
3 Pseudopolynomial
Algorithms

13 May 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-05-12 18:13 H

Outline

3 Pseudopolynomial Algorithms
3.1 Integer Problems
3.2 Knapsack
3.3 Strong NP-hardness

3.1 Integer Problems

Integer Problems

Definition 3.1 (Integer-Input Problem)
A problem 𝑈 for which (part of the) input is a sequence of integers is called an integer-input

problem.
For any instance 𝑥 of an integer-input problem, we write MaxInt(𝑥) for the largest integer
occurring in the input encoding. ◀

(As before, integers are encoded in binary.)

Examples

▶ TravelingSalesman

▶ SubsetSum

▶ BinPacking

▶ ILP

▶ Knapsack

1

Pseudopolynomial
≠ quasi-polynomial (= 2𝑂(log𝑐 𝑛))Definition 3.2 (Pseudopolynomial algorithm)

Let 𝑈 be an integer-input problem and 𝐴 an algorithm that solves 𝑈 .
𝐴 has pseudopolynomial time for 𝑈 , if there is a polynomial 𝑝 in two variables with

Time𝐴(𝑥) = 𝑂
(
𝑝
(
|𝑥|,MaxInt(𝑥)

))
,

for every instance 𝑥 to 𝑈 . ◀

Note: If MaxInt(𝑥) ≤ ℎ(|𝑥|) for a polynomial ℎ, then
𝑝
(
|𝑥|,MaxInt(𝑥)

)
≤ 𝑔(|𝑥|) for a polynomial 𝑔.

2

Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)
Let 𝑈 be an integer-input problem and let ℎ : ℕ → ℕ be weakly increasing.
The ℎ-bounded subproblem of 𝑈 (notation Value(ℎ)𝑈) is the problem which results from 𝑈 by
allowing only inputs 𝑥 with MaxInt(𝑥) ≤ ℎ(|𝑥|). ◀

Theorem 3.4 (Pseudopolynomial is polynomial for small 𝒉)
Let 𝑈 be an integer-input problem and 𝐴 a pseudopolynomial algorithm for 𝑈 .
Then for every polynomial ℎ there is a polytime algorithm for Value(ℎ)𝑈 . ◀

Proof:

■

Hence if 𝑈 is a decision problem then Value(ℎ)𝑈 ∈ P,
if 𝑈 is an optimization problem then Value(ℎ)𝑈 ∈ PO.

3

3.2 Knapsack

Knapsack (Optimization Version)

Definition 3.5 (Knapsack (Optimization Version))
Given: tuple (𝑤1 , . . . , 𝑤𝑛 ; 𝑣1 , . . . , 𝑣𝑛 ; 𝑏) of 2𝑛 + 1 positive integers, 𝑛 ∈ ℕ.

We call 𝑏 the capacity of the knapsack, 𝑤𝑖 the weight and 𝑣𝑖 the value (profit) of the
𝑖-th object, 1 ≤ 𝑖 ≤ 𝑛.

Goal: The optimization problem Knapsack asks to find a subset 𝑇 ⊆ {1, 2, . . . , 𝑛} of items
with maximal total value cost(𝑇) = ∑

𝑖∈𝑇 𝑣𝑖 such that 𝑇 fits into the knapsack, i. e.,∑
𝑖∈𝑇 𝑤𝑖 ≤ 𝑏.

◀

4

Recap: The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution

▶ Steps 1–3 require insight / creativity / intuition;
Steps 4–6 are mostly automatic / same each time

⇝ Correctness proof usually at level of DP recurrence

running time too! worst case time = #subproblems · time to find single best guess

⇝ see Efficient Algorithms

5

Dynamic Programming Solution
▶ Subproblems: (𝑛′, 𝑏′): only items 1 ≤ 𝑖 ≤ 𝑛′ and total weight 𝑏′

▶ Guess: whether to include item 𝑛′

▶ Recurrence: 𝑉[𝑛′, 𝑏′] = max value in subproblem (𝑛′, 𝑏′)

6

Pseudopolynomial Knapsack

Theorem 3.6 (DP for Knapsack is pseudopolynomial)
For every instance 𝐼 to Knapsack we have

TimeDPKP(𝐼) = 𝑂
(
|𝐼| · MaxInt(𝐼) log(MaxInt(𝐼))

)
,

i. e., DPKP has pseudopolynomial time for Knapsack. ◀

7

Beyond Knapsack
▶ Similar trick works for some other NP-complete problems, e. g.,

Partition, MakingChange

▶ for yet other NP-complete problems, e. g., TravelingSalesman,
no such algorithms seems to exist . . .

. . . can we give evidence that likely no pseudopolynomial algorithm is possible?

8

3.3 Strong NP-hardness

Hardness
Definition 3.7 (strongly NP-hard)
An integer-input problem is called strongly NP-hard, if there exists a polynomial 𝑝 such that
Value(𝑝)𝑈 is NP-hard. ◀

So: strongly NP-hard ⇝ hard even for instances with “small” numbers.

Theorem 3.8 (strongly NP-hard → no pseudopoly. algorithm)
Let P ≠ NP and 𝑈 a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for 𝑈 . ◀

Proof:

■

9

Example

Theorem 3.9
TravelingSalesman is strongly NP-hard. ◀

Proof:

■

10

It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)
An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard. ◀

Proof:
𝐴 strongly NP-hard ⇝ ∃ polynomial 𝑝 s.t. Value(p)A NP-hard
For 𝑥 ∈ Value(p)A, unary encoding blows up |𝑥| only by polynomial factor.
⇝ 𝐴 encoded with unary numbers NP-hard.

Conversely, let 𝐴 with unary numbers be NP-hard.
With unary encoding, MaxInt(𝑥) ≤ |𝑥|, so Value(n ↦→ n)A = 𝐴 is NP-hard. ■

11

Summary
Pseudopolynomial algorithms can be practically efficient if numbers are (really) small

Only applicable to few problems

12

	Pseudopolynomial Algorithms
	Integer Problems
	Integer Problems
	Pseudopolynomial
	Pseudopolynomial Languages

	Knapsack
	Knapsack (Optimization Version)
	Recap: The 6 Steps of Dynamic Programming
	Dynamic Programming Solution
	Pseudopolynomial Knapsack
	Beyond Knapsack

	Strong NP-hardness
	Hardness
	Example
	It's all about the encoding
	Summary

