
2 Complexity Theory

Recap

22 April 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025)

Philipps-Universität Marburg

version 2025-04-22 23:10 H

Outline

2 Complexity Theory Recap

2.1 P and NP Informally

2.2 Models of Computation

2.3 Turing Machines

2.4 The Classes P und NP

2.5 Nondeterminism = Verification

2.6 Karp-Reductions und NP-Completeness

2.7 Example of an NP-completeness proof

2.8 Important NP-Complete Problems

2.9 Optimization Problems

2.1 P and NP Informally

Hard problems

▶ Some algorithmic problems are “hard nuts” to crack.

▶ e. g., the Traveling Salesperson Problem (TSP):
Given: 𝑛 cities 𝑆1 , . . . , 𝑆𝑛 ,

all 𝑛(𝑛 − 1) pairwise

distances 𝑑(𝑆𝑖 , 𝑆𝑗) ∈ ℕ (𝑖 ≠ 𝑗)

Goal: Shortest round trip through all cities

▶ no general

always exact, always correct

, efficient

polytime

algorithm known!

(despite decades of intensive research . . .)

⇝ It seems as if there is no efficient algorithm for TSP!

▶ But: can we prove that?

▶ Despite similarly intensive research: No! (not yet)

Doesn’t sound like a shining example for theoretical computer science? . . . stay tuned!

1

United in incapacity

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

2

Complexity Theory

▶ Complexity theory allows us to compare the hardness of algorithmic problems.

𝐴: old problem

Consensus: hard

𝐵: new problem

Status: unknown

(seems hard to us . . .)

≤𝑝

Intuitive idea:

1. If 𝐴 is a known hard nut, and

2. 𝐵 is at least as hard as 𝐴,

then 𝐵 is a hard nut, too!

Formally:

1. 𝐴 is NP-hard: probably � eff.

efficient = polytime

alg. for 𝐴

2. 𝐴 ≤𝑝 𝐵: ∃ eff. alg. for 𝐵 =⇒ ∃ eff. alg. for 𝐴

⇝ 𝐵 is NP-hart: probably � eff. alg. for 𝐵!

3

P and NP – Intuitive Synopsis

P = NP?

▶ P = class of problems for which there is an algorithm 𝐴 and a polynomial 𝑝

such that 𝐴 solves every instance 𝐼 in time 𝑂(𝑝(|𝐼|)).
▶ P for “polynomial” – i. e., all problems where a solution can be found by a (deterministic)

algorithm in polynomial time.

▶ NP = class of problems for which there is an algorithmus 𝐴 and a polynomial 𝑝

such that 𝐴 can verify a given candidate solution 𝑙(𝐼) of a given instance 𝐼

in time 𝑂(𝑝(|𝐼|)), i. e., check whether 𝑙(𝐼) solves 𝐼 or not.

▶ NP for “nondeterministically polynomial” – i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

▶ This is equivalent to the above characterization via verification.

▶ We know P ⊆ NP. We think P ⊊ NP, i. e., P ≠ NP.

The question “P = NP?” is one of the famous millenium problems and arguably

the most important open problem of theoretical computer science.

4

2.2 Models of Computation

Mathematical Models of Computation

▶ complexity classes talk about sets of problems based upon whether they allow an

algorithm of a certain cost

▶ in general, this depends on the allowable algorithms and their costs!

⇝ need to fix a machine model

A machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be

detailed and powerful enough to reflect actual machines,

abstract enough to unify architectures,

simple enough to analyze.

5

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2

𝑤 ≈ 𝑛

▶ Instructions:

▶ load & store: 𝑅𝑖 := MEM[𝑅 𝑗] MEM[𝑅 𝑗] := 𝑅𝑖

▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅 𝑗 (arithmetic is modulo 2
𝑤

!)

also 𝑅𝑖 − 𝑅 𝑗 , 𝑅𝑖 · 𝑅 𝑗 , 𝑅𝑖 div 𝑅 𝑗 , 𝑅𝑖 mod 𝑅 𝑗

C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ time cost: number of executed instructions

▶ space cost: total number of touched memory cells

6

https://www.springer.com/gp/book/9783030252083

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;

4 𝑅3 := 𝑅1 − 2;

5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;

7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;

9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;

11 𝑅3 := 𝑅3 − 1;

12 if (𝑅3 ≥ 0) goto line 5;

13 𝑅2 := 𝑅2 − 1;

14 if (𝑅2 > 0) goto line 4;

15 // Done:

MEM[0..𝑁) sorted

7

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;

4 𝑅3 := 𝑅1 − 2;

5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;

7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;

9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;

11 𝑅3 := 𝑅3 − 1;

12 if (𝑅3 ≥ 0) goto line 5;

13 𝑅2 := 𝑅2 − 1;

14 if (𝑅2 > 0) goto line 4;

15 // Done: MEM[0..𝑁) sorted

8

2.3 Turing Machines

Keep it Simple, Stupid

▶ word-RAM (rather) realistic, but complicated

▶ note that the machine has to grow with the inputs(!)

▶ for a coarse distinction of running time complexity, simpler models suffice

▶ useful to reason about “all algorithms”

▶ machine is fixed for all inputs sizes apart from storage for input

Many models of computation . . .

▶ 𝜇-recursive function

▶ Turing machines (TM)

▶ counter machines

▶ 𝜆-calculus

▶ While-programs

▶ any Turing-complete language

▶ quantum computers

▶ . . .

. . . with strong equivalences:

1. all proven to lead to the same set of computable functions

2. Church-Turing thesis:

any formalization of “effectively computable” is equivalent in

this sense

3. Extended Church-Turing Thesis:
. . . and can be simulated with polynomial overhead on a TM

▶ true for all on left . . .

▶ except theoretical quantum computers!

▶ ignore them for now

wake me when they exist

9

Turing Machines

▶ invented by Alan Turing in 1936 as

formalization for “computable by hand”

In same paper, Turing proved

undecidability of halting problem!

▶ minimalistic model of universal computer, but can be built:

10

Turingmaschinen in Circulation

11

Turing Machines – Informal Recap

A Turing machine has

▶ a finite control via states

▶ an input/output-tape

▶ unbounded length

▶ initially contains input

▶ all other cells contain “□”

▶ a read/write head

▶ reads the current symbol

▶ overwrites it with a new symbol

▶ initially placed on beginning of

input

. . . □ □ a b a a a b a a a □ □ . . .

tape

State Tape Symbol → New Tape Symbol Head Movement New State

𝑞0 a → a right 𝑞0

𝑞0 b → b right 𝑞1

𝑞0 □ → □ none 𝑞𝑒
𝑞1 a → b right 𝑞1

𝑞1 b → b right 𝑞0

𝑞1 □ → □ none 𝑞1

𝑞𝑒 – → — terminate the computation —

finite control

𝑞1

read/write head

12

Turing Machines – Formal Syntax

Definition 2.1 (Turing Machine (TM))

A Turing machine is a 7-tuple 𝑀 = (𝑄,Σ, Γ, 𝛿, 𝑞0 ,□, 𝑞halt) with

▶ a finite set of states 𝑄,

▶ an input alphabet Σ,

▶ a tape alphabet Γ ⊃ Σ ,

▶ for deterministic TMs a transition function 𝛿 : (𝑄 \ {𝑞halt}) × Γ → 𝑄 × Γ × {𝐿, 𝑅, 𝑁}
for nondeterministic TMs a transition relation 𝛿 : (𝑄 \ {𝑞halt}) × Γ → 2

𝑄×Γ×{𝐿,𝑅,𝑁}

▶ an initial state 𝑞0 ∈ 𝑄,

▶ a blank symbol □ ∈ Γ \ Σ, and

▶ a halting state 𝑞halt ∈ 𝑄

13

Turing Machine – Computation Step

▶ Each step of a computation of TM 𝑀 has the form

𝛿(𝑞, 𝑎) = (𝑞′, 𝑏, 𝑑) resp. 𝛿(𝑞, 𝑎) ∋ (𝑞′, 𝑏, 𝑑),
with the semantics that

▶ 𝑀 is in state 𝑞 ≠ 𝑞
halt

▶ the cell below the read/write head currently contains symbol 𝑎

▶ 𝑀 now changes (based on its finite control)

▶ into state 𝑞′,
▶ writes 𝑏 into the cell under the read/write head

▶ and finally moves the read/write head in direction 𝑑 ∈ {𝐿, 𝑅, 𝑁}.

(𝐿 = left, 𝑅 = right, 𝑁 = none (stay))

▶ for deterministic TM 𝑀, 𝑞 and 𝑎 uniquely determine this action;

for nondeterministic TM, we may have several possible actions.

▶ to formally define an entire computation, we have to encode the tape contents as well

14

Turing Machines – Configurations

Definition 2.2 (TM Configuration)

A configuration (config) of a TM 𝑀 is a string 𝐶 ∈ Γ★𝑄 Γ★. ◀

The semantics of a config 𝐶 = 𝛼𝑞𝛾, 𝑞 ∈ 𝑄, is tape content 𝛼𝛽 and head at first symbol of 𝛽.

Definition 2.3 (TM Computation Relation)

The computation relation ⊢ is defined on the set of configurations of a TM 𝑀 as follows.

𝑎1 . . . 𝑎𝑚 𝑞 𝑏1 . . . 𝑏𝑛 ⊢


𝑎1 . . . 𝑎𝑚 𝑞′ 𝑐 𝑏2 . . . 𝑏𝑛 , 𝛿(𝑞, 𝑏1) = (𝑞′, 𝑐, 𝑁), 𝑚 ≥ 0, 𝑛 ≥ 1,

𝑎1 . . . 𝑎𝑚 𝑐 𝑞′ 𝑏2 . . . 𝑏𝑛 , 𝛿(𝑞, 𝑏1) = (𝑞′, 𝑐, 𝑅), 𝑚 ≥ 0, 𝑛 ≥ 2,

𝑎1 . . . 𝑎𝑚−1 𝑞
′ 𝑎𝑚 𝑐 𝑏2 . . . 𝑏𝑛 , 𝛿(𝑞, 𝑏1) = (𝑞′, 𝑐, 𝐿), 𝑚 ≥ 1, 𝑛 ≥ 1.

For the boundary case 𝑛 = 1 and direction right, we set

𝑎1 . . . 𝑎𝑚 𝑞 𝑏1 ⊢ 𝑎1 . . . 𝑎𝑚 𝑐 𝑞′□ if 𝛿(𝑞, 𝑏1) = (𝑞′, 𝑐, 𝑅),

For 𝑚 = 0 and direction left, we similarly have set

𝑞 𝑏1 . . . 𝑏𝑛 ⊢ 𝑞′□𝑐 𝑏2 . . . 𝑏𝑛 if 𝛿(𝑞, 𝑏1) = (𝑞′, 𝑐, 𝐿).

15

Turing Machines – Configuration Example

Example:

For the shown TM 𝑀,

the current configuration is:

𝐶 = ab 𝑞1 aaabaaa

. . . □ □ a b a a a b a a a □ □ . . .

tape

State Tape Symbol → New Tape Symbol Head Movement New State

𝑞0 a → a right 𝑞0

𝑞0 b → b right 𝑞1

𝑞0 □ → □ none 𝑞𝑒
𝑞1 a → b right 𝑞1

𝑞1 b → b right 𝑞0

𝑞1 □ → □ none 𝑞1

𝑞𝑒 – → — terminate the computation —

𝑞1

read/write head

▶ TM Config 𝐶 = 𝛼𝑞𝛽 completely describes current state of computation

▶ 𝛼𝛽 is the (non-blank) tape content

▶ 𝑞 is the current state of the TM

▶ the read/write head is on the first symbol of 𝛽

16

Turing Machines – Computed Function

▶ With this setup, we can now formally define what a Turing machine computes.

Definition 2.4 (Function computed by a TM)

Let 𝑀 = (𝑄,Σ, Γ, 𝛿, 𝑞0 ,□, 𝑞halt) by a TM. The function computed by 𝑀 on input 𝑥 ∈ Σ★
,

written 𝑀(𝑥), is defined as

𝑀(𝑥) = {𝑦 : 𝑞0𝑥 ⊢★ 𝑞halt𝑦}.

For deterministic TMs, we will also have |𝑀(𝑥)| ≤ 1 and we write 𝑀(𝑥) = 𝑦 for 𝑀(𝑥) = {𝑦}. ◀

Definition 2.5 (Time and Space cost)

For a TM 𝑀 and input 𝑥 ∈ Σ∗
, we define

time𝑀(𝑥) = inf{𝑡 : 𝑞0𝑥 ⊢𝑡 𝑞halt𝑦} ∪ {0}.

We define space𝑀(𝑥) = inf

{
|𝛼𝛽| : 𝑞0𝑥 ⊢★ 𝛼𝑞𝛽 ⊢★ 𝑞halt𝑦, |𝛼𝛽|□

□ in 𝛼𝛽

≤ 2

}
∪ {0}. ◀

▶ Note: time and space can be ∞ or 0 for nondeterministic TMs.

17

Turing Machines – Accepted Language

▶ Often convenient to use language acceptance instead of function computation.

▶ for deterministic TM, compute characteristic function of 𝐿: 1𝐿(𝑥) =
{

1 if 𝑥 ∈ 𝐿

0 otherwise

▶ care needed for nondeterministic TM

Definition 2.6 (Language of TM)

The language L(𝑀) accepted by a TM 𝑀 is defined as

L(𝑀) = {𝑤 ∈ Σ★
: 1 ∈ 𝑀(𝑤)}. ◀

⇝ nondeterministic TM accepts 𝑤 iff some computation accepts 𝑤

18

Turing Machines – Several tapes

Remark 2.7 (𝒌-tape TMs)

We only consider one-tap TMs here. In general, 𝑘-tape TMs can be faster.

However, any language accepted by a 𝑘-tape TM in time 𝑓 (𝑛)
is also be accepted by a 1-tape TM with running time 𝑂(𝑓 2(𝑛)).
The models are thus polynomially equivalent. ◀

19

Turing Machines – Totality

▶ In complexity theory, we will restrict ourselves to TMs that always halt.

Definition 2.8 (Terminating TM)

A TM 𝑀 is always terminating / total if there is a function 𝑇 : ℕ → ℕ such that

𝑞0𝑥 = 𝐶0 ⊢ 𝐶1 ⊢ · · · ⊢ 𝐶𝑡 implies 𝑡 ≤ 𝑇(|𝑥|), and there is a 𝑦 such that 𝑞0𝑥 ⊢★ 𝑞halt𝑦. ◀

▶ Note that in a terminating TM, we always have 1 ≤ time𝑀(𝑥) ≤ 𝑇(|𝑥|).

Lemma 2.9 (Time-constrained TM)

Given a (potentially nonterminiating) TM 𝑀 and a function 𝑇 : ℕ → ℕ computable in time

𝑇(𝑛), we can construct an always terminating TM 𝑀′
that simulates 𝑀 for 𝑇(|𝑥|) on 𝑥 and

outputs TIMEOUT if 𝑀 has not terminated yet. Moreover, time𝑀′(𝑥) = 𝑂(𝑇2(|𝑥|)) for all

𝑥 ∈ Σ★
. ◀

⇝
If we are only interested in the (non)existence of a polynomial-time TM,

we can restriction ourselves to total TMs that will never TIMEOUT.

20

Models of Computation – Summary

▶ Concrete model such as TMs useful for some proofs

▶ Often, details do not matter as long as models are polynomially equivalent

▶ Note: TM always means we are in the logarithmic cost model for arithmetic operations

▶ In the following, discuss more abstract notion of “algorithm”

(fine to substitute by TM in each case)

21

2.4 The Classes P und NP

Worst Case Complexity

Definition 2.10 (Time and Space Complexity – Generic)

Let Σ𝐼 and Σ𝑂 two alphabets and 𝐴 an algorithm implementing a total mapping Σ★
𝐼
→ Σ★

𝑂
.

Then for each 𝑥 ∈ Σ★
𝐼

we denote by time𝐴(𝑥) (resp. space𝐴(𝑥)) the logarithmic time complexity

(resp. logarithmic space complexity) for 𝐴 on 𝑥. ◀

Where needed, we can unpack this in full detail for Turing machines!

Definition 2.11 (Worst-Case Complexity)

Let Σ𝐼 and Σ𝑂 be two alphabets and 𝐴 an algorithm implementing a total mapping

Σ★
𝐼
→ Σ★

𝑂
. The worst case time complexity of 𝐴 is the function Time𝐴 : ℕ → ℕ with

Time𝐴(𝑛) = max{time𝐴(𝑥) : 𝑥 ∈ Σ𝑛
𝐼 },

for each 𝑛 ∈ ℕ. The worst case space complexity of 𝐴 is given by function Space𝐴 : ℕ → ℕ with

Space𝐴(𝑛) = max{space𝐴(𝑥) : 𝑥 ∈ Σ𝑛
𝐼 }. ◀

22

Decision Problems = Languages

Definition 2.12 (Decision Problem and Algorithms)

A decision problem is given by 𝑃 = (𝐿,𝑈,Σ) for Σ an alphabet and 𝐿 ⊆ 𝑈 ⊆ Σ★
. An algorithm

𝐴 solves (decides) decision problem 𝑃, if for all 𝑥 ∈ 𝑈

1. 𝐴(𝑥) = 1 for 𝑥 ∈ 𝐿, and

2. 𝐴(𝑥) = 0 for 𝑥 ∈ 𝑈 \ 𝐿 (i. e., 𝑥 ∉ 𝐿)

holds. Here 𝐴(𝑥) denotes the output of 𝐴 on input 𝑥.

If 𝑈 = Σ★
holds we denote 𝑃 briefly by (𝐿,Σ). ◀

⇝ 𝐴 computes a total function 𝐴 : 𝑈 → {0, 1},

the characteristic function 1𝐿 : 𝑈 → {0, 1} of language 𝐿.

We then write 𝐿 = L(𝐴), the language accepted by 𝐴.

We restrict our attention

to decision problems:

Given: 𝑤 ∈ Σ★
.

Goal: Is 𝑤 ∈ 𝐿?

Example:

𝑤 is an encoding of an instance of the

traveling salesperson problem and a threshold 𝐷

𝐿 = {𝑤 : 𝑤 encodes instance w/ opt. round trip length ≤ 𝐷}
23

Optimal Algorithms

Definition 2.13 (Upper/Lower Bounds, Optimal Algorithms)

Let 𝑈 be an algorithmic problem and 𝑓 , 𝑔 functions ℕ0 → ℝ+
.

▶ We call 𝑂(𝑔(𝑛)) an upper bound for time complexity of 𝑈
if there is an algorithm 𝐴 that solves 𝑈 in time Time𝐴(𝑛) ∈ 𝑂(𝑔(𝑛)).

▶ We say Ω(𝑓 (𝑛)) is a lower bound for time complexity of 𝑈
if every algorithm 𝐴 that solves 𝑈 needs time Time𝐴(𝑛) ∈ Ω(𝑓 (𝑛)).

▶ An algorithm 𝐴 is called optimal for 𝑈
if Time𝐴(𝑛) ∈ 𝑂(𝑔(𝑛)) and Ω(𝑔(𝑛)) is a lower bound for the time complexity of 𝑈 .

◀

24

Running Time

Definition 2.14 (time classes)

For function 𝑓 : ℕ → ℕ, the class TIME(𝑓 (𝑛)) is the set of all languages 𝐴, for which there is a

deterministic Turing machine 𝑀 with L(𝑀) = 𝐴 and time𝑀(𝑤) ≤ 𝑓 (|𝑤|) für alle 𝑤 ∈ Σ★
. ◀

Definition 2.15 (P, tractable)

We define the class of languages P decidable in polynomial time by

P ≔

⋃
𝑝 polynomial

TIME(𝑝(𝑛)).

A language (a decision problem) 𝐿 ∈ P is called tractable / efficiently decidable. ◀

25

Nondeterministic Running Time

Recall:

▶ A nondeterministic Turing machine / algorithm 𝑀 accepts 𝐿 (L(𝑀) = 𝐿) if for all 𝑥 ∈ 𝐿

there is at least one computation of 𝑀 which accepts 𝑥 and for all 𝑦 ∉ 𝐿 every

computation of 𝑀 rejects 𝑦.

▶ We only consider always-terminating Turing machines.

▶ The running time time𝑀(𝑥) of 𝑀 on 𝑥 is given by the longest computation of 𝑀 on 𝑥.

Definition 2.16 (NTIME, NP)

For function 𝑓 : ℕ → ℕ, the class NTIME(𝑓 (𝑛)) is the set of all languages 𝐴, for which there is

a nondeterministic Turing machine 𝑀 with L(𝑀) = 𝐴 and time𝑀(𝑤) ≤ 𝑓 (|𝑤|) für alle 𝑤 ∈ Σ★
.

The class of languages NP is defined by

NP ≔

⋃
𝑝 polynomial

NTIME(𝑝(𝑛)).
◀

26

2.5 Nondeterminism = Verification

Nondeterminism?

▶ The original definition of NP via nondeterministic Turing machines is not very intuitive.

▶ There is an equivalent characterization that is usually more convenient to use:

Certificates and verifiers.

27

Polynomially verifiable

Definition 2.17 (Certificates, Verifier, VP)

Let 𝐿 ⊆ Σ★
be a language.

▶ An algorithm 𝐴 acting on inputs from Σ★ × {0, 1}★ is called verifier for 𝐿 (notation

𝐿 = V(𝐴)), if

𝐿 = {𝑤 ∈ Σ★
: ∃𝑐 ∈ {0, 1}★ 𝐴(𝑤, 𝑐) = 1}.

If 𝐴 accepts input (𝑤, 𝑐) we say 𝑐 is proof or certificate for 𝑤 ∈ 𝐿.

▶ A verifier 𝐴 for 𝐿 is a polynomial-time verifier if there is a 𝑑 ∈ ℕ such that

for all 𝑤 ∈ 𝐿, there is a proof 𝑐 (for 𝑤 ∈ 𝐿) with time𝐴(𝑤, 𝑐) ∈ 𝑂(|𝑤|𝑑).

▶ We define the class of polynomially verifiable languages VP by

VP = {V(𝐴) : 𝐴 is polynomial time verifier}. ◀

28

Nondeterminism ↔ certificate

Theorem 2.18

NP = VP. ◀

29

2.6 Karp-Reductions und NP-Completeness

Recap

▶

We restrict our attention

to decision problems:

Given: 𝑤 ∈ Σ★
.

Goal: Is 𝑤 ∈ 𝐿?

Example:

𝑤 is an encoding of an instance of the

traveling salesperson problem and a threshold 𝐷

𝐿 = {𝑤 : 𝑤 encodes instance w/ opt. round trip length ≤ 𝐷}

⇝ problems = (formal) languages 𝐿 ⊆ Σ★

▶ problem instance = word 𝑤 ∈ Σ★

▶ 𝑤 ∈ Σ★
is a Yes instance if 𝑤 ∈ 𝐿, otherwise a No instance

⇝ For problems on structures, e. g., graphs, we need an encoding of the instance as a string.

(often simple; standard data structures do the trick)

⇝ input size 𝑛 of instance = length of the encoding of instance

⇝ all running times are worst case over instances of encoding length 𝑛

30

Karp Reductions

𝐴
𝐴: old problem

Consensus: hard

𝐵
𝐵: new problem

Status: unknown

(seems hard to us . . .)

≤𝑝

▶ Goal: Show that 𝐵 is at least as hard as 𝐴.

Assume there was a po

short for: deterministic TM 𝑀 w/ Time𝑀 (𝑛) = 𝑂(𝑛𝑘) for constant 𝑘.

lytime algorithm 𝑀 für 𝐵.

Solve 𝐴 using 𝑀 (in polytime).

⇝ polytime algo for 𝐵 implies polytime algo for 𝐴

⇝ 𝐵 at least as hard as 𝐴

Formally: (strong notion than intuition above!)

Definition 2.19 (polytime reduction, ≤𝒑)

Let 𝐴 ⊆ Σ★
and 𝐵 ⊆ Γ★ be languages (decision problems).

𝐴 is polytime reducible to 𝐵 – written 𝐴 ≤𝑝 𝐵 – if there is a total function 𝑔 : Σ★ → Γ★,

computable in polynomial time, with

∀𝑤 ∈ Σ★
: 𝑤 ∈ 𝐴 ⇔ 𝑔(𝑤) ∈ 𝐵. ◀

▶ This type of reduction is called a Karp-reduction
▶ It is more restrictive than our intuitive version would need, but allows finer complexity

classification (NP and co-NP)

31

Implication of Reductions

Lemma 2.20 (Membership reduction)

If 𝐴 ≤𝑝 𝐵 and 𝐵 ∈ P (resp. 𝐵 ∈ NP), then 𝐴 ∈ P (resp. 𝐴 ∈ NP). ◀

Proof:

Since 𝐵 ∈ P, there is polytime TM 𝑀 with L(𝑀) = 𝐵.

Since 𝐴 ≤𝑝 𝐵, there further is polytime TM 𝑔 mit ∀𝑤 : 𝑤 ∈ 𝐴 ⇔ 𝑔(𝑤) ∈ 𝐵 (∗).
We construct TM 𝑀′

for 𝐴:

first simulate 𝑔 on input 𝑤, then simulate 𝑀 on 𝑔(𝑤).
Since 𝑀 and 𝑔 are polytime TMs, so is 𝑀′

, and L(𝑀′) = 𝐴 (since (∗)).
⇝ 𝐴 ∈ P.

(The version with 𝐵 ∈ NP is similar, just using nondeterministic polytime). ■

32

NP Completeness

Definition 2.21 (NP-hard, NP-complete)

A language 𝐴 is called NP-hard, if we have for all languages 𝐿 ∈ NP that 𝐿 ≤𝑝 𝐴.

A language 𝐴 is called NP-complete, if 𝐴 is NP-hard and 𝐴 ∈ NP. ◀

Theorem 2.22 (One for all and all for one)

For an NP-complete language 𝐴 holds: 𝐴 ∈ P ⇐⇒ P = NP. ◀

⇝ Under the consensus hypothesis that P ⊊ NP, this means that

for an NP-complete problem 𝐴, we should expect no efficient solution for 𝐴.

Proof:

⇒ Let 𝐿 ∈ NP be arbitrary.

Since 𝐴 is (by assumption) NP-hard, we have 𝐿 ≤𝑝 𝐴.

Since 𝐴 ∈ P, by membership reduction (Lemma ??) also 𝐿 ∈ P.

Since 𝐿 was an arbitrary language from NP, P = NP follows.

⇐ Let conversely P = NP.

Then, by assumption, 𝐴 ∈ NP = P. ■

33

Implications of NP-Completeness

▶ NP-completeness tells us a lot about a problem!

But shall we possible prove 𝐿 ≤𝑝 𝐴 for all possible 𝐿 ∈ NP?

▶ One can show: ≤𝑝 is a transitive relation on languages.

(proof is similar to membership-reduction lemma)

NP

𝐴

NP-hart

𝐵

new problem

≤𝑝

𝐿

𝐿′

𝐿′′

≤𝑝

≤𝑝

≤𝑝

𝐴 NP-hard and 𝐴 ≤𝑝 𝐵

⇝ 𝐵 NP-hard

34

The Mother of All Problems

▶ It remains to identify a first NP-complete problem! Are there any at all?

Theorem 2.23 (Cook-Levin)

SAT is NP-complete. ◀

▶ SAT is the satisfiability problem of propositional logic:

Given: Boolean (propositional logic) formula 𝜑 over variables 𝑥1 , . . . , 𝑥𝑛 .

Goal: Is there a variable assignment 𝑉 : {𝑥1 , . . . , 𝑥𝑛} → {true, false},

so that 𝜑 evaluates under 𝑉 to true?

Proof (Theorem ??):

Idea: Given any nondeterministic TM 𝑀 for an arbitrary language 𝐿 ∈ NP, construct from

a word 𝑤 a formula 𝜑(𝑤), which exactly encodes all valid computations of 𝑀.

Variables 𝑥𝑞,𝑡 : Is 𝑀 be in state 𝑞 at time 𝑡?

𝑦𝑐,𝑖,𝑡 : Does tape cell 𝑖 contain char 𝑐 at time 𝑡?

𝑧𝑖 ,𝑡 Does read/write head stand at position 𝑖 at time 𝑡?

⇝ 𝜑(𝑤) satisfiable iff 𝑀 accepts 𝑤.

(for details, see, e. g., §2.3 of S. Arora and B. Barak: Computational Complexity: A Modern Approach) ■

35

2.7 Example of an NP-completeness proof

3SAT

▶ Let’s do a more typical full example.

▶ Need one more NP-complete problem first

Definition 2.24 (3SAT)

Given: A Boolean formula 𝜑 in 3-CNF:

conjunctive normal form with at most 3 literals per clause

Goal: Is there an assignment 𝑉 of the variables in 𝜑, so that 𝜑 evaluates to true?
(a.k.a. Is 𝜑 satisfiable?) ◀

Example:

(𝑥1 ∨ ¬𝑥3 ∨ 𝑥2) ∧ (¬𝑥3 ∨ 𝑥4 ∨ ¬𝑥5) ∧ (𝑥5 ∨ ¬𝑥5 ∨ ¬𝑥1) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥5)
satisfiable, e. g., via 𝑥1 ↦→ true, 𝑥5 ↦→ false (other variables arbitrary)

Theorem 2.25 (3SAT)

SAT ≤𝑝 3SAT and 3SAT ∈ NP. ◀

Corollary 2.26 (3SAT)

3SAT is NP-complete. ◀

36

Vertex Cover

Definition 2.27 (VertexCover)

Given: A (simple, undirected) graph 𝐺 = (𝑉, 𝐸), 𝐸 ⊆
(
𝑉
2

)
,

threshold 𝑘.

Goal: ∃𝑆 ⊆ 𝑉 with |𝑆| ≤ 𝑘, such that ∀𝑒 ∈ 𝐸 : 𝑆 ∩ 𝑒 ≠ ∅? ◀

Intuitively: a small subset 𝑆 of vertices of a graph,

such that every edge is covered by 𝑆

𝑣1

𝑣2 𝑣3 𝑣4 𝑣5

𝑣6

𝑣7

Theorem 2.28 (VertexCover hard)

VertexCover is NP-complete. ◀

Proof:

We will prove (i) VertexCover ∈ VP and (ii) 3SAT ≤𝑝 VertexCover.

⇝ Theorem ?? (since 3SAT is NP-complete and VP = NP).

(i) certificate = 𝑆; verifier whether all edges 𝑒 ∈ 𝐸 are covered and whether |𝑆| ≤ 𝑘

⇝ clearly doable in polytime ⇝ VertexCover ∈ VP.

37

(ii) 3SAT ≤𝒑 VertexCover

Proof:

▶ Intuition: Express 3SAT instance as a VertexCover instance.

▶ So, let 𝜑 be an arbitrary formula in 3-CNF over variables 𝑥1 , . . . , 𝑥𝑚

⇝ 𝜑 has the form (𝑙1,1 ∨ 𝑙1,2 ∨ 𝑙1,3)︸ ︷︷ ︸
𝐶1

∧ (𝑙2,1 ∨ 𝑙2,2 ∨ 𝑙2,3)︸ ︷︷ ︸
𝐶2

∧ · · · ∧ (𝑙𝑛,1 ∨ 𝑙𝑛,2 ∨ 𝑙𝑛,3)︸ ︷︷ ︸
𝐶𝑛

,

with 𝑙𝑖 , 𝑗 ∈ {𝑥1 ,¬𝑥1 , . . . , 𝑥𝑚 ,¬𝑥𝑚} for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, 2, 3.

▶ Define a graph 𝐺 = (𝑉, 𝐸) via

𝑉 = {𝐿𝑖 , 𝑗 : 𝑖 = 1, . . . , 𝑛; 𝑗 = 1, 2, 3}

𝐸 =

{
{𝐿𝑖 , 𝑗 , 𝐿𝑝,𝑞} : 𝑙𝑖 , 𝑗 ≡ ¬𝑙𝑝,𝑞

}
∪
{
{𝐿𝑖 ,1 , 𝐿𝑖 ,2}, {𝐿𝑖 ,2 , 𝐿𝑖 ,3}, {𝐿𝑖 ,3 , 𝐿𝑖 ,1} : 𝑖 = 1, . . . , 𝑛

}
We “draw” a vertex for every literal of a clause. We connect them if

(a) they are literals in the same clause or (b) they are negations of each other

⇝ Claim: 𝜑 satisfiable ⇐⇒ 𝐺 has vertex cover of size ≤ 2𝑛.

38

(ii) 3SAT ≤𝒑 VertexCover – Example

𝜑 = (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥3 ∨ 𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥4) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)

𝑥1

𝑥2 ¬𝑥3

¬𝑥1

𝑥3 𝑥4

¬𝑥1

¬𝑥2 ¬𝑥4

𝑥2

𝑥3 𝑥4

𝐶1 𝐶2

𝐶3 𝐶4

Set 𝑆 (a VC of size 2𝑛)

▶ Idea: Vertices not in vertex cover 𝑆

define a variable assignment.

▶ Cannot be contradictory, otherwise

“negation”-edge not covered.

▶ Must take ≥ 2 vertices per clause into 𝑆

(otherwise triangle not covered)

⇝ |𝑆| ≥ 2𝑛 for every vertex cover.

▶ In the example:

▶ Fat vertices form a vertex cover for 𝐺

▶ corresponding assignment:

𝑉 = {𝑥1 ↦→ 0, 𝑥2 ↦→ 0, 𝑥3 ↦→ 0, 𝑥4 ↦→ 1}
(0 =̂ false, 1 =̂ true)

⇝ 𝜑 satisfiable

39

(ii) 3SAT ≤𝒑 VertexCover – Correctness Proof

Claim: 𝜑 satisfiable ⇐⇒ 𝐺 has VC 𝑆 of size |𝑆| ≤ 2𝑛.

⇒ Let 𝜑 erfüllbar; ⇝ every 𝐶𝑖 has a satisfied literal 𝑙𝑖 , 𝑗 .

Add the other two vertices of the clause to 𝑆.

⇝ |𝑆| = 2𝑛 and 𝑆 covers all clause triangle edges.

Remaining edges have the form {𝑥,¬𝑥}.

If such an edge remained uncovered by 𝑆, we would have that both 𝑥 and ¬𝑥 are

satisfied literals
⇝ 𝐺 has VC of size 2𝑛.

⇐ Given a VC 𝑆 of 𝐺 with |𝑆| ≤ 2𝑛.

𝑆 must contain 2 vertices per clause triangle ⇝ |𝑆| = 2𝑛 and 𝑆 is a minimal VC.

Define assignment 𝑉 so that all literals not in 𝑆 are satisfied.

(Variables which are not assigned a value via this procedure can be assigned an arbitrary value.)

𝑉 is well defined, since {𝑥,¬𝑥}-edges must be covered.

Moreover, 𝑉 makes 𝜑 true:
from every clause, at least one literal is satisfied since |𝑆| = 2𝑛.

⇝ 𝜑 satisfiable. ■

𝑥1

𝑥2 ¬𝑥3

¬𝑥1

𝑥3 𝑥4

¬𝑥1

¬𝑥2 ¬𝑥4

𝑥2

𝑥3 𝑥4

𝐶1 𝐶2

𝐶3 𝐶4

40

(ii) 3SAT ≤𝒑 VertexCover – Running Time

▶ Construction of 𝐺 upon input 𝜑 can easily be done in polytime

▶ |𝑉| = 𝑂(𝑛), |𝐸| = 𝑂(𝑛2)
▶ Construction of 𝐸 in time 𝑂(𝑛2) easy to do, e. g., on RAM ⇝ ∃ polytime TM.

⇝ 3SAT ≤𝑝 VertexCover. ■

41

2.8 Important NP-Complete Problems

Further NP-complete problems [1]

Apart from SAT, 3SAT, and VertexCover, here are some of the most useful NP-complete

problems.

Definition 2.29 (Dominating Set)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀𝑣 ∈ 𝑉 :

(
𝑣 ∈ 𝑉 ′ ∨ ∃𝑢 ∈ 𝑁(𝑣) : 𝑢 ∈ 𝑉 ′) ◀

Definition 2.30 (Hamiltonian Cycle)

Given: graph 𝐺 = (𝑉, 𝐸) (directed and undirected version)

Question: Is there a vertex-simple cycle in 𝐺 of length |𝑉|? ◀

Definition 2.31 (Clique)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢, 𝑣 ∈ 𝑉 ′
: {𝑢, 𝑣} ∈ 𝐸 ◀

Definition 2.32 (Independent Set)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢, 𝑣 ∈ 𝑉 ′
: {𝑢, 𝑣} ∉ 𝐸 ◀

42

Further NP-complete problems [2]

Definition 2.33 (Traveling Salesperson (TSP))

Given: distance matrix 𝐷 ∈ ℕ𝑛×𝑛
and 𝑘 ∈ ℕ

Question: Is there a permutation 𝜋 : [𝑛] → [𝑛] with

𝑛−1∑
𝑖=1

𝐷𝜋(𝑖),𝜋(𝑖+1) + 𝐷𝜋(𝑛),𝜋(1) ≤ 𝑘 ? ◀

Definition 2.34 (Graph Coloring)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑐 : 𝑉 → [𝑘] : ∀{𝑢, 𝑣} ∈ 𝐸 : 𝑐(𝑢) ≠ 𝑐(𝑣) ? ◀

Definition 2.35 (Set Cover)

Given: 𝑛 ∈ ℕ, sets 𝑆1 , . . . , 𝑆𝑚 ⊆ [𝑛] and 𝑘 ∈ ℕ

Question: ∃𝐼 ⊆ [𝑚] :

⋃
𝑖∈𝐼 𝑆𝑖 = [𝑛] ∧ |𝐼| ≤ 𝑘 ? ◀

Definition 2.36 (Weighted Set Cover)

Given: 𝑛 ∈ ℕ, sets 𝑆1 , . . . , 𝑆𝑚 ⊆ [𝑛], costs 𝑐1 , . . . , 𝑐𝑚 ∈ ℕ0 and 𝑘 ∈ ℕ

Question: ∃𝐼 ⊆ [𝑚] :

⋃
𝑖∈𝐼 𝑆𝑖 = [𝑛] ∧ ∑

𝑖∈𝐼 𝑐𝑖 ≤ 𝑘 ? ◀

43

Further hard problems [3]

Definition 2.37 (Closest String)

Given: 𝑠1 , . . . , 𝑠𝑛 ∈ Σ𝑚
and 𝑘 ∈ ℕ

Question: ∃𝑠 ∈ Σ𝑚
: ∀𝑖 ∈ [𝑛] : 𝑑𝐻(𝑠, 𝑠𝑖) ≤ 𝑘 ? (𝑑𝐻 Hamming-distance) ◀

Definition 2.38 (Max Cut)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝐶 ⊂ 𝑉 :

��𝐸 ∩ {{𝑢, 𝑣} | 𝑢 ∈ 𝐶, 𝑣 ∉ 𝐶}
�� ≥ 𝑘 ? ◀

Definition 2.39 (Exact Cover)

Given: 𝑛 ∈ ℕ, sets 𝑆1 , . . . , 𝑆𝑚 ⊆ [𝑛]
Question: ∃𝐼 ⊆ [𝑚] :

⋃
𝑖∈𝐼 𝑆𝑖 = [𝑛] ∧ ∑

𝑖∈𝐼 |𝑆𝑖| = 𝑛 ? ◀

44

Further hard problems [4]

Definition 2.40 (Subset Sum)

Given: 𝑥1 , . . . , 𝑥𝑛 ∈ ℤ

Question: ∃𝐼 ⊆ [𝑛] : 𝐼 ≠ ∅ ∧∑
𝑖∈𝐼 𝑥𝑖 = 0 ? ◀

Definition 2.41 ((0/1) Knapsack)

Given: 𝑤1 , . . . , 𝑤𝑛 ∈ ℕ, 𝑣1 , . . . , 𝑣𝑛 ∈ ℕ and 𝑏, 𝑘 ∈ ℕ

Question: ∃𝐼 ⊆ [𝑛] :

∑
𝑖∈𝐼 𝑤𝑖 ≤ 𝑏 ∧ ∑

𝑖∈𝐼 𝑣𝑖 ≥ 𝑘 ? ◀

Definition 2.42 (Bin Packing)

Given: 𝑤1 , . . . , 𝑤𝑛 ∈ ℕ, 𝑏 ∈ ℕ, 𝑘 ∈ ℕ

Question: ∃𝑎 : [𝑛] → [𝑘] : ∀𝑗 ∈ [𝑘] :

∑
𝑖=1,...,𝑛
𝑎[𝑖]=𝑗

𝑤𝑖 ≤ 𝑏 ? ◀

Definition 2.43 (0/1 Integer Programming)

Given: integer linear program (ILP) 𝐴 ∈ ℤ𝑚×𝑛
, 𝑏 ∈ ℤ𝑚

and 𝑐 ∈ ℤ𝑛
and 𝑘 ∈ ℤ

Question: Is there 𝑥 ∈ {0, 1}𝑛 with 𝐴𝑥 ≤ 𝑏 and 𝑐𝑇𝑥 ≥ 𝑘 ? ◀

45

2.9 Optimization Problems

Optimization Problems

Definition 2.44 (Optimization Problem)

An optimization problem is given by 7-tuple 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) with

1. Σ𝐼 an alphabet (called input alphabet),

2. Σ𝑂 an alphabet (called output alphabet),

3. 𝐿 ⊆ Σ★
𝐼

the language of allowable problem instances (for which 𝑈 is well-defined),

4. 𝐿𝐼 ⊆ 𝐿 the language of actual problem instances for 𝑈

(for those we want to determine 𝑈’s complexity),

5. 𝑀 : 𝐿 → 2
Σ★
𝑂 and with 𝑥 ∈ 𝐿, 𝑀(𝑥) is the set of all feasible solutions for 𝑥.

6. cost is a cost function, which assigns for 𝑥 ∈ 𝐿 each pair (𝑢, 𝑥) with 𝑢 ∈ 𝑀(𝑥) a positive

real number,

7. goal ∈ {min,max}. ◀

46

Optimal Solutions

Definition 2.45 (Optimal Solutions, Solution Algorithms)

Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) an optimization problem. For each 𝑥 ∈ 𝐿𝐼 a feasible

solution 𝑦 ∈ 𝑀(𝑥) is called optimal for 𝑥 and 𝑈 , if

cost(𝑦, 𝑥) = goal{cost(𝑧, 𝑥) | 𝑧 ∈ 𝑀(𝑥)}. ◀

An algorithm 𝐴 is consistent with 𝑈 if 𝐴(𝑥) ∈ 𝑀(𝑥) for all 𝑥 ∈ 𝐿𝐼 .

We say algorithm 𝐵 solves 𝑈 , if

1. 𝐵 is consistent with 𝑈 and

2. for all 𝑥 ∈ 𝐿𝐼 , 𝐵(𝑥) is optimal for 𝑥 and 𝑈 . ◀

47

Optimization Problems – Examples

Natural examples: Problems above with an input parameter 𝑘.

Less immediate example:

Definition 2.46 (Max-SAT)

Given: CNF-Formula 𝜙 = 𝐶1 ∧ · · · ∧ 𝐶𝑚 over variables 𝑥1 , . . . , 𝑥𝑛
Allowable (=Actual) Instances: encodings of 𝜙
𝑀(𝜙) = {0, 1}𝑛 (variable assignments)

cost(𝑢, 𝑥): # of satisfied clauses in 𝑢 under given assignment 𝑥

goal = max ◀

48

Classes of Optimization Problems

Definition 2.47 (NPO)

NPO is the class if optimization problems 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) with

1. 𝐿𝐼 ∈ P,

2. there is a polynomial 𝑝𝑈 with

a) ∀𝑥 ∈ 𝐿𝐼 ∀𝑦 ∈ 𝑀(𝑥) : |𝑦| ≤ 𝑝𝑈 (|𝑥|) and

b) there is a polynomial time algorithm which for all 𝑦 ∈ Σ★
𝑂

, 𝑥 ∈ 𝐿𝐼 with |𝑦| ≤ 𝑝𝑈 (|𝑥|) decides

whether 𝑦 ∈ 𝑀(𝑥) holds, and

3. function cost can be computed in polynomial time. ◀

Definition 2.48 (PO)

PO is the class of optimization problems 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) with

1. 𝑈 ∈ NPO, and

2. there is an algorithm of polynomial time complexity which for all 𝑥 ∈ 𝐿𝐼 computes an

optimal solution for 𝑥 and 𝑈 . ◀

49

From Optimization to Decision

Definition 2.49 (Threshold Languages)

Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) an optimization problem, 𝑈 ∈ NPO.

For Opt𝑈 (𝑥) the cost of an optimal solutions for 𝑥 and 𝑈 we define the threshold language for 𝑈
as

Lang𝑈 =


{
(𝑥, 𝑘) ∈ 𝐿𝐼 × {0, 1}★

�� Opt𝑈 (𝑥) ≤ 𝑘2

}
, if goal = min,{

(𝑥, 𝑘) ∈ 𝐿𝐼 × {0, 1}★
�� Opt𝑈 (𝑥) ≥ 𝑘2

}
, if goal = max.

We say 𝑈 is NP-hard, if Lang𝑈 is NP-hard. ◀

Corollary 2.50 (Optimization is harder than Threshold)

Let 𝑈 an optimization problem.

If Lang𝑈 is NP-hard and if P ≠ NP holds, we have 𝑈 ∉ PO. ◀

50

Max-SAT is hard

Corollary 2.51 (Max-SAT is hard)

Max-SAT is NP-hard. ◀

51

Summary

▶ We have formalized the classic notion of intractable problems.

▶ What is running time, what is “polytime”?

▶ Decision problems ↔ (formal) languages

▶ P, NP via Turing machines ↔ certificates and verifiers

▶ For the typical case of optimization problems,

there are different versions of the problem,

but (in)tractability typically carries over.

⇝ We can mathematically prove a problem is intractable (NP-hard).

. . . but how can we tackle hard problems anyway?

52

	Complexity Theory Recap
	P and NP Informally
	Hard problems
	United in incapacity
	Complexity Theory
	P and NP – Intuitive Synopsis

	Models of Computation
	Mathematical Models of Computation
	Random Access Machines
	RAM-Program Example

	Turing Machines
	Keep it Simple, Stupid
	Turing Machines
	Turingmaschinen in Circulation
	Turing Machines – Informal Recap
	Turing Machines – Formal Syntax
	Turing Machine – Computation Step
	Turing Machines – Configurations
	Turing Machines – Configuration Example
	Turing Machines – Computed Function
	Turing Machines – Accepted Language
	Turing Machines – Several tapes
	Turing Machines – Totality
	Models of Computation – Summary

	The Classes P und NP
	Worst Case Complexity
	Decision Problems = Languages
	Optimal Algorithms
	Running Time
	Nondeterministic Running Time

	Nondeterminism = Verification
	Nondeterminism?
	Polynomially verifiable
	Nondeterminism certificate

	Karp-Reductions und NP-Completeness
	Recap
	Karp Reductions
	Implication of Reductions
	NP Completeness
	Implications of NP-Completeness
	The Mother of All Problems

	Example of an NP-completeness proof
	3SAT
	Vertex Cover
	(ii) 3SAT p VertexCover
	(ii) 3SAT p VertexCover – Example
	(ii) 3SAT p VertexCover – Correctness Proof
	(ii) 3SAT p VertexCover – Running Time

	Important NP-Complete Problems
	Further NP-complete problems [1]
	Further NP-complete problems [2]
	Further hard problems [3]
	Further hard problems [4]

	Optimization Problems
	Optimization Problems
	Optimal Solutions
	Optimization Problems – Examples
	Classes of Optimization Problems
	From Optimization to Decision
	Max-SAT is hard
	Summary

