

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-06-04 14:42 H

Outline

4 Fixed-Parameter Algorithms

- 4.1 Fixed-Parameter Tractability
- 4.2 Depth-Bounded Exhaustive Search I
- 4.3 Problem Kernels
- 4.4 Depth-Bounded Search II: Planar Independent Set
- 4.5 Depth-Bounded Search III: Closest String
- 4.6 Linear Recurrences & Better Vertex Cover
- 4.7 Interleaving

Philosophy of FPT

- ► Goal: Principled theory for studying complexity based on two dimensions: input size n = |x| (encoding length) and *some additional parameter k*
 - generalize ideas from k = MaxInt(x)
 - ▶ investigate influence of *k* (and *n*) on running time
 - Try to find a parameter k such that
 (1) the problem can be solved efficiently as long as k is small, and
 (2) practical instances have small values of k (even where n gets big).

Motivation: Satisfiability

Consider Satisfiability of CNF formula

- general worst case: NP-complete
- ▶ *k* = #literals per clause
 - ► $k \le 2 \implies \text{in P}$
 - ► $k \ge 3$ NP-complete
- k =#variables
 - $O(2^k \cdot n)$ time possible (try all assignments)
- \blacktriangleright k = #clauses?
- k =#literals?
- ► *k* = #ones in satisfying assignment
- k =structural property of formula
- ▶ for MAX-SAT, *k* = #optimal clauses to satisfy

the drosophila melanogaster of complexity theory

Parameters

Definition 4.1 (Parameterization)

Let Σ a (finite) alphabet. A *parameterization* (of Σ^*) is a mapping $\kappa : \Sigma^* \to \mathbb{N}$ that is polytime computable.

Definition 4.2 (Parameterized problem)

A *parameterized (decision) problem* is a pair (L, κ) of a language $L \subset \Sigma^*$ and a parameterization κ of Σ^* .

Definition 4.3 (Canonical Parameterizations)

We can often specify a parameterized problem conveniently as a language of *pairs* $L \subset \Sigma^* \times \mathbb{N}$ with

$$(x,k) \in L \ \land \ (x,k') \in L \ \rightarrow \ k=k'$$

using the *canonical parameterization* $\kappa(x, k) = k$.

4

Examples

As before: Typically leave encoding implicit.

Definition 4.4 (p-variables-SAT)

Given: formula boolean ϕ (same as before) Parameter: number of variables

Question: Is there a satisfying assignment $v : [n] \rightarrow \{0, 1\}$?

Definition 4.5 (p-Clique)

Given: graph G = (V, E) and $k \in \mathbb{N}$ Parameter: k

Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \in E$?

-

-

Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems) Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem. Then *p*-*U* denotes the (*canonically*) *parameterized* (*decision*) *problem* given by the threshold problem $Lang_U$.

Recall: $Lang_U$ is the set of pairs (x, k) of all instances $x \in L_I$ that have solutions that are weakly "better" than k.

Examples:

> ...

- ► *p*-Clique
- ► *p*-Vertex-Cover
- ► *p*-Graph-Coloring

Naming convention for other parameters:

*p-clause-*CNF-SAT: CNF-SAT with parameter "number of *clauses*"

-

4.1 Fixed-Parameter Tractability

Exemplary Running Times of Parameterized Problems

▶ *p-variables-*SAT

(consider simplest brute-force methods for problems)

- ▶ *k* variables, *n* length of formula
- $\rightsquigarrow O(2^k \cdot n)$ running time
- ► *p*-Clique
 - k threshold (clique size); n vertices, m edges in graph
 - \rightsquigarrow $\binom{n}{k}$ candidates to check, each takes time $O(k^2)$ to check
 - \rightsquigarrow Total time $O(n^k \cdot k^2)$

► *p*-VertexCover

- ▶ *k* threshold (VC size); *n* vertices, *m* edges in graph
- \rightsquigarrow $\binom{n}{k}$ candidates to check, each takes time O(m) to check
- \rightsquigarrow Total time $O(n^k \cdot m)$

► *p*-GraphColoring

- ▶ *k* threshold (#colors); *n* vertices, *m* edges in graph
- $\rightsquigarrow k^n$ candidates to check, each takes time O(m)
- \rightsquigarrow Total time $O(k^n \cdot m)$

FPT Running Time

Definition 4.7 (fpt-algorithm)

Let κ be a parameterization for Σ^{\star} .

A (deterministic) algorithm *A* (with input alphabet Σ) is a *fixed-parameter tractable algorithm* (*fpt-algorithm*) w.r.t. κ if its running time on $x \in \Sigma^*$ with $\kappa(x) = k$ is at most

 $f(k) \cdot p(|x|) = O(f(k) \cdot |x|^{c})$

where p is a polynomial of degree c and f is an **arbitrary** computable function.

Definition 4.8 (FPT)

A parameterized problem (L, κ) is *fixed-parameter tractable* if there is an fpt-algorithm that decides it. The complexity class of all such problems is denoted by FPT.

Intuitively, FPT plays the role of P.

4

A First FPT Example

```
Theorem 4.9 (p-variables-SAT is FPT) p-variables-SAT \in FPT.
```

Proof:

Suffices to use brute force satisfiability for *p-variables*-SAT

```
1 procedure bruteForceSat(\varphi, \mathcal{X} = \{x_1, \dots, x_k\})
       if k = = 0
2
             if \varphi == true \text{ return } \emptyset \text{ else } UNSATISFIABLE
3
        for value in {true, false} do
4
             A := \{x_1 \mapsto value\}
5
             \psi := \varphi[x_1/value] // Substitute value for x_1
6
       B := bruteForceSat(\psi, \{x_2, \dots, x_k\})
7
             if B \neq UNSATISFIABLE
8
                   return A \cup B
```

Worst case running time: $O(2^k n)$ for $n = |\varphi|$. 2^k recursive calls; base case needs time $O(|\phi|)$ to check whether formula evaluates to *true*

... but #variables not usually small

Aren't we all FPT?

Theorem 4.10 (k never decreases \rightarrow FPT)

Let $g:\mathbb{N}\to\mathbb{N}$ weakly increasing, unbounded and computable, and κ a parameterization with

 $\forall x \in \Sigma^{\star} : \kappa(x) \ge g(|x|).$

```
Then (L, \kappa) \in \mathsf{FPT} for any decidable L.
```

```
g weakly increasing: n \le m \to g(n) \le g(m)
g unbounded: \forall t \exists n : g(n) \ge t
```

Proof:

4

Aren't we all FPT? – Proof

Proof (cont.):

.....

÷.

Back to "sensible" parameters

→ always check if parameter is reasonable (can be expected to be small)

- ▶ if not, FPT might not even mean in NP!
- but now, for some positive examples!

4.2 Depth-Bounded Exhaustive Search I

FPT Design Pattern

- ▶ The simplest FPT algorithms use exhaustive search
- but with a search tree bounded by f(k)
- bruteforceSat was a typical example!
- does this work on other problems?

Depth-Bounded Search for Vertex Cover

Let's try *p*-VertexCover.

Key insight: for every edge $\{v, w\}$, any vertex cover must contain v or w

```
1 procedure simpleFptVertexCover(G = (V, E), k):
        if E == \emptyset then return \emptyset
2
       if k = = 0 then return NOT_POSSIBLE // truncate search
 3
       Choose \{v, w\} \in E (arbitrarily)
 4
       for u in \{v, w\} do:
5
            G_u := (V \setminus \{u\}, E \setminus \{\{u, x\} \in E\}) // Remove u from G
 6
            C_u := simpleFptVertexCover(G_u, k - 1)
7
       if C_{v} == NOT_POSSIBLE then return C_{w} \cup \{w\}
 8
       if C_w == NOT_POSSIBLE then return C_v \cup \{v\}
9
       if |C_v| \leq |C_w| then return C_v \cup \{v\} else return C_w \cup \{w\}
10
```

Does not need explicit checks of solution candidates!

▶ runs in time $O(2^k(n+m)) \rightsquigarrow$ fpt-algorithm for *p*-VERTEX-COVER

Guessing the parameter

- ▶ Note: Previous algorithm only uses *k* to *truncate* branches.
- \rightsquigarrow We can *guess* a *k* and it still works

 \rightsquigarrow Try all k!

1 **procedure** vertexCoverBfs(G = (V, E)) 2 **for** k := 0, 1, ..., |V| **do**

- C := simpleFptVertexCover(G, k)
- 4 **if** $C \neq NOT_POSSIBLE$ **return** C

• Running time:
$$\sum_{k'=0}^{k} O(2^{k'}(n+m)) = O(2^{k}(n+m))$$

 \rightsquigarrow For exponentially growing cost, trying all values up to *k* costs only constant factor more

4.3 Problem Kernels

Preprocessing

- Second key fpt technique are reduction rules
- Idea: Reduce the size of the instance (in polytime) without changing its outcome
- Trivial example for SAT:

If a CNF formula contains a single-literal clause $\{x\}$ resp. $\{\neg x\}$, set *x* to *true* resp. *false* and remove the clause.

- doesn't do anything in the worst case ...
- basis of practical SAT solvers
- Trivial example for VERTEXCOVER

Remove vertices of degree 0 or 1.

► special case of resolution calculus rule $\frac{a_1 \lor a_2 \lor \cdots \lor x, \quad b_1 \lor b_2 \lor \cdots \lor \neg x}{a_1 \lor a_2 \lor \cdots \lor b_1 \lor b_2 \lor \cdots}$

(never needed as part of optimal VC)

• Here: reduction rules that provably shrink an instance to size g(k)

Buss's Reduction Rule for VC

• Given a *p*-VERTEXCOVER instance (G, k)

"deg > k" Rule: If *G* contains vertex *v* of degree deg(*v*) > k, include *v* in potential solution and remove it from the graph.

- ► Can apply this simultaneously to degree > *k* vertices.
- Either rule applies, or all vertices bounded degree(!)

Kernels

Definition 4.11 (Kernelization)

Let (L, κ) be a parameterized problem. A function $K : \Sigma^* \to \Sigma^*$ is *kernelization* of L w.r.t. κ if it maps any $x \in L$ to an instance x' = K(x) with $k' = \kappa(x')$ so that

- **1.** (self-reduction) $x \in L \iff x' \in L$
- 2. (polytime) *K* is computable in polytime.
- 3. (kernel-size) $|x'| \le g(k)$ for some computable function g

We call x' the (problem) kernel of x and g the size of the problem kernel.

-

Buss's Kernel

Buss's Reduction for Vertex Cover: (repeatedly apply until no more changes)

- deg > k rule
- Remove degree 0 and 1 vertices

Theorem 4.12 (Buss's Reduction is Kernelization)

Buss' reduction yields a kernelization for *p*-VERTEX-COVER with kernel size $O(k^2)$.

Proof:

After repeatedly applying Buss's rule as well as the isolated/leaf rule until neither applies further, we have $\forall v \in V : 2 \leq \deg(v) \leq k$. (Note that the rule might reduce the parameter k). In the resulting graph, any VC of size $\leq k$ covers $\leq k^2$ edges. If $m > k^2$, we output a trivial No-instance (e. g., a K_{k+1} a complete graph on k + 1 vertices). If $m \leq k^2$, then the input size is now bounded by $g(k) = 2k^2$.

FPT iff Kernelization

Theorem 4.13 (FPT ↔ kernel)

A computable, parameterized problem (L, κ) is fixed-parameter tractable if and only if there is a kernelization for L w.r.t. κ .

Proof:

FPT iff Kernelization [2]

Proof (cont.):

×.

Max-SAT Kernel

Theorem 4.14 (Kernel for Max-SAT)

p-Max-SAT has a problem kernel of size $O(k^2)$ which can be constructed in linear time.

Proof:

Max-SAT Kernel [2]

Proof (cont.):

н.

Max-SAT Kernel [3]

Proof (cont.):

Corollary 4.15 p-Max-SAT \in FPT

н.

4.4 Depth-Bounded Search II: Planar Independent Set

Deeper results (towards more shallow trees)

- Our previous examples of depth-bounded search were basically brute force
- Here we will see two more examples that exploit the problem structure in more interesting ways

Independent Set on Planar Graphs

Recall: general problem *p*-INDEPENDENT-SET is W[1]-hard.

```
Definition 4.16 (p-PLANAR-INDEPENDENT-SET)
Given: a planar graph G = (V, E) and k \in \mathbb{N}
Parameter: k
Question: \exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E?
```

Theorem 4.17 (Depth-Bounded Search for Planar Independent Set) *p*-PLANAR-INDEPENDENT-SET is in FPT and can be solved in time $O(6^k n)$.

Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler's formula)

In any finite, connected planar graph *G* with *n* nodes, *m* edges *f* holds n - m + f = 2.

Corollary 4.19

A simple planar graph *G* on $n \ge 3$ nodes has $m \le 3n - 6$ edges. The average degree in *G* is < 6.

-

Depth-Bounded Search for Planar Independent Set

1 **procedure** planarIndependentSet(G = (V, E), k):

- ² if k == 0 then return \emptyset
- if k > |V| then return NOT_POSSIBLE // truncate search
- 4 Choose $v \in V$ with minimal degree; let w_1, \ldots, w_d be v's neighbors
- 5 // By planarity, we know $d \leq 5$.
- 6 **for** u in $\{v, w_1, ..., w_d\}$ **do**
- 7 $D := \{u\} \cup N(u)$
- s $G_u := (V \setminus D, E \setminus \{\{x, y\} \in E : x \in D\}) // Delete u and its neighbors$
- 9 $I_u := \{u\} \cup \text{planarIndependentSet}(G_u, k-1)$
- 10 **return** largest *I*^{*u*} or NOT_POSSIBLE **if** none exists

Summary Planar Independent Set

- ▶ Note: INDEPENDENTSET is NP-hard on planar graphs even with vertex degrees at most 3
- planarIndependentSet will often be faster than $O(6^k n)$
- works unchanged in $O((d + 1)^k n)$ time for any degeneracy-*d* graph

every (induced) subgraph has vertex of degree at most *d*

4.5 Depth-Bounded Search III: Closest String

Closest String

Definition 4.20 (*p***-CLOSEST-STRING)**

Given: S set of *m* strings s_1, s_2, \ldots, s_m of length *L* over alphabet Σ and a $k \in \mathbb{N}$. Parameter: *k*

Question: Is there a string *s* for which $d_H(s, s_i) \le k$ holds for all i = 1, ..., m?

Dirty Columns

Definition 4.21 (Dirty Column)

A column of the $m \times L$ matrix corresponding to m strings of length L is called *dirty* if it contains at least 2 different symbols.

Lemma 4.22 (Many Dirty Columns → No)

Let an instance to CLOSEST-STRING with *m* strings of length *L* and parameter *k* be given. If the corresponding $m \times L$ matrix contains more than $m \cdot k$ dirty columns, then no solution for the given instance exists.

-

Depth-Bounded Search for Closest String

```
procedure closestStringFpt(s, d):
        if d < 0 then return NOT POSSIBLE
2
        if d_H(s, s_i) > k + d for an i \in \{1, ..., m\} then
 3
            return NOT POSSIBLE
 4
       if d_H(s, s_i) \le k for all i = 1, ..., m then return s
 5
        Choose i \in \{1, ..., m\} arbitrarily with d_H(s, s_i) > k
 6
            P := \{p : s[p] \neq s_i[p]\}
 7
            Choose arbitrary P' \subseteq P with |P'| = k + 1
 8
            for p in P' do
 9
                 s' := s
10
                 s'[p] := s_i[p]
11
                 s_{ret} := \text{closestStringFpt}(s', d-1)
12
                 if s_{ret} \neq NOT POSSIBLE then return s_{ret}
13
        return NOT POSSIBLE
14
```

initial call closestStringFpt(s1, k)

Too Much Dirt

Lemma 4.23 (Pair Too Different → No)

Let $S = \{s_1, s_2, \dots, s_m\}$ a set of strings and $k \in \mathbb{N}$. If there are $i, j \in \{1, \dots, m\}$ with $d_H(s_i, s_j) > 2k$, then there is no string *s* with $\max_{1 \le i \le m} d_H(s, s_i) \le k$.

-

Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String) There is a search tree of size $O(k^k)$ for problem *p*-CLOSEST-STRING.

Corollary 4.25 (Closest String is FPT)

p-Closest-String can be solved in time $O(mL + mk \cdot k^k)$.

- ▶ preprocessing (*O*(*mL*) time)
 - ignore any clean columns
 - reject if more than *mk* dirty columns
- $\rightsquigarrow~$ effective string length after preprocessing is $L' \leq mk$
- call closestStringFpt(s₁, k)
 - maintain $d_H(s, s_i)$ in an array
 - \rightsquigarrow checking any distance $d_H(s, s_i)$ takes O(1) time
 - before and after recursive call, update array to reflect d_H(s', s_i) Single character changed, so update only needs to check single position
 - \rightsquigarrow Can maintain distances in *O*(*m*) time per recursive call
 - P' can be computed in O(mk) time

4

4.6 Linear Recurrences & Better Vertex Cover

A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2^k for VERTEX-COVER. Can we do better?

Idea: Enlarge base case with "easy inputs"

Here: Consider graphs *G* with $deg(v) \le 2$ for all $v \in V(G)$.

Depth-Bounded Search for Vertex Cover

1 **procedure** betterFptVertexCover(G = (V, E), k): if $E = \emptyset$ then return \emptyset 2 **if** k = 0 **then return** NOT POSSIBLE // truncate search 3 if all node have degree ≤ 2 then 4 Find connected components of G 5 for each component G_i do 6 Fill C_i by picking every other node, starting with the neighbor of a degree-one node if one exists $C := \bigcup C_i$ 9 if $|C| \le k$ then return C else return NOT POSSIBLE 10 Choose v with maximal degree, let w_1, \ldots, w_d be its neighbors $//d \ge 3$ 11 For *D* in $\{\{v\}, \{w_1, ..., w_d\}\}$ do: 12 $G_D := (V \setminus D, E \setminus \{\{x, y\} \in E : x \in D\}) // Remove D from G$ 13 $C_D := D \cup \text{betterFptVertexCover}(G_u, k - |D|)$ 14 return smallest C_D or NOT POSSIBLE if none exists 15

How to analyze running time of betterFptVertexCover?

Analysis of betterFptVertexCover

worst case running time

- never have all degrees ≤ 2
- always need both recursive calls (until base case)
- ignore that graph gets smaller

 $T_0 = \Theta(1)$ $T_k = \Theta(|V| + |E|) + T_{k-3} + T_{k-1}$

If we only number of base cases B_n , we obtain $T_n = O(B_n n^2)$

 $B_0 = 1, B_1 = 1, B_2 = 1$ $B_k = B_{k-3} + B_{k-1} \quad (k \ge 3)$

Solving Linear Recurrences

Solving Linear Recurrences – Result

Theorem 4.26 (Linear Recurrences)

Let $d_1, \ldots, d_i \in \mathbb{N}$ and $d = \max d_j$.

The solution to the homogeneous linear recurrence equation

$$T_n = T_{n-d_1} + T_{n-d_2} + \dots + T_{n-d_i}, \quad (n \ge d)$$

is always given by

$$T_n = \sum_{\ell} \sum_{j=0}^{\mu_{\ell}-1} c_{\ell,j} \, z_{\ell}^n \, n^j$$

where we sum over all roots z_{ℓ} of multiplicity μ_{ℓ} of the so-called *characteristic polynomial* $z^{d} - z^{d-d_{1}} - z^{d-d_{2}} \cdots - z^{d-d_{i}}$. The *d* coefficients $c_{\ell,i}$ are determined by the *d* initial values $T_{0}, T_{1}, \ldots, T_{d-1}$.

Corollary 4.27 $T_n = O(z_0^n n^d)$ for z_0 the root of the characteristic polynomial with *largest absolute value*.

Analysis of betterFptVertexCover [2]

$$\begin{split} T_0 &= \Theta(1) \\ T_k &= \Theta(|V| + |E|) + T_{k-3} + T_{k-1} \end{split}$$

If we only number of base cases B_n , we obtain $T_n = O(B_n n^2)$

 $B_0 = 1, B_1 = 1, B_2 = 1$ $B_k = B_{k-3} + B_{k-1}$ $(k \ge 3)$

 \rightarrow $\vec{d} = (1, 3)$; characteristic polynomial $z^3 - z^2 - 1$ roots at $z_0 \approx 1.4656$ and $z_{1,2} \approx -0.2328 \pm 0.7926i$

Theorem 4.28 (Depth-Bounded Search for Vertex Cover) *p*-VERTEX-COVER can be solved in time $O(1.4656^k n^2)$.

4.7 Interleaving

Motivation

Up to now, considered two-phase algorithms

- 1. Reduction to problem kernel
- 2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization *in each recursive step*.

(Extreme) Example: Vertex Cover with large-degree rule

► As a (slightly artificial) example, consider only using the simple reduction rule

"deg > k" Rule: If *G* contains vertex *v* of degree deg(*v*) > k, include *v* in potential solution and remove it from the graph.

Algorithm A:

- **1.** Apply deg > k rule until saturation
- 2. Call simpleFptVertexCover (recursively branch over arbitrary edge)
- Algorithm B: Same, interleaved:
 - Modified simpleFptVertexCover
 - Before choosing each new edge to branch on, apply deg > k rule.

SimpleFptVertexCover Interleaved

1	procedure simpleFptVertexCover($G = (V, E), k$):
2	if $E == \emptyset$ then return \emptyset
3	if $k == 0$ then return NOT_POSSIBLE
4	// nothing
5	// new
6	// on
7	// this
8	// side
9	Choose $\{v, w\} \in E$ (arbitrarily)
10	for u in $\{v, w\}$ do :
11	$G_u := G[V \setminus \{u\}]$
12	$C_u := $ simpleFptVertexCover($G_u, k - 1$)
13	if $C_v ==$ NOT_POSSIBLE then return $C_w \cup \{w\}$
14	if $C_w == NOT_POSSIBLE$ then return $C_v \cup \{v\}$
15	if $ C_v \leq C_w $ then
16	return $C_v \cup \{v\}$
17	else
18	return $C_w \cup \{w\}$

1	procedure simpleInterleavedVC($G = (V, E), k$):
2	if $E == \emptyset$ then return \emptyset
3	<pre>if k == 0 then return NOT_POSSIBLE</pre>
4	$C := \emptyset$
5	while $\exists v \in V : \deg(v) > k$
6	$G := G[V \setminus \{v\}] // Remove v$
7	$C := C \cup \{v\}$
8	k := k - 1
9	Choose $\{v, w\} \in E$ (arbitrarily)
10	for u in $\{v, w\}$ do :
11	$G_u := G[V \setminus \{u\}]$
12	$C_u := \mathbf{C} \cup \text{simpleInterleavedVC}(G_u, k-1)$
13	if $C_v == NOT_POSSIBLE$ then return $C_w \cup \{w\}$
14	if C_w == NOT_POSSIBLE then return $C_v \cup \{v\}$
15	if $ C_v \leq C_w $ then
16	return $C_v \cup \{v\}$
17	else
18	return $C_w \cup \{w\}$

Comparison on Lollipop Flowers

Consider family of graphs *G_k* "Lollipop Flowers":

"head" vertex with k - 2 stars of k - 2 leaves each attached + "tail" of 3k + 1 vertex path

$$n = |V(G_k)| = (k-2)(k-1) + 1 + 3k + 1 = k^2 + 4$$

Algorithm A

deg > k rule does nothing search space remains 2^k Answer No after exploring all branches

 \rightsquigarrow time $\Theta(2^k k^2)$

Algorithm B

initially same (no reduction) after 2 edges removed from tail, parameter k-2vertices in head have degree k-1Output No (parameter 0, but tail edges left) \rightarrow time $\Theta(k^2)$

Setting for Interleaving

Can we prove a general speedup?

Assumptions: (more restrictive than general kernelization!)

- K kernelization that
 - produces *kernel of size* $\leq q(k)$ for q a *polynomial*
 - in time $\leq p(n)$ for p a polynomial
- Branch in depth-bounded search tree
 - ▶ into *i* subproblems with branching vector *d* = (*d*₁,...,*d_i*)
 (i. e., parameter in subproblems *k* − *d*₁,...,*k* − *d_i*)
 - Branching is computed in time $\leq r(n)$ for *r* a polynomial
- \rightsquigarrow search space has size $O(\alpha^k)$.

 \rightsquigarrow Running time of two-phase approach on input *x* with n = |x| and $k = \kappa(x)$:

 $O(p(n) + r(q(k)) \cdot \alpha^k)$

With Interleaving

Generic interleaving:

1 **if** $|I| > c \cdot q(k)$ **then** 2 (I, k) := (I', k') where (I', k') forms a problem kernel // *Conditional Reduction*

3 end

4 replace (I, k) with $(I_1, k - d_1), (I_2, k - d_2), \dots, (I_i, k - d_i)$ // Branching

 \rightsquigarrow Running time of interleaved approach on input *x* with n = |x| and $k = \kappa(x)$ is at most T_k :

$$T_{\ell} = T_{\ell-d_1} + \cdots + T_{\ell-d_i} + p(q(\ell)) + r(q(\ell))$$

Compare to non-interleaved version:

$$T_{\ell} = T_{\ell-d_1} + \cdots + T_{\ell-d_i} + r(q(k))$$

Here the inhomogeneous term is constant w.r.t. ℓ , but depends on $k \rightsquigarrow$ cannot ignore constant factors

Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > k rule added.

▶ Initial call has unbounded *n* and *m*; after applying degree 0, 1, > *k* rules (in O(n + m) time) size of graph $n + m = O(k^2)$

• interleaving \rightsquigarrow graph also bounded recursively (in terms of new k)

▶ Recursive worst-case time after first reduction:
 T₀ = Θ(1)
 T_k = O(k²) + T_{k-3} + T_{k-1}

Inhomogenous Linear Recurrences

Inhomogenous Linear Recurrences Summary

Theorem 4.29 (Linear Recurrences II)

Let $d_1, \ldots, d_i \in \mathbb{N}$ and $d = \max d_j$.

Consider the inhomogeneous linear recurrence equation

$$T_n = T_{n-d_1} + T_{n-d_2} + \dots + T_{n-d_i} + f_n, \quad (n \ge d)$$

with $(f_n)_{n \in \mathbb{R}_{>0}}$ a known sequence of positive numbers, satisfying $f_n = O(n^c)$ and *d* initial values $T_0, \ldots, T_{d-1} \in \mathbb{R}_{>0}$.

Let z_0 be the root with largest absolute value of $z^d - \sum_{j=1}^i z^{d-d_j}$ and assume $f_n = O((z - \varepsilon)^n)$ for some fixed $\varepsilon > 0$.

Then $T_n = O(T_n^0)$ where T_n^0 is defined as T_n with $f_n \equiv 0$.

A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations

 \longrightarrow

 \longrightarrow

Sequence Land

- number sequence $(a_n)_{n\geq 0}$
- recurrence equation

let closed form for a_n

Generating Function Land

- (ordinary) generating function $A(z) = \sum a_n z^n$
- (functional) equation for A(z)
 - \downarrow solve, simplify (e.g., partial fractions)
- \rightsquigarrow closed form for A(z)
- exact coefficients $[z^n]A(z)$
- OR approximate A(z)near its *dominant singularity*

- asymptotic approximation $a_n = z_0^{-n} n^{\alpha-1} (1 \pm O(n^{-1}))$
- ← transfer thms
- \rightsquigarrow singular expansion at $z = z_0$ $A(z) = f(z) \pm O((1 - z/z_0)^{-\alpha})$

O-Transfer

Theorem 4.30 (Transfer-Theorem of Singularity Analysis) Assume f(z) is Δ -analytic and admits the singular expansion

$$f(z) = g(z) \pm O((1-z)^{-\alpha}) \qquad (z \to 1)$$

with $\alpha \in \mathbb{R}$. Then

$$[z^n]f(z) = [z^n]g(z) \pm O(n^{\alpha-1}) \qquad (n \to \infty).$$

Possible Extensions

- ▶ (constant) coefficients c_j · T_{n-d_j} in recurrence → different characteristic polynomial, same ideas
- any recurrence that leads to a representation of the generating function as a singular expansion around the dominant singularity.

$$f(z) = c(1 - z/z_0)^{-m} \pm O((1 - z/z_0)^{-m+1}) \quad (z \to z_0)$$

$$\rightsquigarrow [z^n] f(z) = \frac{c}{(m-1)!} z_0^{-n} n^{m-1} \cdot \left(1 \pm O(n^{-1})\right) \quad (n \to \infty)$$

• other powers α in $1/(1-z)^{\alpha}$:

$$[z^n]\frac{1}{(1-\frac{z}{z_0})^{\alpha}} = \frac{z_0^{-n}n^{\alpha-1}}{\Gamma(\alpha)} \left(1 \pm O(n^{-1})\right) \qquad (n \to \infty) \qquad \begin{array}{c} -\alpha \notin \mathbb{N}_0\\ z_0 > 0 \end{array}$$

▶ much more! ~→ analytic combinatorics

Analysis of interleaved betterFptVertexCover [2]

►
$$T_0 = \Theta(1)$$

 $T_k = O(k^2) + T_{k-3} + T_{k-1}$

 $\rightsquigarrow T_k = O(1.4656^k)$ (same characteristic polynomial)

• Total time: $O(1.4656^k + n + m)$

• The current record is $O(1.2738^k + kn)$ time

Summary

- Strategies for fpt algorithms
 - Use parameter to bound depth of exhaustive search
 - ► Use problem specific reduction rules to shrink input ~→ kernel(ization)s
- ▶ analysis of exact exponential searches often reduces to linear recurrences
 - generating functions!
- more clever branching reduces exponent of search space
- interleaving kernelization and exhaustive search improves polynomial parts