Advanced Parameterized Ideas

3 June 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-06-04 14:40 H

Outline

6 Advanced Parameterized Ideas

- 6.1 Linear Programs A Mighty Blackbox Tool
- 6.2 Linear Programs Reformulation Tricks
- 6.3 Linear Programs The Simplex Algorithm
- 6.4 Integer Linear Programs
- 6.5 LP-Based Kernelization
- 6.6 ETH-Based Lower Bounds

6.1 Linear Programs – A Mighty Blackbox Tool

Linear Programs

- Linear programs (LPs) are a class of optimization problems of continuous (numerical) variables
- ► can be exactly solved in worst case polytime (LINEARPROGRAMMING ∈ P)
 - interior-point methods, Ellipsoid method
- ▶ routinely solved in practice to optimality with millions of variables and constraints
 - Simplex algorithm, interior-point methods
 - many existing solvers, commercial and open source (e.g., HiGHS)

Hessy James's Apple Farm

- Hessy tries to maximize the profit of his apple farm
 - He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - He has an orchard of 5 000 m²
 - each tree needs 4 m² of orchard space
 - ▶ each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year
- ~ How many trees of each variety should Hessy plant?
 - What will constrain us most? Space? Fertilizer? Harvest hours?
 - What profit can Hessy expect?

Formal Linear Program for Hessy James's Apple Farm

- Classic application of linear programming in *operations research* (OR)
- We formally write LPs as follows:

optimization goalobjective functionMaximize:195s + 255kconstraintSubject to: $4s + 4k \le 5000$ (Orchard constraint) $6s + 4.5k \le 3000$ (Fertilizer constraint) $1s + 3k \le 1700$ (Harvest constraint) $s \ge 0$ (Non-negativity) $k \ge 0$ (Non-negativity)

name of the LP (P)

Terminology:

- ▶ *s* and *k* are the two *variables* of the problem; these are always real numbers.
- A vector $(s, k) \in \mathbb{R}^2$ is a *feasible solution* for the LP if it satisfied all constraints.
- The largest value of the objective function (over all feasible solutions) is the (optimal) value z*of the LP
- A feasible solution $(s^*, k^*) \in \mathbb{R}^2$ with optimal objective value z^* is called an *optimal solution*

2D LPs – Graphical Solution

LPs with two variables can be solved graphically

- → Hessy should plant
 - 100 Sossenheimer Roter trees and _____hmm...
- ► 533+¹/₃ Korbacher Edelrenette trees
- Harvest and fertilizer *tight*
- orchard space isn't
- $\rightsquigarrow~know$ what to change

LPs – The General Case

General LP:

min
$$c_1 x_1 + \dots + c_n x_n$$

s.t. $a_{i,1} x_1 + \dots + a_{i,n} x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1} x_1 + \dots + a_{i,n} x_n \leq b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1} x_1 + \dots + a_{i,n} x_n \geq b_i$ (for $i = q + 1, \dots, m$)
 $x_j \geq 0$ (for $j = 1, \dots, r$)
 $x_j \leq 0$ (for $j = r + 1, \dots, n$)
perturbut function

arbitrary linear objective function

"don't care" (just to make it explicit)

- ▶ arbitrary linear constraints, of type "=", "≤" or "≥"
- variables with non-negativity constraint and unconstrained variables
- In general, an LP can
 - (a) have a *finite* optimal *objective value*
 - (b) be *infeasible* (contradictory constraints / empty feasibility region), or
 - (c) be *unbounded* (allow arbitrarily small objective values " $-\infty$ ")
- → in polytime, can detect which case applies **and** compute optimal solution in case (a)

Classic Modeling Example – Max Flow

- The maximum-*s*-*t*-flow problem in a graph G = (V, E) can be reduced to an LP (Flow)
 - variable f_e for each edge $e \in E$
 - maximize flow value F = flow out of s
 - constraint for edge capacity C(e) at each edge
 - constraint for flow conservation at each vertex v (except s and t)

$$\begin{array}{rcl} \max & F \\ \text{s.t.} & F &=& \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} \\ & & f_{vw} &\leq & C(vw) & (\text{for } vw \in E) \\ & & \sum_{w \in V} f_{wv} &=& \sum_{w \in V} f_{vw} & (\text{for } v \in V \setminus \{s, t\}) \\ & & f_e &\geq & 0 & (\text{for } e \in E) \end{array}$$
(Flow)

6.2 Linear Programs – Reformulation Tricks

How to solve an LP?

- Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - in practice: call good solver!
- ▶ But as with any good tool, it helps to gave an idea of **how** it works to effectively use it
- ~> We will briefly visit the conceptual ideas of the simplex algorithm

Recall: General Form of LPs

General LP:

$$\min \quad c_1 x_1 + \dots + c_n x_n \\ \text{s.t.} \quad a_{i,1} x_1 + \dots + a_{i,n} x_n = b_i \quad (\text{for } i = 1, \dots, p) \\ a_{i,1} x_1 + \dots + a_{i,n} x_n \leq b_i \quad (\text{for } i = p + 1, \dots, q) \\ a_{i,1} x_1 + \dots + a_{i,n} x_n \geq b_i \quad (\text{for } i = q + 1, \dots, m) \\ x_j \geq 0 \quad (\text{for } j = 1, \dots, r) \\ x_j \leq 0 \quad (\text{for } j = r + 1, \dots, n)$$

- ▶ linear objective function and constraints ("=", "≤", or "≥")
- variables with non-negativity constraint and unconstrained variables

Conventions:

- *n* variables (always called x_i)
- *m* constraints (coefficients always called $a_{i,j}$, right-hand sides b_i)
- ▶ minimize objective ("<u>c</u>ost"), coefficients c_j ; objective value $z = c_1 x_1 + \cdots + c_n x_n$

Enter Linear Algebra

- Spelling out all those linear combinations is cumbersome
- ~ Concise notation via matrix and vector products

► We write

$$\begin{cases} \min & c_1 x_1 + \dots + c_n x_n \\ \text{s.t.} & a_{i,1} x_1 + \dots + a_{i,n} x_n &= b_i \quad (\text{for } i = 1, \dots, p) \\ & a_{i,1} x_1 + \dots + a_{i,n} x_n \leq b_i \quad (\text{for } i = p + 1, \dots, q) \\ & a_{i,1} x_1 + \dots + a_{i,n} x_n \geq b_i \quad (\text{for } i = q + 1, \dots, m) \\ & x_j \geq 0 \quad (\text{for } j = 1, \dots, r) \\ & x_j \leq 0 \quad (\text{for } j = r + 1, \dots, n) \end{cases}$$

► variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $C_1 \\ \vdots \\ C_n \end{pmatrix} \in \mathbb{R}^n$ \rightsquigarrow objective: min $c^T \cdot x$
dot product / scalar product

"="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \quad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \quad \rightsquigarrow \quad A^{(=)} \cdot \mathbf{x} = \mathbf{b}^{(=)}$$

 $A^{(\leq)}x \stackrel{\checkmark}{<} b^{(\leq)}$ and $A^{(\geq)}x > b^{(\geq)}$ • similarly for " \leq " and " \geq " constraints:

a **single** constraint *i* can be written as $A_{i,\bullet} x = b_i$ $\sim \rightarrow$

(generally write $A_{i,\bullet}$ for the *i*th row of A and $A_{\bullet,i}$ for the *j*th column)

Reformulations

Tricks of the Trade for working with LPs:

- min suffices: $\max c^T x = -\min(-c)^T x$
- ► "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ▶ slack variables: A_{i,•} x ≤ b_i ⇔ A_{i,•} x + x_{si} = b_i and x_{si} ≥ 0 (x_{si} is a new additional variable)
 ▶ nonnegative: variable x_i ≤ 0 ⇔ x_i = x_{i,+} - x_{i,-} and x_{i,+}, x_{i,-} ≥ 0

($x_{i,+}$ and $x_{i,-}$ are new additional variables)

→ To solve LPs, can assume one of the following **normal forms**

with
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, and $c \in \mathbb{R}^n$

6.3 Linear Programs – The Simplex Algorithm

Simplex – Geometric Intuition

 $\begin{array}{l} \min \ c^T x \\ \text{s.t.} \ Ax \ \leq \ b \\ x \ \geq \ 0 \\ + \ nondegeneracy \end{array}$

► constraint $A_{i,\bullet} x \le b_i$ defines a hyperplane / halfspace $\Rightarrow H_i^= \{x \in \mathbb{R}^n : A_{i,\bullet} x = b_i\}$ $H_i = \{x \in \mathbb{R}^n : A_{i,\bullet} x \le b_i\}$

assuming nondegeneracy

• c = **direction** of improvement in \mathbb{R}^n (*normal vector* for hyperplane { $x \in \mathbb{R}^n : c^T x = 0$ })

 "Roll a ball downhill inside feasible region"
 Optimal point x* must lie on boundary! (assuming finite optimal objective value z*)

▶ intersection of *n* hyperplanes $H_i^=$ is unique point $\rightarrow vertex \{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)

- always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m]) \rightarrow Simplex algorithm:

Move to better neighbor until optimal.

• x_I and $x_{I'}$ neighbors if $|I \cap I'| = n - 1$

L	procedure simplexIteration($H = \{H_1, \ldots, H_m\}$):
2	if \bigcap <i>H</i> = = \emptyset return INFEASIBLE
3	x := any feasible vertex
ł	while <i>x</i> is not locally optimal // <i>c</i> "against wall"
5	// pivot towards better objective function
5	if \forall feasible neighbor vertex $x' : c^T x' > c^T x$
7	return UNBOUNDED
3	else
,	x := some feasible lower neighbor of x
)	return x

Simplex – Linear Algebra Realization

- Here use equality constraints $\rightsquigarrow m \le n$
- every $J = \{j_1, \ldots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \ldots, A_{\bullet, j_m}\}$ assuming nondegeneracy

Notation:

- $x_I = (x_{i_1}, \dots, x_{i_m})^T$ vector of basis variables • $x_{\overline{I}} = (x_{\overline{I}_1}, \dots, x_{\overline{I}_{n-m}})^T$ vector of non-basis variables for $\overline{J} = [n] \setminus J = \{\overline{J}_1, \dots, \overline{J}_{n-m}\}$ • $A_{I} = (A_{\bullet, j_{1}}, \dots, A_{\bullet, j_{m}}) \in \mathbb{R}^{m \times m}$; similarly $A_{\overline{I}} = (A_{\bullet, \overline{J}_{1}}, \dots, A_{\bullet, \overline{J}_{n-m}}) \in \mathbb{R}^{(n-m) \times m}$ • c_J and $c_{\bar{J}}$ defined similarly $\sim We$ have $Ax = b \iff A_J x_J + A_{\bar{J}} x_{\bar{J}} = b \iff x_J = A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}$ $x_{\bar{l}}$ is uniquely determined by choosing $x_{\bar{l}}$
- ▶ *basic solution* setting $x_{\bar{l}} = 0$ gives $x_{\bar{l}} = A_{\bar{l}}^{-1}b$ \rightarrow correspond to *vertices* from before
 - may or may not be a *feasible basic solution*: $x_1 \ge 0$?
- → given *I*, can easily compute basic solution and check feasibility

Simplex – Local Optimality Test

b basic solution: $x_J = A_J^{-1}b - A_J^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$

How to locally modify basic solution without violating constraints?

- ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
- can't *decrease* $x_{\bar{j}_k}$ for $\bar{j}_k \in \bar{j}$ (nonnegativity);
- \rightsquigarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$

► rewrite cost:
$$c^T x = c_J x_J + c_{\overline{J}}^T x_{\overline{J}}$$

 $= c_J (A_J^{-1} b - A_J^{-1} A_{\overline{J}} x_{\overline{J}}) + c_{\overline{J}}^T x_{\overline{J}}$
 $= c_J A_J^{-1} b + (\underbrace{c_{\overline{J}}^T - c_J A_J^{-1} A_{\overline{J}}}_{\widetilde{c}_{\overline{J}}^T}) x_{\overline{J}}$
Convex function over a convex domain
 $\sim b local opt \implies global opt$

 \rightsquigarrow No (local) improvement possible $\iff \tilde{c}_{\tilde{l}} \ge 0 \iff$ current basic solution optimal

- Otherwise: Bring \bar{j}_k with $\tilde{c}_{\bar{j}_k} < 0$ into basis
 - This means we increase $x_{\bar{l}k}$ as much as possible until some x_{jk} becomes 0
 - \rightsquigarrow corresponds to moving to neighbor vertex

Summary LP Algorithms

Simplex Algorithm

- simple and mostly combinatorial algorithm
 -) easy to implement
- usually fast in practice (in most open source solvers)
 - worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime f¹ but *smoothed analysis* proves: random perturbations of input yield expected polytime on any input

Alternative methods

- ellipsoid method (separation-oracle based)
- interior-point methods (numeric algorithms)
- worst case polytime
- interior-point method fastest in practice
- nore complicated, harder to implement well

6.4 Integer Linear Programs

When LPs Are Too Smooth

- Many natural optimization problems have linear objective and constraints
 - Example: The Knapsack Problem

```
Given: items 1, . . . , n with weights w \in \mathbb{N}^n and values v \in \mathbb{N}^n
knapsack weight capacity b \in \mathbb{N}
```

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

- $\begin{array}{l} \rightsquigarrow \text{ Introduce variable } x_i, \text{ such that} \\ \text{"item included" iff } x_1 = 1 \\ & \text{max} \quad v^T x \\ \text{s.t. } w^T x \leq b \\ & x \leq 1 \\ & x \geq 0 \end{array}$ (Knapsack)
- ▶ via LP solvers, we obtain exact worst-case polytime algorithms
- Hold on; where's the catch? These problems are NP-hard; so there must be something wrong?
- Integrality! Optimal fractional Knapsack x* can be nonsensical: Could have $x_i = \frac{1}{2}$ for a single high-value item of weight 2b, etc.

Integer Linear Programs

- ► A (*mixed*) *integer linear program* (ILP/IP resp. MILP) is a linear program, where (some) variables are constrained to integers, $x_i \in \mathbb{Z}$.
 - focus here on the case that all variables are integral: $x \in \mathbb{Z}^n$

→ feasibility region of an LP is a *polyhedron* $P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ feasibility region of an ILP is the intersection of *P* with the integer lattice: $P_{\mathbb{Z}} = P \cap \mathbb{Z}^n \subset P$

 \rightsquigarrow Still get a lower bound on objective value

optimal objective value of LP \leq optimal objective value of ILP

LP Relaxations

Given a combinatorial optimization problem as ILP, its *LP relaxation* is the LP obtained by dropping all integrality constraints.

Example: Independent Set

- Given: G = (V, E)
 Goal: Maximum-cardinality independent set
- Introduce variable $x_v \in \{0, 1\}$ for $v \in V$

 $\max \sum_{v \in V} x_v$ s.t. $x_v + x_w \le 1$ ($\forall vw \in E$) (IS-ILP) $x_v \in \{0, 1\}$ ($\forall v \in V$)

 $\max \sum_{v \in V} x_v$ s.t. $x_v + x_w \le 1 \quad (\forall vw \in E) \quad \text{(IS-LP)}$ $0 \le x_v \le 1 \quad (\forall v \in V)$

Integrality Gap

- The ratio $\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$ is called the *integrality gap* of an LP relaxation.
 - Hessy James's apple trees: use 533 instead of 533.33... trees
 - \rightsquigarrow actual profit € 155 415 instead of € 155 500 \implies minuscule difference
 - ▶ If integrality gap is small, can potentially use LP for approximate solutions → Unit 12
- ▶ in the worst case, integrality gap can be bad

- actual example: Independent Set
 - Consider complete graph $G = K_n$
 - ► Largest independent set is single vertex → z^{*}_{ILP} = 1
 - Fractional solution possible with $z_{\text{LP}}^* = n/2$ by setting all $x_v = \frac{1}{2}$
 - \rightsquigarrow unbounded integrality gap

6.5 LP-Based Kernelization

Vertex Cover as (Integer) Linear Program

Consider optimization version of VERTEXCOVER: Given: Graph G = (V, E)Goal: Vertex cover of *G* with minimal cardinality.

 \rightsquigarrow equivalent to the following integer linear program

```
 \min \sum_{v \in V} x_v 
s. t. x_u + x_v \ge 1  for all \{u, v\} \in E 
x_v \in \{0, 1\}  for all v \in V
```

Consider *relaxation* to $x_v \in \mathbb{R}, x_v \ge 0$.

 \rightsquigarrow LP that can by solved in polytime.

For an *optimal* solution \vec{x} of the *relaxation*, we define

$$I_0 = \{ v \in V : x_v < \frac{1}{2} \}$$

$$V_0 = \{ v \in V : x_v = \frac{1}{2} \}$$

$$C_0 = \{ v \in V : x_v > \frac{1}{2} \}$$

Kernel for VC

Theorem 6.1 (Kernel for Vertex Cover)

Let (G = (V, E), k) an instance of *p*-Vertex-Cover.

- **1.** There exists a minimal vertex cover *S* with $C_0 \subseteq S$ and $S \cap I_0 = \emptyset$.
- **2.** V_0 implies a problem kernel $(G[V_0], k |C_0|)$ with $|V_0| \le 2k$.

Here $G[V_0]$ is the induced subgraph of V_0 in G.

Proof:

Kernel for VC [2]

Proof (cont.):

н.

Kernel for VC [3]

Proof (cont.):

.....

×.

6.6 ETH-Based Lower Bounds

The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)

The *Exponential-Time Hypothesis (ETH)* asserts that there is a constant $\varepsilon > 0$ so that every algorithm for *p*-3SAT requires $\Omega(2^{\varepsilon k})$ time, where *k* is the number of variables.

Equivalent formulations:

- There is a $\delta > 0$ so that every 3-SAT algorithm needs $\Omega((1 + \delta)^k)$ time.
- There is no $O(2^{o(k)}n^c)$ -time algorithm for 3-SAT.
- ► There is no subexponential-time algorithm for 3-SAT.

Lower Bounds Conditional on ETH

- Idea: Show that solving X in time f(k, n) implies a O(2^{εk}n^c) algorithm for 3SAT for all ε > 0.
- → unless ETH false, no such f(k, n)-time algorithm for X exists.
- ▶ That needs a 3SAT-reduction that preserves parameter *k* tightly.

Recall: Classical Reduction from 3SAT to Vertex Cover

(ii) 3SAT \leq_p VERTEXCOVER – Example $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4)$

- Idea: Vertices not in vertex cover S define a variable assignment.
 - Cannot be contradictory, otherwise "negation"-edge not covered.
 - Must take ≥ 2 vertices per clause into S (otherwise triangle not covered)
 - → $|S| \ge 2n$ for every vertex cover.
- In the example:
 - ► Fat vertices form a vertex cover for *G*
 - corresponding assignment: $V = \{x_1 \mapsto 0, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$ $(0 \cong false, 1 \cong true)$
 - $\rightsquigarrow \varphi$ satisfiable

Sparsification Lemma

Lemma 6.3 (Sparsification Lemma)

For all $\varepsilon > 0$, there is a constant *K* so that we can compute for every formula φ in 3-CNF with *n* clauses over *k* variables an equivalent formula $\bigvee_{i=1}^{t} \psi_i$ where each ψ_i is in 3-CNF and over the same *k* variables and has $\leq K \cdot k$ clauses. Moreover, $t \leq 2^{\varepsilon k}$ and the computation takes $O(2^{\varepsilon k}n^c)$ time.

Rough Idea:

Iteratively remove *sunflowers* by retaining only the *heart* or only the *petals*.

Proof in Impagliazzo, Paturi, Zane (2001): Which Problems Have Strongly Exponential Complexity?

Lower Bounds – 3SAT [1]

Theorem 6.4 (Lower Bound by Size)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-3SAT needs time $\Omega(2^{c(n+k)})$ where *n* is the number of clauses and *k* is the number of variables.

Proof:

Lower Bounds – 3SAT [2]

Proof (cont.):

Lower Bounds – Vertex Cover

Theorem 6.5 (No Subexponential Algorithm Vertex Cover)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-VERTEX-COVER needs time $\Omega(2^{ck})$.

 \rightarrow Apart from constant basis, exponential dependence on *k* likely best possible.

Proof:

Lower Bounds – Closest String

Theorem 6.6 (Lower Bound Closest String)

Unless ETH fails, there is a constant c > 0 so that every algorithm for *p*-CLOSEST-STRING needs time $\Omega(2^{c(k \lg k)}) = \Omega(k^{ck})$.

Proof omitted.

see Cygan et al. (2015): Parameterized Algorithms

 \rightsquigarrow Again, apart from constant in basis, k^k growth in k likely best possible.

Summary

- LPs as a versatile tool
- ▶ in particular, give linear-size kernel for *p*-VERTEXCOVER
- assuming the Exponential Time Hypothesis (instead of only P ≠ NP), can show lower bounds for *f*(*k*) part of any fpt algorithm