Complexity Theory
Recap

22 April 2025

Prof. Dr. Sebastian Wild

Philipps-Universitdt Marburg

Outline

2 Complexity Theory Recap

2.1
27
2.3
24
2.5
2.6
2.7/
2.8
2.9

P and NP Informally

Models of Computation

Turing Machines

The Classes P und NP

Nondeterminism = Verification
Karp-Reductions und NP-Completeness
Example of an NP-completeness proof
Important NP-Complete Problems

Optimization Problems

2.1 P and NP Informally

Hard problems

» Some algorithmic problems are “hard nuts” to crack.

» e.g., the Traveling Salesperson Problem (TSP):

Given: n cities Sq,..., Sy,
all n(n — 1) pairwise 4
distances d(S;, Sj) € N ()

Goal: Shortest round trip through all cities

always exact, always correct Ppolytime

» no general, efficient algorithm known!

(despite decades of intensive research .. .)

~+ It seems as if there is no efficient algorithm for TSP!

» But: can we prove that? @

» Despite similarly intensive research: No! (not yet)

Doesn’t sound like a shining example for theoretical computer science? ... stay tuned!

United in incapacity

ML L Lo

7 3
\@%@ : "

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

Complexity Theory

» Complexity theory allows us to compare the hardness of algorithmic problems.

B: new problem
Status: unknown
(seems hard to us .. .)

A: old problem
Consensus: hard

Intuitive idea: Formally: efﬁdent/: el
1. If Ais a known hard nut, and 1. Ais NP-hard: probably A eff. alg. for A
2. [B is at least as hard as A,] 2. A<y B: Jeff. alg. for B = Jeff. alg. for A

then B is a hard nut, too! ~ Bis NP-hart: probably 7 eff. alg. for B!

P and NP - Intuitive Synopsis

» | P = class of problems for which there is an algorithm A and a polynomial p
such that A solves every instance I in time O(p(|I|)).

» P for “polynomial” —i.e., all problems where a solution can be found by a (deterministic)

algorithm in polynomial time.

» | NP = class of problems for which there is an algorithmus A and a polynomial p
such that A can verify a given candidate solution /(I) of a given instance I
in time O(p(|1])), i.e., check whether [(I) solves I or not.

> NP for “nondeterministically polynomial” —i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

» This is equivalent to the above characterization via verification.

» | We know P C NP. We think P C NP, i.e., P # NP.
The question “P = NP?” is one of the famous millenium problems and arguably
the most important open problem of theoretical computer science.

2.2 Models of Computation

Mathematical Models of Computation

> complexity classes talk about sets of problems based upon whether they allow an
algorithm of a certain cost

» in general, this depends on the allowable algorithms and their costs!

~ need to fix a machine model

A machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

>
>
>

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

unlimited memory MEM[0], MEM[1], MEM[2], . ..
fixed number of registers Ry, ..., R, (say r = 100)

memory cells MEM[/] and registers R; store w-bit integers, i. e., numbers in [0..2% — 1]

w is the word width/size; typically ~ 2% xn

Instructions:
> load & store: R; := MEM[R;] MEM[R;] := R;
» operations on registers: Rj = R; + R]- (arithmetic is modulo 2°!)

also R; — R]‘, R; - R]', R; diVR]‘, R; mod R}‘
C-style operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

time cost: number of executed instructions

space cost: total number of touched memory cells

https://www.springer.com/gp/book/9783030252083

RAM-Program Example

Example RAM program

1 // Assume: Ry stores number N

2 // Assume: MEM[0..N) contains list of N numbers

3 Ry :=
Rj3 =
Ry :

Rg =

Ry;
R1-2;
MEM[R3];
R3+1;
MEM[Rs5];

if (R4 < Rg) goto line 11;
MEM[R3] := Rg;

10 MEM[Rs5] := Ry;

11 R3 :=R3-1;

12 if (R3 > 0) goto line 5;

13 Ry :=Rp—1;

14 if (Rp > 0) goto line 4;

15 // Done:

4
5
6 R5:
7
8
9

RAM-Program Example

Example RAM program

1 // Assume: Ry stores number N
2 // Assume: MEM[0..N) contains list of N numbe

3

- NS BN

15

Ry := Ry;

R3 := Ry -2;

Ry := MEM[R3];

R5 := R3+1;

Rg := MEM[R5];

if (R4 < Rg) goto line 11;
MEM[R3] := Rg;

MEM[R5] := Ry;

R3 :=R3-1;

if (R3 > 0) goto line 5;
Ry =Ry -1;

if (Ry > 0) goto line 4;
// Done: MEM[0..N) sorted

5.2.2 SORTING BY EXCHANGING 107

they need not be examined on subsequent passes. Horizontal lines in Fig. 14
show the progress of the sorting from this standpoint; notice, for example, that
five more elements are known to be in final position as a result of Pass 4. On
the final pass, no exchanges are performed at all. With these observations we

are ready to formulate the algorithm
nged in place; after
Ky

Algorithm B (Bubble sort). Records Ry,..., Ry are
Il be in order, K, <

sorting is complete their ke

B1. [Initialize BOUND.] Set BOUND ¢ N. (BOUND is the hig
the record is not known to be in its final position; thus we are indicat
that nothing is known at this point.)

B2. [Loop on j.] Set t « 0. Perform step B3 for j = 1,2, ..., BOUND — 1, and
then go to step B4. (If BOUND = 1, this means go directly to B4.)

B3. [Compare/exchange B;: R,
set £

B4. [Any exchanges?] If ¢ = 0, terminate the algorithm. Otherwise set BOUND ¢ ¢
and return to step B2. 1

index for which

41 If K, > K41, interchange B, ¢ R4, and

o j < BOUND _

BOUND ‘7)-‘ 2. Loop on
44 BOUND

e
(B4. Any exchanges'
N .

B3. Compare/exchange R;: .1

No
v

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we
assume that the items to be sorted are in locations INPUT+1 through INPUT+X

= j
01 START ENT1 N 1

02 1E ST1 BOUND(1:2) A

03 ENT2 1 A

04 ENT1 O A

05 JMP BOUND A

06 3H LDA INPUT,2 C

07 CMPA INPUT+1,2 C

08 JLE 2F c

09 LDX INPUT+1,2 B R

10 STX INPUT,2 B + R

11 STA INPUT+1,2 B (old R;) = Ry

12 ENT1 0,2 B

13 20 ING2 1 C

14 BOUND ENTX -*,2 A+ C j — BOUND. [Instruction modified]
15 JXN 3B A+C Do step B3 for 1 < j < BOUND

16 44 J1P 1B A B4. Any exchanges? To B2ift > 0. |

.KNUTH

2.3 Turing Machines

Keep it Simple, Stupid

» word-RAM (rather) realistic, but complicated

> note that the machine has to grow with the inputs(!)

» for a coarse distinction of running time complexity, simpler models suffice

» useful to reason about “all algorithms”
» machine is fixed for all inputs sizes apart from storage for input

Many models of computation with strong equivalences:

» u-recursive function 1. all proven to lead to the same set of computable functions
Turing machines (TM) 2. Church-Turing thesis:

any formalization of “effectively computable” is equivalent in
this sense

3. Extended Church-Turing Thesis:
...and can be simulated with polynomial overhead on a TM

counter machines
A-calculus
While-programs

any Turing-complete language » true for all on left ...
quantum computers » except theoretical quantum computers!

» ignore them for now)
= wake me when they exist

vV vV vV vV V. VY

Turing Machines

> invented by Alan Turing in 1936 as ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO

formalization for “computable by hand” THE ENTSCHEIDUNGSPROBLEM

. By A. M. TuriNG.
In same paper, Turing proved

ul’ldeCldablllty Of haltlng Probleml [Received 28 May, 1936.—Read 12 November, 1936.]

» minimalistic model of universal computer, but can be built:

10

Turingmaschinen in Circulation

58
Egé

NV2)
Vs)

948080 Rqy 5.

Alan Turing 1912-1954

821764

11

Turing Machines — Informal Recap

A Turing machine has ~Aololalslalalalelalalalolno
> a finite control via states tape
> an input/output-tape read/write head

» unbounded length
' ~\
» initially contains input
State Tape Symbol — New Tape Symbol Head Movement New State
» all other cells contain “[1” -
q0 a d a right q0
. q0 b - b right q1
» aread/write head 40] - | none Ge
a — b right
» reads the current symbol Zi b N b right Zé
. . . q1 O — O none 7
» overwrites it with a new symbol by _ - — e e G —
» initially placed on beginning of L)

input finite control

Turing Machines — Formal Syntax
Definition 2.1 (Turing Machine (TM))
A Turing machine is a 7-tuple M = (Q, %, T, 6, qo, T, Ghalt) with
> a finite set of states Q,
» an input alphabet ¥,
» a tape alphabet I D ¥,

» for deterministic TMs a transition function 6 : (Q \ {gnait}) XI = Q XI' X {L, R, N}
for nondeterministic TMs a transition relation 6 : (Q \ {qnaic}) X T — 2QXP{LRN}

» an initial state qp € Q,
» ablank symbol D e I' \ X, and

» a halting state ghaic € Q

13

Turing Machine — Computation Step

» Each step of a computation of TM M has the form
o(g,a)=(q’,b,d) resp. 6(q,a)>(q’,b,4d),
with the semantics that
» M is in state § # qpalt

» the cell below the read/write head currently contains symbol a
» M now changes (based on its finite control)

> into state g,

» writes b into the cell under the read /write head

» and finally moves the read /write head in direction d € {L, R, N}.
(L = left, R = right, N = none (stay))

» for deterministic TM M, g and a uniquely determine this action;

for nondeterministic TM, we may have several possible actions.

> to formally define an entire computation, we have to encode the tape contents as well

14

Turing Machines — Configurations

Definition 2.2 (TM Configuration)
A configuration (config) of a TM M is a string C € T*Q T*.

[The semantics of a config C = agy, q € Q, is tape content aff and head at first symbol of ﬁ.]

Definition 2.3 (TM Computation Relation)
The computation relation - is defined on the set of configurations of a TM M as follows.

ai...aym q'cby...by, 0(g,b1)=(q’,¢c,N),m>=0,n21,
a1...amqbi...by F § ar...amc q'by... by, 0(g,b1)=(q’,¢c,R), m>0,n>2,
ai...am—1q amcby... by, 0(q,b1)=(q',c,L),m=1,n=>1.

For the boundary case n = 1 and direction right, we set
ap...amqb1 F ar...ancqg’0 if6(q,b1) = (9, ¢c,R),

For m = 0 and direction left, we similarly have set

gbi...by, v q'Ocby...b, if0(q,b1)=(q’,c, L).

15

Turing Machines — Configuration Example

Example:
For the shown TM M,

JCCOO0 OODDO0EEE

the current configuration is:
C = abg; aaabaaa

read/write head

tape

State

Tape Symbol

— New Tape Symbol Head Movement ~New State

qo
qo
qo0
q1
q
qn
e

a

| oo Oo

LI

a

b
]

b

b
[}
—

right
right
none
right
right
none

qo0
q1
qe
q1
qo0
q1

erminate the computation —

» TM Config C = aqp completely describes current state of computation

> ap is the (non-blank) tape content
» g is the current state of the TM

» the read/write head is on the first symbol of

16

Turing Machines — Computed Function

» With this setup, we can now formally define what a Turing machine computes.

Definition 2.4 (Function computed by a TM)
Let M = (Q,X%,T,0,q90,0, gnar) by a TM. The function computed by M on input x € X%,
written M(x), is defined as

M(x) = {y : qox +* qrany}-
For deterministic TMs, we will also have | M (x)| < 1 and we write M(x) = y for M(x) = {y}. <«

Definition 2.5 (Time and Space cost)

For a TM M and input x € X*, we define

timep(x) = inf{t : gox F gnany} U {0}.

We define space,,(x) = inf{|apl| : gox F* aqB F* gnary, |aflo < 2} U{0}. <

#0Oin ap

» Note: time and space can be co or 0 for nondeterministic TMs.

17

Turing Machines — Accepted Language

> Often convenient to use language acceptance instead of function computation.

1 ifxel

» for deterministic TM, compute characteristic function of L: Tr(x) =)
0 otherwise

» care needed for nondeterministic TM

Definition 2.6 (Language of TM)
The language £(M) accepted by a TM M is defined as

LM) = {weX*:1e M(w)}.

~ [nondeterministic TM accepts w iff some computation accepts w]

18

Turing Machines — Several tapes

Remark 2.7 (k-tape TMs)

We only consider one-tap TMs here. In general, k-tape TMs can be faster.

However, any language accepted by a k-tape TM in time f (1)
is also be accepted by a 1-tape TM with running time O(f?(n)).
The models are thus polynomially equivalent.

19

Turing Machines — Totality

» In complexity theory, we will restrict ourselves to TMs that always halt.

Definition 2.8 (Terminating TM)

A TM M is always terminating / total if there is a function T : N — N such that
gox =Co+ Cy F -+ F C; implies t < T(|x|), and there is a y such that gox F* ghaity.

> Note that in a terminating TM, we always have 1 < timep;(x) < T(|x]).

Lemma 2.9 (Time-constrained TM)

Given a (potentially nonterminiating) TM M and a function T : N — N computable in time
T(n), we can construct an always terminating TM M’ that simulates M for T(|x|) on x and
outputs TIMEOUT if M has not terminated yet. Moreover, tiney(x) = O(T?(|x|)) for all

X € X*.

If we are only interested in the (non)existence of a polynomial-time TM,
we can restriction ourselves to total TMs that will never TIMEOUT.

20

Models of Computation — Summary

» Concrete model such as TMs useful for some proofs

> Often, details do not matter as long as models are polynomially equivalent

» Note: TM always means we are in the logarithmic cost model for arithmetic operations

» In the following, discuss more abstract notion of “algorithm”
(fine to substitute by TM in each case)

21

2.4 The Classes P und NP

Worst Case Complexity

Definition 2.10 (Time and Space Complexity — Generic)

Let ; and X two alphabets and A an algorithm implementing a total mapping X} — 7.
Then for each x € X* we denote by tines(x) (resp. space,(x)) the logarithmic time complexity
(resp. logarithmic space complexity) for A on x.

Where needed, we can unpack this in full detail for Turing machines!

Definition 2.11 (Worst-Case Complexity)

Let X and Lo be two alphabets and A an algorithm implementing a total mapping
¥ — L%. The worst case time complexity of A is the function Time4 : N — N with

Timea(n) = max{timea(x):x € L7},
for each 1 € N. The worst case space complexity of A is given by function Space, : N — N with

Space,(n) = max{space,(x):x € L}}.

22

Decision Problems = Languages

Definition 2.12 (Decision Problem and Algorithms)

A decision problem is given by P = (L, U, X) for £ an alphabet and L C U C X*. An algorithm
A solves (decides) decision problem P, if for all x € U

1. A(x)=1forx € L,and
2. A(x)=0forxe U\L(i.e.,x¢L)

holds. Here A(x) denotes the output of A on input x.
If U = X* holds we denote P briefly by (L, Z).

~+ A computes a total function A : U — {0, 1},
the characteristic function 11, : U — {0, 1} of language L.
We then write L = £(A), the language accepted by A.

We restrict our attention| Example:
to decision problems: w is an encoding of an instance of the

Given: w € ¥* traveling salesperson problem and a threshold D

Goal: Isw € L? L = {w : w encodes instance w/ opt. round trip length < D}

23

Optimal Algorithms

Definition 2.13 (Upper/Lower Bounds, Optimal Algorithms)
Let U be an algorithmic problem and f, g functions Ny — R*.
» We call O(g(n)) an upper bound for time complexity of U
if there is an algorithm A that solves U in time Time(n) € O(g(n)).

» We say Q(f(n)) is a lower bound for time complexity of U
if every algorithm A that solves U needs time Timea(n) € Q(f(n)).

» An algorithm A is called optimal for U
if Timea(n) € O(g(n)) and Q(g(n)) is a lower bound for the time complexity of U.

24

Running Time

Definition 2.14 (time classes)

For function f : N — N, the class TIME(f(n)) is the set of all languages A, for which there is a
deterministic Turing machine M with £L(M) = A and timep(w) < f(|w|) fiir alle w € X*. <

Definition 2.15 (P, tractable)
We define the class of languages P decidable in polynomial time by

P = [] TIME(p(n)).

p polynomial

A language (a decision problem) L € P is called tractable / efficiently decidable. <

25

Nondeterministic Running Time
Recall:

» A nondeterministic Turing machine / algorithm M accepts L (£(M) = L) if for all x € L
there is at least one computation of M which accepts x and for all y ¢ L every
computation of M rejects y.

» We only consider always-terminating Turing machines.

» The running time timey;(x) of M on x is given by the longest computation of M on x.

Definition 2.16 (NTIME, NP)

For function f : N — N, the class NTIME(f (1)) is the set of all languages A, for which there is
a nondeterministic Turing machine M with £(M) = A and timep(w) < f(Jw|) fir alle w € T*.
The class of languages NP is defined by

NP = U NTIME(p(n)).

p polynomial

26

2.5 Nondeterminism = Verification

Nondeterminism?

» The original definition of NP via nondeterministic Turing machines is not very intuitive.

» There is an equivalent characterization that is usually more convenient to use:
Certificates and verifiers.

27

Polynomially verifiable

Definition 2.17 (Certificates, Verifier, VP)
Let L C * be a language.

» An algorithm A acting on inputs from X* x {0, 1}* is called verifier for L (notation
L =V(A)), if
L = {weX*:3ce{0,1}* A(w,c) =1}.

If A accepts input (w, c) we say c is proof or certificate for w € L.

» A verifier A for L is a polynomial-time verifier if there is a d € N such that
for all w € L, there is a proof ¢ (for w € L) with timea(w, c) € O(|w|?).

> We define the class of polynomially verifiable languages VP by

VP = {V(A): A is polynomial time verifier}.

28

Nondeterminism ¢ certificate

Theorem 2.18
NP = VP.

29

2.6 Karp-Reductions und NP-Completeness

Recap

We restrict our attention| Example:
to decision problems: w is an encoding of an instance of the

Given: w € I*. traveling salesperson problem and a threshold D

Goal: Isw € L? L = {w : w encodes instance w/ opt. round trip length < D}

~+ problems = (formal) languages L € ©*

» problem instance = word w € Z*

> w € X is a Yes instance if w € L, otherwise a No instance

~+ For problems on structures, e. g., graphs, we need an encoding of the instance as a string.

(often simple; standard data structures do the trick)

~+ input size n of instance = length of the encoding of instance

~+ all running times are worst case over instances of encoding length n

30

Karp Reductions

» Goal: Show that B is at least as hard as A.

short for: deterministic TM M w/ Timep;(11) = O(n*) for constant k.

Solve A using M (in polytime).
A: old problem B: new problem . . 5 .
Consensus: hard T - ~~ polytime algo for B implies polytime algo for A

(seems hard tous.....) ~» B at least as hard as A

Formally: (strong notion than intuition above!)
Definition 2.19 (polytime reduction, <)

Let A C X* and B C I'* be languages (decision problems).
A is polytime reducible to B — written A <, B — if there is a total function g : ©* — I'*,
computable in polynomial time, with

VweXl* : we Ao g(w)eB.

» This type of reduction is called a Karp-reduction

» It is more restrictive than our intuitive version would need, but allows finer complexity
classification (NP and co-NP)

'
‘O’ Assume there was a\foolytime algorithm M fiir B.
4 N\

31

Implication of Reductions

Lemma 2.20 (Membership reduction)
If A<, Band B € P (resp. B € NP), then A € P (resp. A € NP).

Proof:
Since B € P, there is polytime TM M with £(M) = B.

Since A <, B, there further is polytime TM ¢ mit Vw : w € A & g(w) € B ().

We construct TM M’ for A:
first simulate ¢ on input w, then simulate M on g(w).

Since M and g are polytime TMs, so is M’, and £L(M’) = A (since (*)).
~ AeP.

(The version with B € NP is similar, just using nondeterministic polytime).

32

NP Completeness

Definition 2.21 (NP-hard, NP-complete)

A language A is called NP-hard, if we have for all languages L € NP that L <p A
A language A is called NP-complete, if A is NP-hard and A € NP.

Theorem 2.22 (One for all and all for one)
For an NP-complete language A holds: A € P <= P = NP.

~~ Under the consensus hypothesis that P C NP, this means that
for an NP-complete problem A, we should expect no efficient solution for A.

Proof:
= Let L € NP be arbitrary.
Since A is (by assumption) NP-hard, we have L <, A.
Since A € P, by membership reduction (Lemma ??) also L € P.
Since L was an arbitrary language from NP, P = NP follows.

& Let conversely P = NP.
Then, by assumption, A € NP = P.

33

Implications of NP-Completeness

> NP-completeness tells us a lot about a problem!

@‘ But shall we possible prove L <, A for all possible L € NP?

» One can show: <, is a transitive relation on languages.

(proof is similar to membership-reduction lemma)

[/l ———A—s—B8
1" — | |

NP-hart new problem

ANP-hardand A <, B

~~ B NP-hard

34

The Mother of All Problems

» It remains to identify a first NP-complete problem! Are there any at all?

Theorem 2.23 (Cook-Levin)
SAT is NP-complete.

» SAT is the satisfiability problem of propositional logic:
Given: Boolean (propositional logic) formula ¢ over variables x1, ..., x,.
Goal: Is there a variable assignment V : {x1, ..., x,} — {true, false},
so that ¢ evaluates under V' to true?

Proof (Theorem ??):

Idea: Given any nondeterministic TM M for an arbitrary language L € NP, construct from

a word w a formula ¢(w), which exactly encodes all valid computations of M.
Variables x, ;: Is M be in state g at time ¢?
Ye,ir: Does tape cell i contain char c at time £?
z;+ Does read/write head stand at position i at time ¢?
~» @(w) satisfiable iff M accepts w.

(for details, see, e. g., §2.3 of S. Arora and B. Barak: Computational Complexity: A Modern Approach)

35

2.7 Example of an NP-completeness proof

3SAT

» Let’s do a more typical full example.
» Need one more NP-complete problem first

Definition 2.24 (3SAT)
Given: A Boolean formula ¢ in 3-CNF:
conjunctive normal form with at most 3 literals per clause
Goal: Is there an assignment V' of the variables in ¢, so that ¢ evaluates to true?
(a.k.a. Is @ satisfiable?)

Example:
(X1 V —x3 V XQ) A (—|X3 V xgV —|X5) A (X5 V =x5 V —|X1) A (x1 V x3V X5)

satisfiable, e. g., via x1 > true, x5 > false (other variables arbitrary)

Theorem 2.25 (3SAT)
SAT <p 3SAT and 3SAT € NP.

Corollary 2.26 (3SAT)
3SAT is NP-complete.

36

Vertex Cover

Definition 2.27 (VERTEXCOVER) @ @
Given: A (simple, undirected) graph G = (V,E),E C (}),
threshold k.

Goal: 35S C V with|S| < k, suchthatVe € E: Sne # 0? @‘@ @ @

Intuitively: a small subset S of vertices of a graph,
such that every edge is covered by S @

Theorem 2.28 (VERTEXCOVER hard)

VERTEXCOVER is NP-complete.

Proof:
We will prove (i) VERTEXCOVER € VP and (ii) 3SAT <, VERTEXCOVER.
~» Theorem ?? (since 35AT is NP-complete and VP = NP).

(i) certificate = S; verifier whether all edges e € E are covered and whether |S| < k

~~ clearly doable in polytime ~» VERTEXCOVER € VP.

37

(i1) 3SAT <p VERTEXCOVER

Proof:
> Intuition: Express 3SAT instance as a VERTEXCOVER instance.
> So, let ¢ be an arbitrary formula in 3-CNF over variables x1, ..., x;,
~> @ hasthe form (I1,1 V6ia VIig)A(l1 Vo VEh3) A Aly1 Vo Vig),
N

C] CZ Cn
with [; j € {x1,-~x1,..., %, ~xp} fori=1,...,nand j =1,2,3.

» Define a graph G = (V, E) via
V={L:i=1,...,n;j=1,2,3}

E= {{Li,j/Lp,q} = _‘lp,q} U {{Li,lzLi,Z}/{Li,ZrLi,3}r{Li,3rLi,1} i=1,... ,n}

We “draw” a vertex for every literal of a clause. We connect them if
(a) they are literals in the same clause or (b) they are negations of each other

~» Claim: ¢ satisfiable &= G has vertex cover of size < 2n.

38

(i1) 3SAT <, VERTEXCOVER — Example
@ =(x1 Va2V -x3)A(mx1 VasVag)A(mxg V-oxg Voxg) A(xa VasVxg)

» Idea: Vertices not in vertex cover S
define a variable assignment.

» Cannot be contradictory, otherwise
“negation”-edge not covered.

> Must take > 2 vertices per clause into S
(otherwise triangle not covered)

~~ |S| > 2n for every vertex cover.

> In the example:
» Fat vertices form a vertex cover for G

» corresponding assignment:
V={x1>0,x—0,x3—0,x4 1}
(0 = false, 1 = true)

~~ ¢ satisfiable

(Set S (a VC of size Zn))

39

(i1) 3SAT <, VERTEXCOVER — Correctness Proof
Claim: @ satisfiable &= G has VC S of size |S| < 2n.

= Let ¢ erfiillbar; ~~ every C; has a satisfied literal /; ;.
Add the other two vertices of the clause to S.
~+ |S| =2n and S covers all clause triangle edges.
Remaining edges have the form {x, -x}.
If such an edge remained uncovered by S, we would have that both x and —x are
satisfied literals 4
~+ G has VC of size 2.

< Given a VC S of G with |S]| < 2n.
S must contain 2 vertices per clause triangle ~» [S| =2n and S is a minimal VC.

Define assignment V so that all literals not in S are satisfied.

(Variables which are not assigned a value via this procedure can be assigned an arbitrary value.)
V is well defined, since {x, ~x}-edges must be covered.

Moreover, V makes ¢ true:
from every clause, at least one literal is satisfied since |S| = 2n.
~> @ satisfiable.

40

(i1) 3SAT <, VERTEXCOVER — Running Time

» Construction of G upon input ¢ can easily be done in polytime
> |V| = O(n), |E| = O(n?)
» Construction of E in time O(n?) easy to do, e.g.,on RAM ~ 3 polytime TM.

~» 35AT <, VERTEXCOVER.

41

2.8 Important NP-Complete Problems

Further NP-complete problems [1]

Apart from SAT, 3SAT, and VERTEXCOVER, here are some of the most useful NP-complete
problems.

Definition 2.29 (Dominating Set)

Given: graph G = (V,E)and k € N

Question: AV’ cV : |[V|<k AVYoeV:(veV'V IueN®@) :ucV)
Definition 2.30 (Hamiltonian Cycle)

Given: graph G = (V, E) (directed and undirected version)
Question: Is there a vertex-simple cycle in G of length [V|?
Definition 2.31 (Clique)

Given: graph G = (V,E)and k € N

Question: V' cV : |V/|>k A Yu,ve V' :{u,v} €E
Definition 2.32 (Independent Set)

Given: graph G = (V,E) and k € N

Question: V' cV : |V/|>k A Yu,veV':{u,v} ¢ E

42

Further NP-complete problems [2]

Definition 2.33 (Traveling Salesperson (TSP))

Given: distance matrix D € N"*" and k € N n-1
Question: Is there a permutation 7t : [1n] — [1n] with Z Dri),n(i+1) + Drmy,ny < k?

Definition 2.34 (Graph Coloring) -
Given: graph G = (V,E)and k € N
Question: Jc: V — [k] : Y{u,v} €E:c(u)#c(v)?

Definition 2.35 (Set Cover)
Given: n € N, sets S1,...,S,, C [n]and k € N
Question: II C [m] : Uje;Si = [n] A |I| £k?

Definition 2.36 (Weighted Set Cover)

Given: n € N, sets S1,...,S5,, € [n],costscy,...,cn € Ngand k € N
Question: dI c [m] 5 UiEISi = [1’1] A ZiGI c; < k?

43

Further hard problems [3]

Definition 2.37 (Closest String)

Given: s1,...,s, € 2™ and ke N
Question: ds € X" : Vie [n]:dy(s,s;)) <k? (dg Hamming-distance)

Definition 2.38 (Max Cut)
Given: graph G = (V,E) and k € N
Question: 3CcV : |[En{{u,0}|ueC,o¢C}>k?

Definition 2.39 (Exact Cover)
Given: n € N, sets S1,...,S,, C [n]
Question: I C [m] : Uje;Si = [n] A Xier|Sil =n?

44

Further hard problems [4]

Definition 2.40 (Subset Sum)

Given: x1,...,x, € Z

Question: AT C [n] : T#DA Y xi=07?

Definition 2.41 ((0/1) Knapsack)

Given: w1,...,w, € N,v1,...,v, € Nand b,k € N

Question: dI c [Tl] 5 ZiEI w; < b A Ziel (P k?

Definition 2.42 (Bin Packing)

Given: wq,...,w, € N,be N, ke N

Question: Ja : [n] — [k] : Vj e [k]: Z w; < b?
i=1,....n

Definition 2.43 (0/1 Integer Programming)

Given: integer linear program (ILP) A € Z"*", b € Z™ and c € Z" and k € Z
Question: Is there x € {0,1}" with Ax < band cTx > k?

45

2.9 Optimization Problems

Optimization Problems

Definition 2.44 (Optimization Problem)
An optimization problem is given by 7-tuple U = (X1, 2o, L, L;, M, cost, goal) with

1.
2.
3.

Y an alphabet (called input alphabet),
Yo an alphabet (called output alphabet),
L C IF the language of allowable problem instances (for which U is well-defined),

L; C L the language of actual problem instances for U
(for those we want to determine U’s complexity),

M : L — 2% and with x € L, M(x) is the set of all feasible solutions for x.

cost is a cost function, which assigns for x € L each pair (1, x) with u € M(x) a positive
real number,

goal € {min, max}.

46

Optimal Solutions

Definition 2.45 (Optimal Solutions, Solution Algorithms)

Let U = (X1, X0, L, L1, M, cost, goal) an optimization problem. For each x € L; a feasible
solution y € M(x) is called optimal for x and U, if

cost(y,x) = goal{cost(z,x) | z € M(x)}.

An algorithm A is consistent with U if A(x) € M(x) for all x € L;.
We say algorithm B solves U, if

1. B is consistent with U and

2. forall x € Lj, B(x) is optimal for x and U.

47

Optimization Problems — Examples

Natural examples: Problems above with an input parameter k.

Less immediate example:

Definition 2.46 (Max-SAT)

Given: CNF-Formula ¢ = C; A --- A Cy, over variables x1, ..., xy
Allowable (=Actual) Instances: encodings of ¢

M(¢) ={0,1}" (variable assignments)

cost(u, x): # of satisfied clauses in © under given assignment x
goal = max

48

Classes of Optimization Problems

Definition 2.47 (NPO)
NP0 is the class if optimization problems U = (X1, 2o, L, L1, M, cost, goal) with

1. L; € P,
2. there is a polynomial py; with
a) VxeLpVye M(x):|yl <pu(lx]) and
b) there is a polynomial time algorithm which for all y € £X, x € L; with |y| < py;(|x|) decides
whether y € M(x) holds, and

3. function cost can be computed in polynomial time.

Definition 2.48 (PO)
PO is the class of optimization problems U = (X1, Lo, L, L1, M, cost, goal) with

1. U € NPO, and

2. there is an algorithm of polynomial time complexity which for all x € L; computes an
optimal solution for x and U.

49

From Optimization to Decision

Definition 2.49 (Threshold Languages)
Let U = (X1, X0, L, L, M, cost, goal) an optimization problem, U € NPO.
For Opt,;(x) the cost of an optimal solutions for x and U we define the threshold language for U
as
{(x,k) € Ly x{0,1}* | Opt;(x) < k»}, if goal = min,
Lang;; =
{(x,k) € Ly x{0,1}* | Opt;(x) > ko }, if goal = max.

We say U is NP-hard, if Lang,; is NP-hard. <

Corollary 2.50 (Optimization is harder than Threshold)

Let U an optimization problem.
If Lang,, is NP-hard and if P # NP holds, we have U ¢ PO. <

50

Max-SAT is hard

Corollary 2.51 (Max-SAT is hard)
Max-SAT is NP-hard.

51

Summary

» We have formalized the classic notion of intractable problems.
» What is running time, what is “polytime”?
» Decision problems < (formal) languages
» P, NP via Turing machines <> certificates and verifiers
>

For the typical case of optimization problems,
there are different versions of the problem,
but (in)tractability typically carries over.

~» We can mathematically prove a problem is intractable (NP-hard).

... but how can we tackle hard problems anyway?

52

	Complexity Theory Recap
	P and NP Informally
	Hard problems
	United in incapacity
	Complexity Theory
	P and NP – Intuitive Synopsis

	Models of Computation
	Mathematical Models of Computation
	Random Access Machines
	RAM-Program Example

	Turing Machines
	Keep it Simple, Stupid
	Turing Machines
	Turingmaschinen in Circulation
	Turing Machines – Informal Recap
	Turing Machines – Formal Syntax
	Turing Machine – Computation Step
	Turing Machines – Configurations
	Turing Machines – Configuration Example
	Turing Machines – Computed Function
	Turing Machines – Accepted Language
	Turing Machines – Several tapes
	Turing Machines – Totality
	Models of Computation – Summary

	The Classes P und NP
	Worst Case Complexity
	Decision Problems = Languages
	Optimal Algorithms
	Running Time
	Nondeterministic Running Time

	Nondeterminism = Verification
	Nondeterminism?
	Polynomially verifiable
	Nondeterminism certificate

	Karp-Reductions und NP-Completeness
	Recap
	Karp Reductions
	Implication of Reductions
	NP Completeness
	Implications of NP-Completeness
	The Mother of All Problems

	Example of an NP-completeness proof
	3SAT
	Vertex Cover
	(ii) 3SAT p VertexCover
	(ii) 3SAT p VertexCover – Example
	(ii) 3SAT p VertexCover – Correctness Proof
	(ii) 3SAT p VertexCover – Running Time

	Important NP-Complete Problems
	Further NP-complete problems [1]
	Further NP-complete problems [2]
	Further hard problems [3]
	Further hard problems [4]

	Optimization Problems
	Optimization Problems
	Optimal Solutions
	Optimization Problems – Examples
	Classes of Optimization Problems
	From Optimization to Decision
	Max-SAT is hard
	Summary

