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Abstract
Recent results on Java 7’s dual pivot Quicksort have revealed
its highly asymmetric nature. These insights suggest that
asymmetric pivot choices are preferable to symmetric ones
for this Quicksort variant. From a theoretical point of view,
this should allow us to improve on the current implementa-
tion in Oracle’s Java 7 runtime library. In this paper, we
use our new tool MaLiJAn to confirm this asymptotically
for combinatorial cost measures such as the total number of
executed instructions. However, the observed running times
show converse behavior. With the support of data provided
by MaLiJAn we are able to identify the profiling capabilities
of Oracle’s just-in-time compiler to be responsible for this
unexpected outcome.

1 Introduction
In 2009, a new Quicksort variant due to Vladimir
Yaroslavskiy was chosen as standard sorting method
for Oracle’s Java 7 runtime library. According to the
Java core library mailing list [6], the decision for the
change was based on empirical studies showing that
on average, the new algorithm was faster than the for-
merly used classic Quicksort. Surprisingly, the improve-
ment was achieved by using a dual pivot approach, an
idea that had not been considered promising because
of theoretical studies [12, 4, 15]. It has remained an
open problem why theory and practice do not match
for Yaroslavskiy’s algorithm, even though Quicksort has
been assumed to be well understood. A recent closer
look at the algorithm has revealed that its new par-
titioning scheme is able to take advantage of certain
asymmetries in the outcomes of key comparisons: On
average, Yaroslavskiy’s algorithm needs 5% less com-
parisons than classic Quicksort to sort a random per-
mutation [15].

In order to make this theoretical study feasible,
it was based on a simplistic version of the algorithm.
In this paper, we adopt the perspective of a library
designer who wants to investigate whether the alleged
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benefit of a proposed modification carries over into
practice. This involves assessing the quality of all
the tricks of the trade developed during decades of
experience with practical implementations of classic
Quicksort.1

The contribution of this paper is (a) to propose a
possible improvement of the implementation in Java 7’s
library and use it as an example to show (b) how our
tool MaLiJAn can be put to good use in automatically
assessing the impact a small variation has on perfor-
mance.

The motivation for our modification is the afore-
mentioned asymmetry uncovered in [15]. Whereas the
JRE7 implementation chooses tertiles-of-five as piv-
ots [7]—a natural extension of the tried and tested
median-of-three strategy in classic Quicksort— the
asymmetric nature of the algorithm suggests that this
symmetric choice may be suboptimal for Yaroslavskiy’s
Quicksort. Therefore, we investigate an asymmetric
strategy for pivot selection.

We find that our asymmetric variant can in-
deed slightly reduce the expected number of executed
Java Bytecode instructions asymptotically; we present
closed-form estimates to this effect. Interestingly,
running-time measurements clearly disagree. We iden-
tify Oracle’s just-in-time (JIT) compiler as cause for
the seeming paradox: The inputs used for gathering
profiling information dominate actual running time and
details of the experimental setup decide which sorting
method is faster.

The examination is driven by Maximum Likelihood
Analysis [10], implemented as MaLiJAn, which we
propose as a general-purpose experimental methodology
for investigating the impact small modifications to
an algorithm have on running time. It is based on
decomposing the algorithm at hand along its control-
flow. Having access to individual frequencies of key
instructions has proven instrumental to identifying the
reason for the strength of Yaroslavskiy’s Quicksort.
Simply counting the overall number of key comparisons

1“It would be horrible to put the new code into the library, and
then have someone else come along and speed it up by another
20% by using standard techniques” (Jon Bentley in [6]).
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would have shown that there are fewer comparisons in
Yaroslavskiy’s algorithm than in classic Quicksort, but
not why.

1.1 Related Work. This is not the first time that
asymmetries prove useful in connection with Quicksort.
For the classic algorithm, the number of comparisons is
minimized by using the median instead of a random
pivot for partitioning. In [8], however, Kaligosi and
Sanders have shown that a skewed pivot can be used
to speed up classic Quicksort on hardware with slow
rollback of CPU instruction pipelines in case of branch
mispredictions. Even if such a biased choice for the
pivot makes it impossible to achieve an optimal num-
ber of comparisons, the outcome of key comparisons be-
comes less random and this makes its prediction easier.
Similarly, Martínez and Roura pointed out that skewed
pivots can be beneficial in applications where swaps are
much more expensive than comparisons [11]. In fact,
the number of swaps is maximized when choosing the
median as pivot, but their costs are outweighed by com-
parisons in classic Quicksort.

In the following, we first present our results on
optimizing the pivot sampling used in Java 7’s dual
pivot Quicksort. Then, we describe the setup of the
experiments and explain the methodology of MaLiJAn
used to obtain the results.

2 Java 7’s Dual Pivot Quicksort
In 2009, Oracle changed the default sorting method of
its Java runtime library: Since version 7, a highly-tuned
implementation of Yaroslavskiy’s dual pivot Quicksort
is used for sorting arrays of primitive types [6, 7]. In
comparison with the plain version of Yaroslavskiy’s al-
gorithm considered as Algorithm 3 in [15] (see Ap-
pendix A), the following optimizations found their way
into the library implementation. We assume that we
sort an array A of length n.

• Pivot sampling: The two pivot elements are
chosen as the tertiles of a sample of five elements.
To this end, five positions s1, . . . , s5 of the list are
selected such that they divide the list in regions
with relative lengths as follows:
A : 3 s1 2 s2 2 s3 2 s4 2 s5 3

These five elements S1 = A[s1], . . . , S5 = A[s5]
are sorted using Insertionsort. Denote the sorted
elements by S(1) ≤ · · · ≤ S(5). Then, we choose the
tertiles of the sample, i. e. S(2) and S(4), as pivots p
and q, respectively. This is a natural generalization
of the median-of-three scheme used in one-pivot
Quicksort.

1 bc: 3
k ≤ g

2 bc: 7
t := A[k];

t < p

4 bc: 3
t ≥ q

3 bc: 12
A[k] := A[`];

A[`] := t;
` := ` + 1;

5 bc: 5
A[g] > q

6 bc: 3
k < g

7 bc: 2
g := g−1;

8 bc: 5
A[g] < p

9 bc: 14
A[k] := A[`];
A[`] := A[g]
` := ` + 1;

10 bc: 6
A[k] := A[g]

11 bc: 5
A[g] := t;
g := g−1;

12 bc: 2
k := k + 1

no
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Figure 1: Control flow graph of the main partitioning
loop of JRE7 (lines 20 – 34 of Listing 1 on page 13).
These blocks are the only ones that are executed a
linearithmic number of times, so they determine the
leading term of costs. In the upper right corner of each
block, the number of Bytecode instructions is given.
Backward arcs are highlighted.

• Short sublists: For (sub-)lists that are shorter
than a certain threshold, Insertionsort is used in-
stead of Quicksort.

• Equal elements: Two optimizations aim at im-
proving the handling of list with many equal ele-
ments. First of all, if the sample for pivot selection
contains two equal elements, we fall back to the
one-pivot Quicksort implementation of [1], which
is known to be optimal for many duplicates [14].
In the dual pivot case, elements equal to p resp.
q are collected in the middle partition and—with
an additional scan—moved to their final positions
at its respective borders, thus excluding them from
recursive calls. This additional step is skipped if
the middle partition is relatively short.

• Almost sorted inputs: Before Quicksort is
called, the number of runs, i. e. sorted subarrays,
in the input is determined. If the number of runs
falls below a certain threshold, Mergesort is used
instead of Quicksort, as this is more efficient on
such highly-structured arrays.
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In this paper, we will only consider arrays of distinct
elements, that are not highly-structured, so the last two
optimizations are not “active”. We focus on the first
optimization, pivot sampling and only use Insertionsort
for sublists of size ≤ 4. The accordingly simplified JRE7
implementation can be found in Listing 1 on page 13.

3 Engineering Asymmetry
Choosing the tertiles of a sample as done in the original
JRE7 implementation yields the most symmetric pivots
we can infer from this sample. However, the asymme-
tries found in Yaroslavskiy’s algorithm [15] suggest that
an asymmetric choice of pivots might be better. But
what kind of asymmetric choice really helps?

Asymmetric pivot choices trade lower costs in the
current partitioning step for less balanced recursion
trees. As it is not a priori clear how to find the optimal
trade-off, we consider the general pattern behind the
tertiles-of-five strategy: First, we select and sort a sam-
ple of five elements from the list. Then, we choose the
pivots p and q as certain order statistics S(x) and S(y)
for 1 ≤ x < y ≤ 5. Denote by JRE7(x,y) the modified
JRE7 Quicksort implementation with (x, y) pivot sam-
pling. The original implementation is then JRE7(2,4)
(we continue calling the original implementation JRE7
instead of JRE7(2,4) for short).

In order to find a good choice for x and y, we take
a look at the control flow graph of JRE7. As MaLiJAn
is based on the decomposition of a program along its
control flow, it constructs the graph automatically. It
also correctly identifies the hot spots of the algorithm,
i. e. the basic blocks which are executed asymptotically
most often. They are shown in Figure 1 on the preceding
page. Execution of the loop is terminated once pointers
k and g have crossed (exit condition of block 1). Thus,
the number of iterations only depends on the length of
the current sublist.

Accordingly, the overall number of loop iterations
only depends on how balanced the recursion tree glob-
ally is, but not on the direction of asymmetry, i. e.
whether pivots are larger or smaller than exact tertiles
in expectation. The direction of asymmetry does how-
ever influence which paths through Figure 1 the itera-
tions take: The ranks of the chosen pivots determine the
odds for outcomes of comparisons in branching blocks.
In total, there are five different cycles in Figure 1:

C1 = 1→ 2→ 3→ 12 	

C2 = 1→ 2→ 4→ 12 	

C3 = 1→ 2→ 4→ 5→ 8→ 9→ 11→ 12 	

C4 = 1→ 2→ 4→ 5→ 8→ 10→ 11→ 12 	

C5 = 5→ 6→ 7 	

We now assign each cycle as costs the number of
executed Java Bytecodes on this path. Again, this is
automatically determined by MaLiJAn:

bc(C1) = 24, bc(C2) = 15, bc(C3) = 44,
bc(C4) = 36 and bc(C5) = 10 .

We have to take into account that C3 and C4 actually
count as two iterations, since k and g move two steps
closer to each other on these paths. Ordering the cycles
by costs implies the following preference: C5 ≺ C2 ≺
C4 ≺ C3 ≺ C1 (cf. Figure 11 on page 9).

We can now use the branching information from
the control flow graph to make more iterations choose
cheap cycles. To get many executions of C5, we
need A[g] > q to hold for many indices, so small
values for q are preferable. Moreover, it pays to
avoid expensive C1, so we prefer A[k] < p to hold
for few indices. This also means p should be chosen
smaller than JRE7 does. At the same time, we should
not choose extremely skewed pivots in order to get
a reasonably balanced recursion tree. Together, this
makes JRE7(1,3) a promising candidate to challenge
symmetric JRE7(2,4).

However, we should not rely on guesswork, so we
do an exhaustive search among the 10 possible choices
for order statistics (x, y). We measure the running time
needed by JRE7(x,y) to sort a list of 106 integers, av-
eraged over 1000 random permutations. The setup is
as in Yaroslavskiy’s benchmark [5]: First, each algo-
rithm sorts a fixed random list 12 000 times without
measurement to allow the just-in-time compiler to op-
timize code, see Section 4.2 for more discussion. Then,
each algorithm is run on 1000 random permutations and
the average running time is reported (see Table 1 on the
next page).

As running time measurements are inherently
machine-dependent, we also look at the number of exe-
cuted Bytecodes. As inputs, we consider almost sorted
lists using the random model of Brodal et al. [2] (de-
scribed in detail in Section 4). Almost sorted inputs
amplify the differences in pivot sampling: As the sam-
ple positions are spread throughout the array, an almost
sorted list implies that the sample’s order statistics are
very close to those of the whole list. On 100 random
lists of length 105, the algorithms execute the number
of Bytecodes shown in Table 1. This second experiment
was done entirely in MaLiJAn, as well. Counting exe-
cuted Bytecodes is considerably more effort if done ad
hoc compared to running-time measurements, so we feel
MaLiJAn can be put to good use here.

The asymmetric JRE7(1,3) is consistently best in
both experiments. For the rest of this paper, we there-
fore focus on the comparison of JRE7(1,3) and JRE7.
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Order Statistics (x, y) (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

Running Time (ms) 94.06 92.90 92.92 103.2 95.86 93.31 96.40 96.38 95.62 98.79
Number of Bytecodes (·107) 2.332 2.177 2.292 — 2.273 2.218 2.470 2.499 2.581 3.083

Table 1: Running times on random permutation of length 106 and numbers of executed Java Bytecodes on almost
sorted lists of length 105 for all JRE7(x,y) variants.
For JRE7(1,5), no count could be determined as it caused stack overflows. This algorithm experiences quadratic worst
case behavior on already sorted lists, so it is not a suitable candidate for library sort.

4 JRE7 vs. JRE7(1,3)

In this section, we quantitatively study the efficiency
of our proposed asymmetric pivot sampling strategy.
To the authors’ knowledge, there are no established
benchmark input sets for sorting algorithms, so we con-
fine ourselves to artificial input distributions. Among
those, random permutations are a natural choice which
are also well-understood from the theoretical viewpoint.
Additionally, we consider almost sorted inputs. As ar-
gued above, such inputs intensify the impact of pivot
sampling, thus providing a clearer distinction. We use
the random model for almost sorted inputs by Bro-
dal et al. [2]: To generate an input, each element A[i]
(i = 0, . . . , n − 1) is chosen uniformly at random from
{i − d, . . . , i + d}, ensuring that it is different from
all previous elements. Finally, elements are relabeled
to {1, . . . , n} while preserving the relative order. We
choose d = 100 independently of n in order to obtain
rather strongly presorted lists. As the expected num-
ber of runs of such lists is very high, the JRE7 sorting
method will indeed invoke Quicksort.

Note that equal elements are dealt with by a spe-
cialized partitioning method in JRE7, which does not
make use of two pivots. For these inputs, our variant
behaves identically to the JRE7 implementation. Thus,
we exclude the case of equal elements from our present
discussion.

For both input distributions, we consider combina-
torial cost measures and actual running times. Whereas
abstract combinatorial measures can be misleading since
they hide technical details, measured running times are
machine-specific and highly sensitive to the experimen-
tal setup (see Section 4.2). By combining them, we can
hope to find general trends in abstract measures that
are confirmed by running time experiments.

4.1 Combinatorial Cost Measures. Combinato-
rial cost measures do not depend on details of the actual
machine and can be counted deterministically for given
algorithm and input. For sorting algorithms, the most
prominent examples are the number of swaps and key
comparisons. However, these measures are often too ab-
stract for ranking algorithms by efficiency. Therefore,
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Figure 2: Predicted growth function for the number of
executed Bytecodes on random permutations for JRE7
(gray dashed line and squares) and JRE7(1,3) (blue solid
line and circles), normalized by n ln n. The logarithmic
horizontal axis depicts the input size. The model was
trained on sizes up to 106 and nicely fits the larger data,
as well.

we consider also the number of executed Java Bytecode
instructions (bc). For a given Java Bytecode implemen-
tation of an algorithm and a given input, bc can be
determined exactly—MaLiJAn does it for us fully au-
tomatically.

MaLiJAn does not only count the desired measures
for given inputs but also computes closed-form asymp-
totic extrapolations from basic-block-wise counters as
described in Section 5.1. The corresponding results are
shown in Tables 2 and 3.

Random Permutations. Table 2 on the facing
page shows the asymptotics for the random permuta-
tion input model. For the number of swaps and com-
parisons, analytically proven results are available to
compare the empirical ones against (combining results
of [4] and [15]). The terms given by MaLiJAn are in
good accordance with them: For JRE7, the correct ex-
pected number of comparisons is 1.70426n lnn + O(n)
(MaLiJAn: 1.680n lnn) and the number of swaps is
0.551378n lnn + O(n) (MaLiJAn: 0.574n lnn). For
our asymmetric variant JRE7(1,3), we likewise have
1.86813n lnn + O(n) (MaLiJAn: 1.837n lnn) compar-
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Algorithm #comparisons #swaps #bytecodes

JRE7 1.680 n ln n + 0.41n 0.574 n ln n + 0.84n 19.40 n ln n + 51.1n

JRE7(1,3) 1.837 n ln n + 0.66n 0.456 n ln n + 1.17n 18.73 n ln n + 62.0n

Yaroslavskiy 1.9 n ln n +O(n) 0.6 n ln n +O(n) 23.8 n ln n +O(n)
Classic 2 n ln n +O(n) 0.3 n ln n +O(n) 18 n ln n +O(n)

Table 2: Expected cost measures for different Quicksort algorithms in the random permutation input model. The
algorithms are the JRE7 Quicksort implementation, our asymmetric variant JRE7(1,3) thereof, Yaroslavskiy’s basic
algorithm (Algorithm 3 of [15]) and classic Quicksort as studied in [13]. Results for the two JRE7 variants are obtained
using MaLiJAn. The formulæ for classic Quicksort and Yaroslavskiy’s algorithm and can be found in [13] resp. [15].

Algorithm #comparisons #swaps #bytecodes

JRE7 1.162 n ln n + 2.28n 0.335 n ln n + 1.88n 15.10 n ln n + 67.9n

JRE7(1,3) 1.170 n ln n + 3.56n 0.220 n ln n + 1.99n 13.52 n ln n + 84.9n

Table 3: Expected cost measures for JRE7 Quicksort implementation and our asymmetric variant JRE7(1,3) for
almost sorted input data (as defined in Section 4). All results are obtained using MaLiJAn.
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Figure 3: Predicted growth function for the number of
executed Bytecodes on almost sorted arrays for JRE7
(gray dashed line and squares) and JRE7(1,3) (blue solid
line and circles), normalized by n ln n. The logarithmic
horizontal axis depicts the input size. The model was
trained on sizes up to 106 and fits the larger data, as
well.

isons in expectation and 0.43956n lnn + O(n) (MaLi-
JAn: 0.456n lnn) swaps. As the other results are ob-
tained from the very same trained stochastic model, we
have confidence in MaLiJAn’s results for the number
of executed Bytecodes as well. In addition, we validate
the asymptotics by comparing them with measurements
from large inputs which were not used for training the
model. Figure 2 on the preceding page shows that the
closed forms accurately predict the expected number of
Bytecodes for lists fifty times larger than the training
data.

Almost Sorted Inputs. The closed form esti-
mates of the combinatorial cost measures are given in
Table 3. To the authors’ knowledge, no analytic re-

sults are known for this input distribution. Again, we
check our closed form asymptotic against larger mea-
surements; see Figure 3.

In both input models, the symmetric pivot choice
implies less comparisons but more swaps than our asym-
metric variant. This is in line with corresponding results
for classic Quicksort [11]. Moreover, the expected num-
ber of Bytecodes needed by JRE7(1,3) to sort an array is
asymptotically less than with JRE7 for both input dis-
tributions. This shows that our asymmetric pivot sam-
pling choice has the potential to increase Quicksort’s
efficiency.

Finally, we would like to stress how well MaLi-
JAn’s asymptotic model fit the measurements of inputs
fifty times larger than the training set. For distinctly
different behavior—e. g. for almost sorted inputs—we
can certainly rely on MaLiJAn’s predictions.

4.2 Running Time. When aiming for practical ap-
plicability of results, only looking at the number of ex-
ecuted Bytecodes can be misleading. For example, Ta-
ble 2 shows that classic Quicksort uses much less Byte-
codes than Yaroslavskiy’s basic algorithm. However,
running time comparisons show converse behavior [15].
Therefore, this section complements the combinatorial
measures with actual running times.

The measured runtimes as shown in Figure 4 (right)
exhibit a strange feature. There seem to be two classes
of inputs: some run significantly faster than others,
and the two types are clearly separated. While clearly
visible for random permutations, the effect is even more
pronounced for almost sorted data; see Figure 5.

The bifurcation can not be found in any of the com-
binatorial measures, see for instance the number of ex-
ecuted Bytecodes in Figure 4 (left). Therefore, some
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Figure 4: Violin plots for the observed number of executed Bytecodes (left) resp. runtimes on random permutations
for JRE7 (light gray) and JRE7(1,3) (dark blue), normalized by n ln n. The horizontal axis depicts the input size.
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Figure 5: Violin plots for the observed number of executed Bytecodes (left) resp. runtimes (right) on almost sorted
data for JRE7 (light gray) and JRE7(1,3) (dark blue), normalized by n ln n. The horizontal axis depicts the input size.
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Figure 6: Violin plots for the observed running times on random permutations (left) resp. almost sorted data (right)
for JRE7 (light gray) and JRE7(1,3) (dark blue) without JIT profiling, normalized by n ln n. The horizontal axis
depicts the input size.
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Figure 7: Violin plots for the observed running times on random permutations (left) resp. almost sorted data (right)
for JRE7 (light gray) and JRE7(1,3) (dark blue) with JIT-warmup on fixed min, normalized by n ln n. The horizontal
axis depicts the input size.
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Figure 8: Violin plots for the observed running times on random permutations (left) resp. almost sorted data (right)
for JRE7 (light gray) and JRE7(1,3) (dark blue) with JIT-warmup on fixed max, normalized by n ln n. The horizontal
axis depicts the input size.

runtime effect of the JVM has to be responsible. In fact,
the split vanishes completely— for both input distribu-
tions!— if we prohibit the just-in-time compiler (JIT)
from profiling the running code. This is possible by
passing -Xcomp to the JVM, which forces it to compile
the Bytecode at hand once at program start. In essence,
we prevent data-dependent compiler optimisation. See
Figure 6 for the resulting distribution of runtimes. This
curiosity warrants further investigation.

So far, we have measured runtimes in isolation; for
each input, we start a new JVM and run the algorithm
a fixed number of times on it. This implies that the
JIT collects profiling data on the same input the al-
gorithm is ever run on (in this JVM instance). What
happens if we force the JIT to profile on a fixed input in-
stead? This is what Yaroslavskiy’s benchmark [5] does,
after all; interestingly, JRE7(1,3) shows slight improve-
ments over JRE7 for most considered input types there,
whereas only very few exhibit worse running times (see
Appendix D). Our data from Figure 4 and 5 can not sup-
port this; maybe the behaviour of JIT is responsible for

the seemingly bad runtime performance of JRE7(1,3)?
We have therefore chosen two fixed inputs, namely

those that performed best (“fixed min”) resp. worst
(“fixed max”) in the model without explicity warmup
(for a given input size), and repeat the whole runtime
study for each of the two, with the only difference
being that the JIT is “warmed up” with the respective
input before measuring runtimes. Both experiments
fail to reproduce the bifurcation; see Figures 7 and 8,
respectively.

Also, the average runtimes with warmup on
fixed min and fixed max are not nearly as far apart
as in the non-warmup study. In fact, all choices for the
warmup input lead to similar average runtimes (verified
on a fixed input size). We conclude that runtime dis-
tributions and even averages depend heavily on which
optimization JIT performs. It is unclear which warmup
model is more realistic, and how to control resp. guide
JIT towards an optimization that is good in expecta-
tion. It is not even clear whether there is a globally
optimal choice, at all.
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JRE7 rp JRE7(1,3) rp JRE7 Brodal JRE7(1,3) Brodal

-Xcomp 20.099n ln n + 26.0n 19.946n ln n + 31.6n 11.950n ln n + 54.1n 11.092n ln n + 64.0n

no warmup 8.136n ln n + 12.5n 8.344n ln n + 14.8n 8.312n ln n + 21.5n 9.845n ln n + 37.0n

fixed min warmup 10.023n ln n + 9.4n 11.387n ln n + 15.4n 5.518n ln n + 13.0n 5.375n ln n + 19.0n
fixed max warmup 9.918n ln n + 9.4n 11.604n ln n + 15.7n 5.619n ln n + 12.8n 5.465n ln n + 19.3n

Table 4: Asymptotic running time models for the two Quicksort variants and the random permutation (rp) and
almost sorted (Brodal) input distribution. Basic block running times are determined by block sampling (as described
in Section 5.2) using different JIT modes.

JRE7 random perms

JRE7 presorted

JRE7(1,3) random perms

JRE7(1,3) presorted

Figure 9: Relative basic block running times for all blocks that are executed O(n) times. The different algorithms
and input distributions do not seem to influence block times much.

Furthermore, we note that without explicit warmup
and without JIT profiling, JRE7 seems to outperform
JRE7(1,3) on average, while both fixed warmup studies
seem to favor the asymmetric pivot choice.

4.3 Asymptotic Running Times. Section 5.2 de-
scribes an experimental methodology to assign each
basic block its contribution to overall running time.
Thereby, we can combine MaLiJAn’s reliable asymp-
totic extrapolations of combinatorial cost measures with
actual running times to an asymptotic running time ex-
trapolation. Corresponding results are shown in Ta-
ble 4.

Note that these asymptotics are more than plain ex-
trapolations of measured running times. All extrapolat-
ing is done on block frequency counters which can be de-
termined without noise. Only the constants these terms
are multiplied with are determined by running time ex-
periments. We have observed that this noise can indeed
hide the true asymptotic behavior: The very same ex-
trapolation heuristic that found the correct linearithmic
growth from frequency counters attested linear growth
for the noisy running times.

Quite surprisingly—except for the -Xcomp mode—
all asymptotic running times favor the symmetric

JRE7 random perms
JRE7 presorted

JRE7(1,3) random perms
JRE7(1,3) presorted

1 2 3 4 12 5 6 8 7 9 10 11

Figure 10: Relative basic block running times for all
blocks that are executed Θ(n log n) times. The numbers
correspond to the blocks IDs used in Figure 1. It is
clearly visible that the running time contribution of
some basic blocks is heavily influenced by the pivot
choice.

Quicksort implementation. This disagrees with above
findings for the number of executed Bytecodes. Con-
sequently, the running times of individual basic blocks
must behave differently than the numbers of Bytecodes
in the blocks.
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C1 C2

C3 C4 C5

bc JRE7 no warmup JRE7 Xcomp JRE7 fixed-min JRE7(1,3) fixed-min

Figure 11: Relative costs for the five cycles C1, . . . , C5
of Figure 1 introduced above in different cost measures,
namely the number of Bytecodes and block running
times for different algorithms and JIT modes.

4.4 Comparing Block Times. During the compu-
tation of asymptotic running times, MaLiJAn deter-
mines the running time contribution of each basic block,
which allows for closer examination of before mentioned
mismatch. For better comparability, we do not use the
additional running time measurement described in Sec-
tion 5.2. Instead, we use c′(i) = bi

fi
as block time esti-

mate. Note that c(i) = c′(i) · T
B where T

B is the average
sampling interval, which will be close to constant, but
is subject to noise.

Figure 9 on the preceding page shows that for
most of the blocks that are executed only a linear
number of times, the c′(i) are essentially independent
of the pivot choice. For the asymptotically dominating
basic blocks— i. e. those with a linearithmic number of
executions—surprisingly, the picture changes, as shown
in Figure 10.

This carries over to the costs of the five cycles
C1, . . . , C5 identified in the control flow graph of the
partitioning method; see Figure 11. A closer inspec-
tion of the figure explains why JRE7(1,3) performs worse
than expected based on the number of executed Byte-
codes: For JRE7 block times, C5 is the cheapest cycle
by far, whereas C1 is rather expensive. However, the
block times for JRE7(1,3) show exactly the opposite be-
havior! The short C5 cycle—which JRE7(1,3) executes
exceptionally often by design—suddenly becomes the
least favorable iteration path.

This makes it plausible that an algorithmic mod-
ification improving the number of executed Bytecodes
can still be inferior to another one. Even though we
fail to provide an explanation for why this happens, at
least having identified where in the code the difference
is located might help future investigations.

5 Method
5.1 Maximum Likelihood Analysis. In this sec-
tion, we briefly review the purely analytical study of
algorithms and how we imitate it in our tool MaLiJAn.
As we are interested in the practical efficiency of algo-
rithms, we only consider average case analyses. The
gold standard of the field is an analysis in the style of
Knuth’s “The Art of Computer Programming”, which
is based on the following assumption.

Assumption 5.1. An instruction in the code listing
of a program adds the same constant contribution to
overall costs each time it is executed. In particular,
the contribution does not depend on the context of
execution.

Knuth computes the expected running time of a given
program w. r. t. a given input distribution by analyzing
how often every single line of the code is executed on
average. Assume the instructions of the program are
labelled by line numbers 1, . . . , k. Denote by fi the
expected execution frequency of instruction i and by
c(i) its cost contribution. Then the total expected cost
is given by

k∑
i=1

c(i) · fi .

The hard part of the analysis is to determine the ex-
pected frequencies fi. In our tool MaLiJAn, they are
deduced from experiments via the maximum likelihood
principle and certain extrapolation techniques. How-
ever, the corresponding technical details and correct-
ness proofs are omitted here—a complete presentation
of the theory already appeared in [10].

MaLiJAn allows studying algorithms on different
levels of abstraction. If an abstract measure like count-
ing elementary operations suffices to assess the impact
of a code variation, we do not need separate experi-
ments on different hardware environments: Elementary
operation counts are platform-independent. For those
effects that are not observable in the abstract model—
e. g. running time due to cache misses or branch mispre-
dictions—our methodology isolates and minimizes the
part of the experiment that requires runtime measure-
ments (see Section 5.2).

In all cases our tool does not just provide sim-
ple counts or measurements but also estimates of the
asymptotic growths rates as functions in the symbolic
input size n. Most notably, these growth rates are al-
ways based on combinatorial counts, which can be deter-
mined without noise. In contrast, direct extrapolation
of runtime measurements inevitably includes noise and
in fact, we have observed such noise to fool our tool’s ex-
trapolation heuristic on total runtimes, while the same
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heuristic found the correct asymptotic growth rate from
combinatorial counts of the same runs.

In detail, we consider a program in Java Bytecode2

and label its instructions with line numbers 1, . . . , k.
For a given execution of the program on some input, we
call the sequence of visited line numbers the trace of this
execution. So, a trace is formally a word over {1, . . . , k}.
A given set of inputs thus induces a language over
{1, . . . , k}. Similarly, a probability distribution over
inputs induces a probability distribution over traces.

Traces are used to define our notion of algorithmic
cost measure. Specifically, a cost measure c is character-
ized by a cost contribution c(i) ∈ {0, 1, 2, . . . } for each
line number i ∈ {1, . . . , k}. We define the cost c(t) of a
trace t = t1 . . . tm by summation over its elements’ costs,
i. e. c(t) = c(t1)+· · ·+c(tm). We are interested in the ex-
pected cost E c(t) of a trace t randomly chosen according
to the input distribution. Our method inherently sup-
ports only such additive cost measures3, for instance
the total number of comparisons. Non-additive mea-
sures such as maximum memory usage elude us. This
restriction is the formal version of Assumption 5.1 and
thus also applies to Knuthian analysis.

Towards an automated approach, we note that
the program’s control flow graph—viewed as non-
deterministic finite automaton— induces a regular over-
approximation of said language of traces. Essentially,
the control flow graph ignores dependencies between
branch conditions. When equipped with transition
probabilities p1, . . . , p`, the control flow graph becomes
a probabilistic finite automaton, i. e. a Markov chain ac-
cepting words. Denote by EC = EC(p1, . . . , p`) the ex-
pected costs of a random terminating run of this Markov
chain. It can be computed exactly and symbolically in
the unknown probabilities p1, . . . , p` (see e. g. [9, Chap-
ter 2]) with standard computer algebra systems. Even
though the Markov chain accepts sequences that are
not traces of the program, we have shown in [10] that
EC = E c(t) for suitable branch probabilities p1, . . . , p`.

It remains to obtain such suitable transition proba-
bilities. The probabilities can be interpreted as the free
parameters of a probability model, for which we com-
pute estimates. To this end, we randomly sample inputs
and record their actual traces. Taking relative transi-
tion frequencies from the traces indeed gives a maximum
likelihood estimator for the parameters w. r. t. the given
traces.

2This code may be generated from Java source by the Java
compiler or from any other programming language that can be
compiled to Bytecode.

3In essence, this is because we rely on the linearity of the
expectation to split up E c(t) and that an instruction’s cost is
independent of its context in the trace.

This is done separately for all observed input sizes,
such that we get one transition probability estimate per
size. Finally, we extend these to a function in n via
extrapolation. In general, this is a heuristic step, and
in fact the only part of the method where we sacrifice
provable correctness. For many algorithms, however,
the set of occurring functions is rather limited so that
we can still hope for good results.4 Moreover, MaLi-
JAn uses established statistics to empirically assess the
quality of extrapolations. Once the probability model
is trained it is treated as given. In accordance with the
scientific method, we accept the inherent simplifications
made while building our model and use it nevertheless
to make predictions. MaLiJAn also offers basic support
for validating the model.

Finally, the thus obtained transition probability
functions pi(n) are inserted for the unknowns in the
precise expected costs C

(
p1(n), . . . , p`(n)

)
. In [10, The-

orem 5] it is shown that, assuming perfect extrapola-
tion, these probabilities are indeed suitable in the above
sense. We thus obtain a closed function in n for the
expected costs— the same function that results from
Knuthian analysis.

5.2 From Counting to Running Time. As a li-
brary designer, one is focused on the actual running
time of algorithms. Therefore, the desired cost measure
c assigns to every line number i the time c(i) needed to
execute this instruction. The seemingly simple task to
determine these times c(i) turns out to be quite chal-
lenging: As the running times of single instructions are
in the range of few nanoseconds, direct measurement
is out of the question. In [3], the authors nicely argue
that determining the c(i) via fitting from measured to-
tal running times and known execution frequencies fi

is not effective, either. The authors present a better
method using “equivalent code fragments”, but this re-
quires manual work.

We propose a fully automatic approach called “basic
block sampling”. We divide the program into basic
blocks, i. e. maximal blocks of sequential instructions.
Then, we inject instructions at the beginning of each
block to store an identifying number of the block in
a global variable. This introduces a systematic error
as each basic block becomes a few instructions longer,
but it will be fairly small compared to other techniques
of runtime measurement. Then, on a periodic basis,
we concurrently read the global variable and store the
block number. Note that this periodic job is done
in parallel and hence does not influence the running

4For example in the study in [10], our extrapolation heuristic
could reproduce the expected costs of Bubblesort and Quicksort
known from the literature.



11

time of the algorithm itself, i. e. it does not add to the
systematic error. By repeating the run sufficiently often,
the relative frequencies of the observed block numbers
approach the relative running time contribution of the
blocks (see Appendix C for a quantitative discussion).

From this, we get the vector b = (b1, . . . , bk) of
observed block frequencies, i. e. block i has been seen
bi times in total. In separate runs, we also count fi

exactly, i.e. how often block i is executed in total, and
we measure the total running time T in yet another run.
Then, we use

c(i) := 1
fi
· bi

B
· T, where B :=

k∑
i=1

bi

as an estimate of the block running times.
Note that we implicitly presumed Assumption 5.1. In
practice, different running times for two executions of
the same instruction can occur, e. g. because of cache
misses. We will nevertheless use Assumption 5.1 and
try to detect violations by testing the created runtime
model at the end.

5.3 MaLiJAn. MaLiJAn is an integrated Java im-
plementation of the method outlined in the previous
section. It has a graphical user interface and uses Math-
ematica for symbolic calculations. Executables and
further instructions can be obtained from the website
http://wwwagak.cs.uni-kl.de/malijan.html.

6 Conclusion & Future Work
In this paper, we used our tool MaLiJAn to study
the JRE7 implementation of Yaroslavskiy’s dual pivot
Quicksort and an asymmetric variant of it. We showed
that our variant is asymptotically better w. r. t. the
number of executed Java Bytecode instructions, both
for random permutations and presorted arrays.

A closer look at the optimized algorithm shows that
the use of asymmetric pivots changes the partitioning
step in a way that favors cycles with only a small num-
ber of Bytecodes. Surprisingly, when using skewed piv-
ots, the running time of the corresponding blocks in-
creases heavily such that our optimization seems to fail.
However, for the original benchmark used by the Java
core library developers to assess the quality of optimiza-
tions, our asymmetric pivot choice achieves slight im-
provements for most input types, without getting sig-
nificantly worse for any other input. Given the large
efforts put into the highly-tuned library implementa-
tion, even these small improvements are remarkable in
the authors’ opinion.

Efficiency in practice heavily depends on details of
the JIT compiler configuration for both investigated

variants. In particular, intriguing clustering of running
times was consistently observed if the JIT can use pro-
filing information from the current input for compiling
the algorithm. Further experiments have shown that
different setups for the JIT warumup do not lead to
such clustering.
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Appendix
A Algorithms
Listing 1 shows the JRE7 implementation studied in
this paper. For convenience, we also reproduce the
basic variant of Yaroslavskiy’s dual pivot Quicksort, see
Algorithm 1 on the following page.

Listing 1: Core part of the JRE7 Quicksort implemen-
tation, namely pivot sampling and partitioning process.
Special handling of equal keys has been removed for
clarity; it would not be executed for the inputs consid-
ered in this paper.

1 void quicksort(int[] A, int left, int right) {
2 int length = right - left + 1;
3 if (length < 5) {
4 ... // insertionsort for small lists
5 return;
6 }
7 // cheap approximation for length/7 :
8 int s7 = (length >> 3) + (length >> 6) + 1;
9 int e3 = (left + right) >>> 1;

10 int e2 = e3 - s7;
11 int e1 = e2 - s7; if (length == 8) ++e1;
12 int e4 = e3 + s7; int e5 = e4 + s7;
13 // sort sample using insertionsort:
14 sort5elements(A, e1, e2, e3, e4, e5);
15 int pIndex = e2, qIndex = e4; // tertiles
16 int l = left + 1, g = right - 1, k = l;
17 int p = A[pIndex]; A[pIndex] = A[left];
18 int q = A[qIndex]; A[qIndex] = A[right];

20 while( k <= g ) {
21 int ak = A[k];
22 if (ak < p) {
23 A[k] = A[l]; A[l] = ak; ++l;
24 } else if (ak >= q) {
25 while (A[g] > q && k < g) --g;
26 if (A[g] < p) {
27 A[k] = A[l]; A[l] = A[g]; ++l;
28 } else {
29 A[k] = A[g];
30 }
31 A[g] = ak; --g;
32 }
33 ++k;
34 }
35 --l; ++g;

37 // Swap pivots into their positions
38 A[left] = A[l]; A[l] = p;
39 A[right] = A[g]; A[g] = q;
40 quicksort(A, left, l - 1);
41 quicksort(A, g + 1, right);
42 quicksort(A, l, g );
43 }

B Experimental Setup
Java programs were compiled using javac version
1.7.0 03 from the Oracle Java Development Kit and run
on the HotSpot 64-bit Server VM, version 1.7.0 03. All
running time measurements were done on an Intel Core
i7 920 processor with four cores with hyperthreading,
running at 2.67GHz. This processor has 8MB of shared
on-die L3 cache and the system has 6GB of main mem-
ory. The operating system is Ubuntu 10.10 with Linux
2.6.35-32-generic kernel. Whilst running the simula-
tions, graphical user interface was completely disabled
to have as little background services running as possible.

C Significance of Block Sampling
In this section, we have a closer look at the basic
block sampling approach used to estimate the running
time contributions of single basic blocks. On the
test machines we used, the best achievable sampling
intervals were ≈ 10µs. This is fairly huge in comparison
with the few nanoseconds a typical basic block needs to
be executed. Consequently, we will miss all but ≈ 1 ‰
of all blocks, which is pretty poor. However, assuming
a deterministic algorithm, we can simply sample across
m runs of the algorithm to increase the fraction of blocks
we observe. But how should m be chosen?

We model the situation as follows: The execution
is repeated m times and in each repetition, we write
down the current block number i ∈ {1, . . . , k} at t
i. i. d. uniformly chosen points in time. We can thus
assume observed block numbers to be stochastically
independent. Let bi denote the number of times we
observed basic block i and write b = (b1, . . . , bk) for
the vector of all block frequencies. Further, denote by
pi the fraction of time the processor spends executing
block i—summed over all occurrences of block i in
the whole run. By definition B :=

∑
bi = t · m and∑

pi = 1. Then, b is multinomially distributed with
parameters B and p1, . . . , pk.
To assess the significance, the following basic facts on
multinomial distributions are helpful:

E
[
bi

B

]
= pi , Var

[
bi

B

]
= pi(1− pi)

B
.

Now, we can use Chebychev’s inequality to get

Pr
[∣∣∣ bi

B
− pi

∣∣∣ > ε

]
≤ pi(1− pi)

ε2 B
≤ 1

4 ε2 tm
.

This implies, that if we want to approximate all pis to
within a confidence interval of pi± ε at confidence level
γ, we need m ≥

(
4ε2t(1− γ)

)−1 repetitions.
In the actual implementation, we sample in periodic

distances for simplicity. Therefore, two samples from
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Algorithm 1. Basic variant of Yaroslavskiy’s dual pivot Quicksort given as Algorithm 3 in [15].

DualPivotQuicksortYaroslavskiy(A, left, right)
// Sort the array A in index range left, . . . , right.

1 if right − left ≥ 1
2 p := A[left]; q := A[right]
3 if p > q then Swap p and q end if
4 ` := left + 1; g := right − 1; k := `
5 while k ≤ g
6 if A[k] < p
7 Swap A[k] and A[`]
8 ` := ` + 1
9 else

10 if A[k] > q
11 while A[g] > q and k < g do g := g − 1 end while
12 Swap A[k] and A[g]
13 g := g − 1
14 if A[k] < p
15 Swap A[k] and A[`]
16 ` := ` + 1
17 end if
18 end if
19 end if
20 k := k + 1
21 end while
22 ` := `− 1; g := g + 1
23 Swap A[left] and A[`] // Bring pivots to final position
24 Swap A[right] and A[g]
25 DualPivotQuicksortYaroslavskiy(A, left , `− 1)
26 DualPivotQuicksortYaroslavskiy(A, ` + 1, g − 1)
27 DualPivotQuicksortYaroslavskiy(A, g + 1, right )
28 end if

the same run are not guaranteed to be stochastically
independent. However, as the delays are subject to
random noise exceeding the typical executing time of
a single basic block by several orders of magnitude, we
can still expect good estimates.

For the running time predictions of Table 2, we used
block sampling with B ≈ 105. Assuming independence
of measurements and a confidence level of γ = 99 %,
we obtain ε ≈ 0.0158. Therefore, we can expect the
obtained relative runtime contributions of basic blocks
to be accurate within 1.58 %.
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D Yaroslavskiy’s Benchmark
Below, you see the output of one run of Yaroslavskiy’s
original runtime benchmark [5]. It starts by sorting the
same random permutation 12 000 times as a warm-up
to trigger JIT compilation. Then, 100 instances of a
variety of different (random) lists of length 1 000 000 is
sorted and the minimum and average running times are
reported.
start warm up
.............

end warm up

random =======
jdk7: min 90.696726 avg 91.72415609000001

jdk7 bytecodeopt: min 90.090356 avg 90.68792782

equal =======
jdk7: min 1.718005 avg 1.78127236

jdk7 bytecodeopt: min 1.390497 avg 1.4663646799999999

stagger 1 =======
jdk7: min 7.492068 avg 7.81549246

jdk7 bytecodeopt: min 7.369246 avg 7.75822699

stagger 2 =======
jdk7: min 10.028247 avg 10.47358591

jdk7 bytecodeopt: min 10.030905 avg 10.51836514

stagger 4 =======
jdk7: min 15.416064 avg 15.95681691

jdk7 bytecodeopt: min 15.426902 avg 15.91885334

stagger 8 =======
jdk7: min 19.922822 avg 20.366305620000002

jdk7 bytecodeopt: min 19.819549 avg 20.32786134

organ pipes =======
jdk7: min 7.70015 avg 8.09365574

jdk7 bytecodeopt: min 7.710011 avg 8.15790016

ascendant =======
jdk7: min 1.073704 avg 1.12440074

jdk7 bytecodeopt: min 1.075406 avg 1.08757955

descendant =======
jdk7: min 1.828119 avg 1.97187739

jdk7 bytecodeopt: min 1.939211 avg 1.97484294

period 1..2 =======
jdk7: min 3.469296 avg 3.63163509

jdk7 bytecodeopt: min 3.645568 avg 3.7014117200000003

period 1..3 =======
jdk7: min 3.161118 avg 3.34622231

jdk7 bytecodeopt: min 2.982841 avg 3.05186187

period 1..4 =======
jdk7: min 5.478701 avg 5.67088424

jdk7 bytecodeopt: min 5.274278 avg 5.35144238

period 1..5 =======
jdk7: min 4.930893 avg 5.15629265

jdk7 bytecodeopt: min 4.415805 avg 4.52956761

period 1..6 =======
jdk7: min 5.810709 avg 5.92560454

jdk7 bytecodeopt: min 5.698213 avg 5.808113059999999

period 1..7 =======
jdk7: min 7.736918 avg 7.93364137

jdk7 bytecodeopt: min 7.233479 avg 7.40051437

period 1..8 =======
jdk7: min 5.469732 avg 5.64847769

jdk7 bytecodeopt: min 5.158171 avg 5.36201805

stagger 3 =======
jdk7: min 11.431634 avg 11.710738019999999

jdk7 bytecodeopt: min 11.431929 avg 11.74521591

stagger 5 =======
jdk7: min 15.747455 avg 16.329504189999998

jdk7 bytecodeopt: min 15.730531 avg 16.35218499

stagger 6 =======
jdk7: min 16.608467 avg 17.15020702

jdk7 bytecodeopt: min 16.550892 avg 17.23135113

stagger 7 =======
jdk7: min 17.337118 avg 17.835802920000003

jdk7 bytecodeopt: min 17.163399 avg 17.776122670000003

random 1..2 =======
jdk7: min 7.781607 avg 7.946202400000001

jdk7 bytecodeopt: min 7.232094 avg 7.35838576

random 1..3 =======
jdk7: min 9.024478 avg 9.149986029999999

jdk7 bytecodeopt: min 8.455576 avg 8.577225140000001

random 1..4 =======
jdk7: min 10.946617 avg 11.094569589999999

jdk7 bytecodeopt: min 10.319744 avg 10.40749047
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