
4 Fixed-Parameter

Algorithms

14 May 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-06-04 14:42 H

Outline

4 Fixed-Parameter Algorithms

4.1 Fixed-Parameter Tractability

4.2 Depth-Bounded Exhaustive Search I

4.3 Problem Kernels

4.4 Depth-Bounded Search II: Planar Independent Set

4.5 Depth-Bounded Search III: Closest String

4.6 Linear Recurrences & Better Vertex Cover

4.7 Interleaving

Philosophy of FPT

▶ Goal: Principled theory for studying complexity based on two dimensions:
input size 𝑛 = |𝑥| (encoding length) and some additional parameter 𝑘

▶ generalize ideas from 𝑘 = MaxInt(𝑥)
▶ investigate influence of 𝑘 (and 𝑛) on running time

⇝ Try to find a parameter 𝑘 such that
(1) the problem can be solved efficiently as long as 𝑘 is small, and
(2) practical instances have small values of 𝑘 (even where 𝑛 gets big).

1

Motivation: Satisfiability

Consider Satisfiability of CNF formula the drosophila melanogaster of complexity theory
▶ general worst case: NP-complete

▶ 𝑘 = #literals per clause
▶ 𝑘 ≤ 2 ⇝ in P
▶ 𝑘 ≥ 3 NP-complete

▶ 𝑘 = #variables
▶ 𝑂(2𝑘 · 𝑛) time possible (try all assignments)

▶ 𝑘 = #clauses?

▶ 𝑘 = #literals?

▶ 𝑘 = #ones in satisfying assignment

▶ 𝑘 = structural property of formula

▶ for Max-SAT, 𝑘 = #optimal clauses to satisfy
2

Parameters

Definition 4.1 (Parameterization)

Let Σ a (finite) alphabet. A parameterization (of Σ★) is a mapping 𝜅 : Σ★→ ℕ that is polytime
computable. ◀

Definition 4.2 (Parameterized problem)

A parameterized (decision) problem is a pair (𝐿, 𝜅) of a language 𝐿 ⊂ Σ★ and a parameterization
𝜅 of Σ★. ◀

Definition 4.3 (Canonical Parameterizations)

We can often specify a parameterized problem conveniently as a language of pairs 𝐿 ⊂ Σ★ ×ℕ
with

(𝑥, 𝑘) ∈ 𝐿 ∧ (𝑥, 𝑘′) ∈ 𝐿 → 𝑘 = 𝑘′

using the canonical parameterization 𝜅(𝑥, 𝑘) = 𝑘. ◀

3

Examples

As before: Typically leave encoding implicit.

Definition 4.4 (p-variables-SAT)

Given: formula boolean 𝜙 (same as before)
Parameter: number of variables
Question: Is there a satisfying assignment 𝑣 : [𝑛] → {0, 1} ? ◀

Definition 4.5 (p-Clique)

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ
Parameter: 𝑘
Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢, 𝑣 ∈ 𝑉 ′ : {𝑢, 𝑣} ∈ 𝐸 ? ◀

4

Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)

Let𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 , 𝑀, cost, goal) be an optimization problem.
Then 𝑝-𝑈 denotes the (canonically) parameterized (decision) problem given by the threshold
problem Lang𝑈 . ◀

Recall: Lang𝑈 is the set of pairs (𝑥, 𝑘) of all instances 𝑥 ∈ 𝐿𝐼 that have solutions that are
weakly “better” than 𝑘.

Examples:
▶ 𝑝-Clique

▶ 𝑝-Vertex-Cover

▶ 𝑝-Graph-Coloring

▶ . . .

Naming convention for other parameters:
𝑝-clause-CNF-SAT: CNF-SAT with parameter “number of clauses”

5

4.1 Fixed-Parameter Tractability

Exemplary Running Times of Parameterized Problems

(consider simplest brute-force methods for problems)▶ 𝑝-variables-SAT
▶ 𝑘 variables, 𝑛 length of formula
⇝ 𝑂(2𝑘 · 𝑛) running time

▶ 𝑝-Clique
▶ 𝑘 threshold (clique size); 𝑛 vertices, 𝑚 edges in graph
⇝

(𝑛
𝑘

)
candidates to check, each takes time 𝑂(𝑘2) to check

⇝ Total time 𝑂(𝑛𝑘 · 𝑘2)

▶ 𝑝-VertexCover
▶ 𝑘 threshold (VC size); 𝑛 vertices, 𝑚 edges in graph
⇝

(𝑛
𝑘

)
candidates to check, each takes time 𝑂(𝑚) to check

⇝ Total time 𝑂(𝑛𝑘 · 𝑚)

▶ 𝑝-GraphColoring
▶ 𝑘 threshold (#colors); 𝑛 vertices, 𝑚 edges in graph
⇝ 𝑘𝑛 candidates to check, each takes time 𝑂(𝑚)
⇝ Total time 𝑂(𝑘𝑛 · 𝑚)

6

FPT Running Time

Definition 4.7 (fpt-algorithm)

Let 𝜅 be a parameterization for Σ★.
A (deterministic) algorithm 𝐴 (with input alphabet Σ) is a fixed-parameter tractable algorithm
(fpt-algorithm) w.r.t. 𝜅 if its running time on 𝑥 ∈ Σ★ with 𝜅(𝑥) = 𝑘 is at most

𝑓 (𝑘) · 𝑝(|𝑥|) = 𝑂
(
𝑓 (𝑘) · |𝑥|𝑐

)
where 𝑝 is a polynomial of degree 𝑐 and 𝑓 is an arbitrary computable function. ◀

Definition 4.8 (FPT)

A parameterized problem (𝐿, 𝜅) is fixed-parameter tractable if there is an fpt-algorithm that
decides it.
The complexity class of all such problems is denoted by FPT. ◀

Intuitively, FPT plays the role of P.

7

A First FPT Example

Theorem 4.9 (p-variables-SAT is FPT)

𝑝-variables-SAT ∈ FPT. ◀

Proof:

Suffices to use brute force satisfiability for 𝑝-variables-SAT

1 procedure bruteForceSat(𝜑, X = {𝑥1 , . . . , 𝑥𝑘})
2 if 𝑘 == 0
3 if 𝜑 == true return ∅ else UNSATISFIABLE
4 for value in {true, false} do

5 𝐴 := {𝑥1 ↦→ value}
6 𝜓 := 𝜑[𝑥1/value] // Substitute value for 𝑥1
7 𝐵 := bruteForceSat(𝜓, {𝑥2 , . . . , 𝑥𝑘})
8 if 𝐵 ≠ UNSATISFIABLE
9 return 𝐴 ∪ 𝐵

Worst case running time: 𝑂(2𝑘 𝑛) for 𝑛 = |𝜑|.
2𝑘 recursive calls;
base case needs time 𝑂(|𝜙|) to check whether formula evaluates to true ■

. . . but #variables not usually small
8

Aren’t we all FPT?

Theorem 4.10 (k never decreases → FPT)

Let 𝑔 : ℕ→ ℕ weakly increasing, unbounded and computable, and 𝜅 a parameterization
with

∀𝑥 ∈ Σ★ : 𝜅(𝑥) ≥ 𝑔(|𝑥|).

Then (𝐿, 𝜅) ∈ FPT for any decidable 𝐿. ◀

𝑔 weakly increasing: 𝑛 ≤ 𝑚 → 𝑔(𝑛) ≤ 𝑔(𝑚)
𝑔 unbounded: ∀𝑡 ∃𝑛 : 𝑔(𝑛) ≥ 𝑡
Proof:

9

Aren’t we all FPT? – Proof

Proof (cont.):

■

10

Back to “sensible” parameters

⇝ always check if parameter is reasonable (can be expected to be small)
▶ if not, FPT might not even mean in NP!

▶ but now, for some positive examples!

11

4.2 Depth-Bounded Exhaustive Search I

FPT Design Pattern

▶ The simplest FPT algorithms use exhaustive search

▶ but with a search tree bounded by 𝑓 (𝑘)

▶ bruteforceSat was a typical example!

▶ does this work on other problems?

12

Depth-Bounded Search for Vertex Cover

Let’s try 𝑝-VertexCover.
Key insight: for every edge {𝑣, 𝑤}, any vertex cover must contain 𝑣 or 𝑤

1 procedure simpleFptVertexCover(𝐺 = (𝑉, 𝐸), 𝑘):
2 if 𝐸 == ∅ then return ∅
3 if 𝑘 == 0 then return NOT_POSSIBLE // truncate search
4 Choose {𝑣, 𝑤} ∈ 𝐸 (arbitrarily)
5 for 𝑢 in {𝑣, 𝑤} do:
6 𝐺𝑢 :=

(
𝑉 \ {𝑢}, 𝐸 \ {{𝑢, 𝑥} ∈ 𝐸}

)
// Remove 𝑢 from 𝐺

7 𝐶𝑢 := simpleFptVertexCover(𝐺𝑢 , 𝑘 − 1)
8 if 𝐶𝑣 == NOT_POSSIBLE then return 𝐶𝑤 ∪ {𝑤}
9 if 𝐶𝑤 == NOT_POSSIBLE then return 𝐶𝑣 ∪ {𝑣}

10 if |𝐶𝑣 | ≤ |𝐶𝑤 | then return 𝐶𝑣 ∪ {𝑣} else return 𝐶𝑤 ∪ {𝑤}

▶ Does not need explicit checks of solution candidates!
▶ runs in time 𝑂

(
2𝑘(𝑛 + 𝑚)

)
⇝ fpt-algorithm for 𝑝-Vertex-Cover

13

Guessing the parameter

▶ Note: Previous algorithm only uses 𝑘 to truncate branches.

⇝ We can guess a 𝑘 and it still works

⇝ Try all 𝑘!
1 procedure vertexCoverBfs(𝐺 = (𝑉, 𝐸))
2 for 𝑘 := 0, 1, . . . , |𝑉| do

3 𝐶 := simpleFptVertexCover(𝐺, 𝑘)
4 if 𝐶 ≠ NOT_POSSIBLE return 𝐶

▶ Running time:
𝑘∑

𝑘′=0
𝑂(2𝑘′(𝑛 + 𝑚)) = 𝑂(2𝑘(𝑛 + 𝑚))

⇝ For exponentially growing cost, trying all values up to 𝑘 costs only constant factor more

14

4.3 Problem Kernels

Preprocessing

▶ Second key fpt technique are reduction rules

▶ Idea: Reduce the size of the instance (in polytime)
without changing its outcome

▶ Trivial example for SAT:

If a CNF formula contains a single-literal clause {𝑥} resp. {¬𝑥},
set 𝑥 to true resp. false and remove the clause.

▶ doesn’t do anything in the worst case . . .

▶ special case of resolution calculus rule 𝑎1 ∨ 𝑎2 ∨ · · · ∨ 𝑥, 𝑏1 ∨ 𝑏2 ∨ · · · ∨ ¬𝑥
𝑎1 ∨ 𝑎2 ∨ · · · ∨ 𝑏1 ∨ 𝑏2 ∨ · · ·

▶ basis of practical SAT solvers

▶ Trivial example for VertexCover

Remove vertices of degree 0 or 1. (never needed as part of optimal VC)

▶ Here: reduction rules that provably shrink an instance to size 𝑔(𝑘)

15

Buss’s Reduction Rule for VC

▶ Given a 𝑝-VertexCover instance (𝐺, 𝑘)

“deg > 𝒌” Rule: If 𝐺 contains vertex 𝑣 of degree deg(𝑣) > 𝑘,
include 𝑣 in potential solution and remove it from the graph.

▶ Can apply this simultaneously to degree > 𝑘 vertices.

▶ Either rule applies, or all vertices bounded degree(!)

16

Kernels

Definition 4.11 (Kernelization)

Let (𝐿, 𝜅) be a parameterized problem. A function 𝐾 : Σ★→ Σ★ is kernelization of 𝐿 w.r.t. 𝜅 if
it maps any 𝑥 ∈ 𝐿 to an instance 𝑥′ = 𝐾(𝑥)with 𝑘′ = 𝜅(𝑥′) so that

1. (self-reduction) 𝑥 ∈ 𝐿 ⇐⇒ 𝑥′ ∈ 𝐿
2. (polytime) 𝐾 is computable in polytime.
3. (kernel-size) |𝑥′| ≤ 𝑔(𝑘) for some computable function 𝑔

We call 𝑥′ the (problem) kernel of 𝑥 and 𝑔 the size of the problem kernel. ◀

17

Buss’s Kernel

Buss’s Reduction for Vertex Cover: (repeatedly apply until no more changes)

▶ deg > 𝑘 rule
▶ Remove degree 0 and 1 vertices

Theorem 4.12 (Buss’s Reduction is Kernelization)

Buss’ reduction yields a kernelization for 𝑝-Vertex-Cover with kernel size 𝑂(𝑘2). ◀

Proof:

After repeatedly applying Buss’s rule as well as the isolated/leaf rule until neither applies
further, we have ∀𝑣 ∈ 𝑉 : 2 ≤ deg(𝑣) ≤ 𝑘.
(Note that the rule might reduce the parameter 𝑘).
In the resulting graph, any VC of size ≤ 𝑘 covers ≤ 𝑘2 edges.
If 𝑚 > 𝑘2, we output a trivial No-instance (e. g., a 𝐾𝑘+1 a complete graph on 𝑘 + 1 vertices).
If 𝑚 ≤ 𝑘2, then the input size is now bounded by 𝑔(𝑘) = 2𝑘2. ■

18

FPT iff Kernelization

Theorem 4.13 (FPT ↔ kernel)

A computable, parameterized problem (𝐿, 𝜅) is fixed-parameter tractable if and only if there
is a kernelization for 𝐿 w.r.t. 𝜅. ◀

Proof:

19

FPT iff Kernelization [2]

Proof (cont.):

■

20

Max-SAT Kernel

Theorem 4.14 (Kernel for Max-SAT)

𝑝-Max-SAT has a problem kernel of size 𝑂(𝑘2)which can be constructed in linear time. ◀

Proof:

21

Max-SAT Kernel [2]

Proof (cont.):

22

Max-SAT Kernel [3]

Proof (cont.):

■
Corollary 4.15

𝑝-Max-SAT ∈ FPT ◀

23

4.4 Depth-Bounded Search II: Planar Independent

Set

Deeper results (towards more shallow trees)

▶ Our previous examples of depth-bounded search were basically brute force

▶ Here we will see two more examples that exploit the problem structure in more
interesting ways

24

Independent Set on Planar Graphs

Recall: general problem 𝑝-Independent-Set is W[1]-hard.

Definition 4.16 (𝒑-Planar-Independent-Set)

Given: a planar graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ
Parameter: 𝑘
Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢, 𝑣 ∈ 𝑉 ′ : {𝑢, 𝑣} ∉ 𝐸 ? ◀

Theorem 4.17 (Depth-Bounded Search for Planar Independent Set)

𝑝-Planar-Independent-Set is in FPT and can be solved in time 𝑂(6𝑘𝑛). ◀

25

Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler’s formula)

In any finite, connected planar graph 𝐺 with 𝑛 nodes, 𝑚 edges 𝑓 holds 𝑛 − 𝑚 + 𝑓 = 2. ◀

Corollary 4.19

A simple planar graph 𝐺 on 𝑛 ≥ 3 nodes has 𝑚 ≤ 3𝑛 − 6 edges.
The average degree in 𝐺 is < 6. ◀

26

Depth-Bounded Search for Planar Independent Set

1 procedure planarIndependentSet(𝐺 = (𝑉, 𝐸), 𝑘):
2 if 𝑘 == 0 then return ∅
3 if 𝑘 > |𝑉| then return NOT_POSSIBLE // truncate search
4 Choose 𝑣 ∈ 𝑉 with minimal degree; let 𝑤1 , . . . , 𝑤𝑑 be 𝑣's neighbors
5 // By planarity, we know 𝑑 ≤ 5.
6 for 𝑢 in {𝑣, 𝑤1 , . . . , 𝑤𝑑} do

7 𝐷 := {𝑢} ∪ 𝑁(𝑢)
8 𝐺𝑢 :=

(
𝑉 \ 𝐷, 𝐸 \ {{𝑥, 𝑦} ∈ 𝐸 : 𝑥 ∈ 𝐷}

)
// Delete 𝑢 and its neighbors

9 𝐼𝑢 := {𝑢} ∪ planarIndependentSet(𝐺𝑢 , 𝑘 − 1)
10 return largest 𝐼𝑢 or NOT_POSSIBLE if none exists

27

Summary Planar Independent Set

▶ Note: IndependentSet is NP-hard on planar graphs even with vertex degrees at most 3

▶ planarIndependentSet will often be faster than 𝑂(6𝑘𝑛)

▶ works unchanged in 𝑂((𝑑 + 1)𝑘𝑛) time for any degeneracy
every (induced) subgraph has vertex of degree at most 𝑑

-𝑑 graph

28

4.5 Depth-Bounded Search III: Closest String

Closest String

Definition 4.20 (𝒑-Closest-String)

Given: S set of 𝑚 strings 𝑠1 , 𝑠2 , . . . , 𝑠𝑚 of length 𝐿 over alphabet Σ and a 𝑘 ∈ ℕ.
Parameter: 𝑘
Question: Is there a string 𝑠 for which 𝑑𝐻(𝑠, 𝑠𝑖) ≤ 𝑘 holds for all 𝑖 = 1, . . . , 𝑚? ◀

29

Dirty Columns

Definition 4.21 (Dirty Column)

A column of the 𝑚 × 𝐿 matrix corresponding to 𝑚 strings of length 𝐿 is called dirty if it
contains at least 2 different symbols. ◀

Lemma 4.22 (Many Dirty Columns → No)

Let an instance to Closest-String with 𝑚 strings of length 𝐿 and parameter 𝑘 be given.
If the corresponding 𝑚 × 𝐿 matrix contains more than 𝑚 · 𝑘 dirty columns, then no solution
for the given instance exists. ◀

30

Depth-Bounded Search for Closest String

1 procedure closestStringFpt(𝑠, 𝑑):
2 if 𝑑 < 0 then return NOT_POSSIBLE
3 if 𝑑𝐻 (𝑠, 𝑠𝑖) > 𝑘 + 𝑑 for an 𝑖 ∈ {1, . . . , 𝑚} then

4 return NOT_POSSIBLE
5 if 𝑑𝐻 (𝑠, 𝑠𝑖) ≤ 𝑘 for all 𝑖 = 1, . . . , 𝑚 then return 𝑠

6 Choose 𝑖 ∈ {1, . . . , 𝑚} arbitrarily with 𝑑𝐻 (𝑠, 𝑠𝑖) > 𝑘

7 𝑃 :=
{
𝑝 : 𝑠[𝑝] ≠ 𝑠𝑖[𝑝]

}
8 Choose arbitrary 𝑃′ ⊆ 𝑃 with |𝑃′| = 𝑘 + 1
9 for 𝑝 in 𝑃′ do

10 𝑠′ := 𝑠

11 𝑠′[𝑝] := 𝑠𝑖[𝑝]
12 𝑠ret := closestStringFpt(𝑠′, 𝑑 − 1)
13 if 𝑠ret ≠ NOT_POSSIBLE then return 𝑠ret
14 return NOT_POSSIBLE

▶ initial call closestStringFpt(𝑠1 , 𝑘)

31

Too Much Dirt

Lemma 4.23 (Pair Too Different → No)

Let 𝑆 = {𝑠1 , 𝑠2 , . . . , 𝑠𝑚} a set of strings and 𝑘 ∈ ℕ. If there are 𝑖 , 𝑗 ∈ {1, . . . , 𝑚}with
𝑑𝐻(𝑠𝑖 , 𝑠 𝑗) > 2𝑘, then there is no string 𝑠 with max1≤𝑖≤𝑚 𝑑𝐻(𝑠, 𝑠𝑖) ≤ 𝑘. ◀

32

Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)

There is a search tree of size 𝑂(𝑘𝑘) for problem 𝑝-Closest-String. ◀

Corollary 4.25 (Closest String is FPT)

𝑝-Closest-String can be solved in time 𝑂(𝑚𝐿 + 𝑚𝑘 · 𝑘𝑘). ◀

▶ preprocessing (𝑂(𝑚𝐿) time)
▶ ignore any clean columns
▶ reject if more than 𝑚𝑘 dirty columns

⇝ effective string length after preprocessing is 𝐿′ ≤ 𝑚𝑘
▶ call closestStringFpt(𝑠1 , 𝑘)

▶ maintain 𝑑𝐻 (𝑠, 𝑠𝑖) in an array
⇝ checking any distance 𝑑𝐻 (𝑠, 𝑠𝑖) takes 𝑂(1) time
▶ before and after recursive call, update array to reflect 𝑑𝐻 (𝑠′, 𝑠𝑖)

Single character changed, so update only needs to check single position
⇝ Can maintain distances in 𝑂(𝑚) time per recursive call

▶ 𝑃′ can be computed in 𝑂(𝑚𝑘) time

33

4.6 Linear Recurrences & Better Vertex Cover

A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of 𝑘 edges gives search space of size 2𝑘 for Vertex-Cover.
Can we do better?

Idea: Enlarge base case with “easy inputs”
Here: Consider graphs 𝐺 with deg(𝑣) ≤ 2 for all 𝑣 ∈ 𝑉(𝐺).

34

Depth-Bounded Search for Vertex Cover

1 procedure betterFptVertexCover(𝐺 = (𝑉, 𝐸), 𝑘):
2 if 𝐸 = ∅ then return ∅
3 if 𝑘 = 0 then return NOT_POSSIBLE // truncate search
4 if all node have degree ≤ 2 then

5 Find connected components of 𝐺
6 for each component 𝐺𝑖 do

7 Fill 𝐶𝑖 by picking every other node,
8 starting with the neighbor of a degree-one node if one exists
9 𝐶 :=

⋃
𝐶𝑖

10 if |𝐶| ≤ 𝑘 then return 𝐶 else return NOT_POSSIBLE
11 Choose 𝑣 with maximal degree, let 𝑤1 , . . . , 𝑤𝑑 be its neighbors // 𝑑 ≥ 3
12 For 𝐷 in {{𝑣}, {𝑤1 , . . . , 𝑤𝑑}} do:
13 𝐺𝐷 :=

(
𝑉 \ 𝐷, 𝐸 \ {{𝑥, 𝑦} ∈ 𝐸 : 𝑥 ∈ 𝐷}

)
// Remove 𝐷 from 𝐺

14 𝐶𝐷 := 𝐷 ∪ betterFptVertexCover(𝐺𝑢 , 𝑘 − |𝐷|)
15 return smallest 𝐶𝐷 or NOT_POSSIBLE if none exists

How to analyze running time of betterFptVertexCover?

35

Analysis of betterFptVertexCover

worst case running time

▶ never have all degrees ≤ 2

▶ always need both recursive calls (until base case)

▶ ignore that graph gets smaller

𝑇0 = Θ(1)
𝑇𝑘 = Θ(|𝑉| + |𝐸|) + 𝑇𝑘−3 + 𝑇𝑘−1

If we only number of base cases 𝐵𝑛 , we obtain 𝑇𝑛 = 𝑂(𝐵𝑛𝑛2)

𝐵0 = 1, 𝐵1 = 1, 𝐵2 = 1
𝐵𝑘 = 𝐵𝑘−3 + 𝐵𝑘−1 (𝑘 ≥ 3)

36

Solving Linear Recurrences

37

Solving Linear Recurrences – Result

Theorem 4.26 (Linear Recurrences)

Let 𝑑1 , . . . , 𝑑𝑖 ∈ ℕ and 𝑑 = max 𝑑 𝑗 .
The solution to the homogeneous linear recurrence equation

𝑇𝑛 = 𝑇𝑛−𝑑1 + 𝑇𝑛−𝑑2 + · · · + 𝑇𝑛−𝑑𝑖 , (𝑛 ≥ 𝑑)

is always given by

𝑇𝑛 =

∑
ℓ

𝜇ℓ−1∑
𝑗=0

𝑐ℓ , 𝑗 𝑧
𝑛
ℓ 𝑛

𝑗

where we sum over all roots 𝑧ℓ of multiplicity 𝜇ℓ of the so-called characteristic polynomial
𝑧𝑑 − 𝑧𝑑−𝑑1 − 𝑧𝑑−𝑑2 · · · − 𝑧𝑑−𝑑𝑖 .
The 𝑑 coefficients 𝑐ℓ , 𝑗 are determined by the 𝑑 initial values 𝑇0 , 𝑇1 , . . . , 𝑇𝑑−1. ◀

Corollary 4.27

𝑇𝑛 = 𝑂(𝑧𝑛0 𝑛𝑑) for 𝑧0 the root of the characteristic polynomial with largest absolute value. ◀

38

Analysis of betterFptVertexCover [2]

𝑇0 = Θ(1)
𝑇𝑘 = Θ(|𝑉| + |𝐸|) + 𝑇𝑘−3 + 𝑇𝑘−1

If we only number of base cases 𝐵𝑛 , we obtain 𝑇𝑛 = 𝑂(𝐵𝑛𝑛2)

𝐵0 = 1, 𝐵1 = 1, 𝐵2 = 1
𝐵𝑘 = 𝐵𝑘−3 + 𝐵𝑘−1 (𝑘 ≥ 3)

⇝ ®𝑑 = (1, 3); characteristic polynomial 𝑧3 − 𝑧2 − 1
roots at 𝑧0 ≈ 1.4656 and 𝑧1,2 ≈ −0.2328 ± 0.7926𝑖

Theorem 4.28 (Depth-Bounded Search for Vertex Cover)

𝑝-Vertex-Cover can be solved in time 𝑂(1.4656𝑘𝑛2). ◀

39

4.7 Interleaving

Motivation

Up to now, considered two-phase algorithms
1. Reduction to problem kernel
2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization in each recursive step.

40

(Extreme) Example: Vertex Cover with large-degree rule

▶ As a (slightly artificial) example, consider only using the simple reduction rule

“deg > 𝒌” Rule: If 𝐺 contains vertex 𝑣 of degree deg(𝑣) > 𝑘,
include 𝑣 in potential solution and remove it from the graph.

▶ Algorithm A:

1. Apply deg > 𝑘 rule until saturation
2. Call simpleFptVertexCover (recursively branch over arbitrary edge)

▶ Algorithm B: Same, interleaved:
▶ Modified simpleFptVertexCover
▶ Before choosing each new edge

to branch on, apply deg > 𝑘 rule.

41

SimpleFptVertexCover Interleaved

1 procedure simpleFptVertexCover(𝐺 = (𝑉, 𝐸), 𝑘):
2 if 𝐸 == ∅ then return ∅
3 if 𝑘 == 0 then return NOT_POSSIBLE
4 // nothing
5 // new
6 // on
7 // this
8 // side
9 Choose {𝑣, 𝑤} ∈ 𝐸 (arbitrarily)

10 for 𝑢 in {𝑣, 𝑤} do:
11 𝐺𝑢 := 𝐺[𝑉 \ {𝑢}]
12 𝐶𝑢 := simpleFptVertexCover(𝐺𝑢 , 𝑘 − 1)
13 if 𝐶𝑣 == NOT_POSSIBLE then return 𝐶𝑤 ∪ {𝑤}
14 if 𝐶𝑤 == NOT_POSSIBLE then return 𝐶𝑣 ∪ {𝑣}
15 if |𝐶𝑣 | ≤ |𝐶𝑤 | then

16 return 𝐶𝑣 ∪ {𝑣}
17 else

18 return 𝐶𝑤 ∪ {𝑤}

1 procedure simpleInterleavedVC(𝐺 = (𝑉, 𝐸), 𝑘):
2 if 𝐸 == ∅ then return ∅
3 if 𝑘 == 0 then return NOT_POSSIBLE
4 𝐶 := ∅
5 while ∃𝑣 ∈ 𝑉 : deg(𝑣) > 𝑘

6 𝐺 := 𝐺[𝑉 \ {𝑣}] // Remove 𝑣
7 𝐶 := 𝐶 ∪ {𝑣}
8 𝑘 := 𝑘 − 1
9 Choose {𝑣, 𝑤} ∈ 𝐸 (arbitrarily)

10 for 𝑢 in {𝑣, 𝑤} do:
11 𝐺𝑢 := 𝐺[𝑉 \ {𝑢}]
12 𝐶𝑢 := 𝑪 ∪ simpleInterleavedVC(𝐺𝑢 , 𝑘 − 1)
13 if 𝐶𝑣 == NOT_POSSIBLE then return 𝐶𝑤 ∪ {𝑤}
14 if 𝐶𝑤 == NOT_POSSIBLE then return 𝐶𝑣 ∪ {𝑣}
15 if |𝐶𝑣 | ≤ |𝐶𝑤 | then

16 return 𝐶𝑣 ∪ {𝑣}
17 else

18 return 𝐶𝑤 ∪ {𝑤}

42

Comparison on Lollipop Flowers

Consider family of graphs 𝐺𝑘 “Lollipop Flowers”:
“head” vertex with 𝑘 − 2 stars of 𝑘 − 2 leaves each attached + “tail” of 3𝑘 + 1 vertex path

𝑛 = |𝑉(𝐺𝑘)| = (𝑘 − 2)(𝑘 − 1) + 1 + 3𝑘 + 1 = 𝑘2 + 4

Algorithm A

deg > 𝑘 rule does nothing
search space remains 2𝑘
Answer No after exploring all branches

⇝ time Θ(2𝑘 𝑘2)

Algorithm B

initially same (no reduction)
after 2 edges removed from tail, parameter 𝑘−2
vertices in head have degree 𝑘 − 1
Output No (parameter 0, but tail edges left)
⇝ time Θ(𝑘2)

43

Setting for Interleaving

Can we prove a general speedup?

Assumptions: (more restrictive than general kernelization!)

▶ 𝐾 kernelization that
▶ produces kernel of size ≤ 𝑞(𝑘) for 𝑞 a polynomial
▶ in time ≤ 𝑝(𝑛) for 𝑝 a polynomial

▶ Branch in depth-bounded search tree
▶ into 𝑖 subproblems with branching vector ®𝑑 = (𝑑1 , . . . , 𝑑𝑖)

(i. e., parameter in subproblems 𝑘 − 𝑑1 , . . . , 𝑘 − 𝑑𝑖)
▶ Branching is computed in time ≤ 𝑟(𝑛) for 𝑟 a polynomial

⇝ search space has size 𝑂(𝛼𝑘).

⇝ Running time of two-phase approach on input 𝑥 with 𝑛 = |𝑥| and 𝑘 = 𝜅(𝑥):

𝑂
(
𝑝(𝑛) + 𝑟

(
𝑞(𝑘)

)
· 𝛼𝑘

)
44

With Interleaving

Generic interleaving:

1 if |𝐼| > 𝑐 · 𝑞(𝑘) then

2 (𝐼 , 𝑘) := (𝐼′, 𝑘′)where (𝐼′, 𝑘′) forms a problem kernel // Conditional Reduction
3 end

4 replace (𝐼 , 𝑘)with (𝐼1 , 𝑘 − 𝑑1), (𝐼2 , 𝑘 − 𝑑2), . . . , (𝐼𝑖 , 𝑘 − 𝑑𝑖) // Branching

⇝ Running time of interleaved approach on input 𝑥 with 𝑛 = |𝑥| and 𝑘 = 𝜅(𝑥) is at most 𝑇𝑘 :

𝑇ℓ = 𝑇ℓ−𝑑1 + · · · + 𝑇ℓ−𝑑𝑖 + 𝑝
(
𝑞(ℓ)

)
+ 𝑟

(
𝑞(ℓ)

)
Compare to non-interleaved version:

𝑇ℓ = 𝑇ℓ−𝑑1 + · · · + 𝑇ℓ−𝑑𝑖 + 𝑟
(
𝑞(𝑘)

)
Here the inhomogeneous term is constant w.r.t. ℓ , but depends on 𝑘
⇝ cannot ignore constant factors

45

Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > 𝑘 rule added.
▶ Initial call has unbounded 𝑛 and 𝑚; after applying degree 0, 1, > 𝑘 rules (in 𝑂(𝑛 + 𝑚)

time) size of graph 𝑛 + 𝑚 = 𝑂(𝑘2)

▶ interleaving ⇝ graph also bounded recursively (in terms of new 𝑘)

▶ Recursive worst-case time after first reduction:
𝑇0 = Θ(1)
𝑇𝑘 = 𝑂(𝑘2) + 𝑇𝑘−3 + 𝑇𝑘−1

46

Inhomogenous Linear Recurrences

47

Inhomogenous Linear Recurrences Summary

Theorem 4.29 (Linear Recurrences II)

Let 𝑑1 , . . . , 𝑑𝑖 ∈ ℕ and 𝑑 = max 𝑑 𝑗 .
Consider the inhomogeneous linear recurrence equation

𝑇𝑛 = 𝑇𝑛−𝑑1 + 𝑇𝑛−𝑑2 + · · · + 𝑇𝑛−𝑑𝑖 + 𝒇𝒏 , (𝑛 ≥ 𝑑)

with (𝑓𝑛)𝑛∈ℝ>0 a known sequence of positive numbers, satisfying 𝑓𝑛 = 𝑂(𝑛𝑐)
and 𝑑 initial values 𝑇0 , . . . , 𝑇𝑑−1 ∈ ℝ>0.
Let 𝑧0 be the root with largest absolute value of 𝑧𝑑 −∑𝑖

𝑗=1 𝑧
𝑑−𝑑𝑗 and assume 𝑓𝑛 = 𝑂((𝑧 − 𝜀)𝑛)

for some fixed 𝜀 > 0.
Then 𝑇𝑛 = 𝑂(𝑇0

𝑛)where 𝑇0
𝑛 is defined as 𝑇𝑛 with 𝑓𝑛 ≡ 0. ◀

48

A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations

Sequence Land

▶ number sequence (𝑎𝑛)𝑛≥0

▶ recurrence equation

▶ closed form for 𝑎𝑛

▶ asymptotic approximation
𝑎𝑛 = 𝑧−𝑛0 𝑛𝛼−1(1 ± 𝑂(𝑛−1))

−→

−→

←−

←−
transfer thms

Generating Function Land

▶ (ordinary) generating function 𝐴(𝑧) =
∑
𝑛≥0

𝑎𝑛𝑧
𝑛

▶ (functional) equation for 𝐴(𝑧)

↓ solve, simplify (e. g., partial fractions)

⇝ closed form for 𝐴(𝑧)

▶ exact coefficients [𝑧𝑛]𝐴(𝑧)

OR approximate 𝐴(𝑧)
near its dominant singularity

⇝ singular expansion at 𝑧 = 𝑧0
𝐴(𝑧) = 𝑓 (𝑧) ± 𝑂((1 − 𝑧/𝑧0)−𝛼)

49

O-Transfer

Theorem 4.30 (Transfer-Theorem of Singularity Analysis)

Assume 𝑓 (𝑧) is Δ-analytic and admits the singular expansion

𝑓 (𝑧) = 𝑔(𝑧) ± 𝑂
(
(1 − 𝑧)−𝛼

)
(𝑧 → 1)

with 𝛼 ∈ ℝ. Then

[𝑧𝑛] 𝑓 (𝑧) = [𝑧𝑛]𝑔(𝑧) ± 𝑂
(
𝑛𝛼−1) (𝑛 →∞). ◀

50

Possible Extensions

▶ (constant) coefficients 𝑐 𝑗 · 𝑇𝑛−𝑑𝑗 in recurrence
⇝ different characteristic polynomial, same ideas

▶ any recurrence that leads to a representation of the generating function as a singular
expansion around the dominant singularity.

𝑓 (𝑧) = 𝑐(1 − 𝑧/𝑧0)−𝑚 ± 𝑂((1 − 𝑧/𝑧0)−𝑚+1) (𝑧 → 𝑧0)

⇝ [𝑧𝑛] 𝑓 (𝑧) =
𝑐

(𝑚 − 1)! 𝑧
−𝑛
0 𝑛𝑚−1 ·

(
1 ± 𝑂(𝑛−1)

)
(𝑛 →∞)

▶ other powers 𝛼 in 1/(1 − 𝑧)𝛼:

[𝑧𝑛] 1
(1 − 𝑧

𝑧0
)𝛼 =

𝑧−𝑛0 𝑛𝛼−1

Γ(𝛼)
(
1 ± 𝑂(𝑛−1)

)
(𝑛 →∞) −𝛼 ∉ ℕ0

𝑧0 > 0

▶ much more! ⇝ analytic combinatorics

51

Analysis of interleaved betterFptVertexCover [2]

▶ 𝑇0 = Θ(1)
𝑇𝑘 = 𝑂(𝑘2) + 𝑇𝑘−3 + 𝑇𝑘−1

⇝ 𝑇𝑘 = 𝑂(1.4656𝑘) (same characteristic polynomial)

▶ Total time: 𝑂(1.4656𝑘 + 𝑛 + 𝑚)

▶ The current record is 𝑂(1.2738𝑘 + 𝑘𝑛) time

52

Summary

▶ Strategies for fpt algorithms
▶ Use parameter to bound depth of exhaustive search
▶ Use problem specific reduction rules to shrink input ⇝ kernel(ization)s

▶ analysis of exact exponential searches often reduces to linear recurrences
▶ generating functions!

▶ more clever branching reduces exponent of search space

▶ interleaving kernelization and exhaustive search improves polynomial parts

53

	Fixed-Parameter Algorithms
	Philosophy of FPT
	Motivation: Satisfiability
	Parameters
	Examples
	Canonical Parameterization
	Fixed-Parameter Tractability
	Exemplary Running Times of Parameterized Problems
	FPT Running Time
	A First FPT Example
	Aren't we all FPT?
	Aren't we all FPT? – Proof
	Back to ``sensible'' parameters

	Depth-Bounded Exhaustive Search I
	FPT Design Pattern
	Depth-Bounded Search for Vertex Cover
	Guessing the parameter

	Problem Kernels
	Preprocessing
	Buss's Reduction Rule for VC
	Kernels
	Buss's Kernel
	FPT iff Kernelization
	FPT iff Kernelization [2]
	Max-SAT Kernel
	Max-SAT Kernel [2]
	Max-SAT Kernel [3]

	Depth-Bounded Search II: Planar Independent Set
	Deeper results (towards more shallow trees)
	Independent Set on Planar Graphs
	Elementary Knowledge on Planar Graphs
	Depth-Bounded Search for Planar Independent Set
	Summary Planar Independent Set

	Depth-Bounded Search III: Closest String
	Closest String
	Dirty Columns
	Depth-Bounded Search for Closest String
	Too Much Dirt
	Depth-Bounded Search for Closest String

	Linear Recurrences & Better Vertex Cover
	A Better Algorithm for Vertex Cover
	Depth-Bounded Search for Vertex Cover
	Analysis of betterFptVertexCover
	Solving Linear Recurrences
	Solving Linear Recurrences – Result
	Analysis of betterFptVertexCover [2]

	Interleaving
	Motivation
	(Extreme) Example: Vertex Cover with large-degree rule
	SimpleFptVertexCover Interleaved
	Comparison on Lollipop Flowers
	Setting for Interleaving
	With Interleaving
	Analysis of interleaved betterFptVertexCover [1]
	Inhomogenous Linear Recurrences
	Inhomogenous Linear Recurrences Summary
	A Little Excursion: Singularity Analysis
	O-Transfer
	Possible Extensions
	Analysis of interleaved betterFptVertexCover [2]
	Summary

