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3.1 Integer Problems



Integer Problems

Definition 3.1 (Integer-Input Problem)
A problem 𝑈 for which (part of the) input is a sequence of integers is called an integer-input

problem.
For any instance 𝑥 of an integer-input problem, we write MaxInt(𝑥) for the largest integer
occurring in the input encoding. ◀

(As before, integers are encoded in binary.)

Examples

▶ TravelingSalesman

▶ SubsetSum

▶ BinPacking

▶ ILP

▶ Knapsack

1



Pseudopolynomial
≠ quasi-polynomial (= 2𝑂(log𝑐 𝑛))Definition 3.2 (Pseudopolynomial algorithm)

Let 𝑈 be an integer-input problem and 𝐴 an algorithm that solves 𝑈 .
𝐴 has pseudopolynomial time for 𝑈 , if there is a polynomial 𝑝 in two variables with

Time𝐴(𝑥) = 𝑂
(
𝑝
(
|𝑥|,MaxInt(𝑥)

) )
,

for every instance 𝑥 to 𝑈 . ◀

Note: If MaxInt(𝑥) ≤ ℎ(|𝑥|) for a polynomial ℎ, then
𝑝
(
|𝑥|,MaxInt(𝑥)

)
≤ 𝑔(|𝑥|) for a polynomial 𝑔.
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Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)
Let 𝑈 be an integer-input problem and let ℎ : ℕ → ℕ be weakly increasing.
The ℎ-bounded subproblem of 𝑈 (notation Value(ℎ)𝑈 ) is the problem which results from 𝑈 by
allowing only inputs 𝑥 with MaxInt(𝑥) ≤ ℎ(|𝑥|). ◀

Theorem 3.4 (Pseudopolynomial is polynomial for small 𝒉)
Let 𝑈 be an integer-input problem and 𝐴 a pseudopolynomial algorithm for 𝑈 .
Then for every polynomial ℎ there is a polytime algorithm for Value(ℎ)𝑈 . ◀

Proof:

■

Hence if 𝑈 is a decision problem then Value(ℎ)𝑈 ∈ P,
if 𝑈 is an optimization problem then Value(ℎ)𝑈 ∈ PO.

3



3.2 Knapsack



Knapsack (Optimization Version)

Definition 3.5 (Knapsack (Optimization Version))
Given: tuple (𝑤1 , . . . , 𝑤𝑛 ; 𝑣1 , . . . , 𝑣𝑛 ; 𝑏) of 2𝑛 + 1 positive integers, 𝑛 ∈ ℕ.

We call 𝑏 the capacity of the knapsack, 𝑤𝑖 the weight and 𝑣𝑖 the value (profit) of the
𝑖-th object, 1 ≤ 𝑖 ≤ 𝑛.

Goal: The optimization problem Knapsack asks to find a subset 𝑇 ⊆ {1, 2, . . . , 𝑛} of items
with maximal total value cost(𝑇) = ∑

𝑖∈𝑇 𝑣𝑖 such that 𝑇 fits into the knapsack, i. e.,∑
𝑖∈𝑇 𝑤𝑖 ≤ 𝑏.

◀
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Recap: The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution

▶ Steps 1–3 require insight / creativity / intuition;
Steps 4–6 are mostly automatic / same each time

⇝ Correctness proof usually at level of DP recurrence

running time too! worst case time = #subproblems · time to find single best guess

⇝ see Efficient Algorithms
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Dynamic Programming Solution
▶ Subproblems: (𝑛′, 𝑏′): only items 1 ≤ 𝑖 ≤ 𝑛′ and total weight 𝑏′

▶ Guess: whether to include item 𝑛′

▶ Recurrence: 𝑉[𝑛′, 𝑏′] = max value in subproblem (𝑛′, 𝑏′)
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Pseudopolynomial Knapsack

Theorem 3.6 (DP for Knapsack is pseudopolynomial)
For every instance 𝐼 to Knapsack we have

TimeDPKP(𝐼) = 𝑂
(
|𝐼| · MaxInt(𝐼) log(MaxInt(𝐼))

)
,

i. e., DPKP has pseudopolynomial time for Knapsack. ◀
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Beyond Knapsack
▶ Similar trick works for some other NP-complete problems, e. g.,

Partition, MakingChange

▶ for yet other NP-complete problems, e. g., TravelingSalesman,
no such algorithms seems to exist . . .

. . . can we give evidence that likely no pseudopolynomial algorithm is possible?

8



3.3 Strong NP-hardness



Hardness
Definition 3.7 (strongly NP-hard)
An integer-input problem is called strongly NP-hard, if there exists a polynomial 𝑝 such that
Value(𝑝)𝑈 is NP-hard. ◀

So: strongly NP-hard ⇝ hard even for instances with “small” numbers.

Theorem 3.8 (strongly NP-hard → no pseudopoly. algorithm)
Let P ≠ NP and 𝑈 a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for 𝑈 . ◀

Proof:

■
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Example

Theorem 3.9
TravelingSalesman is strongly NP-hard. ◀

Proof:

■
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It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)
An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard. ◀

Proof:
𝐴 strongly NP-hard ⇝ ∃ polynomial 𝑝 s.t. Value(p)A NP-hard
For 𝑥 ∈ Value(p)A, unary encoding blows up |𝑥| only by polynomial factor.
⇝ 𝐴 encoded with unary numbers NP-hard.

Conversely, let 𝐴 with unary numbers be NP-hard.
With unary encoding, MaxInt(𝑥) ≤ |𝑥|, so Value(n ↦→ n)A = 𝐴 is NP-hard. ■
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Summary
Pseudopolynomial algorithms can be practically efficient if numbers are (really) small

Only applicable to few problems
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