Motivation & Outline

22 April 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-04-22 01:13 H

Outline

1 Motivation & Outline

1.1 How to Solve Hard Problems?

1.1 How to Solve Hard Problems?

View on NP-completeness in introductory courses

"I can't find an efficient algorithm, but neither can all these famous people."

Garey, Johnson 1979

... but this is not the end of the story!

"you had just neatly sidestepped potential charges of incompetence by proving that the bandersnatch problem is NP-complete. However, the bandersnatch problem had **refused to vanish at the sound of those mighty words**, and you were still faced with the task of finding some usable algorithm for dealing with it."

Garey, Johnson 1979, Chapter 6

- → Look for "loopholes" in the impossibility results:
- ▶ hard only for large integers in input? → *pseudopolynomial* algorithms
- ▶ hard only for contrived instances? ~→ *fixed-parameter* algorithms
- ▶ hard only for exact solution? ~→ *approximation* algorithms
- ▶ hard only in rare cases? → *randomized* algorithms
- hard only without a quantum computer? ~> quantum algorithms (not here)
 ...

Algorithms for hard problems

- ▶ for each possible loophole left by NP-hardness, we consider
 - algorithmic techniques that exploit the loophole
 - impossibility results showing when that exploit fails to apply
 - examples of problems where this loophole does (not) help
- focus is on provable results & eternal truths theoretical algorithms and complexity theory
 - strong foundation in math and theoretical computer science needed
 - ultimate goal is a practically relevant solution, but will often strive for simpler, "pedagogical" examples here

Loophole 1: Large integers

- **Loophole:** problem only hard when the integers that are part of the input are huge
- Algorithmic idea: Pseudopolynomial algorithms running time polynomial in input size and largest integer value
- → can be efficient if only small-integer inputs needed
- Impossibility results: strong NP-hardness

Loophole 2: Contrived worst cases

- ▶ Loophole: problem only hard on most contrived worst-case inputs
- Algorithmic idea: Fixed-parameter algorithms running time polynomial in input size and some other parameter of the input
- \rightsquigarrow can be efficient if only small-parameter inputs needed
- Algorithmic idea 2: Efficient exponential algorithms try to reduce base of exponential growth to delay combinatorial explosion (a bit)
- Impossibility results: W[P]-hardness, W[1]-hardness

Loophole 3: Exact answers

- ▶ Loophole: optimization problem only hard when precisely optimal solution requested
- Algorithmic idea: Approximation algorithms, PTAS, FPTAS polytime through compromise on quality but with a provalbe guarantee on how much worse results get!
- ▶ Impossibility results: hardness of approximation, APX-hardness

Loophole 4: Rare Bad Cases

- ▶ Loophole: problem is hard in unpredictable ways if algorithms take "unlucky turns"
- Algorithmic idea: Randomized algorithms introduce controlled randomness to escape local bad luck
- Techniques: Average-case analysis and smoothed analysis can tell whether randomization could be promising
- ► Impossibility results: randomized complexity classes (ZPP, RP, PP)

Overview of the module

Goals:

- enhance your toolbox of algorithmic methods and techniques
 where: focus on hard problems
- enhance your toolbox of hardness and lower-bounding techniques
- focus on algorithm theory and rigorous methods ~>> formal proofs, mathematical machine models, asymptotic analysis

Units: (preliminary plan)

- **0.** Administrativa
- **1.** Motivation & Outline
- 2. Complexity Theory Recap
- **3.** Pseudopolynomial Algorithms
- 4. Fixed-parameter algorithms
- 5. Parameterized hardness
- 6. Advanced Parameterized Concepts

- 7. Randomization Basics
- 8. Randomized Complexity
- 9. Random tricks
- 10. Advanced Randomized Algorithms
- **11.** Approximation Algorithms
- **12.** Linear Programming
- **13.** Inapproximability