ee Vs
OC/@?/\@)/@\A/ | B

/

Advanced

Parameterized Ideas
3 June 2025

Prof. Dr. Sebastian Wild

Philipps-Universitdt Marburg

Outline

6 Advanced Parameterized Ideas

6.1
6.2
6.3
6.4
6.5
6.6

Linear Programs — A Mighty Blackbox Tool
Linear Programs — Reformulation Tricks
Linear Programs — The Simplex Algorithm
Integer Linear Programs

LP-Based Kernelization

ETH-Based Lower Bounds

6.1 Linear Programs — A Mighty Blackbox Tool

Linear Programs

» Linear programs (LPs) are a class of optimization problems
of continuous (numerical) variables

» can be exactly solved in worst case polytime (LINEARPROGRAMMING € P)
» interior-point methods, Ellipsoid method

» routinely solved in practice to optimality with millions of variables and constraints
» Simplex algorithm, interior-point methods

»> many existing solvers, commercial and open source (e. g., HIGHS)

Hessy James’s Apple Farm

» Hessy tries to maximize the profit of his apple farm

>

VvV VvV vy VvV VY

| g

He is committed to promote regional Hessian heirloom varieties, so he only grows
“Sossenheimer Roter” and “Korbacher Edelrenette”

each tree of “Sossenheimer Roter” yields apples worth € 195 per year

each tree of “Korbacher Edelrenette” yields applies worth € 255 per year

He has an orchard of 5000 m?

each tree needs 4 m? of orchard space

each tree of “Sossenheimer Roter” needs 6 kg of organic fertilizer and 1 h harvest effort per year

each tree of “Korbacher Edelrenette” needs 4.5 kg of organic fertilizer and 3 h harvest effort per
year

Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

~» How many trees of each variety should Hessy plant?

>
>

What will constrain us most? Space? Fertilizer? Harvest hours?

What profit can Hessy expect?

Formal Linear Program for Hessy James’s Apple Farm
» Classic application of linear programming in operations research (OR)

» We formally write LPs as follows:
. objective function
optimization goal
\
Maximize: 195s + 255k
Subjectto: 4s+ 4k 5000 (Orchard constraint)

6s + 4.5k < 3000 (Fertilizer constraint) name of the LP

constraint

IA

1s+ 3k < 1700 (Harvest constraint) (P)
s >0 (Non-negativity)
k>0 (Non-negativity)

» Terminology:
» s and k are the two wvariables of the problem; these are always real numbers.
» A vector (s, k) € R2isa feasible solution for the LP if it satisfied all constraints.

» The largest value of the objective function (over all feasible solutions)
is the (optimal) value z*of the LP

> A feasible solution (s*, k*) € R? with optimal objective value z* is called an optimal solution

2D LPs - Graphical Solution

LPs with two variables can be solved graphically

T T T
——— 4s + 4k < 5000 (Orchard)
s + 3k < 1700 (Harvest)
——— 65 + 4.5k < 3000 (Fertilizer)

Feasible Region » 100 Sossenheimer Roter trees
Objective Function | and Jhmm -

> 533+% Korbacher Edelrenette
trees

800 ~+ Hessy should plant

* k* — 1 .7
600 (5),/) = (100, 533.3)

o

Optimal Solution

400 - .
» Harvest and fertilizer tight
» orchard space isn't

200 ~ know what to change

#Korbacher Edelrenette Trees (k)

L
1,400

AN

\ \] \]]
0 200 400 600 800 1,000 1,200

#Sossenheimer Roter Trees (s)

LPs — The General Case

» General LP:
min cix1+---+ CpXy

s.t. aj1x1+---+ainx, = by (fori=1,...,p)
ai1x1+--+ai,x, < by (fori=p+1,...,9)
ai1x1+--+ainx, = by (fori=gq+1,...,m)

xj 2 0 (forj=1...,7)
X; §\O (forj=r+1...,n)
» arbitrary linear objective function “don’t care” (just to make it explicit)

» arbitrary linear constraints, of type “=", “<” or “>"

» variables with non-negativity constraint and unconstrained variables

» In general, an LP can
(a) have a finite optimal objective value
(b) be infeasible (contradictory constraints / empty feasibility region), or

(c) be unbounded (allow arbitrarily small objective values “—co”

~ in polytime, can detect which case applies and compute optimal solution in case (a)

Classic Modeling Example — Max Flow

» The maximum-s-t-flow problem in a graph G = (V/, E) can be reduced to an LP (Flow)

» variable f, for each edge e € E

maximize flow value F = flow out of s

>
» constraint for edge capacity C(e) at each edge
>

constraint for flow conservation at each vertex v (except s and t)

max

s. t. IE

fvw
-

weV
fe

IA

\%

Zfsv_vas

veV veV

C(ow) (for vw € E) (Flow)
vaw (forve V\{s,t})

weV

0 (fore € E)

6.2 Linear Programs — Reformulation Tricks

How to solve an LP?

» Our focus will be on using LPs as a tool

» in theory: reducing problem to an LP means polytime solvable

» in practice: call good solver!

» But as with any good tool, it helps to gave an idea of how it works to effectively use it

~+ We will briefly visit the conceptual ideas of the simplex algorithm

Recall: General Form of LPs

» General LP:
min c1xq +

s.t. aj1x1+---
aigXxi+---

ai X1+ -

st CpXy
+ AjinXn
= ai nXn

+ainXn

Xj

Xj

vV IV IA

VA

ANy

o © ¢ <

(fori=1,...,p)
(fori=p+1,...,9)
(fori=q+1,...,m)
(forj=1...,7)
(forj=r+1...,n)

» linear objective function and constraints (“=", “<”, or “>"

» variables with non-negativity constraint and unconstrained variables

» Conventions:

> 1 variables (always called x;)

> m constraints (coefficients always called 4; j, right-hand sides b;)

»> minimize objective (“cost”), coefficients c i objective value z = c1x7 + - cpxy

Enter Linear Algebra

s.t. aiix1+-cc+aiax, = by (fori=1,..., P)
» Spelling out all those linear combinations is cumbersome Ao & Oy @RISp b))
AigX1+-cc+aipxy 2 by (fori=gq+1,..., m)
. . . . xj =2 0 (forj=1...,7)
~» Concise notation via matrix and vector products 5 S0 (forj=r+l..m
» We write
X1 bold ~+ vector/matrix [C1 /transpose
> variables x = | : cost coefficients ¢ = | . | € R” ~+ objective: min ol x
Xn Cn dot product / scalar product
> “="_constraints
a1 412 v i by
AG = | S : | e prpn b3 = | : | e rP - A .x = p>&
dp1 Ap2 = Apn b
i i P elementwise b

<
» similarly for “<” and “>" constraints: Ay < b5 and A®)x > p®)
~+ a single constraint i can be writtenas A; ,x = b;

(generally write A; , for the ith row of A and A, ; for the jth column)

Reformulations
Tricks of the Trade for working with LPs:

» min suffices: maxc’x = —min(—c)'x
> “>"-constraints: Aj.x = b < (—A)i.x < —b;
» slack variables: Ajex < b & Aiex+xs; =b; and x5 > 0
(xs; is a new additional variable)
> nonnegative: variablex; s 0 < «x; = xj+—x;- and xj,x;- = 0

(xj,+ and x; - are new additional variables)

~» To solve LPs, can assume one of the following normal forms

min c’x min c’x
s.t. Ax or s.t. Ax = b with A € R™" b € R™, and ¢ € R"

x>0 X

IA

v

10

6.3 Linear Programs — The Simplex Algorithm

Simplex — Geometric Intuition

min ¢! x > constraint A; ¢x < b;
defines a hyperplane/halfspace

w HZ ={x € R": Ajox = b;}
H7 = {x € IR” :Ai,.x < b,}

s. t.

Ax < b

x>0
+ nondegeneracy

» ¢ = direction of improvement in R"
(normal vector for hyperplane {x € R" : cTx =0})
» “Roll a ball downhill inside feasible region”
~» Optimal point x* must lie on boundary!

(assuming finite optimal objective value z*)

assuming nondegeneracy
» intersection of n hyperplanes H l: is unique point
~ vertex {x1} = el HF (forlc [m], |I| = n)

T ,.* T

» always have ¢’ x* = ¢ x+ for a vertex x-

> “01’11}/'” (r:ll) vertices X7 (all n-subsets of [1m])
~ Simplex algorithm:

Move to better neighbor until optimal.
» x;and xp neighborsif |[INI'| =n -1

procedure simplexIteration(H = {Hj, ..

., Hi })
if | H == () return INFEASIBLE
x := any feasible vertex
while x is not locally optimal // ¢ “against wall”
// pivot towards better objective function
if V feasible neighbor vertex x’ : ¢Tx” > ¢l x
return UNBOUNDED
else
x := some feasible lower neighbor of x
return x

11

Simplex — Linear Algebra Realization

min ¢’x » Here use equality constraints ~» m < n

s.t. Ax

»> Assume rank(A) = m (nondegeneracy)
x
+ nondegeneracy

> every] ={j1,...,jm} C [n] corresponds to basis of A: {As ..., Aej,}

assuming nondegeneracy
» Notation:

> x; = (le pooondy)T vector of basis variables

> x;= Ehro00s x]*,Hn)T vector of non-basis variables forJ=[n]\J ={71, -, Jn-m}
> Aj=(Asjy, - Asj,) ER™M similarly A7 = (Aejy, -, Aa g, ,) € RUTTXM
> cj and c; defined similarly sqquare & full rank

~ Wehave Ax = b < Ajx+ A]-xj =b — |x = Af_lb - Al_lAfx]-

x7 is uniquely determined by choosing x;
> Dbasic solution setting x7 = 0 gives xj = Aj’lb ~+ correspond to vertices from before
> may or may not be a feasible basic solution: xj > 0?

~~ given |, can easily compute basic solution and check feasibility

12

Simplex — Local Optimality Test

min ¢’x
» basic solution: |x; = Al’lb - A]*1A]-x]— and x; =0 s.t. Ax = b
x 0

+ nondegeneracy

» How to locally modify basic solution without violating constraints?
> can’t change x;, for ji € | (equality constraint);
> can't decrease xj, for ji € | (nonnegativity);
~» can only increase xj, by small 6 > 0

T

» rewrite cost: c¢'x 0

J

= ¢ (Al_lb—Al_lijT) + C%Xj

= gA]'b + (c]T—ch]_]Aj)xf
e

cjxy +c¢ xl‘

Convex function over a convex domain

¢ ~+ local opt = global opt

—i—

~+ No (local) improvement possible <= ¢ = 0 <= current basic solution optimal

» Otherwise: Bring j; with ¢;, < 0 into basis

> This means we increase x7, as much as possible until some x o becomes 0
~» corresponds to moving to neighbor vertex

13

Summary LP Algorithms

> Simplex Algorithm
[ﬁ simple and mostly combinatorial algorithm
[@ easy to implement

[b usually fast in practice (in most open source solvers)

E@ worst case running time actually exponential
details depend on how better neighboring vertex is chosen (pivoting rule)
but no rule known that guarantees polytime

[& but smoothed analysis proves: random perturbations of input yield expected polytime on any input

> Alternative methods
» ellipsoid method (separation-oracle based)
> interior-point methods (numeric algorithms)
[ﬁ worst case polytime
[fb interior-point method fastest in practice

@ more complicated, harder to implement well

14

6.4 Integer Linear Programs

When LPs Are Too Smooth

» Many natural optimization problems have linear objective and constraints
> Example: The Knapsack Problem

Given: items1,...,n with weights w € N" and values v € N
knapsack weight capacity b € N

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

~~ Introduce variable x;, such that

T
“item included” iff x1 = 1 max- v x
s.t. wlx <b (Knapsack)
x <
Ee—=

» via LP solvers, we obtain exact worst-case polytime algorithms

» Hold on; where’s the catch?
These problems are NP-hard; so there must be something wrong?

¥ Integrality! Optimal fractional Knapsack x* can be nonsensical:
Could have x; = 3 for a single high-value item of weight 2b, etc.

15

Integer Linear Programs

» A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,
where (some) variables are constrained to integers, x; € Z.

» focus here on the case that all variables are integral: x € Z"

T

min ¢ x
s.t. Ax
X
X

<
>
€

b (ILP)
0
Z)‘l

intersection of halfspaces

Example: Knapsack

max olx

s.t. wlx < b (Knapsack-ILP)
x <1
x>0
x e Z"

4
~ feasibility region of an LP is a polyhedron P = {x € R" : Ax < b,x > 0}
feasibility region of an ILP is the intersection of P with the integer lattice:
Py = PNZ" c P

~ Still get a lower bound on objective value

[optimal objective value of LP < optimal objective value of ILP]

LP Relaxations

» Given a combinatorial optimization problem as ILP,

its LP relaxation is the LP obtained by dropping all integrality constraints.

» Example: Independent Set
» Given: G =(V,E)
Goal: Maximum-cardinality independent set

» Introduce variable x, € {0,1} forv e V

max Z Xy

veV
s.t. xp+xy <1 (Yow € E) (IS-ILP)
xp, € {0,1} (VoeV)

0<x,<1 (YoeV)

(IS-LP)

17

Integrality Gap

*

z
> The ratio — is called the integrality gap of an LP relaxation.

*

Z1p

» Hessy James’s apple trees: use 533 instead of 533.33 . .. trees
~~ actual profit € 155415 instead of € 155500 ~» minuscule difference

> If integrality gap is small, can potentially use LP for approximate solutions ~» Unit 12

» in the worst case, integrality gap can be bad

A

/

> actual example: Independent Set

>
>

Consider complete graph G = K,

Largest independent set is single
vertex ~ zpp =1
Fractional solution possible with

z[p = n/2by setting all x, = %

unbounded integrality gap

18

6.5 LP-Based Kernelization

Vertex Cover as (Integer) Linear Program

Consider optimization version of VERTEXCOVER:
Given: Graph G = (V,E)
Goal: Vertex cover of G with minimal cardinality.

~+ equivalent to the following integer linear program

min), cy Xo
s.t. x, +x,>1 forall{u,v} €E
Xy €{0,1} forallveV

Consider relaxation to x, € R, x, > 0.
~ LP that can by solved in polytime.

For an optimal solution X of the relaxation, we define

Iy = {veV:xv<%}
W = {UEV:XUZ%}
Co = {veVix,>1}

19

Kernel for VC

Theorem 6.1 (Kernel for Vertex Cover)
Let (G = (V,E), k) an instance of p-VERTEX-COVER.

1. There exists a minimal vertex cover S with Co € S and S N Iy = 0.

2.V, implies a problem kernel (G[Vy], k — | Co|) with |Vo| < 2k.
Here G[Vp] is the induced subgraph of Vj in G.

Proof:

20

Kernel for VC [2]

Proof (cont.):

21

Kernel for VC [3]

Proof (cont.):

22

6.6 ETH-Based Lower Bounds

The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant ¢ > 0 so that every

algorithm for p-3SAT requires Q(2¢%) time, where k is the number of variables.
Equivalent formulations:

> Thereisa 6 > 0 so that every 3-SAT algorithm needs Q((1 + 6)) time.
» There is no O(2°®)5¢)-time algorithm for 3-SAT.

» There is no subexponential-time algorithm for 3-SAT.

23

Lower Bounds Conditional on ETH

» Idea: Show that solving X in time f(k,)
implies a O(2%1¢) algorithm for 3SAT for all ¢ > 0.

~+ unless ETH false, no such f(k, n)-time algorithm for X exists.

» That needs a 3SAT-reduction that preserves parameter k tightly.

24

Recall: Classical Reduction from 3SAT to Vertex Cover

(i) 3SAT <, VERTEXCOVER — Example

@ =(x1Vx2V-x3)A(mx1 Va3 Vag) A(mxg Voxg Vooxg) A(xoVas Vxy)

» Idea: Vertices not in vertex cover S

define a variable assignment.

» Cannot be contradictory, otherwise
“negation”-edge not covered.

»> Must take > 2 vertices per clause into S
(otherwise triangle not covered)

~ |S| > 2n for every vertex cover.

» In the example:
» Fat vertices form a vertex cover for G

» corresponding assignment:
V={x1—>0,x2>0,x3—0,x4— 1}
(0 = false, 1 = true)

~ @ satisfiable

Set S (a VC of size 2n)

39

25

Sparsification Lemma

Lemma 6.3 (Sparsification Lemma)

For all € > 0, there is a constant K so that we can compute for every formula ¢ in 3-CNF with
n clauses over k variables an equivalent formula \/!_, ¢; where each 1; is in 3-CNF and over
the same k variables and has < K - k clauses. Moreover, t < 2¢% and the computation takes
O(2¢kn°) time.

Rough Idea:
Iteratively remove sunflowers by retaining only the heart or only the petals.
Proof in Impagliazzo, Paturi, Zane (2001): Which Problems Have Strongly Exponential Complexity?

26

Lower Bounds — 3SAT [1]

Theorem 6.4 (Lower Bound by Size)

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-3SAT needs time
Q(2¢("*k)) where 7 is the number of clauses and k is the number of variables.

Proof:

27

Lower Bounds — 3SAT [2]

Proof (cont.):

28

Lower Bounds — Vertex Cover

Theorem 6.5 (No Subexponential Algorithm Vertex Cover)
Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-VERTEX-COVER needs

time Q(2°%). <

~ Apart from constant basis, exponential dependence on k likely best possible.

Proof:

29

Lower Bounds — Closest String

Theorem 6.6 (Lower Bound Closest String)

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-CLOSEST-STRING needs
time Q(2¢k18K)) = Q(k<k).

Proof omitted.

see Cygan et al. (2015): Parameterized Algorithms

~ Again, apart from constant in basis, k* growth in k likely best possible.

30

Summary

» LPs as a versatile tool

» in particular, give linear-size kernel for p-VERTEXCOVER

» assuming the Exponential Time Hypothesis (instead of only P # NP),
can show lower bounds for f(k) part of any fpt algorithm

31

	Advanced Parameterized Ideas
	Linear Programs – A Mighty Blackbox Tool
	Linear Programs
	Hessy James's Apple Farm
	Formal Linear Program for Hessy James's Apple Farm
	2D LPs – Graphical Solution
	LPs – The General Case
	Classic Modeling Example – Max Flow

	Linear Programs – Reformulation Tricks
	How to solve an LP?
	Recall: General Form of LPs
	Enter Linear Algebra
	Reformulations

	Linear Programs – The Simplex Algorithm
	Simplex – Geometric Intuition
	Simplex – Linear Algebra Realization
	Simplex – Local Optimality Test
	Summary LP Algorithms

	Integer Linear Programs
	When LPs Are Too Smooth
	Integer Linear Programs
	LP Relaxations
	Integrality Gap

	LP-Based Kernelization
	Vertex Cover as (Integer) Linear Program
	Kernel for VC
	Kernel for VC [2]
	Kernel for VC [3]

	ETH-Based Lower Bounds
	The Exponential Time Hypothesis
	Lower Bounds Conditional on ETH
	Recall: Classical Reduction from 3SAT to Vertex Cover
	Sparsification Lemma
	Lower Bounds – 3SAT [1]
	Lower Bounds – 3SAT [2]
	Lower Bounds – Vertex Cover
	Lower Bounds – Closest String
	Summary

