ee Vs
OC/@T/\/@)/@\F\/ / -

Fixed-Parameter
Algorithms

14 May 2025

Prof. Dr. Sebastian Wild

Philipps-Universitdt Marburg

Outline

4 Fixed-Parameter Algorithms

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Fixed-Parameter Tractability

Depth-Bounded Exhaustive Search I

Problem Kernels

Depth-Bounded Search II: Planar Independent Set
Depth-Bounded Search III: Closest String

Linear Recurrences & Better Vertex Cover

Interleaving

Philosophy of FPT

» Goal: Principled theory for studying complexity based on two dimensions:
input size n = |x| (encoding length) and some additional parameter k

» ceneralize ideas from k = MaxInt(x)

> investigate influence of k (and 72) on running time

~+ Try to find a parameter k such that
(1) the problem can be solved efficiently as long as k is small, and
(2) practical instances have small values of k (even where 7 gets big).

Motivation: Satisfiability

Consider Satisfiability of CNF formula the drosophila melanogaster of complexity theory
» general worst case: NP-complete

> k = #literals per clause
> k <2V ink
» k > 3 NP-complete

» k =#variables
> 02k - n)time possible (try all assignments)

> k = #clauses?
> k = #literals?
» k = #ones in satisfying assignment

» k = structural property of formula

v

for Max-SAT, k = #optimal clauses to satisfy

Parameters

Definition 4.1 (Parameterization)
Let X a (finite) alphabet. A parameterization (of ©.*) is a mapping « : 2* — N that is polytime
computable. <

Definition 4.2 (Parameterized problem)

A parameterized (decision) problem is a pair (L, k) of a language L C ©* and a parameterization
K of X*. <

Definition 4.3 (Canonical Parameterizations)
We can often specify a parameterized problem conveniently as a language of pairs L € Z* X N
with

(x,k)e L A (x,k')eL — k=k

using the canonical parameterization x(x, k) = k. <

Examples

As before: Typically leave encoding implicit.

Definition 4.4 (p-variables-SAT)

Given: formula boolean ¢ (same as before)

Parameter: number of variables

Question: Is there a satisfying assignment v : [n] — {0, 1} ?
Definition 4.5 (p-Clique)

Given: graph G = (V,E) and k € N

Parameter: k
Question: AV cV : |V/| >k A Yu,ve V' :{u,v} € E?

Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)

Let U = (X1, X0, L, L1, M, cost, goal) be an optimization problem.

Then p-U denotes the (canonically) parameterized (decision) problem given by the threshold
problem Lang;;.

Recall: Lang, is the set of pairs (x, k) of all instances x € L; that have solutions that are
weakly “better” than k.

Examples:
> p-CLIQUE

» p-VERTEX-COVER
» p-GRAPH-COLORING

> ...

Naming convention for other parameters:
p-clause-CNF-SAT: CNF-SAT with parameter “number of clauses”

4.1 Fixed-Parameter Tractability

Exemplary Running Times of Parameterized Problems

> p-variables-SAT (consider simplest brute-force methods for problems)
» [k variables, n length of formula

~ 02k - 1) running time

> p-CLIQUE
» k threshold (clique size); n vertices, m edges in graph
~+ (1) candidates to check, each takes time O(k?) to check
~ Total time O(n* - k2)

» p-VERTEXCOVER
» k threshold (VC size); n vertices, m edges in graph
~ (%) candidates to check, each takes time O(1) to check
~~ Total time O(n¥ - m)

» p-GRAPHCOLORING
» k threshold (#colors); n vertices, m edges in graph
~ k™ candidates to check, each takes time O (1)
~ Total time O(k" - m)

FPT Running Time

Definition 4.7 (fpt-algorithm)

Let k be a parameterization for ©*.

A (deterministic) algorithm A (with input alphabet X) is a fixed-parameter tractable algorithm
(fpt-algorithm) w.r.t. x if its running time on x € X* with x(x) = k is at most

fk)-p(xl) = O(f(k)-1xI°)

where p is a polynomial of degree c and f is an arbitrary computable function.

Definition 4.8 (FPT)

A parameterized problem (L, k) is fixed-parameter tractable if there is an fpt-algorithm that
decides it.

The complexity class of all such problems is denoted by FPT.

Intuitively, FPT plays the role of P.

A First FPT Example

Theorem 4.9 (p-variables-SAT is FPT)
p-variables-SAT € FPT.

Proof:
Suffices to use brute force satisfiability for p-variables-SAT

1 procedure bruteForceSat(¢, X = {x1, ..., xx})

2 if k ==

3 if ¢ == true return () else UNSATISFIABLE
4 for value in {true, false} do

5 A = {x1 — value}

6 Y = @[x1/value] // Substitute value for xy
7 B := bruteForceSat(i), {x2, ..., xr})

8 if B # UNSATISFIABLE

9 return AU B

Worst case running time: Ok n) for n = |p].
2k recursive calls;
base case needs time O(|¢|) to check whether formula evaluates to frue

... but #variables not usually small

Aren’t we all FPT?

Theorem 4.10 (k never decreases — FPT)
Let ¢ : N — N weakly increasing, unbounded and computable, and x a parameterization
with

Vx e T k(x) = g(|x]).

Then (L, k) € FPT for any decidable L.

g weakly increasing: n <m — g(n) < g(m)
gunbounded: Vt3n : g(n)>t

Proof:

Aren’t we all FPT? - Proof

Proof (cont.):

10

Back to “sensible” parameters

~ always check if parameter is reasonable (can be expected to be small)

» if not, FPT might not even mean in NP!

» but now, for some positive examples!

11

4.2 Depth-Bounded Exhaustive Search I

FPT Design Pattern

» The simplest FPT algorithms use exhaustive search

> but with a search tree bounded by f (k)

» bruteforceSat was a typical example!

» does this work on other problems?

12

Depth-Bounded Search for Vertex Cover

Let’s try p-VERTEXCOVER.
Key insight: for every edge {v, w}, any vertex cover must contain v or w

1 procedure simpleFptVertexCover(G = (V, E), k):

2 if E == () then return ()

3 if k == 0 then return NOT_POSSIBLE //truncate search

4 Choose {v, w} € E (arbitrarily)

5 for u in {v, w} do:

6 Gy = (V\{u},E\ {{u,x} € E}) //Remove u from G
7 Cy := simpleFptVertexCover(G,, k — 1)

8 if C;, == NOT_POSSIBLE then return C,, U {w}

9 if Cyy == NOT_POSSIBLE then return C, U {v}

10 if |Cy| < |Cy| then return C, U {v} else return C,, U {w}

» Does not need explicit checks of solution candidates!

> runs in time O (25(n +m)) ~ fpt-algorithm for p-VERTEX-COVER

13

Guessing the parameter

» Note: Previous algorithm only uses k to truncate branches.
~» We can guess a k and it still works

~ Try all k!

1 procedure vertexCoverBfs(G = (V, E))
2 fork :=0,1,...,|V| do

3 C := simpleFptVertexCover(G, k)
4 if C # NOT POSSIBLE return C
k
» Running time: Z 0" (n +m)) = 0Q%(n +m))
k’=0

~+ For exponentially growing cost, trying all values up to k costs only constant factor more

14

4.3 Problem Kernels

Preprocessing
» Second key fpt technique are reduction rules

» Idea: Reduce the size of the instance (in polytime)
without changing its outcome

» Trivial example for SAT:

If a CNF formula contains a single-literal clause {x} resp. {—x},
set x to true resp. false and remove the clause.

» doesn’t do anything in the worst case . . .
ayVayV---Vx, byVbyV---V-x
ayVayV---VbyVbyV---

» special case of resolution calculus rule

» basis of practical SAT solvers

» Trivial example for VERTEXCOVER

[Remove vertices of degree Oorl. (never needed as part of optimal VC)

> Here: reduction rules that provably shrink an instance to size g(k)

15

Buss’s Reduction Rule for VC

» Given a p-VERTEXCOVER instance (G, k)

“deg > k” Rule: If G contains vertex v of degree deg(v) > k,
include v in potential solution and remove it from the graph.

» Can apply this simultaneously to degree > k vertices.

» Either rule applies, or all vertices bounded degree(!)

16

Kernels

Definition 4.11 (Kernelization)
Let (L, k) be a parameterized problem. A function K : ©* — X* is kernelization of L w.r.t. « if
it maps any x € L to an instance x” = K(x) with k” = x(x’) so that

1. (self-reduction) x e L &< x' €L

2. (polytime) K is computable in polytime.

3. (kernel-size) |x’| < g(k) for some computable function g

We call x’ the (problem) kernel of x and g the size of the problem kernel.

17

Buss’s Kernel

Buss’s Reduction for Vertex Cover: (repeatedly apply until no more changes)

» deg > k rule

» Remove degree 0 and 1 vertices

Theorem 4.12 (Buss’s Reduction is Kernelization)
Buss’ reduction yields a kernelization for p-VERTEX-COVER with kernel size O (k?).

Proof:

After repeatedly applying Buss’s rule as well as the isolated /leaf rule until neither applies
further, we have Vv € V : 2 < deg(v) < k.

(Note that the rule might reduce the parameter k).

In the resulting graph, any VC of size < k covers < k* edges.

If m > k?, we output a trivial No-instance (e. g., a Kx+1 a complete graph on k + 1 vertices).
If m < k?, then the input size is now bounded by ¢(k) = 2k2.

18

FPT iff Kernelization
Theorem 4.13 (FPT & kernel)

A computable, parameterized problem (L,) is fixed-parameter tractable if and only if there
is a kernelization for L w.r.t. «.

Proof:

19

FPT iff Kernelization [2]

Proof (cont.):

20

Max-SAT Kernel

Theorem 4.14 (Kernel for Max-SAT)
p-Max-SAT has a problem kernel of size O(k?) which can be constructed in linear time.

Proof:

<

21

Max-SAT Kernel [2]

Proof (cont.):

22

Max-SAT Kernel [3]

Proof (cont.):

Corollary 4.15
p-Max-SAT € FPT

23

4.4 Depth-Bounded Search II: Planar Independent
Set

Deeper results (towards more shallow trees)

» Our previous examples of depth-bounded search were basically brute force

» Here we will see two more examples that exploit the problem structure in more
interesting ways

24

Independent Set on Planar Graphs
Recall: general problem p-INDEPENDENT-SET is W[1]-hard.

Definition 4.16 (p-PLANAR-INDEPENDENT-SET)

Given: a planar graph G = (V,E) and k € N
Parameter: k
Question: V' cV : |V/|>2k A Yu,ve V' :{u,v} ¢ E?

Theorem 4.17 (Depth-Bounded Search for Planar Independent Set)

p-PLANAR-INDEPENDENT-SET is in FPT and can be solved in time O(6"n).

25

Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler’s formula)
In any finite, connected planar graph G with 7 nodes, m edges f holds n —m + f = 2.

Corollary 4.19

A simple planar graph G on n > 3 nodes has m < 3n — 6 edges.
The average degree in G is < 6.

26

Depth-Bounded Search for Planar Independent Set

1 procedure planarIndependentSet(G = (V, E), k):

2 if k == 0 then return

3 if k > |V| then return NOT_POSSIBLE // truncate search

4 Choose v € V with minimal degree; let wq, ..., w, be v's neighbors

5 // By planarity, we know d < 5.

6 foru in {v,wq,...,w,} do

7 D :={u} UN(u)

8 Gu == (V\D,E\ {{x,y} € E: x € D}) // Delete u and its neighbors
9 I, := {u} U planarIndependentSet(G,, k — 1)

10 return largest [, or NOT_POSSIBLE if none exists

27

Summary Planar Independent Set

» Note: INDEPENDENTSET is NP-hard on planar graphs even with vertex degrees at most 3
> planarindependentSet will often be faster than O(6"1)

» works unchanged in O((d + 1)11) time for any degeneracy-d graph

every (induced) subgraph has vertex of degree at most d

28

4.5 Depth-Bounded Search III: Closest String

Closest String

Definition 4.20 (p-CLOSEST-STRING)

Given: S set of m strings s1, 55, ..., 5, of length L over alphabet X and a k € N.
Parameter: k

Question: Is there a string s for which dg (s, s;) < k holds foralli =1,...,m?

29

Dirty Columns

Definition 4.21 (Dirty Column)

A column of the m X L matrix corresponding to m strings of length L is called dirty if it
contains at least 2 different symbols.

Lemma 4.22 (Many Dirty Columns — No)

Let an instance to CLOSEST-STRING with 1 strings of length L and parameter k be given.

If the corresponding m X L matrix contains more than m - k dirty columns, then no solution
for the given instance exists.

30

Depth-Bounded Search for Closest String

1 procedure closestStringFpt(s, d):

2 if d < 0 then return NOT POSSIBLE

3 if dy(s,si) > k+dforanie€ {1,...,m} then

4 return NOT POSSIBLE

5 if dpy(s,si) < kforalli =1,...,m then return s

6 Choose i € {1, ..., m} arbitrarily with dy (s, s;) > k
7 P:={p:slp]l #silpl}

8 Choose arbitrary P’ € P with |P’| = k + 1

9 for p in P’ do

10 & =8

1 s’[p] == silp]

12 Sret := closestStringFpt(s’, d — 1)

13 if s, # NOT POSSIBLE then return s,

14 return NOT POSSIBLE

» initial call closestStringFpt(s1, k)

31

Too Much Dirt

Lemma 4.23 (Pair Too Different — No)

Let S = {s1,52,...,5u} asetof strings and k € N. If thereare i,j € {1,...,m} with
du(si,sj) > 2k, then there is no string s with maxi<;<u du(s, si) < k.

32

Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)
There is a search tree of size O(k*) for problem p-CLOSEST-STRING.

Corollary 4.25 (Closest String is FPT)

p-CLOSEST-STRING can be solved in time O(mL + mk - k¥).

» preprocessing (O(mL) time)

» ignore any clean columns
> reject if more than mk dirty columns

~ effective string length after preprocessing is L < mk
» call closestStringFpt(s1, k)
» maintain d(s, s;) in an array
~- checking any distance dp(s, s;) takes O(1) time
» Dbefore and after recursive call, update array to reflect dg(s’, s;)

Single character changed, so update only needs to check single position
~» Can maintain distances in O () time per recursive call

» P’ can be computed in O(mk) time

33

4.6 Linear Recurrences & Better Vertex Cover

A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2" for VERTEX-COVER.
Can we do better?

Idea: Enlarge base case with “easy inputs”

Here: Consider graphs G with deg(v) < 2 forall v € V(G).

34

Depth-Bounded Search for Vertex Cover

1 procedure betterFptVertexCover(G = (V, E), k):
2 if E = (then return (

3 if k = 0 then return NOT POSSIBLE //truncate search

4 if all node have degree < 2 then

5 Find connected components of G

6 for each component G; do

7 Fill C; by picking every other node,

8 starting with the neighbor of a degree-one node if one exists

9 C=C;

10 if |C| < k then return C else return NOT_POSSIBLE

11 Choose v with maximal degree, let w1, ..., w, be its neighbors //d > 3
12 For D in {{v},{w1,...,w;}} do:

13 Gp = (V\D,E\ {{x,y} € E:x € D}) //Remove D from G
14 Cp := D U betterFptVertexCover(G,, k —|D|)
15 return smallest Cp or NOT POSSIBLE if none exists

How to analyze running time of betterFptVertexCover?

35

Analysis of betterFptVertexCover
worst case running time

» never have all degrees < 2

» always need both recursive calls (until base case)

» ignore that graph gets smaller

Ty = ©(1)
T = O(|V| +|E|) + T3 + Tr1

If we only number of base cases B,,, we obtain T, = O(B, n?)

Bo=1, B; =1, By=1
By = Bx—3 + Bx1 (k= 3)

36

Solving Linear Recurrences

37

Solving Linear Recurrences — Result

Theorem 4.26 (Linear Recurrences)
Letdq,...,dieNandd = maxdj.
The solution to the homogeneous linear recurrence equation

T, = Tn—d1 + Tnfdg +oot Tnfd,'r (i’l 2 d)

is always given by
pe=1

T = ZZCMZ? n
¢ j=0

where we sum over all roots z,; of multiplicity 1, of the so-called characteristic polynomial
o _ gl _ yd—dy | _ yd~d;

The d coefficients ¢/ ; are determined by the d initial values To, Ty, . . ., Ti-1.

Corollary 4.27
T, = O(z}in") for z the root of the characteristic polynomial with largest absolute value.

38

Analysis of betterFptVertexCover [2]

To = ©(1)

T = O(| V] + |E]) + Ti—3 + Ti—1

If we only number of base cases B, we obtain T,, = O(B,n?)
Bo=1, Bi=1, By =1

Bi = Bix—3 + Bx—1 (k> 3)

~ d = (1,3); characteristic polynomial z° — z% — 1
roots at zgp & 1.4656 and z; » ~ —0.2328 + 0.79261

Theorem 4.28 (Depth-Bounded Search for Vertex Cover)
p-VERTEX-COVER can be solved in time O(1.465612).

39

4.7 Interleaving

Motivation

Up to now, considered two-phase algorithms
1. Reduction to problem kernel

2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization in each recursive step.

40

(Extreme) Example: Vertex Cover with large-degree rule

> As a (slightly artificial) example, consider only using the simple reduction rule

“deg > k” Rule: If G contains vertex v of degree deg(v) > k,
include v in potential solution and remove it from the graph.

> Algorithm A:

1. Apply deg > k rule until saturation

2. Call simpleFptVertexCover (recursively branch over arbitrary edge)
> Algorithm B: Same, interleaved:

» Modified simpleFptVertexCover

» Before choosing each new edge
to branch on, apply deg > k rule.

41

SimpleFptVertexCover Interleaved

1 procedure simpleFptVertexCover(G = (V, E), k):
2 if E == () then return (

3 if k == 0 then return NOT_POSSIBLE

4 // nothing

5 // new

6 //on

7 // this

8 // side

9 Choose {v, w} € E (arbitrarily)

10 for u in {v, w} do:

1 Gu = G[V \{u}]

12 Cy := simpleFptVertexCover(G,, k — 1)

13 if C;, == NOT_POSSIBLE then return C;, U {w}
14 if Cy == NOT_POSSIBLE then return C, U {v}
15 if |Cy| < |Cy| then

16 return C, U {v}
17 else
18 return Cy, U {w}

1
2
3
4
5
6
7
8
9

procedure simplelnterleavedVC(G = (V, E), k):

if E == () then return (

if k == 0 then return NOT_POSSIBLE
C:=0

while Jv € V : deg(v) > k

G := G|V \ {v}] // Remove v
C := CU{uv}
k=k-1

Choose {v, w} € E (arbitrarily)
for u in {v, w} do:

Gy = G[V \ {u}]

Cy := C UsimplelnterleavedVC(G,, k — 1)
if C;, == NOT_POSSIBLE then return C,, U {w}
if C, == NOT_POSSIBLE then return C, U {v}
if |Cy| < |Cy| then

return C, U {v}
else

return C,, U {w}

42

Comparison on Lollipop Flowers

Consider family of graphs G, “Lollipop Flowers”:
“head” vertex with k — 2 stars of k — 2 leaves each attached + “tail” of 3k + 1 vertex path

n=|V(Gy)| = (k-2)k-1)+1 + 3k+1 = kK +4

Algorithm A

deg > k rule does nothing
search space remains 2"
Answer No after exploring all branches

~ time @(2Fk?)

Algorithm B

initially same (no reduction)
after 2 edges removed from tail, parameter k —2
vertices in head have degree k — 1
Output No (parameter 0, but tail edges left)
~ time ©(k?)

43

Setting for Interleaving

Can we prove a general speedup?

Assumptions: (more restrictive than general kernelization!)
» K kernelization that

» produces kernel of size < q(k) for g a polynomial
» in time < p(n) for p a polynomial

» Branch in depth-bounded search tree

» into i subproblems with branching vector d= (dq,...,d;)
(i. e., parameter in subproblems k — dy, ..., k —d;)
» Branching is computed in time < (1) for r a polynomial

~ search space has size O(aF).

~+ Running time of two-phase approach on input x with n = |x| and k = «(x):

O(p(n) + r(q(k)) - ock)

44

With Interleaving

Generic interleaving;:

1 if [I| > ¢ - q(k) then

2 (I, k) := (I', k") where (I’, k) forms a problem kernel // Conditional Reduction
3 end

4 replace (I, k) with (I, k —dq),(Io, k — da), ..., (Ii, k — d;) // Branching

~» Running time of interleaved approach on input x with n = |x| and k = x(x) is at most Tj:

Ty = Tr-gy+---+Tp-g, + p(q(f)) + Y(q(f))

Compare to non-interleaved version:
Ty = Ta + -+ Tog, + 7(q(k))

Here the inhomogeneous term is constant w.r.t. ¢, but depends on k
~+ cannot ignore constant factors

45

Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > k rule added.

» Initial call has unbounded n and m; after applying degree 0,1, > k rules (in O(n + m)
time) size of graph n +m = O(k?)

» interleaving ~» graph also bounded recursively (in terms of new k)

» Recursive worst-case time after first reduction:
Ty = O(1)
Ti = O(K?) + Tx—3 + T

46

Inhomogenous Linear Recurrences

47

Inhomogenous Linear Recurrences Summary

Theorem 4.29 (Linear Recurrences II)
Letdy,...,d; € Nand d = maxd,;.
Consider the inhomogeneous linear recurrence equation

Tw = To—gy+Tg, +- -+ Ty, + fu, (n>d)

with (f,)ner., @ known sequence of positive numbers, satisfying f, = O(n°)

and d initial values Ty, ..., T;_1 € Rso.

Let zg be the root with largest absolute value of z% - Z;zl 2974 and assume fn=0(z-¢)")
for some fixed ¢ > 0.

Then T,, = O(T?) where T is defined as T,, with f,, = 0.

48

A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations

Sequence Land Generating Function Land
» number sequence (a4,),>0 — > (ordinary) generating function A(z) = Z a,z"
n>0
> recurrence equation — > (functional) equation for A(z)

| solve, simplify (e. g., partial fractions)
~ closed form for A(z)
» closed form for a,, — > exact coefficients [z"]A(z)

OR approximate A(z)
near its dominant singularity

> asymptotic approximation e singular expansion at z = zg
an=z"n Q£ 0m) T AG) = f(2) £ O(1-2/20))

49

O-Transfer

Theorem 4.30 (Transfer-Theorem of Singularity Analysis)
Assume f(z) is A-analytic and admits the singular expansion

f@) = 8@ £ 0(1-20") (-1

with a € R. Then

[2"]f(z) = [z"]1g(z) £ O(n*7") (n— oo).

50

Possible Extensions

| 2

>

(constant) coefficients c; - T;,—g4, in recurrence
~ different characteristic polynomial, same ideas

any recurrence that leads to a representation of the generating function as a singular
expansion around the dominant singularity.

f2) = c-z/z0)™ £ O((1-2z/z0)™") (2> 20)
~ [2"] f(z) = ﬁza”nm_l . (1 + O(n_l)) (n — o)
other powers ain 1/(1 — z)“:
n 1 _ Zgnna—l 4 - —a ¢ Ny
Elire B) (1 =2 Ol 1)) (m—=e0) 50

much more! ~- analytic combinatorics

51

Analysis of interleaved betterFptVertexCover [2]

> To =0(1)
Ti = O(k?) + Ti—3 + Tk

~ Ti = 0(1.46565) (same characteristic polynomial)

» Total time: O(1.4656 + n + m)

» The current record is O(1.2738% + kn) time

52

Summary

» Strategies for fpt algorithms

» Use parameter to bound depth of exhaustive search

» Use problem specific reduction rules to shrink input ~» kernel(ization)s

» analysis of exact exponential searches often reduces to linear recurrences

> generating functions!

» more clever branching reduces exponent of search space

> interleaving kernelization and exhaustive search improves polynomial parts

53

	Fixed-Parameter Algorithms
	Philosophy of FPT
	Motivation: Satisfiability
	Parameters
	Examples
	Canonical Parameterization
	Fixed-Parameter Tractability
	Exemplary Running Times of Parameterized Problems
	FPT Running Time
	A First FPT Example
	Aren't we all FPT?
	Aren't we all FPT? – Proof
	Back to ``sensible'' parameters

	Depth-Bounded Exhaustive Search I
	FPT Design Pattern
	Depth-Bounded Search for Vertex Cover
	Guessing the parameter

	Problem Kernels
	Preprocessing
	Buss's Reduction Rule for VC
	Kernels
	Buss's Kernel
	FPT iff Kernelization
	FPT iff Kernelization [2]
	Max-SAT Kernel
	Max-SAT Kernel [2]
	Max-SAT Kernel [3]

	Depth-Bounded Search II: Planar Independent Set
	Deeper results (towards more shallow trees)
	Independent Set on Planar Graphs
	Elementary Knowledge on Planar Graphs
	Depth-Bounded Search for Planar Independent Set
	Summary Planar Independent Set

	Depth-Bounded Search III: Closest String
	Closest String
	Dirty Columns
	Depth-Bounded Search for Closest String
	Too Much Dirt
	Depth-Bounded Search for Closest String

	Linear Recurrences & Better Vertex Cover
	A Better Algorithm for Vertex Cover
	Depth-Bounded Search for Vertex Cover
	Analysis of betterFptVertexCover
	Solving Linear Recurrences
	Solving Linear Recurrences – Result
	Analysis of betterFptVertexCover [2]

	Interleaving
	Motivation
	(Extreme) Example: Vertex Cover with large-degree rule
	SimpleFptVertexCover Interleaved
	Comparison on Lollipop Flowers
	Setting for Interleaving
	With Interleaving
	Analysis of interleaved betterFptVertexCover [1]
	Inhomogenous Linear Recurrences
	Inhomogenous Linear Recurrences Summary
	A Little Excursion: Singularity Analysis
	O-Transfer
	Possible Extensions
	Analysis of interleaved betterFptVertexCover [2]
	Summary

