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7.1 Motivation



Computational Lottery?
▶ If we are faced with solving an NP-hard problem and known smart algorithms are too

slow, we likely have to compromise on what “solving” means.

▶ Classical algorithms are always and exactly correct.

⇝ Here: Let’s compromise on “always”, i. e., allow algorithms to occasionally fail!

� A deterministic algorithm 𝐴 that fails on input 𝑥 will always fail for 𝑥.
⇝ What if we require a solution for such an input 𝑥? We get nothing from 𝐴!
▶ Must use a form of nondeterminism.

▶ Randomization: Use random bits to guide computation.

⇝ Instead of always failing on some rare inputs, we rarely
can make this arbitrarily rare

fail on any input.
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Why Could Randomization Help?
▶ Main intuitive reason: (can be) much easier to be 99.999999% correct than 100%

How can this manifest itself?
▶ Faster and simpler algorithms

Random choice can allow to sidestep tricky edge cases
▶ We can use fingerprinting (a.k.a. checksums)

Cheap surrogate question, mostly correct, but sometimes wrong.
▶ Protect against adversarial inputs

We make our (algorithm’s) behavior unpredictable, so it us harder to exploit us.

▶ Also: probabilistic method for proofs
▶ Goal: Prove existence of discrete object with some property
▶ Idea: Design randomized algorithm to find one
⇝ If algorithm succeeds with prob. > 0, object must exist!
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Average-Case Analysis vs. Randomized Algorithms
Average-Case Analysis

▶ algorithm is deterministic
same input, same computation

▶ input is chosen according to some
probability distribution

▶ cost given as expectation over inputs

Randomized Algorithm (here)

▶ algorithm is not deterministic
same input, potentially different comp.

▶ input is chosen adversarially (worst-case
inputs)

▶ cost given as expectation over random
choices of algorithm

Confusingly enough, the analysis (technique) is often the same!

But: Implications are quite different; randomization is much more versatile and robust.
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7.2 Randomized Selection



Separation Example
▶ Before we introduce randomization more formally, let’s see a successful example

▶ Here, not a “hard” problem, but a showcase where randomization makes something
possible that is provably
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Introductory Example – Quickselect
Selection by Rank

▶ Given: array 𝐴[0..𝑛) of numbers and number 𝑘 ∈ [0..𝑛).
▶ Goal: find element that would be in position 𝑘 if 𝐴 was sorted (𝑘th smallest

but 0-based &
counting dups

element).

▶ 𝑘 = ⌊𝑛/2⌋ ⇝ median; 𝑘 = ⌊𝑛/4⌋ ⇝ lower quartile
𝑘 = 0 ⇝ minimum; 𝑘 = 𝑛 − ℓ ⇝ ℓ th largest

1 procedure quickselect(𝐴[0..𝑛), 𝑘):
2 𝑙 := 0; 𝑟 := 𝑛

3 while 𝑟 − 𝑙 > 1
4 𝑏 := random pivot from 𝐴[𝑙..𝑟)
5 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
6 if 𝑗 ≥ 𝑘 then 𝑟 := 𝑗 − 1
7 if 𝑗 ≤ 𝑘 then 𝑙 := 𝑗 + 1
8 return 𝐴[𝑘]

▶ simple algorithm:
determine rank of random element,
recurse

⇝ 𝑂(𝑛) time in expectation
over random choices

▶ worst case: Θ(𝑛2)

▶ 𝑂(𝑛) also possible deterministically,
but algorithms

median of medians

is more involved
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A closer look at Selection
While all within Θ(𝑛), we do get a strict separation for selecting the median.

Theorem 7.1 (Bent & John (1985))
Any deterministic comparison-based algorithm for finding the median of 𝑛 elements uses at
least 2𝒏 − 𝑜(𝑛) comparisons in the worst case. ◀

Proof omitted.

The following weaker result is easier to see:

Theorem 7.2 (Blum et al. (1973))
Any deterministic comparison-based algorithm for finding the median of 𝑛 elements uses at
least 𝑛 − 1 + (𝑛 − 1)/2 ∼ 1.5𝑛 comparisons in the worst case. ◀
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A Median Adversary
Proof (Theorem 7.2):

■
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Randomized Selection
▶ Can prove: Randomized Quickselect uses in expectation ∼ (2 ln 2 + 2)𝑛 ≈ 3.39𝑛

comparisons to find the median

▶ But we can do better!

1 procedure floydRivest(𝐴[ℓ ..𝑟), 𝑘):
2 𝑛 := 𝑟 − ℓ

3 if 𝑛 < 𝑛0 return quickselect(𝐴, 𝑘)
4 𝑠 := 1

2 𝑛
2/3 // all numbers to be rounded

5 sd := 1
2
√

ln(𝑛)𝑠(𝑛 − 𝑠)/𝑛
6 𝑆[0..𝑠) := random sample from 𝐴

7 𝑘 := 𝑠 𝑘
𝑛

8 𝑝 := floydRivest(𝑆, 𝑘 − sd)
9 𝑞 := floydRivest(𝑆, 𝑘 + sd)

10 (𝑖 , 𝑗) :=partition 𝐴 around 𝑝0 and 𝑝1
11 if 𝑖 == 𝑘 return 𝐴[𝑖]
12 if 𝑗 == 𝑘 return 𝐴[𝑗]
13 if 𝑘 < 𝑖 return floydRivest(𝐴[ℓ ..𝑖), 𝑘)
14 if 𝑘 > 𝑗 return floydRivest(𝐴[𝑗..𝑟), 𝑘)
15 return floydRivest(𝐴[𝑖.. 𝑗), 𝑘)

▶ Variant of Quickselect with huge sample
▶ Analysis sketch:

▶ partition costs 1.5𝑛 comparisons
▶ Everything on sample has cost 𝑜(𝑛)
▶ by the choice of parameters,

with prob 1 − 𝑜(1):
(a) 𝑖 < 𝑘 < 𝑗 after partition
(b) 𝑗 − 𝑖 = 𝑜(𝑛)

⇝ all recursive calls expected 𝑜(𝑛) cost

⇝ Randomized median selection with
1.5𝑛 + 𝑜(𝑛) comparisons

⇝ Separation from deterministic case!
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Power of Randomness
▶ Selection by Rank shows two aspects of randomization:

▶ A simpler algorithm by avoiding edge cases (like an initial order giving bad pivots)
▶ Protection against adversarial inputs

(inputs constructed with knowledge about the algorithm)

Here randomization provably more powerful
constant factor for #cmps

than any thinkable deterministic algorithm!

▶ What can we gain for (NP-)hard problems?

▶ But first, let’s define things properly.
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7.3 Recap of Probability Theory



Probability Theory
▶ We will quickly revisit some key terms from probability theory

▶ Single place to look up notation etc.

▶ Much will focus on discrete probability, but some continuous tools useful, too
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Probability Spaces
Discrete probability space (Ω,ℙ):
▶ Ω = {𝜔1 , 𝜔2 , . . .} a (finite or) countable set

▶ ℙ : 2Ω → [0, 1] a discrete probability measure, i. e.,
▶ ℙ[Ω] = 1
▶ ℙ[𝐴] = ∑

𝜔∈𝐴 ℙ[𝜔] ⇝ ℙ determined by 𝑤𝑖 = ℙ[𝜔𝑖].

General probability space (Ω,F,ℙ):
▶ Ω is a set of points (the universe)

▶ F ⊆ 2Ω is a 𝜎-algebra, i. e., (discrete case: F = 2Ω; Ω = ℝ: Borel 𝜎-algebra B generated by (𝑎, 𝑏))
▶ ∅ ∈ F

▶ closed under complementation: 𝐴 ∈ F =⇒ 𝐴 = Ω \ 𝐴 ∈ F

▶ closed under countable union: 𝐴1 , 𝐴2 , . . . ∈ F =⇒ ⋃∞
𝑖=1 𝐴𝑖 ∈ F

▶ ℙ : F → [0, 1] is a probability measure, i. e., (Ω = ℝ ⇝ Lebesgue measure 𝜆((𝑎, 𝑏)) = 𝑏 − 𝑎)
▶ ℙ[Ω] = 1
▶ If 𝐴1 , 𝐴2 , . . . ∈ F are pairwise disjoint then ℙ

[⋃∞
𝑖=1 𝐴𝑖

]
=
∑∞

𝑖=1 ℙ[𝐴𝑖]
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Events
𝐴 ∈ F is called an event of (Ω,F,ℙ); also a measurable

something we can assign a probability to

set.

Basic properties
▶ ℙ

[
𝐴
]
= 1 − ℙ[𝐴] counter-probability (𝐴 = Ω \ 𝐴)

▶ ℙ
[⋃

𝐴𝑖

]
≤ ∑

𝑖 ℙ[𝐴] the union bound (a.k.a. Boole’s inequality a.k.a. 𝜎-subadditivity)

▶ {𝐴1 , . . . , 𝐴𝑘} (mutually) independent ⇐⇒ ℙ
[⋂

𝑖 𝐴𝑖

]
=

∏
𝑖 ℙ[𝐴𝑖]

An infinite set of events is mutually independent if every finite subset is so.
𝑘-wise independence means that only all size-𝑘 subsets are independent.

▶ conditional probability for 𝐴 given 𝐵: ℙ[𝐴 | 𝐵] = ℙ[𝐴 ∩ 𝐵]
/
ℙ[𝐵]

generally undefined if ℙ[𝐵] = 0

▶ law of total probability: If Ω = 𝐵1 ¤∪ 𝐵2 ¤∪ · · · is a partition of Ω, we have

ℙ[𝐴] =

∑
𝑖

ℙ[𝐵𝑖 ]≠ 0

ℙ[𝐴 | 𝐵𝑖] · ℙ[𝐵𝑖].
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Random Variables
Random variables (r.v.) 𝑋 : Ω → X; often X = ℝ (in general spaces: only measurable functions)

Basic properties and conventions:
▶ event {𝑋 = 𝑥} is defined as {𝜔 ∈ Ω : 𝑋(𝜔) = 𝑥}.

▶ For event 𝐴 define the indicator r.v. 𝟙𝐴 via 𝟙𝐴(𝜔) = [𝜔 ∈ 𝐴]

▶ 𝐹𝑋(𝑥) = ℙ[𝑋 ≤ 𝑥] is the cumulative distribution function (CDF).

▶ 𝑋 is discrete if 𝑋(Ω) = {𝑋(𝜔) : 𝜔 ∈ Ω} is countable.

▶ for discrete r.v. 𝑋 define 𝑓𝑋(𝑛) = ℙ[𝑋 = 𝑛] the probability mass function (PMF).

▶ If 𝐹𝑋 is everywhere differentiable, 𝑋 is continuous.
Then 𝑓𝑋 = 𝐹′

𝑋
is its probability density function.

Equality in distribution:
▶ We write 𝑋

D
= 𝑌 if 𝐹𝑋 = 𝐹𝑌
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Independent Random Variables
Independence:

▶ Consider vector 𝑿 = (𝑋1 , . . . , 𝑋𝑘) as single function from Ω to ℝ𝑘 .
CDF/PMF/PDF of 𝑿 is called joint CDF/PMF/PDF of 𝑋1 , . . . , 𝑋𝑘 .

▶ r.v.s independent ⇐⇒ joint PMF/PDF factors:
𝑋 and 𝑌 independent ⇐⇒ ℙ[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] = ℙ[𝑋 = 𝑥] · ℙ[𝑌 = 𝑦] for all 𝑥, 𝑦.

(Naturally follows from independent events)

i. i.d. sequences

▶ We often talk about sequences of random variables 𝑋1 , 𝑋2 , . . .

▶ a sequence of i. i.d. r.v. 𝑋1 , 𝑋2 , . . . (independent and identically distributed)
has 𝑋𝑖

D
= 𝑋1 and {𝑋𝑖}𝑖≥1 are mutually independent

▶ typical example: sequence of coin tosses (with same coin)
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Expected Values
Expectation of an X-valued r.v. 𝑋, written 𝔼[𝑋], is given by

▶ 𝔼[𝑋] =

∑
𝑥∈X

𝑥 · 𝑓𝑋(𝑥) for discrete 𝑋 with PMF 𝑓𝑋 ,

▶ 𝔼[𝑋] =

∫
𝑥∈X

𝑥 · 𝑓𝑋(𝑥) 𝑑𝑥 for continuous 𝑋 with PDF 𝑓𝑋 .

▶ undefined if sum does not converge / integral does not exist.

Properties:

▶ linearity: 𝔼[𝑎𝑋 + 𝑏𝑌] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] (𝑋, 𝑌 r.v. and 𝑎, 𝑏 constants)
even if 𝑋 and 𝑌 are not independent
only for finite sums / linear combinations!

▶ 𝑋 and 𝑌 independent =⇒ 𝔼[𝑋 · 𝑌] = 𝔼[𝑋] · 𝔼[𝑌].
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Conditional Expectation
Similar to conditional probability, we can define conditional expectations.

▶ conditional expectation on event 𝔼[𝑋 | 𝐴] =
∑

𝑥 ℙ[𝑋 = 𝑥 | 𝐴] for discrete 𝑋.
for general 𝐴, continuous definition problematic

▶ conditional expectation on {𝑌 = 𝑦}, written 𝔼[𝑋 | 𝑌 = 𝑦].
▶ for discrete 𝑋 and 𝑌

𝔼[𝑋 | 𝑌 = 𝑦] =

∑
𝑥∈X

𝑥 · ℙ
[
𝑋 = 𝑥

�� {𝑌 = 𝑦}
]

▶ for continuous 𝑋 and 𝑌, use the joint density 𝑓(𝑋,𝑌) and define the marginal density of 𝑌 as
𝑓𝑌(𝑦) =

∫
𝑥∈X 𝑓 (𝑥, 𝑦) 𝑑𝑥. Then

𝔼[𝑋 | 𝑌 = 𝑦] =

∫
X
𝑥 · 𝑓𝑋|𝑌(𝑥, 𝑦) 𝑑𝑥 with 𝑓𝑋|𝑌(𝑥, 𝑦) =

𝑓(𝑋,𝑌)(𝑥, 𝑦)
𝑓𝑌(𝑦)

▶ With 𝑔(𝑦) ≔ 𝔼[𝑋 | 𝑌 = 𝑦] we obtain a new r.v. 𝔼[𝑋 | 𝑌] = 𝑔(𝑌).

▶ law of total expectation: 𝔼[𝑋] = 𝔼𝑌

[
𝔼𝑋[𝑋 | 𝑌]

]
.
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Famous Distributions
discrete

▶ Bernoulli r.v. 𝑋 D
= B(𝑝) ⇝ ℙ[𝑋 = 1] = 𝑝, ℙ[𝑋 = 0] = 1 − 𝑝

▶ Binomial r.v. 𝑌 D
= Bin(𝑛, 𝑝) ⇝ 𝑌 = 𝑋1 + · · · + 𝑋𝑛 for 𝑋1 , . . . , 𝑋𝑛 i. i.d. 𝑋𝑖

D
= B(𝑝)

▶ discrete uniform r.v. 𝑋 D
= U([0..𝑛)) ⇝ ℙ[𝑋 = 𝑖] = 1

𝑛 for 𝑖 ∈ [0..𝑛) (else 0)

▶ Geometric r.v. 𝑋 D
= Geo(𝑝) ⇝ ℙ[𝑋 = 𝑘] = (1 − 𝑝)𝑘−1𝑝 for 𝑘 ∈ ℕ≥1

continuous

▶ continuous uniform 𝑋
D
= U([0, 1)) ⇝ 𝑓𝑋(𝑥) = 1 for 𝑥 ∈ [0, 1) (else 0)

(of course there are many more)
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7.4 Probabilistic Turing Machines



Model of Computation

Definition 7.3 (Probabilistic Turing Machine)
A probabilistic Turing Machine (PTM) 𝑀 = (𝑄,Σ, Γ, 𝛿, 𝑞0 ,□, 𝑞halt) is a deterministic TM with
an additional read-only tape, filled with random bits.
The transition function 𝛿 takes as input
▶ the current state 𝑞

▶ the current tape symbol 𝑎
▶ the current random-tape symbol 𝑟 ∈ {0, 1}

and outputs
▶ the next state 𝑞′

▶ the new tape symbol 𝑏
▶ the tape-head movement 𝑑 ∈ {𝐿, 𝑅, 𝑁}
▶ the random-tape head movement 𝑑𝑟 ∈ {𝐿, 𝑅, 𝑁} ◀

Intended semantics: random tape filled with i. i.d. B( 1
2 ) r.v.
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Randomized Computation
▶ Configuration of PTM: (𝛼𝑞𝛽, 𝜌𝑞𝜎)

𝛼𝑞𝛽 normal TM config
𝜌𝜎 content of random tape, with head on first bit of 𝜎

▶ computation relation ⊢ similar to TM
content of random tape unchanged, heads can move independently

▶ function computed by PTM 𝑀:
for input 𝑥 and fixed random bits 𝜌, computation is deterministic:
𝑀(𝑥, 𝜌) = 𝑦 if (𝑞0𝑥, 𝑞0𝜌) ⊢★ (𝑞halt𝑦, 𝜌′𝑞halt𝜌′′)

⇝ Randomized computation of PTM:
random variable 𝑀(𝑥, 𝐵0𝐵1𝐵2 . . .) where 𝐵0 , 𝐵1 , 𝐵2 , . . . are i. i.d. B( 1

2 ) distributed

⇝ Write ℙ[𝑀(𝑥) = 𝑦] =

∑
𝑏

ℙ[𝐵0𝐵1 . . . = 𝑏] · [𝑀(𝑥, 𝑏) = 𝑦]

▶ Hope: PTM 𝑀 so that correct output computed with high probability
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Warmup: Rejection Sampling
We assume only random bits. How to simulate, say, a fair (6-sided) die?

1 procedure rollDie():
2 do
3 Draw 3 random bits 𝑏2 , 𝑏1 , 𝑏0
4 // Interpret as binary representation of a number in [0..7]
5 𝑛 =

∑2
𝑖=0 2𝑖𝑏𝑖

6 while (𝑛 = 0 ∨ 𝑛 = 7)
7 return 𝑛

Correctness: Every output 1, . . . , 6 equally likely by construction.

Termination: Infinite runs possible!

Expected Running Time: Leave loop with probability 6
8 = 3

4 in each iteration

⇝ in expectation, only 4
3 =

∑
𝑖≥1

𝑖 ·
(
1
4

) 𝑖−1 3
4 repetitions.

rollDie is a correct and practically efficient algorithm.
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What can go wrong?
What can go wrong in a randomized computation?
▶ Computation could run into a deterministic infinite loop (as for deterministic TM)

� don’t ever terminate, no output
⇝ Clearly don’t want that (just as before)

(annoyingly undecidable to check . . . also just as before)

▶ Computation could repeatedly have branches that keep looping (as for rollDie)
⇝ For every 𝑡, there is a probability 𝑝 > 0 to run for more than 𝑡 time steps
▶ This is a new option that deterministic TMs didn’t have

. . . but nondeterministic TMs did, and we just defined running time to be ∞ there!

So, is that a problem? Or is it not??
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Random Termination
Key question: What is the probability space for the running time of the PTM simulating rollDie?
▶ Note: this could indeed be a problem.

▶ {0, 1}★ (the set of finite bitstrings) is countably infinite (=discrete)
▶ But the set of infinite strings (𝜔-language) is not!

{0, 1}𝜔 =
{
𝑏0𝑏1 . . . : 𝑏𝑖 ∈ {0, 1}

}
=

{
𝑏 : 𝑏 : ℕ0 → {0, 1}

}
surjectively maps

𝑏 ↦→ 0.𝑏0𝑏1𝑏2 . . .

to [0, 1) ⊂ ℝ

▶ Config (𝛼𝑞𝛽, 𝜌𝑞𝝈) for PTM needs 𝜎 ∈ {0, 1}𝝎 in general

▶ Define the random variable Time𝑀(𝑥) ∈ ℕ0 ∪ {∞} on the Bernoulli probability space
▶ generators:

{
𝜋𝑥 : 𝑥 ∈ {0, 1}★

}
where 𝜋𝑥 =

{
𝑥𝑤 : 𝑤 ∈ {0, 1}𝜔

}
⊆ {0, 1}𝜔

▶ Bernoulli 𝜎-algebra: smallest F containing all {𝜋𝑥}𝑥 that is
closed under countable union and complement

▶ ℙ[𝜋𝑥] = 2−|𝑥|

⇝ expectations over 𝜌 ∈ {0, 1}𝜔, the infinite initial random-bit tape input are well-defined
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(Expected) Time

Definition 7.4 (PTM running time)
For a PTM 𝑀, we define time𝑀(𝑥) as for nondeterministic TMs as the supremum of time
steps over all computations.
Moreover, we define the expected time as

𝔼-time𝑀(𝑥) = 𝔼[time𝑀(𝑥)] = 𝔼𝜌

[
inf{𝑡 ∈ ℕ0 : (𝑞0𝑥, 𝑞0𝜌) ⊢𝑡 (𝑞halt𝑦, 𝜌

′𝑞halt𝜌
′′)
]

Similarly
𝔼-Time𝑀(𝑛) = sup

{
𝔼-time𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
◀

▶ We can of course also study full distribution of time𝑀(𝑥)

▶ Useful property of expected time:
𝔼-time𝑀(𝑥) < ∞ iff ℙ[time𝑀(𝑥) = ∞] = 0
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A New Complexity Measure: Random Bits

Definition 7.5 (Random-bit complexity)
For a PTM 𝑀 computing with input alphabet Σ, the random-bit cost for an input 𝑥 ∈ Σ★ is
denote by

random𝑀(𝑥) = sup
{
|𝜌′| : (𝑥𝑞0 , 𝑞0𝜌) ⊢★ (𝛼𝑞𝛽, 𝜌′𝑞𝜌′′) ⊢★ (𝑞halt𝑦, 𝜌

′𝑞halt𝜌
′′)
}

and similarly
Random𝑀(𝑛) = sup

{
random𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
.

Further, the expected random-bit cost are defined as
𝔼-random𝑀(𝑥) = 𝔼𝜌[random𝑀(𝑥)] and
𝔼-Random𝑀(𝑛) = sup

{
𝔼-random𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
◀
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Randomization vs. Nondeterminism
▶ Superficially similar concepts

▶ Key difference: meaning of number of computations of TM
▶ nondeterministic TM: accept if some (single) accepting computation is possible
▶ randomized TM: accept if most possible computations are accepting

⇝ nondeterminism = purely theoretical construction (overly powerful yardstick)

▶ randomization = widely applied efficient design technique
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7.5 Classification of Randomized Algorithms



Las Vegas
Consider here the general problem to compute some function 𝑓 : Σ★ → Γ★.

⇝ Covers decision problems 𝐿 ⊆ Σ★ by setting Γ = {0, 1} and 𝑓 (𝑤) =
{

1 𝑤 ∈ 𝐿

0 𝑤 ∉ 𝐿

Definition 7.6 (Las Vegas Algorithm)
A randomized algorithm 𝐴 is a Las-Vegas (LV) algorithm for a problem 𝑓 : Σ★ → Γ★

if for all 𝑥 ∈ Σ★ holds
1. Pr

[
time𝐴(𝑥) < ∞

]
= 1 (terminate almost surely)

2. 𝐴(𝑥) ∈ { 𝑓 (𝑥), ?} (answer always correct or “don’t know”)
3. Pr

[
𝐴(𝑥) = 𝑓 (𝑥)

]
≥ 1

2 (correct half the time)
◀
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Don’t Know vs. Won’t Terminate

Theorem 7.7 (Don’t know don’t needed)
Every Las Vegas algorithm 𝐴 for 𝑓 : Σ★ → Γ★ can be transformed into a randomized
algorithm 𝐵 for 𝑓 so that for all 𝑥 ∈ Σ★ holds

1. ℙ[𝐵(𝑥) = 𝑓 (𝑥)] = 1 (always correct)
2. 𝔼-time𝐵(𝑥) ≤ 2 · time𝐴(𝑥) ◀

Proof:
See exercises. ■

Theorem 7.8 (Termination Enforcible)
Every randomized algorithm 𝐵 for 𝑓 : Σ★ → Γ★ with ℙ[𝐵(𝑥) = 𝑓 (𝑥)] = 1 can be transformed
into a Las Vegas algorithm 𝐴 for 𝑓 so that for all 𝑥 ∈ Σ★ holds time𝐴(𝑥) ≤ 2 · 𝔼-time𝐵(𝑥). ◀

Proof:
See exercises. ■

⇝ Can trade expected time bound for worst-case bound by allowing “don’t know” and vice versa!

Both types are called LV algorithms.
27



Las Vegas Examples
rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 7.6:

1 procedure rollDieLasVegas:
2 Draw 3 random bits 𝑏2 , 𝑏1 , 𝑏0
3 𝑛 =

∑2
𝑖=0 2𝑖𝑏𝑖 // Interpret as binary representation of a number in [0 : 7]

4 if (𝑛 = 0 ∨ 𝑛 = 7)
5 return ?
6 else
7 return 𝑛

Other famous examples: (randomized) Quicksort and Quickselect
▶ always correct and
▶ time(𝑛) = 𝑂(𝑛2) < ∞
▶ much better average:

▶ 𝔼-timeQSort(𝑛) = Θ(𝑛 log 𝑛)
▶ 𝔼-timeQSelect(𝑛) = Θ(𝑛)
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To Err is Algorithmic
Sometimes sensible to allow wrong/imprecise answers . . . but random should not mean
arbitrary.

Definition 7.9 (Monte Carlo Algorithm)
A randomized algorithm 𝐴 is a Monte Carlo algorithm for 𝑓 : Σ★ → Γ★

▶ with bounded error if ∃𝜀 > 0∀𝑥 ∈ Σ★ : ℙ[𝐴(𝑥) = 𝑓 (𝑥)] ≥ 1
2 + 𝜀.

▶ with unbounded error if ∀𝑥 ∈ Σ★ : ℙ[𝐴(𝑥) = 𝑓 (𝑥)] >
1
2 .

◀

Seems like a minuscule difference? We will see it is vital!
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7.6 Tail Bounds and Concentration of Measure



Theorem 7.10 (Markov’s Inequality)
Let 𝑋 ∈ ℝ≥0 be a r.v. that assumes only weakly positive values. Then holds

∀𝑎 > 0 : ℙ[𝑋 ≥ 𝑎] ≤ 𝔼[𝑋]
𝑎

◀

Since 𝑋 ≥ 0 implies 𝔼[𝑋] ≥ 0, nicer equivalent form: ∀𝑎 > 0 : Pr
[
𝑋 ≥ 𝑎𝔼[𝑋]

]
≤ 1

𝑎
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Definition 7.11 (Moments, variance, standard deviation)
For random variable 𝑋, 𝔼[𝑋 𝑘] is the 𝑘th moment of 𝑋.
The variance (second centered moment) of 𝑋 is given by Var[𝑋] = 𝔼

[
(𝑋 − 𝔼[𝑋])2

]
and its

standard deviation is 𝜎[𝑋] =
√

Var[𝑋]. ◀

Theorem 7.12 (Chebychev’s Inequality)
Let 𝑋 be a random variable. We have

∀𝑎 > 0 : ℙ
[
|𝑋 − 𝔼[𝑋]| ≥ 𝑎

]
≤ Var[𝑋]

𝑎2

◀
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Corollary 7.13 (Chebychev Concentration)
Let 𝑋1 , 𝑋2 , . . . be a sequence of random variables and assume
▶ 𝔼[𝑋𝑛] and Var[𝑋𝑛] exist for all 𝑛 and
▶ 𝜎[𝑋𝑛] = 𝑜(𝔼[𝑋𝑛]) as 𝑛 → ∞.

Then holds

∀𝜀 > 0 : ℙ

[���� 𝑋𝑛

𝔼[𝑋𝑛]
− 1

���� ≥ 𝜀

]
→ 0 (𝑛 → ∞),

i. e., 𝑋
𝔼[𝑋] converges in probability to 1. ◀
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Chernoff Bounds
For specific distribution, much stronger tail concentration inequalities are possible.

Theorem 7.14 (Chernoff Bound for Poisson trials)
Let 𝑋1 , . . . , 𝑋𝑛 ∈ {0, 1} be (mutually) independent with 𝑋𝑖

D
= B(𝑝𝑖). Define 𝑋 = 𝑋1 + · · · + 𝑋𝑛

and 𝜇 = 𝔼[𝑋1] + · · · + 𝔼[𝑋𝑛] = 𝑝1 + · · · + 𝑝𝑛 . Then holds

∀𝛿 > 0 : ℙ[𝑋 ≥ (1 + 𝛿)𝜇] <

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
∀𝛿 ∈ (0, 1] : ℙ[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp(−𝜇𝛿2/3)

◀
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Corollary 7.15 (Chernoff Bound for Binomial Distribution)
Let 𝑋 D

= Bin(𝑛, 𝑝). Then

∀𝛿 ≥ 0 : Pr

[����𝑋𝑛 − 𝑝

���� ≥ 𝛿

]
≤ 2 exp(−2𝛿2𝑛)

◀
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Application 1: Can we trust Quicksort’s expectation?

Definition 7.16 (With high probability)
We say
▶ an event 𝑋 = 𝑋(𝑛) happens with high probability (w.h.p.) when

∀𝑐 : ℙ[𝑋(𝑛)] = 1 ± 𝑂(𝑛−𝑐) as 𝑛 → ∞.
▶ a random variable 𝑋 = 𝑋(𝑛) is in 𝑂( 𝑓 (𝑛)) with high probability (w.h.p.) when

∀𝑐∃𝑑 : ℙ[𝑋 ≤ 𝑑𝑓 (𝑛)] = 1 ± 𝑂(𝑛−𝑐) as 𝑛 → ∞.
(This means, the constant in 𝑂( 𝑓 (𝑛)) may depend on 𝑐.)

◀

Theorem 7.17 (Quicksort Concentration)
The height of the recursion tree of (randomized) Quicksort is in 𝑂(log 𝑛) w.h.p. ◀

Hence the number of comparisons are in 𝑂(𝑛 log 𝑛) w.h.p.
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Application 2: Majority Voting for Monte Carlo
Monte Carlo algorithms are allowed to err half the time.
That sound unusable in practice . . . can we improve upon that?

Idea: Use 𝑡 independent repetitions of 𝐴 on 𝑥.
If at least ⌈𝑡/2⌉ runs (i. e., an absolute majority) yield result 𝑦, return 𝑦, otherwise return ?

Theorem 7.18 (Majority Voting)
Let 𝐴 be a Monte Carlo algorithm for 𝑓 with bounded error. Then, a majority vote of
𝑡 = 𝜔(log 𝑛) repetitions of 𝐴 is correct with high probability. ◀
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Majority Voting for Unbounded Error?

Theorem 7.19 (Majority Voting with unbounded error)
There are Monte Carlo algorithms 𝐴 with unbounded error that use only a linear number of
random bits (Random𝐴(𝑛) = Θ(𝑛) as 𝑛 → ∞), so that a guarantee for successful majority votes
with fixed probability 𝛿 ∈ ( 1

2 , 1) requires the number of repetitions 𝑡 to satisfy 𝑡 = 𝜔(𝑛𝑐) for
every constant 𝑐 as 𝑛 → ∞. ◀

That means, probability amplification for unbounded error Monte Carlo methods requires a
superpolynomial number of repetitions and is thus not feasible.
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Summary
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