# Pseudopolynomial Algorithms

13 May 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-05-12 18:13 H

#### Outline

# **3** Pseudopolynomial Algorithms

- 3.1 Integer Problems
- 3.2 Knapsack
- 3.3 Strong NP-hardness

## 3.1 Integer Problems

## **Integer Problems**

#### **Definition 3.1 (Integer-Input Problem)**

A problem *U* for which (part of the) input is a *sequence of integers* is called an *integer-input problem*.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer occurring in the input encoding.

(As before, integers are encoded in binary.)

#### Examples

- ► TRAVELINGSALESMAN
- SUBSETSUM
- BINPACKING
- ► ILP

#### ► KNAPSACK

-

## Pseudopolynomial

#### Definition 3.2 (Pseudopolynomial algorithm)

Let U be an integer-input problem and A an algorithm that solves U. A has *pseudopolynomial time for* U, if there is a polynomial p in two variables with

 $Time_A(x) = O(p(|x|, MaxInt(x))),$ 

for every instance x to U.

**Note:** If  $MaxInt(x) \le h(|x|)$  for a polynomial *h*, then  $p(|x|, MaxInt(x)) \le g(|x|)$  for a polynomial *g*.

-

 $\neq$  quasi-polynomial (= 2<sup>O(log<sup>c</sup> n)</sup>)

## **Pseudopolynomial Languages**

#### **Definition 3.3 (Value-Bounded Subproblem)**

Let *U* be an integer-input problem and let  $h : \mathbb{N} \to \mathbb{N}$  be weakly increasing. The *h*-bounded subproblem of *U* (notation  $Value(h)_U$ ) is the problem which results from *U* by allowing only inputs *x* with  $MaxInt(x) \le h(|x|)$ .

#### Theorem 3.4 (Pseudopolynomial is polynomial for small *h*)

Let *U* be an integer-input problem and *A* a pseudopolynomial algorithm for *U*. Then for every polynomial *h* there is a polytime algorithm for  $Value(h)_U$ .

**Proof:** 

Hence if *U* is a decision problem then  $Value(h)_U \in P$ , if *U* is an optimization problem then  $Value(h)_U \in PO$ .

## 3.2 Knapsack

## **Knapsack (Optimization Version)**

#### **Definition 3.5 (Knapsack (Optimization Version))**

- **Given:** tuple  $(w_1, \ldots, w_n; v_1, \ldots, v_n; b)$  of 2n + 1 positive integers,  $n \in \mathbb{N}$ . We call *b* the *capacity* of the knapsack,  $w_i$  the *weight* and  $v_i$  the *value* (profit) of the *i*-th object,  $1 \le i \le n$ .
- **Goal:** The *optimization problem KNAPSACK* asks to find a subset  $T \subseteq \{1, 2, ..., n\}$  of items with maximal total value  $cost(T) = \sum_{i \in T} v_i$  such that T fits into the knapsack, i. e.,  $\sum_{i \in T} w_i \leq b$ .

4

## Recap: The 6 Steps of Dynamic Programming

- 1. Define subproblems (and relate to original problem)
- **2. Guess** (part of solution)  $\rightsquigarrow$  local brute force
- 3. Set up **DP recurrence** (for quality of solution)
- 4. Recursive implementation with Memoization
- 5. Bottom-up table filling (topological sort of subproblem dependency graph)
- 6. Backtracing to reconstruct optimal solution
- Steps 1–3 require insight / creativity / intuition; Steps 4–6 are mostly automatic / same each time
- $\rightsquigarrow\,$  Correctness proof usually at level of DP recurrence
- running time too! worst case time = #subproblems · time to find single best guess

→ see Efficient Algorithms

## **Dynamic Programming Solution**

- **Subproblems:** (n', b'): only items  $1 \le i \le n'$  and total weight b'
- ▶ **Guess:** whether to include item *n*′
- **Recurrence:**  $V[n', b'] = \max \text{ value in subproblem } (n', b')$

## Pseudopolynomial Knapsack

#### **Theorem 3.6 (DP for Knapsack is pseudopolynomial)** For every instance *I* to KNAPSACK we have

 $Time_{DPKP}(I) = O(|I| \cdot MaxInt(I) \log(MaxInt(I))),$ 

i.e., DPKP has pseudopolynomial time for KNAPSACK.

## **Beyond Knapsack**

- Similar trick works for some other NP-complete problems, e.g., PARTITION, MAKINGCHANGE
- for yet other NP-complete problems, e. g., TRAVELINGSALESMAN, no such algorithms seems to exist . . .

... can we give evidence that likely no pseudopolynomial algorithm is possible?

# 3.3 Strong NP-hardness

### Hardness

#### **Definition 3.7 (strongly NP-hard)**

An integer-input problem is called *strongly* NP-*hard*, if there exists a polynomial p such that  $Value(p)_U$  is NP-hard.

So: strongly NP-hard  $\rightsquigarrow$  hard even for instances with "small" numbers.

#### Theorem 3.8 (strongly NP-hard → no pseudopoly. algorithm)

Let  $P \neq NP$  and U a strongly NP-hard (integer-input) problem. Then there exists no algorithm with pseudopolynomial time for U.

**Proof:** 

## Example

Theorem 3.9 TRAVELINGSALESMAN is strongly NP-hard.

**Proof:** 



н.

.....

## It's all about the encoding

#### Theorem 3.10 (strongly hard iff unary hard)

An integer-input problem is strongly NP-hard if, and only if, representing its instances with unary encoding for integers remains NP-hard.

```
Proof:

A strongly NP-hard \rightarrow \exists polynomial p s.t. Value(p)_A NP-hard

For x \in Value(p)_A, unary encoding blows up |x| only by polynomial factor.

\rightarrow A encoded with unary numbers NP-hard.
```

Conversely, let *A* with unary numbers be NP-hard. With unary encoding,  $MaxInt(x) \le |x|$ , so  $Value(n \mapsto n)_A = A$  is NP-hard.

## Summary

Pseudopolynomial algorithms can be practically efficient if numbers are (really) small

Only applicable to few problems