
5 Parameterized
Hardness

27 May 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-06-04 14:41 H

Outline

5 Parameterized Hardness
5.1 Parameterized Reductions
5.2 Nondeterministic FPT: Para-NP
5.3 Bounded Nondeterminism: W[P]
5.4 Tail-nondeterministic NRAM

How to prove ∉ FPT?
▶ For some problems, no algorithm seems to achieve fpt running time

▶ example: 𝑝-Clique

⇝ maybe no fpt algorithm can exist for 𝑝-Clique!

▶ Problem: Certainly exists in case P = NP

⇝ strongest lower bound we can hope for will have to be conditional on P ≠ NP

▶ Typical complexity-theory results:
No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.

1

5.1 Parameterized Reductions

FPT Reductions
Goal: Compare relative hardness of parameterized problems

⇝ Need a notion of reductions on parameterized problems

▶ to preserve (non)existence of fpt algorithms, need to keep small 𝑘

Definition 5.1 (Parameterized Reduction)
Let (𝐿1 , 𝜅1) and (𝐿2 , 𝜅2) be two parameterized problems (over alphabets Σ1 resp. Σ2).
An fpt-reduction (fpt many-one reduction) from (𝐿1 , 𝜅1) to (𝐿2 , 𝜅2) is a mapping 𝐴 : Σ★

1 → Σ★
2 so

that for all 𝑥 ∈ Σ★
1

1. (equivalence) 𝑥 ∈ 𝐿1 ⇐⇒ 𝐴(𝑥) ∈ 𝐿2,

2. (fpt) 𝐴 is computable by an fpt-algorithm (w.r.t. to 𝜅1), and

3. (parameter-preserving) 𝜅2
(
𝐴(𝑥)

)
≤ 𝑔

(
𝜅1(𝑥)

)
for a computable function 𝑔 : ℕ → ℕ.

We then write (𝐿1 , 𝜅1) ≤fpt (𝐿2 , 𝜅2). ◀

2

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:
VertexCover
Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀{𝑢, 𝑣} ∈ 𝐸 :
(
𝑢 ∈ 𝑉 ′ ∨ 𝑣 ∈ 𝑉 ′) IndependentSet

Given: graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢, 𝑣 ∈ 𝑉 ′ : {𝑢, 𝑣} ∉ 𝐸

▶ We know: IndependentSet ≤𝑝 VertexCover:
▶ Set 𝐺′ = 𝐺 and 𝑘′ = |𝑉(𝐺)| − 𝑘 (Complement of an indep. set must be a vertex cover, and vice versa!)

▶ ⇏ 𝑝-IndependentSet ≤fpt 𝑝-VertexCover
▶ Indeed, we know VertexCover ∈ FPT, but IndependentSet probably isn’t.

▶ But: 𝑝-IndependentSet ≤fpt 𝑝-Clique (and 𝑝-Clique ≤fpt 𝑝-IndependentSet)

▶ Set 𝐺′ = (𝑉,
(𝑉
2
)
\ 𝐸) and 𝑘′ = 𝑘 (Independent set iff clique in complement graph)

3

5.2 Nondeterministic FPT: Para-NP

Parameterized NP: Non-deterministic NP
Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)
The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm. ◀

Some nice properties:
1. para-NP is closed under fpt-reductions.

2. FPT = para-NP ⇐⇒ P = NP

3. an analogue for kernalization in FPT holds for para-NP

Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)
(𝐿, 𝜅) is para-NP-hard if (𝐿′, 𝜅′) ≤fpt (𝐿, 𝜅) for all (𝐿′, 𝜅′) ∈ para-NP. ◀

4

Hello hardness, my old friend

Theorem 5.4 (para-NP-complete → NP-complete for finite parameter)
Let (𝐿, 𝜅) be a nontrivial (∅ ≠ 𝐿 ≠ Σ★) parameterized problem that is para-NP-complete.
Then 𝐿≤𝑑 = {𝑥 ∈ 𝐿 : 𝜅(𝑥) ≤ 𝑑} is NP-hard. ◀

The converse is essentially also true (using a generalization of kernelizations).

Proof:

■

5

para-NP-complete is too strict
Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

▶ 𝑝-Clique,

▶ 𝑝-IndependentSet

▶ 𝑝-DominatingSet

bounding 𝑘 by a constant 𝑑 makes polytime algorithm possible.

⇝ 𝐿≤𝑑 cannot be NP-complete for each of these

▶ but we rather expect them ∉ FPT

⇝ para-NP theory does not settle complexity status

6

5.3 Bounded Nondeterminism: W[P]

Bye bye, TM
para-NP is too large a class to have interesting complete problems
⇝We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), 𝜿-restricted)
An NRAM 𝑀 is a word-RAM with 𝑤 = 𝑂(log 𝑛) with the additional operation to
nondeterministically guess a number between 0 and a current register content.
An NRAM 𝑀 that decides a parameterized problem (𝐿, 𝜅) is 𝜅-restricted if on input 𝑥 ∈ Σ★

with 𝑛 = |𝑥| and 𝑘 = 𝜅(𝑥)
1. it performs at most 𝑓 (𝑘) · 𝑝(𝑛) steps,

2. at most 𝑔(𝑘) of them nondeterministic,

3. uses at most 𝑓 (𝑘) · 𝑝(𝑛) registers, and

4. those never contain numbers larger than 𝑓 (𝑘) · 𝑝(𝑛).
for computable functions 𝑓 and 𝑔, and a polynomial 𝑝 ◀

7

W[P]

Definition 5.6 (W[𝑷])
The class W[𝑃] is the set of all parameterized problems (𝐿, 𝜅) decidable by a 𝜅-restricted
NRAM. ◀

8

A first W[𝑷]-complete problem?
Define hardness and completeness for W[𝑃] using ≤fpt.

What could be the mother of all W[𝑃]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

▶ What can be guessed using 𝑘 numbers in [𝑛]?

⇝ A subset of variables of size 𝑘!

9

Weighted SAT
Definition 5.7 (Weighted Satisfiability)
Given: Boolean formula 𝜑 and integer 𝑘 ∈ ℕ

Parameter: 𝑘
Question: ∃ satisfying assignment with weight

Recall: weight = #true variables

= 𝑘 ? ◀

Theorem 5.8 (𝒑-WSAT(CIRC) is W[𝑷]-complete)
The weighted satisfiability problem for boolean circuits parameterized by the weight is
W[𝑃]-complete. ◀

Proof (Rough Idea):

10

5.4 Tail-nondeterministic NRAM

Tail-nondeterminism
Circuit satisfiability still too strong to show hardness of many interesting problems.
⇝We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A 𝜅-restricted NRAM 𝑀 for a problem (𝐿, 𝜅) is called tail-nondeterministic if all
nondeterministic steps occur only among the last ℎ(𝜅(𝑥)) steps. ◀

Definition 5.10 (W[1])
The class W[1] consists of all parameterized decision problems (𝐿, 𝜅) that are decided by a
tail-nondeterministic 𝜅-restricted NRAM. ◀

As before, define hardness and completeness for W[1] w.r.t. ≤fpt.

11

Stop

Definition 5.11 (𝒌-step Halting Problem)
Given: A nondeterministic (single-tape) Turing machine 𝑀, an input 𝑥 and 𝑘 ∈ ℕ be given.
Parameter: 𝑘
Question: Does 𝑀 accepts 𝑥 after at most 𝑘 computation steps? ◀

▶ 𝑀 is part of input, so state space and tape alphabet are not fixed!

⇝ up to 𝑛 different non-deterministic choices in each step. (𝑛 is size of encoding of 𝑀)

⇝ Trivial algorithm has to simulate up to 𝑛𝑘+1 steps of 𝑀.

▶ Equivalent here to halting problem for 𝑥 = 𝜀, since we can hard-wire the given input
into the states of a TM 𝑀′ constructed from 𝑀.

12

W[1]-completeness

Theorem 5.12 (𝒌-step halting problem W[1]-complete)
The 𝑘-step Halting Problem (for single-tape TM) parameterized by 𝑘 is W[1]-complete. ◀

13

More natural problems?

Definition 5.13 (𝒑-WSAT(2CNF))
Given: Boolean formula 𝜑 in 2-CNF and integer 𝑘 ∈ ℕ

Parameter: 𝑘
Question: ∃ satisfying assignment with weight = 𝑘 ? ◀

Theorem 5.14
𝑝-WSAT(2CNF) is W[1]-complete. ◀

Proof is a lengthy logic detour; omitted here. (See Flum, Grohe.)

Theorem 5.15
𝑝-WSAT(2CNF−) is W[1]-complete. ◀

𝑝-WSAT(2CNF−) means: all literals negated.

14

p-Independent-Set is W[1]-complete

Theorem 5.16
𝑝-IndependentSet is W[1]-complete. ◀

Proof:

■

15

Partial Vertex Cover
Definition 5.17 (Partial Vertex Cover)
Given: graph 𝐺 = (𝑉, 𝐸), target size 𝑡 ∈ ℕ, threshold 𝑘 ∈ ℕ

Parameter: 𝑘

Questions: ∃𝐶 ⊆ 𝑉 : |𝐶| = 𝑘 ∧ 𝐶 covers at least 𝑡 edges? ◀

Theorem 5.18
𝑝-PartialVertexCover is W[1]-hard. ◀

Proof:
We show 𝑝-IndependentSet ≤fpt 𝑝-PartialVertexCover

16

Partial Vertex Cover [2]
Proof (continued):

■

17

Conclusion
▶ some care is needed to lift complexity theory to parameterized problems

▶ but: theory of W[1]-hardness and fpt-reductions is an effective framework to show that
a parameterized problem is unlikely to admit an fpt algorithm
▶ W[1] ⊋ FPT widely believed (otherwise, ETH false; see next unit)

▶ need new “gadgets” for fpt reductions

▶ further refinements possible (W[𝑡] hierarchy)
▶ 𝑝-DominatingSet is W[1]-hard, but likely ∉ W[1].

(can be shown to be W[2]-complete and likely W[2] ⊋ W[1])

▶ W[1]-hardness suffices for negative results

18

Cygan et al. Reduction Network

adapted from Fig. 13.4 of Cygan et al. (2015)

19

	Parameterized Hardness
	How to prove FPT?
	Parameterized Reductions
	FPT Reductions
	Not all reductions are fpt

	Nondeterministic FPT: Para-NP
	Parameterized NP: Non-deterministic NP
	Hello hardness, my old friend
	para-NP-complete is too strict

	Bounded Nondeterminism: W[P]
	Bye bye, TM
	W[P]
	A first W[P]-complete problem?
	Weighted SAT

	Tail-nondeterministic NRAM
	Tail-nondeterminism
	Stop
	W[1]-completeness
	More natural problems?
	p-Independent-Set is W[1]-complete
	Partial Vertex Cover
	Partial Vertex Cover [2]
	Conclusion
	Cygan et al. Reduction Network

