below,
so we collect them here. They are found as equations (6.70) and (5.10) in [Graham et al., 1994].∑

0≤k<n

( k
m

)
Hk = ( n

m+1
)(

Hn − 1
m+1

)
, integer m ≥ 0 , (A.1)∑

0≤k≤n

( k
m

) = (n+1
m+1

)
, integers n, m ≥ 0 . (A.2)

Proof of Theorem 3.1: The first step is to use symmetries of the sum in (3.2).∑
1≤p<q≤n

(
Cp−1 +Cq−p−1 +Cn−q

) =
n−1∑
p=1

(n− p)Cp−1 +
n−2∑
k=0

(n−1−k)Ck +
n∑

q=2
(q−1)Cn−q

= 3
n−2∑
k=0

(n−k−1)Ck .

So, our recurrence to solve is

Cn = Tn + 6
n(n−1)

n−2∑
k=0

(n−k−1)Ck , for n > M . (A.3)

We first consider Dn := (n+1
2

)
Cn+1 −

(n
2
)
Cn to get rid of the factor in front of the sum:

Dn =
d(n):=︷ ︸︸ ︷(n+1

2
)
Tn+1 −

(n
2
)
Tn (n ≥ M+2)

+ (n+1)n
2

6
(n+1)n

n−1∑
k=0

(n−k)Ck − n(n−1)
2

6
n(n−1)

n−2∑
k=0

(n−k−1)Ck

= d(n) + 3
n−1∑
k=0

Ck .

The remaining full history recurrence is eliminated by taking ordinary differences

En := Dn+1 −Dn = d(n+1)−d(n)+3Cn . (n ≥ M+2)

Towards a telescoping recurrence, we consider Fn := Cn − n−4
n ·Cn−1 , and compute

Fn+2 −Fn+1 = Cn+2 − n−2
n+2 Cn+1 −

(
Cn+1 − n−3

n+1 Cn
)

= Cn+2 − 2n
n+2 Cn+1 + n−3

n+1 Cn . (A.4)

The expression on the right hand side in itself is not helpful. However, by expanding the definition
of En, we find

(En −3Cn)
/ (n+2

2
) = (Dn+1 −Dn −3Cn)

/ (n+2
2

)
=

((n+2
2

)
Cn+2 −

(n+1
2

)
Cn+1 −

((n+1
2

)
Cn+1 −

(n
2
)
Cn

)
−3Cn

)/(n+2
2

)
= Cn+2 − 2n

n+2 Cn+1 +
1
2 n(n−1)−3

1
2 (n+2)(n−1)

Cn

= Cn+2 − 2n
n+2 Cn+1 +

1
2 (n−3)(n+2)
1
2 (n+2)(n−1)

Cn

= Cn+2 − 2n
n+2 Cn+1 + n−3

n+1 Cn . (A.5)
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Equating (A.4) and (A.5) yields

Fn+2 −Fn+1 = (En −3Cn)
/ (n+2

2
) = (

d(n+1)−d(n)
) / (n+2

2
)︸ ︷︷ ︸

f (n):=

. (n ≥ M+2)

This last equation is now amenable to simple iteration:

Fn =
n∑

i=M+4
f (i−2) + FM+3︸ ︷︷ ︸

g(n)

. (n ≥ M+4)

Plugging in the definition of Fn = Cn − n−4
n ·Cn−1 yields

Cn = n−4
n ·Cn−1 + g(n) . (n ≥ M+4) (A.6)

Multiplying (A.6) by
(n
4
)

and using
(n
4
) · n−4

n = (n−1
4

)
gives a telescoping recurrence:

Gn := (n
4
)
Cn = Gn−1 +

(n
4
)
g(n)

=
n∑

i=M+4

( i
4
)
g(i) + GM+3

=
n∑

i=1

( i
4
)
g(i) + GM+3 −

M+3∑
i=1

( i
4
)( =0︷ ︸︸ ︷

i∑
j=M+4

f ( j−2) + FM+3

)
=

n∑
i=1

( i
4
)
g(i) + GM+3 − (M+4

5
)
FM+3 , (A.7)

where the last equation uses (A.2). Applying definitions, we find

n∑
i=1

( i
4
)
g(i) =

n∑
i=1

( i
4
)(

FM+3 +
i−2∑

j=M+2

d( j+1)−d( j)( j+2
2

) )

= (n+1
5

)
FM+3 +

n∑
i=M+4

( i
4
) i−2∑
j=M+2

(
T j+2 − 2 j

j+2 T j+1 +
( j
2
)( j+2

2
) T j

)
. (A.8)

Using (A.8) in (A.7), we finally arrive at the explicit formula for Cn valid for n ≥ M+3:

Cn =
(n+1

5
)(n

4
) FM+3 + 1(n

4
) n∑

i=M+4

( i
4
) i−2∑
j=M+2

(
T j+2 − 2 j

j+2 T j+1 +
( j
2
)( j+2

2
) T j

)

+
GM+3 − (M+4

5
)
FM+3(n

4
) .

Expanding F and G according to their definition gives

= 1(n
4
) n∑

i=M+4

( i
4
) i−2∑
j=M+2

(
T j+2 − 2 j

j+2 T j+1 +
( j
2
)( j+2

2
) T j

)

+
(

n+1
5 +

(M+3
4

)− (M+4
5

)(n
4
) )

CM+3 − M−1
M+3

(
n+1

5 −
(M+4

5
)(n

4
) )

CM+2 ,

which concludes the proof.
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Proof of Proposition 3.2: Of course, we start with the closed form (3.3) from Theorem 3.1, which
consists of the double sum and two terms involving “base cases” CM+2 and CM+3.

Cn = 1(n
4
) n∑

i=M+4

( i
4
) i−2∑
j=M+2

η j︷ ︸︸ ︷(
T j+2 − 2 j

j+2 T j+1 +
( j
2
)( j+2

2
)T j

)

+
(

n+1
5 +

(M+3
4

)− (M+4
5

)(n
4
) )

CM+3 − M−1
M+3

(
n+1

5 −
(M+4

5
)(n

4
) )

CM+2︸ ︷︷ ︸
ρ

We first focus on the sums. Assuming the even more general form

Tn = an+b+ c1
n−1 + c2

n + c3
n(n−1) ,

partial fraction decomposition of the innermost term yields

η j := (
T j+2 − 2 j

j+2 T j+1 + ( j
2
)/( j+2

2
)
T j

) = 8a−2b
j+2 − 2a−2b

j+1 .

Note that contributions from c1
n−1 , c2

n and c3
n(n−1) cancel out. This allows to write the inner sum in

terms of Harmonic Numbers:
i−2∑

j=M+2
η j = (8a−2b)(H i −HM+3) − (2a−2b)(H i−1 −HM+2)

= 6a(H i −HM+3) + (2a−2b)( 1
i − 1

M+3 ) . (A.9)

(The second equation uses the basic fact Hk−1 =Hk − 1
k .)

Using (A.1), (A.2) and the absorption property of binomials
(n

k
)= (n−1

k−1
) n

k , one obtains

1(n
4
) n∑

i=M+4

( i
4
) i−2∑
j=M+2

η j = 6a(n
4
) ((n+1

5
)
(Hn+1 − 1

5 )− (M+4
5

)
(HM+4 − 1

5 )
)

+ 2a−2b(n
4
) n−1∑

i=M+3

(
1
4
(i−3

3
)− 1

M+3
( i
4
))

− 6a(n
4
)HM+3

((n+1
5

)− (M+4
5

))
= 6

5 a(n+1)(Hn+1 − 1
5 ) − 6a

(M+4
5

)(n
4
) (HM+4 − 1

5 )

+ 2a−2b(n
4
) (

1
4
((n

4
)− (M+3

4
)) − 1

M+3
((n+1

5
)− (M+4

5
)))

− 6aHM+3

(
n+1

5 − (M+4
5

)/(n
4
))

= 6
5 a(n+1)Hn+1 − n+1

5
(
6aHM+3 + 2a−2b

M+3 + 6
5 a

) + a−b
2

+
(M+4

5
)(n

4
) ( 6

5 a−6a(HM+4 −HM+3)− a−b
2

5
M+4 + 2a−2b

M+3
)

= 6
5 a(n+1)Hn+1 − n+1

5
(
6aHM+3 + 2a−2b

M+3 + 6
5 a

)
+ a−b

2 +
(M+4

5
)(n

4
) ( 6

5 a+ 2a−2b
M+3 + 5b−17a

2(M+4)
)

. (A.10)

It remains to consider the second and third summands of (3.3)

ρ :=
(

n+1
5 +

(M+3
4

)− (M+4
5

)(n
4
) )

CM+3 − M−1
M+3

(
n+1

5 −
(M+4

5
)(n

4
) )

CM+2 .
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We start by applying definition (3.2) twice and using Cn = CIS
n for n ≤ M to expand CM+3

CM+3 = TM+3 + 3(M+3
2

) M+1∑
k=0

(M+2−k)Ck

= TM+3 + 3(M+3
2

) (
TM+1 +

3(M+1
2

) M−1∑
k=0

(M−k)CIS
k

)
+ 3(M+3

2
) M∑

k=0
(M+2−k)CIS

k

= TM+3 + 3(M+3
2

)TM+1 + 3(M+3
2

) M∑
k=0

(
(M+2−k)+ 3(M−k)(M+1

2
) )

CIS
k (A.11)

and CM+2

CM+2 = TM+2 + 3(M+2
2

) M∑
k=0

(M+1−k)CIS
k . (A.12)

Equations (A.11) and (A.12) are now inserted into the second and third summands of (3.3). With
Tn = an+b for n ≥ M+1, this yields

ρ = n+1
5

(
(M+3)a+b+ 3(M+3

2
) (

(M+1)a+b
)− M−1

M+3
(
(M+2)a+b

))
+ n+1

5

M∑
k=0

(3(M+2−k)(M+3
2

) + 9(M−k)(M+1
2

)(M+3
2

) − M−1
M+3

3(M+1−k)(M+2
2

) )
CIS

k

+
(M+4

5
)(n

4
) (

( 5
M+4 −1)CM+3 + M−1

M+3 CM+2

)
= n+1

5

(
5a+ 6(b−a)

M+2 + 2(4a−b)
M+3

)
+ n+1

5

M∑
k=0

3M−2k(M+2
3

) CIS
k (A.13)

+
(M+4

5
)(n

4
) ( M−1

M+3 CM+2 − M−1
M+4 CM+3

)
Adding (A.10) and (A.13) finally yields the claimed representation

Cn = 6
5 a(n+1)Hn+1 + n+1

5
( 19

5 a+ 6(b−a)
M+2 −6aHM+2

) + a−b
2 + n+1

5

M∑
k=0

3M−2k(M+2
3

) CIS
k

+
(M+4

5
)(n

4
) ( 6

5 a+ 2(a−b)
M+3 + 5b−17a

2(M+4) − M−1
M+4 CM+3 + M−1

M+3 CM+2
)

.

For the asymptotic representation (3.5) of Cn, the penultimate summand is 0 because of the
assumption CIS

n = 0. The last summand is in Θ(n−4) and therefore vanishes in the O( 1
n ) term (we

assume M = Θ(1) as n → ∞ to be constant). Now, replacing Hn by its well-known asymptotic
estimate

Hn = ln(n)+γ+ 1
2 n+O

( 1
n2

)
[Graham et al., 1994, eq. (6.66)]

and expanding terms in (3.4) directly yields (3.5).
Finally, the case T2 = 0 6= 2a+b affects the derivation only at a single point: As M ≥ 1, the only

occurring toll function that can ever equal T2 is TM+1, which occurs only in CM+3, see (A.11). In ρ,
we multiply CM+3 by

( n+1
5 +((M+3

4
)−(M+4

5
))/(n

4
)) = 1

5 (n+1)+O(n−4). Consequently, we have to subtract

δM1

(
1
5 (n+1) · 3(M+3

2
) (2a+b)+O(n−4)

)
= δM1

2a+b
10 (n+1)+O(n−4) .

(The second equation follows by setting M = 1.)
This concludes the proof of Proposition 3.2.
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B. Insertionsort

Algorithm 2 Insertionsort as given and analyzed by Knuth [1998].

INSERTIONSORT(A, left,right)

1 for i = left+1 , . . . , right
2 j := i−1; v := A[i]
3 while j ≥ left ∧ v <A[ j]
4 A[ j+1] := A[ j]; j := j−1
5 end while
6 A[ j+1] := v
7 end for

2a I

i := left+1;

2b G

i ≤ right

2c G− I

j := i−1;
v := A[i];

2d E+D

v <A[ j]

2e E

A[ j+1] := A[ j];
j := j−1;
j < left

2f G− I −D

Goto;

2g G− I

A[ j+1]= v;
i := i+1;

2h I

Return

yes
no

yes

no
yes

no

Figure 3: Control flow graph of our Java implementation of INSERTIONSORT (Algorithm 2). The block
names “2a” – “2h” indicate that these blocks replace block 2 in Figure 1; this figure provides a
“close-up view” of block 2. Blocks 2f and 2h contain control flow statements needed in Java
Bytecode, which would normally be represented by arrows only. They are shown to remind us
of their cost contributions.

B. Insertionsort
In this section, we consider in some detail the INSERTIONSORT procedure used for sorting small
subproblems. Insertionsort is a primitive sorting algorithm with quadratic running time in both
worst and average case. On very small arrays however, it is extremely efficient, which makes it a
good choice for our purpose.

Our implementation of INSERTIONSORT is given as Algorithm 2 and its control flow graph
is shown in Figure 3. Algorithm 2 is based on the implementation by Knuth [1998, Program
S]. Knuth assumes n ≥ 2 in his code and analysis, but our Quicksort implementation also calls
INSERTIONSORT on subproblems of size 0 or 1. Therefore, Algorithm 2 starts with an index
comparison “i ≤ right” to handle these cases.

Figure 3 lists the execution frequencies of all basic blocks. The names are chosen to match the
corresponding notation of Sedgewick [1977] and denote the total execution frequencies across all
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C. Low-Level Implementations and Instruction Counts

Block 1 3 4 5 6 7 8 9 10 11
# Bytecodes 5 7 8 9 10 3 7 12 3 5

Block 12 13 14 15 16 17 18 19 20
# Bytecodes 3 2 5 6 14 5 2 42 1

Block 2a 2b 2c 2d 2e 2f 2g 2h
# Bytecodes 8 3 8 5 12 1 8 2

Table 5: Bytecode counts for the basic blocks of Figures 1 and 3.

invocations of INSERTIONSORT on small subproblems caused by one initial call to QUICKSORTYAR-
OSLAVSKIY. Let us define Ĩ, G̃, D̃ and Ẽ to denote the frequencies when we use INSERTIONSORT in
isolation for sorting a random permutation. These frequencies are analyzed by Knuth [1998, p. 82]
for n ≥ 2. As mentioned above, our implementation has to work for n ≥ 0, so our analysis must take
the special cases n ∈ {0,1} into account. We find

Ĩ(n) = 1 , G̃(n) = n+δn0 , D̃(n) = n−Hn and Ẽ(n) = (n
2
)/

2 .

We can compute I, G, D and E by inserting Ĩ, G̃, D̃ and Ẽ for CIS in the solution provided by
Proposition 3.2 on page 7.

I(n) = 1
5 (n+1)

1(M+2
3

) M∑
k=0

(3M−2k) Ĩ(k) = 12
5(M+2) (n+1) ,

G(n) = (
1+ 18

5(M+1) − 6
M+2

)
(n+1) ,

D(n) = (
1+ 3

5(M+2) − 12
5(M+2)HM+1

)
(n+1) ,

E(n) = ( 3
20 M+ 6

5(M+2) − 11
20

)
(n+1) .

(B.1)

Using these frequencies, we can easily express the expected number of key comparisons, write
accesses and executed Bytecode instructions: The only place where key comparisons occur, is in
block 2d, so C(IS) = D +E. Write accesses to array A happen in blocks 2e and 2g, giving W (IS) =
E+ (G− I). The number of Bytecodes is given in the next section.

C. Low-Level Implementations and Instruction Counts
Figure 4 shows the Java implementation of Yaroslavskiy’s algorithm whose Bytecode counts
are studied in this paper. The partitioning loop is taken from the original sources of the Java
7 Runtime Environment library (see for example http://www.docjar.com/html/api/java/
util/DualPivotQuicksort.java.html).

The Java code has been compiled using Oracle’s Java Compiler (javac version 1.7.0_17). The
resulting Java Bytecode was decomposed into the basic blocks of Figures 1 and 3. Then, for
each block the number of Bytecode instructions was counted, the result is given in Table 5. We
have automated this process as part of our tool MaLiJAn (Maximum Likelihood Java Analyzer),
which provides a means of automating empirical studies of algorithms based on their control flow
graphs [Laube and Nebel, 2010; Wild et al., 2013].

By multiplying the Bytecodes per block with the block’s frequency, we get the overall number of
executed Bytecodes. For Yaroslavskiy’s Quicksort, we get

BC(QS) = 5R+7A+8B+9(A−B)+10A+3(A+C(1))+7C(1) +12S(1) +3(C(1) −S(1))

+5C(3) +3(C(3) −C(4) +F)+2(C(3) −C(4))+5C(4) +6(C(4) −S(3))+14S(3)

+5C(4) +2C(1) +42A+1R
= 71A−1B+6R+15C(1) +10C(3) +11C(4) +9S(1) +8S(3) +3F . (C.1)
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C. Low-Level Implementations and Instruction Counts

1 void quicksortYaroslavskiy(int[] A, int left, int right) {
2 if (right - left < M) {
3 insertionsort(A, left, right);
4 } else {
5 final int p, q;
6 if (A[left] > A[right]) {
7 p = A[right]; q = A[left];
8 } else {
9 p = A[left]; q = A[right];

10 }
11 int l = left + 1, g = right - 1, k = l;
12 while( k <= g ) {
13 final int ak = A[k];
14 if (ak < p) {
15 A[k] = A[l]; A[l] = ak; ++l;
16 } else if (ak >= q) {
17 while (A[g] > q && k < g)
18 --g;
19 if (A[g] < p) {
20 A[k] = A[l]; A[l] = A[g]; ++l;
21 } else {
22 A[k] = A[g];
23 }
24 A[g] = ak; --g;
25 }
26 ++k;
27 }
28 --l; ++g;
29 A[left] = A[l]; A[l] = p; A[right] = A[g]; A[g] = q;
30 quicksortYaroslavskiy(A, left, l - 1);
31 quicksortYaroslavskiy(A, g + 1, right);
32 quicksortYaroslavskiy(A, l + 1, g - 1);
33 }
34 }

36 void insertionsort(int[] A, int left, int right) {
37 for (int i = left + 1; i <= right; ++i) {
38 int j = i-1; final int v = A[i];
39 while (v < A[j]) {
40 A[j+1] = A[j]; --j;
41 if (j < left) break;
42 }
43 A[j+1] = v;
44 }
45 }

Figure 4: Java implementation of Yaroslavskiy’s algorithm.
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D. Details on the Distributional Analysis

Additionally, we have for INSERTIONSORT

BC(IS) = 8I +3G+8(G− I)+5(E+D)+12E+1(G− I −D)+8(G− I)+2I
= 4D+17E+20G−7I . (C.2)

Note that Wild [2012] investigated a different (more naïve) Java implementation of Yaroslav-
skiy’s algorithm and hence reports different Bytecode counts.

D. Details on the Distributional Analysis
In this appendix, we give details on the application of the contraction method to the distributions
of costs in Yaroslavskiy’s algorithm and we prove the main technical lemmas from Section 4.3.

D.1. Proof of Theorem 4.3
We consider the first partitioning step of Yaroslavskiy’s algorithm and denote by TC(n) the number
of key comparisons of the first partitioning phase. By Property 2.1, subproblems generated in the
first partitioning phase are, conditional on their sizes, again uniformly random permutations and
independent of each other. Hence, we obtain the distributional recurrence

Cn
D= C′

I1
+C′′

I2
+C′′′

I3
+ TC(n) (n ≥ 3), (D.1)

where (I1, I2, I3,TC(n)), (C′
j) j≥0, (C′′

j ) j≥0, (C′′′
j ) j≥0 are independent and C′

j, C′′
j , C′′′

j are identically dis-
tributed as C j for j ≥ 0. Note that equation (D.1) is simply obtained from the generic distributional
recurrence (4.5) upon inserting the toll function TC(n).

As in Section 4.2.2, we now define the normalized number of comparisons C∗
n as

C∗
0 := 0 and C∗

n := Cn −E[Cn]
n

, (n ≥ 1) (D.2)

Note that E[C∗
n ]= 0 and the Var(C∗

n )<∞, i. e., (C∗
n )n≥0 is a sequence of centered, square integrable

random variables. Using (D.1) we find, cf. [Hwang and Neininger, 2002, eq. (27), (28)], that (C∗
n )n≥0

satisfies (4.1) with

A(n)
r = Ir

n
, b(n) = 1

n

(
TC(n)−E[Cn] +

3∑
r=1

E[CIr | Ir]
)
.

We apply the framework of the contraction method outlined in Section 4.1. To check condition (A)
note that from (4.4), we have A(n)

r → Dr in L2 for r = 1,2,3 as n →∞.
To identify the L2-limit of b(n) we look at the summands TC(n) /n and

(−E[Cn] + ∑3
r=1E[CIr | Ir]

)
/ n

separately. By Theorem 3.8, the expectation has the form E[Cn]= 19/10 n lnn+ cn+O(logn) for some
constant c ∈R, which implies E[CIr | Ir] = 19/10 Ir ln Ir + cIr + o(n) since we have o(Ir)= o(n). Plugging
in these expansions, using I1 + I2 + I3 = n−2 and rearranging terms gives the asymptotic identity,
as n →∞,

1
n

(
−E[Cn]+

3∑
r=1

E[CIr | Ir]
)
=

3∑
r=1

19
10

Ir
n ln Ir

n − 2
n

19
10

n lnn
n − 2c

n + o(1)

=
3∑

r=1

19
10

Ir
n ln Ir

n + o(1) .

Hence, Lemma 4.2 implies

1
n

(
−E[Cn]+

3∑
r=1

E[CIr | Ir]
) L2−→ 19

10

3∑
j=1

D j lnD j (n →∞) . (D.3)
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For the limit behavior of TC(n) / n we use the distributions listed in Table 3 and find

TC(n) = TC(1) (n) + (
TC(1) (n)−TS(1) (n)

) + TC(3) (n) + TC(4) (n) + TA(n)
D= n−1 + I1 + I2 + HypG(I1 + I2, I3,n−2) − HypG(I1, I1 + I2,n−2) + 3B( I3

n−2 ) .

Using Lemma 4.1 and (4.4), we find for the normalized number of comparisons:

TC(n)
n

D= n−2
n

+ I1

n
+ I2

n
+ HypG(I1 + I2, I3,n−2)

n−2
· n−2

n

− HypG(I1, I1 + I2,n−2)
n−2

· n−2
n

+ 3
B

( I3
n−2

)
n

L2−→ 1 + D1 + D2 + (D1 +D2)D3 − D1(D1 +D2) + 0

= 1 + (D1 +D2)(1+D3 −D1)

= 1 + (D1 +D2)(D2 +2D3) .

Altogether, we obtain that condition (A) holds with

(A1, A2, A3,b) =
(
D1, D2, D3, 1+ (D1 +D2)(D2 +2D3)+ 19

10

3∑
j=1

D j lnD j

)
.

Concerning condition (B), note that D1, D2 and D3 are identically distributed with density x 7→ 2(1−x)
for 0≤ x ≤ 1. This implies

3∑
r=1

E
[
D2

r
] = 3E

[
D2

1
] = 3

∫ 1

0
x2 2(1− x) dx = 1

2 < 1 . (D.4)

Moreover, condition (C) is fulfilled since

K∑
r=1

E
[
1{I(n)

r ≤`} · ‖(A(n)
r )t A(n)

r ‖op
] ≤

K∑
r=1

P(I(n)
r ≤ `) → 0, (n →∞), for any fixed ` ∈N .

Now the conclusions (I) and (II) give the claims C∗
n → C∗ in distribution with the characterization

of the distribution of C∗. For the asymptotic of the variance note that convergence of the second
moment E[(C∗

n )2]→ E[(C∗)2] and the normalization (D.2) imply

Var(Cn) ∼ σ2
Cn2 with σ2

C = E[(C∗)2] .

To identify σ2
C, let C∗,(1),C∗,(2) and C∗,(3) be independent copies of C∗ also independent of (D1,D2,D3).

We abbreviate τ := 1+(D1+D2)(D2+2D3)+ 19
10

∑3
r=1 Dr lnDr. Taking squares and expectations in (4.13)

and noting that E[C∗]= E[C∗,(r)]= 0, we find

E[(C∗)2] = E
[(

1+ (D1 +D2)(D2 +2D3)+ 19
10

3∑
r=1

Dr lnDr +
3∑

r=1
DrC∗,(r)

)2]
= E[τ2] + 2E

[
τ

3∑
r=1

DrC∗,(r)
]
+ E

[( 3∑
r=1

DrC∗,(r)
)2]

= E[τ2] + 2
3∑

r=1
E[τDr]E[C∗] +

3∑
r=1

E[D2
r ]E[(C∗)2] +

∑
1≤,r,s≤3

r 6=s

E[DrDs]E[C∗]2

= E[τ2] + E[(C∗)2]
3∑

r=1
E[D2

r ]

= E[τ2]+ 1
2 E[(C∗)2] ,
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where for the last equality (D.4) was used. Solving for E[(C∗)2] implies

E[(C∗)2]= 2E
[(

1+ (D1 +D2)(D2 +2D3)+ 19
10

3∑
j=1

D j lnD j

)2]
.

Now, the integral representation (4.3) and the use of a computer algebra system yields the expres-
sion for σ2

C.

D.2. Proof of Theorem 4.4
The proof can be done similarly to the one for Theorem 4.3. We have the recurrence

Sn
D= S′

I1
+S′′

I2
+S′′′

I3
+ TS(n), (n ≥ 3), (D.5)

with conditions on independence and distributions as in (D.1), where TS(n) is the number of swaps
in the first partitioning step of the algorithm. We set S∗

0 := 0 and

S∗
n := Sn −E[Sn]

n
, (n ≥ 1) . (D.6)

Hence, (S∗
n )n≥0 is a sequence of centered, square integrable random variables satisfying (4.1) with

A(n)
r = Ir

n
, b(n) = 1

n

(
TS(n)−E[Sn]+

3∑
r=1

E[SIr | Ir]
)
,

where by Theorem 3.9, we know E[Sn] = 3
5 n ln(n)+ c′n+O(logn) for a constant c′ ∈ R. Analogously

to (D.3) we obtain

1
n

(
−E[Sn]+

3∑
r=1

E[SIr | Ir]
)
→ 3

5

3∑
j=1

D j lnD j, (n →∞), in L2 . (D.7)

It remains to study the asymptotic behavior of TS(n) / n. Again profiting from the spadework of
Section 3.2, we find the exact distribution of the number of swaps:

TS(n) = TS(1) (n) + (
TC(4) (n)−TS(3) (n)

) + 2TS(3) (n) + 2TA(n) = I1 + sm@G +δ+2
D= I1 + HypG(I1 + I2, I3,n−2) + B

( I3
n−2

) + 2 .

By Lemma 4.1 and (4.4), we find
TS(n)

n
L2−→ D1 + (D1 +D2)D3 .

The conditions (A), (B) and (C) are now checked as in the proof of Theorem 4.3. The assertions
of Theorem 4.4 follow from (I) and (II), the identification of σ2

S is done as that of σ2
C in Theorem

4.3.

D.3. Proof of Theorem 4.5
The proof can be done very similarly as for Theorems 4.3 and 4.4. We only present the key points
where changes are needed. For the distributional recurrence, we here have the toll function

TBC(n) = 15TC(1) (n)+10TC(3) (n)+11TC(4) (n)+9TS(1) (n)+8TS(3) (n)

+71TA(n)−1TB(n)+6TR(n)+3TF (n) .

All contributions from the second line are bounded by O(1) (see Table 3). Therefore they vanish in
the limit of TBC(n) / n:

TBC(n)
n

L2−→ 15(D1 +D2) + 10D3 + 11(D1 +D2)D3 + 9D1(D1 +D2) + 8
(
D1 −D1(D1 +D2)

)
= 24+ (D3 −9)D2 −2D3(5D3 +2) .

The rest of the proof is carried out along the same lines as for the proofs above.
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D.4. Proof of Theorem 4.6
We define the column vector Yn := ( Cn

Sn

)
. Then from (D.1) and (D.5), we obtain

Yn
D= Y ′

I1
+Y ′′

I2
+Y ′′′

I3
+

(
TC(n)
TS(n)

)
,

with conditions on independence and distributions as in (D.1). We set Y ∗
0 := ( 0

0
)

and

Y ∗
n := 1

n
(
Yn −E[Yn]

)
. (D.8)

Hence, (Y ∗
n )n≥0 is a sequence of centered, square integrable, bivariate random variables satisfy-

ing (4.1) with

A(n)
r = 1

n

[
Ir 0
0 Ir

]
, b(n) = 1

n

(
TC(n)−E[Cn]+∑3

r=1E[CIr | Ir]
TS(n)−E[Sn]+∑3

r=1E[SIr | Ir]

)
.

Using the asymptotic behavior from the proofs of Theorems 4.3 and 4.4 we obtain that condition
(A) holds with

Ar =
[
Dr 0
0 Dr

]
, b =

(
1+ (D1 +D2)(D2 +2D3)+ 19

10
∑3

j=1 D j lnD j

D1 + (D1 +D2)D3 + 3
5

∑3
j=1 D j lnD j

)
. (D.9)

Condition (B) is satisfied as
3∑

r=1
E
[‖At

r Ar‖op
] =

3∑
r=1

E[D2
r ] = 1

2 < 1 .

Condition (C) is checked similarly as in the proof of Theorem 4.3.
Hence from (I) we obtain the existence of a centered, square integrable, bivariate distribution

L (Λ1,Λ2) that solves the bivariate fixed-point equation (4.2) with the choices for Ar and b given
in (D.9). Furthermore (II) implies that the sequence (Y ∗

n ) defined in (D.8) converges in distribution
and with mixed second moments towards (Λ1,Λ2). This implies in particular, as n →∞,

E

[
Cn −E[Cn]

n
· Sn −E[Sn]

n

]
→ E[Λ1 ·Λ2].

Hence, we obtain

Cov(Cn,Sn) ∼ E[Λ1Λ2]n2.

The value E[Λ1Λ2] is obtained from the fixed-point equation (4.2) with the choices for Ar and b given
in (D.9) by multiplying the components on left and right hand side, taking expectations and solving
for E[Λ1Λ2]. The integral representation (4.3) then leads to the expression given in (4.21).

D.5. Proof of Lemma 4.1
We denote by Bin(n, p) the binomial distribution with n trials and success probability p.

The hypergeometric distribution HypG(k, r, r + b) has mean and variance given in (2.1). In
particular for sequences (αn)n≥1, (βn)n≥1 with αn = αn+ rn and βn = βn+ sn with α,β ∈ (0,1) and
|rn|, |sn| ≤ n2/3, we obtain for hypergeometrically HypG(αn,βn,n) distributed random variables Υn
that Var(Υn)≤ n and moreover∥∥∥∥Υn

n
−αβ

∥∥∥∥
2

≤
∥∥∥∥Υn

n
− EΥn

n

∥∥∥∥
2
+

∣∣∣∣EΥn

n
−αβ

∣∣∣∣
=

√
Var(Υn)

n
+

∣∣∣∣αnβn

n2 −αβ
∣∣∣∣

≤ n−1/2 + α|sn|
n

+ β|rn|
n

+ |rnsn|
n2

≤ n−1/2 +2n−1/3 +n−2/3 ≤ 4n−1/3 . (D.10)
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Now, we first condition on V := (V1, . . . ,Vb)= (v1, . . . ,vb)=: v, where v satisfies vi ∈ [0,1] and
∑b

r=1 vr = 1.
Conditionally on V = v, the random variables

∑
j∈Ji L j have a binomial Bin(n,wi) distribution, where

wi :=∑
j∈Ji v j for i = 1,2. We denote

Bv
n :=

2⋂
i=1

{ ∑
j∈Ji

L j ∈
[
nwi −n2/3, nwi +n2/3

]}
.

Then by Chernoff ’s bound [McDiarmid, 1998, p. 195], we obtain uniformly in v that

P(Bv
n) ≥ 1−4exp

(−2n1/3) → 1 as n →∞ . (D.11)

We abbreviate Wi :=∑
j∈JiVj for i = 1,2 and let Zv

n denote Zn conditional on V = v. By PV we denote
the distribution of V . Then, we obtain with (D.10)

E

[∣∣∣∣ Zn

n
−W1W2

∣∣∣∣2]
=

∫
E

[∣∣∣∣ Zv
n

n
−w1w2

∣∣∣∣2
]

dPV (v)

≤
Ï

Bv
n

∣∣∣∣ Zv
n

n
−w1w2

∣∣∣∣2 dP + 4exp
(−2n1/3) · max

0≤z≤n

∣∣ z
n −w1w2

∣∣2dPV (v)

≤ 4n−1/3 +4exp
(−2n1/3)

→ 0 , as n →∞ ,

which concludes the proof.

D.6. Proof of Lemma 4.2
Let i ∈ {1, . . . ,n} be arbitrary. The strong law of large numbers implies that L i / n →Vi almost surely
as n →∞. The function x 7→ x ln(x) is continuous on [0,1] (with the convention x ln(x) = 0 for x = 0).
Hence, as n →∞, ∣∣∣ L i

n ln
( L i

n
)−Vi lnVi

∣∣∣2 → 0 almost surely .

Since the non-positive function x 7→ x ln(x), x ∈ [0,1] is lower bounded (e. g. by −1/e) the square in
the latter display is uniformly bounded (e. g. by (2/e)2). Hence the dominated convergence theorem
implies

E
[∣∣∣ L i

n ln
( L i

n
)−Vi lnVi

∣∣∣2]
→ 0 , as n →∞ .

This concludes the proof.

E. Experimental Validation of Asymptotics
In this paper, we computed asymptotics for mean and variance of the costs of Yaroslavskiy’s
algorithm. Whereas the results for the mean are very precise and indeed can be made exact with
some additional diligence, our contraction arguments only provide leading term asymptotics. In
this section, we compare the asymptotic approximations with experimental sample means and
variances.

We use the Java implementation given in Appendix C and run it on 10000 pseudo-randomly
generated permutations of {1, . . . ,n} for each of the 20 sizes in {105,2 ·105, . . . ,2 ·106}. Note that for
sensible estimates of variances, much larger samples are needed than for means. The experiment
itself is done using our tool MaLiJAn, which automatically counts the number of comparisons,
swaps and Bytecode instructions [Wild et al., 2013].
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Bytecodes

Figure 5: Comparison of sample means with the asymptotics computed in Section 3. The asymptotics
are shown as solid lines, the sample means are indicated by circles. Additionally, the error
bars show the sample standard deviation. On the x-axis, the input size n is shown, the y-axis
shows the corresponding counts normalized by n lnn.
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Figure 6: Comparison of sample variances with the asymptotics computed in Section 4. The asymptotics
are shown as solid lines, the sample variances are indicated by circles. On the x-axis, the
input size n is shown, the y-axis shows the corresponding variances normalized by n2.

0 2

0

0.1

0.2

Comparisons

−1 0 1

0

0.05

0.1

0.15

Swaps

−20 0 20 40

0

0.1

0.2

Bytecodes

Figure 7: Histograms for the distributions of the normalized number of comparisons C∗
n , swaps S∗

n and
executed Bytecode instructions BC∗

n from the sample of 10000 random permutations of size
n = 106.
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n = 3
n = 5

n = 10

n = 15

n = 20

n = 25

mean

Figure 8: This figure shows the distributions of the normalized number of comparisons C∗
n for small n.

The distributions are computed by unfolding the distributional recurrence (D.1). This figure
serves as visual evidence for the convergence of cost distributions to a limit law. It is heav-
ily inspired by a corresponding figure for classic Quicksort [Sedgewick and Flajolet, 1996,
Figure 1.3].

Figure 5 shows the results for the expected costs and Figure 6 compares asymptotic and sampled
variances. The histograms in Figure 7 give some impression how the limit laws will look like.

It is clearly visible in Figure 5 that for the given range of input sizes, the average costs
computed in Section 3 are extremely precise. In fact, hardly any deviation between prediction and
measurement is visible. The variances in Figure 6 show more erratic behavior. As variances are
much harder to estimate than means, this does not come as a surprise. From the data we cannot
tell whether the true variances show some oscillatory behavior (in lower order terms) or whether
we observe sampling noise. Nevertheless, Figure 6 shows that for the given range of sizes, the
asymptotic is a sensible approximation of the exact variance.

Figure 8 shows how fast the exact probability distribution of the normalized number of compar-
isons approaches a smooth limiting shape even for tiny n. This strengthens the above quantitative
arguments that the limiting distributions computed in this paper are useful approximations of the
true behavior of costs in Yaroslavskiy’s algorithm.
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