

22 April 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-04-22 23:10 H

Outline

2 Complexity Theory Recap

- 2.1 P and NP Informally
- 2.2 Models of Computation
- 2.3 Turing Machines
- 2.4 The Classes P und NP
- 2.5 Nondeterminism = Verification
- 2.6 Karp-Reductions und NP-Completeness
- 2.7 Example of an NP-completeness proof
- 2.8 Important NP-Complete Problems
- 2.9 Optimization Problems

2.1 P and NP Informally

Hard problems

Some algorithmic problems are **"hard nuts" to crack**.

▶ e.g., the *Traveling Salesperson Problem (TSP)*: Given: *n* cities $S_1, ..., S_n$, all n(n-1) pairwise distances $d(S_i, S_j) \in \mathbb{N}$ $(i \neq j)$

Goal: Shortest round trip through all cities always exact, always correct polytime

 no general, efficient algorithm known! (despite decades of intensive research ...)

→ It *seems* as if there is no efficient algorithm for TSP!

But: can we *prove* that?

Despite similarly intensive research: No! (not yet)

Doesn't sound like a shining example for theoretical computer science? ... stay tuned!

United in incapacity

"I can't find an efficient algorithm, but neither can all these famous people." Garey, Johnson 1979

Complexity Theory

• *Complexity theory* allows us to *compare* the *hardness* of algorithmic problems.

A: old problem **Consensus: hard**

B: new problem **Status: unknown** (seems hard to *us* ...)

Intuitive idea:

- **1.** If *A* is a known hard nut, and
- **2.** $\begin{bmatrix} B \text{ is at least as hard as } A, \end{bmatrix}$

then *B* is a hard nut, too!

Formally:

efficient = polytime

- **1.** A is NP-hard: probably \nexists eff. alg. for A
- **2.** $A \leq_p B$: \exists eff. alg. for $B \implies \exists$ eff. alg. for A
- \rightarrow *B* is NP-hart: probably \nexists eff. alg. for *B*!

P and NP – Intuitive Synopsis

- P = class of problems for which there is an algorithm A and a polynomial p such that A **solves** every instance I in time O(p(|I|)).
 - P for "polynomial" i. e., all problems where a solution can be *found* by a (deterministic) algorithm in polynomial time.
- $\begin{bmatrix} \mathsf{NP} = \text{class of problems for which there is an algorithmus } A \text{ and a polynomial } p \\ \text{such that } A \text{ can verify a given candidate solution } l(I) \text{ of a given instance } I \\ \text{ in time } O(p(|I|)), \text{ i. e., check whether } l(I) \text{ solves } I \text{ or not.} \end{bmatrix}$
 - NP for "nondeterministically polynomial" i. e., all problems where a solution can be *found* by a *nondeterministic* algorithm in polynomial time.
 - This is equivalent to the above characterization via verification.

We know $P \subseteq NP$. We *think* $P \subsetneq NP$, i. e., $P \neq NP$. The question "P = NP?" is one of the famous **millenium problems** and arguably the **most important open problem of theoretical computer science**.

2.2 Models of Computation

Mathematical Models of Computation

- complexity classes talk about sets of problems based upon whether they allow an algorithm of a certain cost
- ▶ in general, this depends on the allowable algorithms and their costs!
- \rightsquigarrow need to fix a machine model

A machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*

Goal: Machine models should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM)

- unlimited memory MEM[0], MEM[1], MEM[2], ...
- fixed number of registers R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[*i*] and registers R_i store *w*-bit integers, i. e., numbers in $[0..2^w 1]$ *w* is the word width/size; typically $w \propto \lg n$ $\rightarrow 2^w \approx n$

Instructions:

- load & store: $R_i := MEM[R_j] MEM[R_j] := R_i$
- ► operations on registers: $R_k := R_i + R_j$ (arithmetic is *modulo* 2^w !) also $R_i - R_j$, $R_i \cdot R_j$, R_i div R_j , R_i mod R_j

C-style operations (bitwise and/or/xor, left/right shift)

- conditional and unconditional jumps
- time cost: number of executed instructions
- space cost: total number of touched memory cells

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

RAM-Program Example

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N numbers
- з R₂ := R₁;
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 R₅ := R₃ + 1;
- 7 $R_6 := MEM[R_5];$
- s **if** $(R_4 \le R_6)$ goto line 11;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 5;
- 13 $R_2 := R_2 1;$
- ¹⁴ **if** $(R_2 > 0)$ goto line 4;
- 15 // Done:

RAM-Program Example

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N number
- $_{3} R_{2} := R_{1};$
- $_{4} R_{3} := R_{1} 2;$
- 5 $R_4 := MEM[R_3];$
- $6 R_5 := R_3 + 1;$
- $_{7} R_{6} := MEM[R_{5}];$
- s if $(R_4 \leq R_6)$ goto line 11;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 5;
- 13 $R_2 := R_2 1;$
- ¹⁴ **if** $(R_2 > 0)$ goto line 4;
- 15 // Done: MEM[0..N) sorted

```
5.2.2
```

SORTING BY EXCHANGING 107

they need not be examined on subsequent passes. Horizontal lines in Fig. 14 show the progress of the sorting from this standapoint; notice, for example, that five more elements are known to be in final position as a result of Pass 4. On the final pass, no exchanges are performed at all. With these observations we are ready to formulate the algorithm.

Algorithm B (Bubble sort). Records R_1, \ldots, R_N are rearranged in place; after sorting is complete their keys will be in order, $K_1 \leq \cdots \leq K_N$.

- B1. [Initialize BOUND.] Set BOUND ← N. (BOUND is the highest index for which the record is not known to be in its final position; thus we are indicating that nothing is known at this point.)
- **B2.** [Loop on j.] Set $t \leftarrow 0$. Perform step B3 for $j = 1, 2, \ldots$, BOUND 1, and then go to step B4. (If BOUND = 1, this means go directly to B4.)
- **B3.** [Compare/exchange $R_j: R_{j+1}$.] If $K_j > K_{j+1}$, interchange $R_j \leftrightarrow R_{j+1}$ and set $t \leftarrow j$.
- **B4.** [Any exchanges?] If t = 0, terminate the algorithm. Otherwise set BOUND $\leftarrow t$ and return to step B2.

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we assume that the items to be sorted are in locations INPUT+1 through INPUT+N. rll = t; rl2 = j.

01	START	ENT1	N	1	B1. Initialize BOUND. $t \leftarrow N$.
02	1H	ST1	BOUND(1:2)	A	BOUND $\leftarrow t$.
03		ENT2	1	A	<u>B2. Loop on j.</u> $j \leftarrow 1$.
04		ENT1	0	A	$t \leftarrow 0.$
05		JMP	BOUND	A	Exit if $j \ge BOUND$.
06	ЗH	LDA	INPUT,2	C	B3. Compare/exchange $R_i : R_{i+1}$.
07		CMPA	INPUT+1,2	C	
08		JLE	2F	C	No exchange if $K_j \leq K_{j+1}$.
09		LDX	INPUT+1,2	B	R_{j+1}
10		STX	INPUT,2	B	$\rightarrow R_j$.
11		STA	INPUT+1,2	B	$(old R_i) \rightarrow R_{i+1}.$
12		ENT1	0,2	B	$t \leftarrow j$.
13	2H	INC2	1	C	$j \leftarrow j + 1$.
14	BOUND	ENTX	-*,2	A + C	$rX \leftarrow j - BOUND.$ [Instruction modified
15		JXN	3B	A + C	Do step B3 for $1 \le j < BOUND$.
16	4H	J1P	1B	A	B4. Any exchanges? To B2 if $t > 0$.

2.3 Turing Machines

Keep it Simple, Stupid

- word-RAM (rather) realistic, but complicated
 - note that the machine has to grow with the inputs(!)

▶ for a coarse distinction of running time complexity, simpler models suffice

- useful to reason about "all algorithms"
- machine is fixed for all inputs sizes apart from storage for input

Many models of computation . . .

- μ-recursive function
- Turing machines (TM)
- counter machines
- \blacktriangleright λ -calculus

. . .

- While-programs
- any Turing-complete language
- quantum computers

... with strong equivalences:

1. all proven to lead to the *same* set of computable functions

2. Church-Turing thesis:

any formalization of "effectively computable" is equivalent in this sense

- 3. Extended Church-Turing Thesis:
 - ... and can be simulated with polynomial overhead on a TM
 - true for all on left . . .
 - except theoretical quantum computers!
 - ignore them for now wake me when they exist

Turing Machines

 invented by *Alan Turing* in 1936 as formalization for "computable by hand"

In same paper, Turing proved undecidability of halting problem!

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. TURING.

[Received 28 May, 1936.-Read 12 November, 1936.]

minimalistic model of universal computer, but can be built:

Turingmaschinen in Circulation

Turing Machines – Informal Recap

. .

A Turing machine has

► a finite control via states

an input/output-tape

- unbounded length
- initially contains input
- ▶ all other cells contain "□"

a read/write head

- reads the current symbol
- overwrites it with a new symbol
- initially placed on beginning of input

finite control

Turing Machines – Formal Syntax

Definition 2.1 (Turing Machine (TM))

A *Turing machine* is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, q_{halt})$ with

- ▶ a finite set of *states Q*,
- an input alphabet Σ ,
- a tape alphabet $\Gamma \supset \Sigma$,
- ► for deterministic TMs a *transition function* $\delta : (Q \setminus \{q_{halt}\}) \times \Gamma \to Q \times \Gamma \times \{L, R, N\}$ for **non**deterministic TMs a *transition relation* $\delta : (Q \setminus \{q_{halt}\}) \times \Gamma \to 2^{Q \times \Gamma \times \{L, R, N\}}$
- an *initial state* $q_0 \in Q$,
- a *blank symbol* $\Box \in \Gamma \setminus \Sigma$, and
- a halting state $q_{halt} \in Q$

Turing Machine – Computation Step

- Each step of a computation of TM *M* has the form δ(q, a) = (q', b, d) resp. δ(q, a) ∋ (q', b, d), with the semantics that
 - *M* is in state $q \neq q_{halt}$
 - the cell below the read/write head currently contains symbol *a*
 - M now changes (based on its finite control)
 - ▶ into state q',
 - writes *b* into the cell under the read/write head
 - ▶ and finally moves the read/write head in direction $d \in \{L, R, N\}$. (L =left, R =right, N =none (stay))
- for deterministic TM *M*, *q* and *a* uniquely determine this action; for nondeterministic TM, we may have several possible actions.

▶ to formally define an entire computation, we have to encode the tape contents as well

Turing Machines – Configurations

Definition 2.2 (TM Configuration)

A *configuration* (*config*) of a TM *M* is a string $C \in \Gamma^*Q \Gamma^*$.

The semantics of a config $C = \alpha q \gamma$, $q \in Q$, is tape content $\alpha \beta$ and head at first symbol of β .

Definition 2.3 (TM Computation Relation)

The *computation relation* \vdash is defined on the set of configurations of a TM *M* as follows.

$$a_1 \dots a_m \, q \, b_1 \dots b_n \, \vdash \, \left\{ \begin{array}{ll} a_1 \dots a_m & q' \, c \, b_2 \dots b_n, \\ a_1 \dots a_m \, c \, q' \, b_2 \dots b_n, \\ a_1 \dots a_{m-1} \, q' \, a_m \, c \, b_2 \dots b_n, \end{array} \begin{array}{l} \delta(q, b_1) = (q', c, N), \, m \ge 0, \, n \ge 1, \\ \delta(q, b_1) = (q', c, R), \, m \ge 0, \, n \ge 2, \\ a_1 \dots a_{m-1} \, q' \, a_m \, c \, b_2 \dots b_n, \\ \delta(q, b_1) = (q', c, L), \, m \ge 1, \, n \ge 1. \end{array} \right.$$

For the boundary case n = 1 and direction right, we set

$$a_1 \dots a_m q b_1 \vdash a_1 \dots a_m c q' \square$$
 if $\delta(q, b_1) = (q', c, R)$,

For m = 0 and direction left, we similarly have set

$$q b_1 \dots b_n \vdash q' \Box c b_2 \dots b_n$$
 if $\delta(q, b_1) = (q', c, L)$.

Turing Machines – Configuration Example

Example: For the shown TM *M*, а b а а а b а а а the current configuration is: (91 L tape $C = ab q_1 aaabaaa$ read/write head State Tape Symbol \rightarrow New Tape Symbol Head Movement New State right \rightarrow q_0 а а 90 b right qn \rightarrow q_1 q_0 \rightarrow none qe q_1 а \rightarrow b right *q*1 right q_1 b \rightarrow b q_0 *q*1 \rightarrow none *q*₁ terminate the computation ae \rightarrow

• TM Config $C = \alpha q \beta$ completely describes current state of computation

- $\alpha\beta$ is the (non-blank) tape content
- q is the current state of the TM
- the read/write head is on the first symbol of β

Turing Machines – Computed Function

▶ With this setup, we can now formally define what a Turing machine computes.

Definition 2.4 (Function computed by a TM)

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, q_{halt})$ by a TM. The function computed by M on input $x \in \Sigma^*$, written M(x), is defined as $M(x) = \{y : q_0x \vdash^* q_{halt}y\}.$ For deterministic TMs, we will also have $|M(x)| \le 1$ and we write M(x) = y for $M(x) = \{y\}$.

Definition 2.5 (Time and Space cost)

For a TM *M* and input $x \in \Sigma^*$, we define $time_M(x) = \inf\{t : q_0x \vdash^t q_{halt}y\} \cup \{0\}.$ We define $space_M(x) = \inf\{|\alpha\beta| : q_0x \vdash^* \alpha q\beta \vdash^* q_{halt}y, |\alpha\beta| \le 2\} \cup \{0\}.$ $\# \Box \inf \alpha\beta$

• Note: *time* and *space* can be ∞ or 0 for nondeterministic TMs.

Turing Machines – Accepted Language

- Often convenient to use language acceptance instead of function computation.
- ► for deterministic TM, compute *characteristic function* of *L*:

 $\mathbb{1}_{L}(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{otherwise} \end{cases}$

care needed for nondeterministic TM

Definition 2.6 (Language of TM)

The language $\mathcal{L}(M)$ accepted by a TM *M* is defined as

 $\mathcal{L}(M) = \{ w \in \Sigma^* : 1 \in M(w) \}.$

 \rightsquigarrow nondeterministic TM accepts w iff some computation accepts w

Turing Machines – Several tapes

Remark 2.7 (k-tape TMs)

We only consider one-tap TMs here. In general, *k*-tape TMs can be faster. However, any language accepted by a *k*-tape TM in time f(n) is also be accepted by a 1-tape TM with running time $O(f^2(n))$. The models are thus *polynomially equivalent*.

-

Turing Machines – Totality

▶ In complexity theory, we will restrict ourselves to TMs that always halt.

Definition 2.8 (Terminating TM)

A TM *M* is *always terminating / total* if there is a function $T : \mathbb{N} \to \mathbb{N}$ such that $q_0x = C_0 \vdash C_1 \vdash \cdots \vdash C_t$ implies $t \leq T(|x|)$, and there is a *y* such that $q_0x \vdash^* q_{halt}y$.

▶ Note that in a terminating TM, we always have $1 \le time_M(x) \le T(|x|)$.

Lemma 2.9 (Time-constrained TM)

 \rightsquigarrow

Given a (potentially nonterminiating) TM *M* and a function $T : \mathbb{N} \to \mathbb{N}$ computable in time T(n), we can construct an *always terminating* TM *M*' that simulates *M* for T(|x|) on *x* and outputs TIMEOUT if *M* has not terminated yet. Moreover, $time_{M'}(x) = O(T^2(|x|))$ for all $x \in \Sigma^*$.

If we are only interested in the (non)existence of a polynomial-time TM, we can restriction ourselves to total TMs that will never TIMEOUT.

Models of Computation – Summary

- Concrete model such as TMs useful for some proofs
- Often, details do not matter as long as models are polynomially equivalent
 - ▶ Note: TM always means we are in the logarithmic cost model for arithmetic operations
- In the following, discuss more abstract notion of "algorithm" (fine to substitute by TM in each case)

2.4 The Classes P und NP

Worst Case Complexity

Definition 2.10 (Time and Space Complexity – Generic)

Let Σ_I and Σ_O two alphabets and A an algorithm implementing a **total** mapping $\Sigma_I^* \to \Sigma_O^*$. Then for each $x \in \Sigma_I^*$ we denote by $time_A(x)$ (resp. $space_A(x)$) the logarithmic time complexity (resp. logarithmic space complexity) for A on x.

Where needed, we can unpack this in full detail for Turing machines!

Definition 2.11 (Worst-Case Complexity)

Let Σ_I and Σ_O be two alphabets and A an algorithm implementing a **total** mapping $\Sigma_I^* \to \Sigma_O^*$. The *worst case time complexity of* A is the function $Time_A : \mathbb{N} \to \mathbb{N}$ with

 $Time_A(n) = \max\{time_A(x) : x \in \Sigma_I^n\},\$

for each $n \in \mathbb{N}$. The *worst case space complexity of* A is given by function $Space_A : \mathbb{N} \to \mathbb{N}$ with

$$Space_A(n) = \max\{space_A(x) : x \in \Sigma_I^n\}.$$

Decision Problems = Languages

Definition 2.12 (Decision Problem and Algorithms)

A *decision problem* is given by $P = (L, U, \Sigma)$ for Σ an alphabet and $L \subseteq U \subseteq \Sigma^*$. An algorithm *A solves (decides)* decision problem *P*, if for all $x \in U$

- **1.** A(x) = 1 for $x \in L$, and
- **2.** A(x) = 0 for $x \in U \setminus L$ (i. e., $x \notin L$)

holds. Here A(x) denotes the output of A on input x. If $U = \Sigma^*$ holds we denote P briefly by (L, Σ) .

→ *A* computes a total function $A : U \to \{0, 1\}$, the *characteristic function* $\mathbb{1}_L : U \to \{0, 1\}$ of language *L*. We then write $L = \mathcal{L}(A)$, the language accepted by *A*.

We restrict our attention to *decision problems*: Given: $w \in \Sigma^*$. Goal: Is $w \in L$?

Example:

w is an encoding of an instance of the traveling salesperson problem **and** a threshold D

 $L = \{w : w \text{ encodes instance } w / \text{ opt. round trip length } \leq D\}$

Optimal Algorithms

Definition 2.13 (Upper/Lower Bounds, Optimal Algorithms) Let *U* be an algorithmic problem and *f*, *g* functions $\mathbb{N}_0 \to \mathbb{R}^+$.

- ▶ We call O(g(n)) an *upper bound for time complexity of* U if there is an algorithm A that solves U in time $Time_A(n) \in O(g(n))$.
- ► We say $\Omega(f(n))$ is a *lower bound for time complexity of* U if every algorithm A that solves U needs time $Time_A(n) \in \Omega(f(n))$.
- An algorithm *A* is called *optimal for U* if $Time_A(n) \in O(g(n))$ and $\Omega(g(n))$ is a lower bound for the time complexity of *U*.

Running Time

Definition 2.14 (time classes)

For function $f : \mathbb{N} \to \mathbb{N}$, the class TIME(f(n)) is the set of all languages A, for which there is a *deterministic* Turing machine M with $\mathcal{L}(M) = A$ and $time_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$.

Definition 2.15 (P, tractable)

We define the class of languages P decidable in polynomial time by

$$\mathsf{P} := \bigcup_{\substack{p \text{ polynomial}}} TIME(p(n)).$$

A language (a decision problem) $L \in P$ is called *tractable / efficiently decidable*.

Nondeterministic Running Time

Recall:

- A nondeterministic Turing machine / algorithm *M* accepts $L (\mathcal{L}(M) = L)$ if for all $x \in L$ there is at least one computation of *M* which accepts *x* and for all $y \notin L$ every computation of *M* rejects *y*.
- We only consider always-terminating Turing machines.
- The running time $time_M(x)$ of M on x is given by the longest computation of M on x.

Definition 2.16 (NTIME, NP)

For function $f : \mathbb{N} \to \mathbb{N}$, the class NTIME(f(n)) is the set of all languages A, for which there is a *nondeterministic* Turing machine M with $\mathcal{L}(M) = A$ and $time_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$. The class of languages NP is defined by

$$NP := \bigcup_{p \text{ polynomial}} NTIME(p(n)).$$

◀

2.5 Nondeterminism = Verification

Nondeterminism?

- ► The original definition of NP via nondeterministic Turing machines is not very intuitive.
- There is an equivalent characterization that is usually more convenient to use: Certificates and verifiers.

Polynomially verifiable

Definition 2.17 (Certificates, Verifier, VP)

Let $L \subseteq \Sigma^*$ be a language.

• An algorithm *A* acting on inputs from $\Sigma^* \times \{0, 1\}^*$ is called *verifier for L* (notation $L = \mathcal{V}(A)$), if

 $L = \{ w \in \Sigma^{\star} : \exists c \in \{0,1\}^{\star} A(w,c) = 1 \}.$

If *A* accepts input (w, c) we say *c* is *proof* or *certificate* for $w \in L$.

- ▶ A verifier *A* for *L* is a *polynomial-time verifier* if there is a *d* ∈ \mathbb{N} such that for all $w \in L$, there is a proof *c* (for $w \in L$) with $time_A(w, c) \in O(|w|^d)$.
- ▶ We define the class of polynomially verifiable languages VP by

 $VP = \{\mathcal{V}(A) : A \text{ is polynomial time verifier}\}.$

-

Nondeterminism ↔ certificate

Theorem 2.18 NP = VP.

-

2.6 Karp-Reductions und NP-Completeness

Recap

Example:

w is an encoding of an instance of the traveling salesperson problem **and** a threshold *D*

 $L = \{w : w \text{ encodes instance } w / \text{ opt. round trip length } \leq D\}$

- \rightsquigarrow problems = (formal) languages $L \subseteq \Sigma^*$
 - problem instance = word $w \in \Sigma^*$
 - $w \in \Sigma^*$ is a Yes instance if $w \in L$, otherwise a No instance
- For problems on structures, e. g., graphs, we need an *encoding* of the instance as a string. (often simple; standard data structures do the trick)
- \rightsquigarrow input size *n* of instance = length of the *encoding* of instance
- \rightsquigarrow all running times are worst case over instances of encoding length *n*

Karp Reductions

A: old problem Consensus: hard

B: new problem **Status: unknown** (seems hard to *us* ...)

► **Goal:** Show that *B* is at least as hard as *A*.

short for: deterministic TM $M \le M = O(n^k)$ for constant k.

Solve A using M (in polytime).
polytime algo for B implies polytime algo for A
B at least as hard as A

Formally: (strong notion than intuition above!)

Definition 2.19 (polytime reduction, \leq_p **)**

Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$ be languages (decision problems). *A* is *polytime reducible to B* – written $A \leq_p B$ – if there is a total function $g : \Sigma^* \to \Gamma^*$, computable in polynomial time, with

$$\forall w \in \Sigma^{\star} : w \in A \Leftrightarrow g(w) \in B.$$

- This type of reduction is called a Karp-reduction
- It is more restrictive than our intuitive version would need, but allows finer complexity classification (NP and co-NP)

Implication of Reductions

Lemma 2.20 (Membership reduction)

If $A \leq_p B$ and $B \in P$ (resp. $B \in NP$), then $A \in P$ (resp. $A \in NP$).

Proof:

Since $B \in P$, there is polytime TM M with $\mathcal{L}(M) = B$. Since $A \leq_p B$, there further is polytime TM g mit $\forall w : w \in A \Leftrightarrow g(w) \in B$ (*). We construct TM M' for A:

first simulate *g* on input *w*, then simulate *M* on g(w).

```
Since M and g are polytime TMs, so is M', and \mathcal{L}(M') = A (since (*)). \rightarrow A \in \mathsf{P}.
```

(The version with $B \in NP$ is similar, just using nondeterministic polytime).

NP Completeness

Definition 2.21 (NP-hard, NP-complete)

A language *A* is called NP-*hard*, if we have for **all** languages $L \in NP$ that $L \leq_p A$. A language *A* is called NP-*complete*, if *A* is NP-hard and $A \in NP$.

Theorem 2.22 (One for all and all for one)

For an NP-complete language A holds: $A \in P \iff P = NP$.

→ Under the *consensus hypothesis* that $P \subseteq NP$, this means that for an NP-complete problem *A*, we should expect **no efficient solution** for *A*.

Proof:

- ⇒ Let $L \in NP$ be arbitrary. Since A is (by assumption) NP-hard, we have $L \leq_p A$. Since $A \in P$, by membership reduction (Lemma ??) also $L \in P$. Since L was an *arbitrary* language from NP, P = NP follows.
- $\leftarrow \text{ Let conversely } P = NP.$ Then, by assumption, $A \in NP = P$.

Implications of NP-Completeness

NP-completeness tells us a lot about a problem!

But shall we possible prove $L \leq_p A$ for all possible $L \in NP$?

• One can show: \leq_p is a *transitive* relation on languages. (proof is similar to membership-reduction lemma)

The Mother of All Problems

▶ It remains to identify a first NP-complete problem! Are there any at all?

Theorem 2.23 (Cook-Levin) SAT is NP-complete.

SAT is the *satisfiability problem* of propositional logic:
 Given: Boolean (propositional logic) formula φ over variables x₁,..., x_n.
 Goal: Is there a variable assignment V : {x₁,..., x_n} → {true, false}, so that φ evaluates under V to true?

Proof (Theorem ??):

Idea: Given any nondeterministic TM *M* for an arbitrary language $L \in NP$, construct from a word *w* a formula $\varphi(w)$, which exactly encodes all valid computations of *M*. Variables $x_{q,t}$: Is *M* be in state *q* at time *t*?

 $y_{c,i,t}$: Does tape cell *i* contain char *c* at time *t*?

 $z_{i,t}$ Does read/write head stand at position *i* at time *t*?

 $\rightsquigarrow \phi(w)$ satisfiable iff *M* accepts *w*.

(for details, see, e.g., §2.3 of S. Arora and B. Barak: Computational Complexity: A Modern Approach)

2.7 Example of an NP-completeness proof

3SAT

- Let's do a more typical full example.
- Need one more NP-complete problem first

Definition 2.24 (3SAT)

Given: A Boolean formula φ in 3-CNF:

conjunctive normal form with at most 3 literals per clause

Goal: Is there an assignment *V* of the variables in φ , so that φ evaluates to *true*? (a.k.a. Is φ *satisfiable*?)

Example:

 $(x_1 \lor \neg x_3 \lor x_2) \land (\neg x_3 \lor x_4 \lor \neg x_5) \land (x_5 \lor \neg x_5 \lor \neg x_1) \land (x_1 \lor x_3 \lor x_5)$ satisfiable, e. g., via $x_1 \mapsto true, x_5 \mapsto false$ (other variables arbitrary)

Theorem 2.25 (3SAT) SAT \leq_p 3SAT and 3SAT \in NP.

Corollary 2.26 (3SAT)

3SAT is NP-complete.

Vertex Cover

Definition 2.27 (VERTEXCOVER)

Given: A (simple, undirected) graph $G = (V, E), E \subseteq {V \choose 2}$, threshold *k*.

Goal: $\exists S \subseteq V$ with $|S| \leq k$, such that $\forall e \in E : S \cap e \neq \emptyset$?

Intuitively: a small subset *S* of vertices of a graph, such that every edge is *covered* by *S*

Theorem 2.28 (VERTEXCOVER hard)

VERTEXCOVER is NP-complete.

Proof:

We will prove (i) VERTEXCOVER \in VP and (ii) 3SAT \leq_p VERTEXCOVER.

- \rightarrow Theorem **??** (since 3SAT is NP-complete and VP = NP).
- (i) certificate = *S*; verifier whether all edges $e \in E$ are covered and whether $|S| \leq k$
- \rightsquigarrow clearly doable in polytime \rightsquigarrow VERTEXCOVER \in VP.

(ii) 3SAT \leq_p VertexCover

Proof:

- ▶ Intuition: Express 3SAT instance as a VERTEXCOVER instance.
- So, let φ be an arbitrary formula in 3-CNF over variables x_1, \ldots, x_m

$$\stackrel{\text{$\sim $\rightarrow $}}{\longrightarrow} \varphi \text{ has the form } \underbrace{(l_{1,1} \lor l_{1,2} \lor l_{1,3})}_{C_1} \land \underbrace{(l_{2,1} \lor l_{2,2} \lor l_{2,3})}_{C_2} \land \cdots \land \underbrace{(l_{n,1} \lor l_{n,2} \lor l_{n,3})}_{C_n},$$
with $l_{i,j} \in \{x_1, \neg x_1, \dots, x_m, \neg x_m\}$ for $i = 1, \dots, n$ and $j = 1, 2, 3$.

• Define a graph G = (V, E) via

$$V = \{L_{i,j} : i = 1, \dots, n; j = 1, 2, 3\}$$

$$E = \{\{L_{i,j}, L_{p,q}\} : l_{i,j} \equiv \neg l_{p,q}\} \cup \{\{L_{i,1}, L_{i,2}\}, \{L_{i,2}, L_{i,3}\}, \{L_{i,3}, L_{i,1}\} : i = 1, \dots, n\}$$

We "draw" a vertex for every literal of a clause. We connect them if (a) they are literals in the same clause or (b) they are negations of each other

 \rightsquigarrow Claim: *φ* satisfiable \iff *G* has vertex cover of size ≤ 2*n*.

(ii) 3SAT \leq_p VERTEXCOVER – Example

 $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4)$

Idea: Vertices *not in* vertex cover S define a variable assignment.

- Cannot be contradictory, otherwise "negation"-edge not covered.
- Must take ≥ 2 vertices per clause into S (otherwise triangle not covered)
- \rightsquigarrow $|S| \ge 2n$ for every vertex cover.
- In the example:
 - ► Fat vertices form a vertex cover for *G*
 - corresponding assignment: $V = \{x_1 \mapsto 0, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$ $(0 \cong false, 1 \cong true)$
 - $\rightsquigarrow \varphi$ satisfiable

(ii) 3SAT \leq_{p} VERTEXCOVER – Correctness Proof **Claim:** φ satisfiable \iff *G* has VC *S* of size $|S| \leq 2n$. \Rightarrow Let φ erfüllbar; \rightsquigarrow every C_i has a satisfied literal $l_{i,i}$. Add the *other two* vertices of the clause to *S*. \rightarrow |S| = 2n and S covers all clause triangle edges. Remaining edges have the form $\{x, \neg x\}$. If such an edge remained uncovered by S, we would have that both x and $\neg x$ are satisfied literals 4 \rightarrow G has VC of size 2n. \Leftarrow Given a VC *S* of *G* with $|S| \leq 2n$. *S* must contain 2 vertices per clause triangle $\rightarrow |S| = 2n$ and *S* is a *minimal* VC. Define assignment *V* so that all literals *not* in *S* are satisfied. (Variables which are not assigned a value via this procedure can be assigned an arbitrary value.) *V* is well defined, since $\{x, \neg x\}$ -edges must be covered. Moreover, V makes φ true: from every clause, at least one literal is satisfied since |S| = 2n. $\rightsquigarrow \phi$ satisfiable.

(ii) 3SAT \leq_p VERTEXCOVER – Running Time

• Construction of *G* upon input φ can easily be done in polytime

► $|V| = O(n), |E| = O(n^2)$

► Construction of *E* in time $O(n^2)$ easy to do, e.g., on RAM $\rightarrow \exists$ polytime TM.

 \rightsquigarrow 3SAT \leq_p VertexCover.

2.8 Important NP-Complete Problems

Further NP-complete problems [1]

Apart from SAT, 3SAT, and VERTEXCOVER, here are some of the most useful NP-complete problems.

Definition 2.29 (Dominating Set)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V$: $|V'| \le k \land \forall v \in V : (v \in V' \lor \exists u \in N(v) : u \in V')$

Definition 2.30 (Hamiltonian Cycle)

Given: graph G = (V, E) (directed and undirected version) Question: Is there a vertex-simple cycle in *G* of length |V|?

Definition 2.31 (Clique)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \in E$

Definition 2.32 (Independent Set)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V$: $|V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$ -

Further NP-complete problems [2]

Definition 2.33 (Traveling Salesperson (TSP))

Given: distance matrix $D \in \mathbb{N}^{n \times n}$ and $k \in \mathbb{N}$ Question: Is there a permutation $\pi : [n] \to [n]$ with $\sum_{i=1}^{n-1} D_{\pi(i),\pi(i+1)} + D_{\pi(n),\pi(1)} \leq k$?

Definition 2.34 (Graph Coloring)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists c : V \to [k] : \forall \{u, v\} \in E : c(u) \neq c(v)$?

Definition 2.35 (Set Cover)

Given: $n \in \mathbb{N}$, sets $S_1, \ldots, S_m \subseteq [n]$ and $k \in \mathbb{N}$ Question: $\exists I \subseteq [m]$: $\bigcup_{i \in I} S_i = [n] \land |I| \leq k$?

Definition 2.36 (Weighted Set Cover)

Given: $n \in \mathbb{N}$, sets $S_1, \ldots, S_m \subseteq [n]$, costs $c_1, \ldots, c_m \in \mathbb{N}_0$ and $k \in \mathbb{N}$ Question: $\exists I \subseteq [m]$: $\bigcup_{i \in I} S_i = [n] \land \sum_{i \in I} c_i \leq k$? -

-

Further hard problems [3]

Definition 2.37 (Closest String)

Given: $s_1, \ldots, s_n \in \Sigma^m$ and $k \in \mathbb{N}$ Question: $\exists s \in \Sigma^m$: $\forall i \in [n] : d_H(s, s_i) \le k$? (*d_H* Hamming-distance)

Definition 2.38 (Max Cut)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists C \subset V : |E \cap \{\{u, v\} \mid u \in C, v \notin C\}| \ge k$?

Definition 2.39 (Exact Cover)

Given: $n \in \mathbb{N}$, sets $S_1, \ldots, S_m \subseteq [n]$ Question: $\exists I \subseteq [m]$: $\bigcup_{i \in I} S_i = [n] \land \sum_{i \in I} |S_i| = n$? -

Further hard problems [4]

Definition 2.40 (Subset Sum)

Given: $x_1, \ldots, x_n \in \mathbb{Z}$ Question: $\exists I \subseteq [n] : I \neq \emptyset \land \sum_{i \in I} x_i = 0$?

Definition 2.41 ((0/1) Knapsack)

Given: $w_1, \ldots, w_n \in \mathbb{N}, v_1, \ldots, v_n \in \mathbb{N}$ and $b, k \in \mathbb{N}$ Question: $\exists I \subseteq [n]$: $\sum_{i \in I} w_i \leq b \land \sum_{i \in I} v_i \geq k$?

Definition 2.42 (Bin Packing)

Given:
$$w_1, \ldots, w_n \in \mathbb{N}, b \in \mathbb{N}, k \in \mathbb{N}$$

Question: $\exists a : [n] \rightarrow [k] : \forall j \in [k] : \sum_{\substack{i=1,\ldots,n\\a[i]=j}} w_i \leq b$?

Definition 2.43 (0/1 Integer Programming)

Given: integer linear program (ILP) $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$ and $c \in \mathbb{Z}^n$ and $k \in \mathbb{Z}$ Question: Is there $x \in \{0, 1\}^n$ with $Ax \le b$ and $c^T x \ge k$?

2.9 **Optimization Problems**

Optimization Problems

Definition 2.44 (Optimization Problem)

An *optimization problem* is given by 7-tuple $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- **1.** Σ_I an alphabet (called input alphabet),
- **2.** Σ_O an alphabet (called output alphabet),
- **3.** $L \subseteq \Sigma_I^*$ the language of allowable problem instances (for which *U* is well-defined),
- **4.** $L_I \subseteq L$ the language of actual problem instances for *U* (for those we want to determine *U*'s complexity),
- 5. $M: L \to 2^{\Sigma_0^{\star}}$ and with $x \in L$, M(x) is the set of all feasible solutions for x.
- **6.** *cost* is a cost function, which assigns for $x \in L$ each pair (u, x) with $u \in M(x)$ a positive real number,
- 7. $goal \in \{\min, \max\}$.

Optimal Solutions

Definition 2.45 (Optimal Solutions, Solution Algorithms)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem. For each $x \in L_I$ a feasible solution $y \in M(x)$ is called *optimal for x and U*, if

 $cost(y, x) = goal\{cost(z, x) \mid z \in M(x)\}.$

An algorithm *A* is *consistent with U* if $A(x) \in M(x)$ for all $x \in L_I$. We say *algorithm B solves U*, if

- **1.** B is consistent with U and
- **2.** for all $x \in L_I$, B(x) is optimal for x and U.

Optimization Problems – Examples

Natural examples: Problems above with an input parameter *k*.

Less immediate example:

Definition 2.46 (Max-SAT)

Given: CNF-Formula $\phi = C_1 \land \dots \land C_m$ over variables x_1, \dots, x_n Allowable (=Actual) Instances: encodings of ϕ $M(\phi) = \{0, 1\}^n$ (variable assignments) cost(u, x): # of satisfied clauses in u under given assignment x $goal = \max$

-

Classes of Optimization Problems

Definition 2.47 (NPO)

NPO is the class if optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- **1.** $L_I \in P$,
- **2.** there is a polynomial p_U with
 - *a*) $\forall x \in L_I \ \forall y \in M(x) : |y| \le p_U(|x|)$ and
 - *b*) there is a polynomial time algorithm which for all $y \in \Sigma_O^*$, $x \in L_I$ with $|y| \le p_U(|x|)$ decides whether $y \in M(x)$ holds, and
- 3. function *cost* can be computed in polynomial time.

Definition 2.48 (PO)

PO is the class of optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ with

- **1.** $U \in \mathbb{NPO}$, and
- **2.** there is an algorithm of polynomial time complexity which for all $x \in L_I$ computes an optimal solution for x and U.

From Optimization to Decision

Definition 2.49 (Threshold Languages)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ an optimization problem, $U \in \mathbb{NPO}$. For $Opt_U(x)$ the cost of an optimal solutions for x and U we define the *threshold language for* U as

$$Lang_{U} = \begin{cases} \{(x,k) \in L_{I} \times \{0,1\}^{*} \mid Opt_{U}(x) \le k_{2}\}, & \text{if goal} = \min, \\ \{(x,k) \in L_{I} \times \{0,1\}^{*} \mid Opt_{U}(x) \ge k_{2}\}, & \text{if goal} = \max. \end{cases}$$

We say *U* is NP-hard, if $Lang_U$ is NP-hard.

Corollary 2.50 (Optimization is harder than Threshold) Let *U* an optimization problem. If $Lang_U$ is NP-hard and if P \neq NP holds, we have $U \notin$ PO.

Max-SAT is hard

Corollary 2.51 (Max-SAT is hard) Max-SAT is NP-hard.

Summary

• We have formalized the classic notion of intractable problems.

- What is running time, what is "polytime"?
- Decision problems \leftrightarrow (formal) languages
- ▶ P, NP via Turing machines ↔ certificates and verifiers
- For the typical case of optimization problems, there are different versions of the problem, but (in)tractability typically carries over.
- → We can mathematically prove a problem is intractable (NP-hard).

... but how can we tackle hard problems anyway?