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How to prove ¢ FPT?

» For some problems, no algorithm seems to achieve fpt running time
> example: p-CLIQUE

~» maybe no fpt algorithm can exist for p-CLIQUE!

» Problem: Certainly exists in case P = NP

~ strongest lower bound we can hope for will have to be conditional on P # NP

» Typical complexity-theory results:
No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.



5.1 Parameterized Reductions



FPT Reductions

Goal: Compare relative hardness of parameterized problems

~+ Need a notion of reductions on parameterized problems

> to preserve (non)existence of fpt algorithms, need to keep small k

Definition 5.1 (Parameterized Reduction)
Let (L1, x1) and (L2, x2) be two parameterized problems (over alphabets X1 resp. ).

An fpt-reduction (fpt many-one reduction) from (L1, k1) to (L2, k2) is a mapping A : IJ — L7 so
that for all x € X}

1. (equivalence) x € L1 &= A(x) € Lo,
2. (fpt) A is computable by an fpt-algorithm (w.r.t. to x1), and

3. (parameter-preserving) «»(A(x)) < g(x1(x)) for a computable function g : N — N.

We then write (L1, k1) <g¢ (L2, k2).



Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V,E) and k € N

Question: AV' c V : |[V/| <k A Y{u,v} €E: (ueV'vVoeV)

INDEPENDENTSET
Given: graph G = (V,E) and k € N
Question: AV c V : |V/|>k A Yu,ve V' :{u,v} ¢ E

» We know: INDEPENDENTSET <p VERTEXCOVER:

» SetG'=Gand k' = |V(G)| — k

(Complement of an indep. set must be a vertex cover, and vice versa!)

» <+ p-INDEPENDENTSET < p-VERTEXCOVER

» Indeed, we know VERTEXCOVER € FPT, but INDEPENDENTSET probably isn't.

» But: p-INDEPENDENTSET < p-CLIQUE

> SetG’=(V, (%) \E)and k' = k

(and p-CLIQUE <g; p-INDEPENDENTSET)

(Independent set iff clique in complement graph)



5.2 Nondeterministic FPT: Para-NP



Parameterized NP: Non-deterministic NP

Good, so we have reductions.

If P corresponds to FPT ... Dbut what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm.

Some nice properties:

1. para-NP is closed under fpt-reductions.
2. FPT = para-NP <= P =NP
3. an analogue for kernalization in FPT holds for para-NP
Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)
(L, x) is para-NP-hard if (L', k") <g (L, x) for all (L', k") € para-NP.



Hello hardness, my old friend

Theorem 5.4 (para-NP-complete - NP-complete for finite parameter)
Let (L, k) be a nontrivial (0 # L # L*) parameterized problem that is para-NP-complete.
Then L.y = {x € L: x(x) < d} is NP-hard.

The converse is essentially also true (using a generalization of kernelizations).

Proof:



para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!
For each of the following

> p-CLIQUE,
> p-INDEPENDENTSET

> p-DOMINATINGSET

bounding k by a constant 4 makes polytime algorithm possible.
~ L<4 cannot be NP-complete for each of these

» but we rather expect them ¢ FPT

~» para-NP theory does not settle complexity status



5.3 Bounded Nondeterminism: W[P]



Bye bye, TM

para-NP is too large a class to have interesting complete problems
~» We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), k-restricted)

An NRAM M is a word-RAM with w = O(log 1) with the additional operation to
nondeterministically guess a number between 0 and a current register content.

An NRAM M that decides a parameterized problem (L, k) is x-restricted if on input x € L*
with n = |x| and k = x(x)

1. it performs at most f (k) - p(n) steps,
2. atmost g(k) of them nondeterministic,
3. uses at most f (k) - p(n) registers, and

4. those never contain numbers larger than f (k) - p(n).

for computable functions f and g, and a polynomial p



WIP]

Definition 5.6 (W[P])

The class W[P] is the set of all parameterized problems (L, x) decidable by a x-restricted
NRAM.



A first W[P]-complete problem?

Define hardness and completeness for W[P] using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

» What can be guessed using k numbers in [1]?

~ A subset of variables of size k!



Weighted SAT
Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula ¢ and integer k € N
Parameter: k
Question: 3 satisfying assignment with weight = k ?

Recall: weight = #true variables

Theorem 5.8 (p-WSAT(CIRC) is W[P]-complete)

The weighted satisfiability problem for boolean circuits parameterized by the weight is
W[P]-complete.

Proof (Rough Idea):

10



5.4 Tail-nondeterministic NRAM



Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~» We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A x-restricted NRAM M for a problem (L, ) is called tail-nondeterministic if all
nondeterministic steps occur only among the last /1(x(x)) steps.

Definition 5.10 (W[1])

The class W[1] consists of all parameterized decision problems (L, x) that are decided by a
tail-nondeterministic x-restricted NRAM.

As before, define hardness and completeness for W[1] w.r.t. <g.

11



Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and k € N be given.

Parameter: k
Question: Does M accepts x after at most k computation steps?

» M is part of input, so state space and tape alphabet are not fixed!
~ up to n different non-deterministic choices in each step. (n is size of encoding of M)

~~ Trivial algorithm has to simulate up to 7! steps of M.

» Equivalent here to halting problem for x = ¢, since we can hard-wire the given input
into the states of a TM M’ constructed from M.
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WI1]-completeness

Theorem 5.12 (k-step halting problem W[1]-complete)
The k-step Halting Problem (for single-tape TM) parameterized by k is W[1]-complete.

<

13



More natural problems?

Definition 5.13 (p-WSAT(2CNF))

Given: Boolean formula ¢ in 2-CNF and integer k € N
Parameter: k
Question: I satisfying assignment with weight = k ?

Theorem 5.14
p-WSAT(2CNF) is W[1]-complete.

Proof is a lengthy logic detour; omitted here. (See Flum, Grohe.)
Theorem 5.15

p-WSAT(2CNEF~) is W[1]-complete.

p-WSAT(2CNF~) means: all literals negated.

14



p-Independent-Set is W[1]-complete
Theorem 5.16

p-INDEPENDENTSET is W[1]-complete.

Proof:

15



Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V,E), target size t € N, threshold k € N
Parameter: k

Questions: 3C C V : |C| = k A C covers at least t edges?

Theorem 5.18
p-PARTIALVERTEXCOVER is W[1]-hard.

Proof:
We show p-INDEPENDENTSET <g; p-PARTIALVERTEXCOVER

16



Partial Vertex Cover [2]

Proof (continued):

17



Conclusion

> some care is needed to lift complexity theory to parameterized problems

» but: theory of W[1]-hardness and fpt-reductions is an effective framework to show that
a parameterized problem is unlikely to admit an fpt algorithm

»> WI[1] D FPT widely believed (otherwise, ETH false; see next unit)

> need new “gadgets” for fpt reductions

» further refinements possible (W[¢] hierarchy)

» p-DoMINATINGSET is W([1]-hard, but likely ¢ W[1].
(can be shown to be W[2]-complete and likely W[2] > W[1])

» W[1]-hardness suffices for negative results
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Cygan et al. Reduction Network
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