
7 Randomization Basics
10 June 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-06-12 00:11 H

Outline

7 Randomization Basics
7.1 Motivation
7.2 Randomized Selection
7.3 Recap of Probability Theory
7.4 Probabilistic Turing Machines
7.5 Classification of Randomized Algorithms
7.6 Tail Bounds and Concentration of Measure

7.1 Motivation

Computational Lottery?
▶ If we are faced with solving an NP-hard problem and known smart algorithms are too

slow, we likely have to compromise on what “solving” means.

▶ Classical algorithms are always and exactly correct.

⇝ Here: Let’s compromise on “always”, i. e., allow algorithms to occasionally fail!

� A deterministic algorithm 𝐴 that fails on input 𝑥 will always fail for 𝑥.
⇝ What if we require a solution for such an input 𝑥? We get nothing from 𝐴!
▶ Must use a form of nondeterminism.

▶ Randomization: Use random bits to guide computation.

⇝ Instead of always failing on some rare inputs, we rarely
can make this arbitrarily rare

fail on any input.

1

Why Could Randomization Help?
▶ Main intuitive reason: (can be) much easier to be 99.999999% correct than 100%

How can this manifest itself?
▶ Faster and simpler algorithms

Random choice can allow to sidestep tricky edge cases
▶ We can use fingerprinting (a.k.a. checksums)

Cheap surrogate question, mostly correct, but sometimes wrong.
▶ Protect against adversarial inputs

We make our (algorithm’s) behavior unpredictable, so it us harder to exploit us.

▶ Also: probabilistic method for proofs
▶ Goal: Prove existence of discrete object with some property
▶ Idea: Design randomized algorithm to find one
⇝ If algorithm succeeds with prob. > 0, object must exist!

2

Average-Case Analysis vs. Randomized Algorithms
Average-Case Analysis

▶ algorithm is deterministic
same input, same computation

▶ input is chosen according to some
probability distribution

▶ cost given as expectation over inputs

Randomized Algorithm (here)

▶ algorithm is not deterministic
same input, potentially different comp.

▶ input is chosen adversarially (worst-case
inputs)

▶ cost given as expectation over random
choices of algorithm

Confusingly enough, the analysis (technique) is often the same!

But: Implications are quite different; randomization is much more versatile and robust.

3

7.2 Randomized Selection

Separation Example
▶ Before we introduce randomization more formally, let’s see a successful example

▶ Here, not a “hard” problem, but a showcase where randomization makes something
possible that is provably

4

Introductory Example – Quickselect
Selection by Rank

▶ Given: array 𝐴[0..𝑛) of numbers and number 𝑘 ∈ [0..𝑛).
▶ Goal: find element that would be in position 𝑘 if 𝐴 was sorted (𝑘th smallest

but 0-based &
counting dups

element).

▶ 𝑘 = ⌊𝑛/2⌋ ⇝ median; 𝑘 = ⌊𝑛/4⌋ ⇝ lower quartile
𝑘 = 0 ⇝ minimum; 𝑘 = 𝑛 − ℓ ⇝ ℓ th largest

1 procedure quickselect(𝐴[0..𝑛), 𝑘):
2 𝑙 := 0; 𝑟 := 𝑛

3 while 𝑟 − 𝑙 > 1
4 𝑏 := random pivot from 𝐴[𝑙..𝑟)
5 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
6 if 𝑗 ≥ 𝑘 then 𝑟 := 𝑗 − 1
7 if 𝑗 ≤ 𝑘 then 𝑙 := 𝑗 + 1
8 return 𝐴[𝑘]

▶ simple algorithm:
determine rank of random element,
recurse

⇝ 𝑂(𝑛) time in expectation
over random choices

▶ worst case: Θ(𝑛2)

▶ 𝑂(𝑛) also possible deterministically,
but algorithms

median of medians

is more involved

5

A closer look at Selection
While all within Θ(𝑛), we do get a strict separation for selecting the median.

Theorem 7.1 (Bent & John (1985))
Any deterministic comparison-based algorithm for finding the median of 𝑛 elements uses at
least 2𝒏 − 𝑜(𝑛) comparisons in the worst case. ◀

Proof omitted.

The following weaker result is easier to see:

Theorem 7.2 (Blum et al. (1973))
Any deterministic comparison-based algorithm for finding the median of 𝑛 elements uses at
least 𝑛 − 1 + (𝑛 − 1)/2 ∼ 1.5𝑛 comparisons in the worst case. ◀

6

A Median Adversary
Proof (Theorem 7.2):

■

7

Randomized Selection
▶ Can prove: Randomized Quickselect uses in expectation ∼ (2 ln 2 + 2)𝑛 ≈ 3.39𝑛

comparisons to find the median

▶ But we can do better!

1 procedure floydRivest(𝐴[ℓ ..𝑟), 𝑘):
2 𝑛 := 𝑟 − ℓ

3 if 𝑛 < 𝑛0 return quickselect(𝐴, 𝑘)
4 𝑠 := 1

2 𝑛
2/3 // all numbers to be rounded

5 sd := 1
2
√

ln(𝑛)𝑠(𝑛 − 𝑠)/𝑛
6 𝑆[0..𝑠) := random sample from 𝐴

7 𝑘 := 𝑠 𝑘
𝑛

8 𝑝 := floydRivest(𝑆, 𝑘 − sd)
9 𝑞 := floydRivest(𝑆, 𝑘 + sd)

10 (𝑖 , 𝑗) :=partition 𝐴 around 𝑝0 and 𝑝1
11 if 𝑖 == 𝑘 return 𝐴[𝑖]
12 if 𝑗 == 𝑘 return 𝐴[𝑗]
13 if 𝑘 < 𝑖 return floydRivest(𝐴[ℓ ..𝑖), 𝑘)
14 if 𝑘 > 𝑗 return floydRivest(𝐴[𝑗..𝑟), 𝑘)
15 return floydRivest(𝐴[𝑖.. 𝑗), 𝑘)

▶ Variant of Quickselect with huge sample
▶ Analysis sketch:

▶ partition costs 1.5𝑛 comparisons
▶ Everything on sample has cost 𝑜(𝑛)
▶ by the choice of parameters,

with prob 1 − 𝑜(1):
(a) 𝑖 < 𝑘 < 𝑗 after partition
(b) 𝑗 − 𝑖 = 𝑜(𝑛)

⇝ all recursive calls expected 𝑜(𝑛) cost

⇝ Randomized median selection with
1.5𝑛 + 𝑜(𝑛) comparisons

⇝ Separation from deterministic case!

8

Power of Randomness
▶ Selection by Rank shows two aspects of randomization:

▶ A simpler algorithm by avoiding edge cases (like an initial order giving bad pivots)
▶ Protection against adversarial inputs

(inputs constructed with knowledge about the algorithm)

Here randomization provably more powerful
constant factor for #cmps

than any thinkable deterministic algorithm!

▶ What can we gain for (NP-)hard problems?

▶ But first, let’s define things properly.

9

7.3 Recap of Probability Theory

Probability Theory
▶ We will quickly revisit some key terms from probability theory

▶ Single place to look up notation etc.

▶ Much will focus on discrete probability, but some continuous tools useful, too

10

Probability Spaces
Discrete probability space (Ω,ℙ):
▶ Ω = {𝜔1 , 𝜔2 , . . .} a (finite or) countable set

▶ ℙ : 2Ω → [0, 1] a discrete probability measure, i. e.,
▶ ℙ[Ω] = 1
▶ ℙ[𝐴] = ∑

𝜔∈𝐴 ℙ[𝜔] ⇝ ℙ determined by 𝑤𝑖 = ℙ[𝜔𝑖].

General probability space (Ω,F,ℙ):
▶ Ω is a set of points (the universe)

▶ F ⊆ 2Ω is a 𝜎-algebra, i. e., (discrete case: F = 2Ω; Ω = ℝ: Borel 𝜎-algebra B generated by (𝑎, 𝑏))
▶ ∅ ∈ F

▶ closed under complementation: 𝐴 ∈ F =⇒ 𝐴 = Ω \ 𝐴 ∈ F

▶ closed under countable union: 𝐴1 , 𝐴2 , . . . ∈ F =⇒ ⋃∞
𝑖=1 𝐴𝑖 ∈ F

▶ ℙ : F → [0, 1] is a probability measure, i. e., (Ω = ℝ ⇝ Lebesgue measure 𝜆((𝑎, 𝑏)) = 𝑏 − 𝑎)
▶ ℙ[Ω] = 1
▶ If 𝐴1 , 𝐴2 , . . . ∈ F are pairwise disjoint then ℙ

[⋃∞
𝑖=1 𝐴𝑖

]
=
∑∞

𝑖=1 ℙ[𝐴𝑖]
11

Events
𝐴 ∈ F is called an event of (Ω,F,ℙ); also a measurable

something we can assign a probability to

set.

Basic properties
▶ ℙ

[
𝐴
]
= 1 − ℙ[𝐴] counter-probability (𝐴 = Ω \ 𝐴)

▶ ℙ
[⋃

𝐴𝑖

]
≤ ∑

𝑖 ℙ[𝐴] the union bound (a.k.a. Boole’s inequality a.k.a. 𝜎-subadditivity)

▶ {𝐴1 , . . . , 𝐴𝑘} (mutually) independent ⇐⇒ ℙ
[⋂

𝑖 𝐴𝑖

]
=

∏
𝑖 ℙ[𝐴𝑖]

An infinite set of events is mutually independent if every finite subset is so.
𝑘-wise independence means that only all size-𝑘 subsets are independent.

▶ conditional probability for 𝐴 given 𝐵: ℙ[𝐴 | 𝐵] = ℙ[𝐴 ∩ 𝐵]
/
ℙ[𝐵]

generally undefined if ℙ[𝐵] = 0

▶ law of total probability: If Ω = 𝐵1 ¤∪ 𝐵2 ¤∪ · · · is a partition of Ω, we have

ℙ[𝐴] =

∑
𝑖

ℙ[𝐵𝑖]≠ 0

ℙ[𝐴 | 𝐵𝑖] · ℙ[𝐵𝑖].

12

Random Variables
Random variables (r.v.) 𝑋 : Ω → X; often X = ℝ (in general spaces: only measurable functions)

Basic properties and conventions:
▶ event {𝑋 = 𝑥} is defined as {𝜔 ∈ Ω : 𝑋(𝜔) = 𝑥}.

▶ For event 𝐴 define the indicator r.v. 𝟙𝐴 via 𝟙𝐴(𝜔) = [𝜔 ∈ 𝐴]

▶ 𝐹𝑋(𝑥) = ℙ[𝑋 ≤ 𝑥] is the cumulative distribution function (CDF).

▶ 𝑋 is discrete if 𝑋(Ω) = {𝑋(𝜔) : 𝜔 ∈ Ω} is countable.

▶ for discrete r.v. 𝑋 define 𝑓𝑋(𝑛) = ℙ[𝑋 = 𝑛] the probability mass function (PMF).

▶ If 𝐹𝑋 is everywhere differentiable, 𝑋 is continuous.
Then 𝑓𝑋 = 𝐹′

𝑋
is its probability density function.

Equality in distribution:
▶ We write 𝑋

D
= 𝑌 if 𝐹𝑋 = 𝐹𝑌

13

Independent Random Variables
Independence:

▶ Consider vector 𝑿 = (𝑋1 , . . . , 𝑋𝑘) as single function from Ω to ℝ𝑘 .
CDF/PMF/PDF of 𝑿 is called joint CDF/PMF/PDF of 𝑋1 , . . . , 𝑋𝑘 .

▶ r.v.s independent ⇐⇒ joint PMF/PDF factors:
𝑋 and 𝑌 independent ⇐⇒ ℙ[𝑋 = 𝑥 ∧ 𝑌 = 𝑦] = ℙ[𝑋 = 𝑥] · ℙ[𝑌 = 𝑦] for all 𝑥, 𝑦.

(Naturally follows from independent events)

i. i.d. sequences

▶ We often talk about sequences of random variables 𝑋1 , 𝑋2 , . . .

▶ a sequence of i. i.d. r.v. 𝑋1 , 𝑋2 , . . . (independent and identically distributed)
has 𝑋𝑖

D
= 𝑋1 and {𝑋𝑖}𝑖≥1 are mutually independent

▶ typical example: sequence of coin tosses (with same coin)

14

Expected Values
Expectation of an X-valued r.v. 𝑋, written 𝔼[𝑋], is given by

▶ 𝔼[𝑋] =

∑
𝑥∈X

𝑥 · 𝑓𝑋(𝑥) for discrete 𝑋 with PMF 𝑓𝑋 ,

▶ 𝔼[𝑋] =

∫
𝑥∈X

𝑥 · 𝑓𝑋(𝑥) 𝑑𝑥 for continuous 𝑋 with PDF 𝑓𝑋 .

▶ undefined if sum does not converge / integral does not exist.

Properties:

▶ linearity: 𝔼[𝑎𝑋 + 𝑏𝑌] = 𝑎𝔼[𝑋] + 𝑏𝔼[𝑌] (𝑋, 𝑌 r.v. and 𝑎, 𝑏 constants)
even if 𝑋 and 𝑌 are not independent
only for finite sums / linear combinations!

▶ 𝑋 and 𝑌 independent =⇒ 𝔼[𝑋 · 𝑌] = 𝔼[𝑋] · 𝔼[𝑌].

15

Conditional Expectation
Similar to conditional probability, we can define conditional expectations.

▶ conditional expectation on event 𝔼[𝑋 | 𝐴] =
∑

𝑥 ℙ[𝑋 = 𝑥 | 𝐴] for discrete 𝑋.
for general 𝐴, continuous definition problematic

▶ conditional expectation on {𝑌 = 𝑦}, written 𝔼[𝑋 | 𝑌 = 𝑦].
▶ for discrete 𝑋 and 𝑌

𝔼[𝑋 | 𝑌 = 𝑦] =

∑
𝑥∈X

𝑥 · ℙ
[
𝑋 = 𝑥

�� {𝑌 = 𝑦}
]

▶ for continuous 𝑋 and 𝑌, use the joint density 𝑓(𝑋,𝑌) and define the marginal density of 𝑌 as
𝑓𝑌(𝑦) =

∫
𝑥∈X 𝑓 (𝑥, 𝑦) 𝑑𝑥. Then

𝔼[𝑋 | 𝑌 = 𝑦] =

∫
X
𝑥 · 𝑓𝑋|𝑌(𝑥, 𝑦) 𝑑𝑥 with 𝑓𝑋|𝑌(𝑥, 𝑦) =

𝑓(𝑋,𝑌)(𝑥, 𝑦)
𝑓𝑌(𝑦)

▶ With 𝑔(𝑦) ≔ 𝔼[𝑋 | 𝑌 = 𝑦] we obtain a new r.v. 𝔼[𝑋 | 𝑌] = 𝑔(𝑌).

▶ law of total expectation: 𝔼[𝑋] = 𝔼𝑌

[
𝔼𝑋[𝑋 | 𝑌]

]
.

16

Famous Distributions
discrete

▶ Bernoulli r.v. 𝑋 D
= B(𝑝) ⇝ ℙ[𝑋 = 1] = 𝑝, ℙ[𝑋 = 0] = 1 − 𝑝

▶ Binomial r.v. 𝑌 D
= Bin(𝑛, 𝑝) ⇝ 𝑌 = 𝑋1 + · · · + 𝑋𝑛 for 𝑋1 , . . . , 𝑋𝑛 i. i.d. 𝑋𝑖

D
= B(𝑝)

▶ discrete uniform r.v. 𝑋 D
= U([0..𝑛)) ⇝ ℙ[𝑋 = 𝑖] = 1

𝑛 for 𝑖 ∈ [0..𝑛) (else 0)

▶ Geometric r.v. 𝑋 D
= Geo(𝑝) ⇝ ℙ[𝑋 = 𝑘] = (1 − 𝑝)𝑘−1𝑝 for 𝑘 ∈ ℕ≥1

continuous

▶ continuous uniform 𝑋
D
= U([0, 1)) ⇝ 𝑓𝑋(𝑥) = 1 for 𝑥 ∈ [0, 1) (else 0)

(of course there are many more)

17

7.4 Probabilistic Turing Machines

Model of Computation

Definition 7.3 (Probabilistic Turing Machine)
A probabilistic Turing Machine (PTM) 𝑀 = (𝑄,Σ, Γ, 𝛿, 𝑞0 ,□, 𝑞halt) is a deterministic TM with
an additional read-only tape, filled with random bits.
The transition function 𝛿 takes as input
▶ the current state 𝑞

▶ the current tape symbol 𝑎
▶ the current random-tape symbol 𝑟 ∈ {0, 1}

and outputs
▶ the next state 𝑞′

▶ the new tape symbol 𝑏
▶ the tape-head movement 𝑑 ∈ {𝐿, 𝑅, 𝑁}
▶ the random-tape head movement 𝑑𝑟 ∈ {𝐿, 𝑅, 𝑁} ◀

Intended semantics: random tape filled with i. i.d. B(1
2) r.v.

18

Randomized Computation
▶ Configuration of PTM: (𝛼𝑞𝛽, 𝜌𝑞𝜎)

𝛼𝑞𝛽 normal TM config
𝜌𝜎 content of random tape, with head on first bit of 𝜎

▶ computation relation ⊢ similar to TM
content of random tape unchanged, heads can move independently

▶ function computed by PTM 𝑀:
for input 𝑥 and fixed random bits 𝜌, computation is deterministic:
𝑀(𝑥, 𝜌) = 𝑦 if (𝑞0𝑥, 𝑞0𝜌) ⊢★ (𝑞halt𝑦, 𝜌′𝑞halt𝜌′′)

⇝ Randomized computation of PTM:
random variable 𝑀(𝑥, 𝐵0𝐵1𝐵2 . . .) where 𝐵0 , 𝐵1 , 𝐵2 , . . . are i. i.d. B(1

2) distributed

⇝ Write ℙ[𝑀(𝑥) = 𝑦] =

∑
𝑏

ℙ[𝐵0𝐵1 . . . = 𝑏] · [𝑀(𝑥, 𝑏) = 𝑦]

▶ Hope: PTM 𝑀 so that correct output computed with high probability

19

Warmup: Rejection Sampling
We assume only random bits. How to simulate, say, a fair (6-sided) die?

1 procedure rollDie():
2 do
3 Draw 3 random bits 𝑏2 , 𝑏1 , 𝑏0
4 // Interpret as binary representation of a number in [0..7]
5 𝑛 =

∑2
𝑖=0 2𝑖𝑏𝑖

6 while (𝑛 = 0 ∨ 𝑛 = 7)
7 return 𝑛

Correctness: Every output 1, . . . , 6 equally likely by construction.

Termination: Infinite runs possible!

Expected Running Time: Leave loop with probability 6
8 = 3

4 in each iteration

⇝ in expectation, only 4
3 =

∑
𝑖≥1

𝑖 ·
(
1
4

) 𝑖−1 3
4 repetitions.

rollDie is a correct and practically efficient algorithm.

20

https://www.wolframalpha.com/input/?i=sum+3%2F4+*+i+*4%5E-(i-1)+for++i+from+1+to+inf

What can go wrong?
What can go wrong in a randomized computation?
▶ Computation could run into a deterministic infinite loop (as for deterministic TM)

� don’t ever terminate, no output
⇝ Clearly don’t want that (just as before)

(annoyingly undecidable to check . . . also just as before)

▶ Computation could repeatedly have branches that keep looping (as for rollDie)
⇝ For every 𝑡, there is a probability 𝑝 > 0 to run for more than 𝑡 time steps
▶ This is a new option that deterministic TMs didn’t have

. . . but nondeterministic TMs did, and we just defined running time to be ∞ there!

So, is that a problem? Or is it not??

21

Random Termination
Key question: What is the probability space for the running time of the PTM simulating rollDie?
▶ Note: this could indeed be a problem.

▶ {0, 1}★ (the set of finite bitstrings) is countably infinite (=discrete)
▶ But the set of infinite strings (𝜔-language) is not!

{0, 1}𝜔 =
{
𝑏0𝑏1 . . . : 𝑏𝑖 ∈ {0, 1}

}
=

{
𝑏 : 𝑏 : ℕ0 → {0, 1}

}
surjectively maps

𝑏 ↦→ 0.𝑏0𝑏1𝑏2 . . .

to [0, 1) ⊂ ℝ

▶ Config (𝛼𝑞𝛽, 𝜌𝑞𝝈) for PTM needs 𝜎 ∈ {0, 1}𝝎 in general

▶ Define the random variable Time𝑀(𝑥) ∈ ℕ0 ∪ {∞} on the Bernoulli probability space
▶ generators:

{
𝜋𝑥 : 𝑥 ∈ {0, 1}★

}
where 𝜋𝑥 =

{
𝑥𝑤 : 𝑤 ∈ {0, 1}𝜔

}
⊆ {0, 1}𝜔

▶ Bernoulli 𝜎-algebra: smallest F containing all {𝜋𝑥}𝑥 that is
closed under countable union and complement

▶ ℙ[𝜋𝑥] = 2−|𝑥|

⇝ expectations over 𝜌 ∈ {0, 1}𝜔, the infinite initial random-bit tape input are well-defined

22

(Expected) Time

Definition 7.4 (PTM running time)
For a PTM 𝑀, we define time𝑀(𝑥) as for nondeterministic TMs as the supremum of time
steps over all computations.
Moreover, we define the expected time as

𝔼-time𝑀(𝑥) = 𝔼[time𝑀(𝑥)] = 𝔼𝜌

[
inf{𝑡 ∈ ℕ0 : (𝑞0𝑥, 𝑞0𝜌) ⊢𝑡 (𝑞halt𝑦, 𝜌

′𝑞halt𝜌
′′)
]

Similarly
𝔼-Time𝑀(𝑛) = sup

{
𝔼-time𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
◀

▶ We can of course also study full distribution of time𝑀(𝑥)

▶ Useful property of expected time:
𝔼-time𝑀(𝑥) < ∞ iff ℙ[time𝑀(𝑥) = ∞] = 0

23

A New Complexity Measure: Random Bits

Definition 7.5 (Random-bit complexity)
For a PTM 𝑀 computing with input alphabet Σ, the random-bit cost for an input 𝑥 ∈ Σ★ is
denote by

random𝑀(𝑥) = sup
{
|𝜌′| : (𝑥𝑞0 , 𝑞0𝜌) ⊢★ (𝛼𝑞𝛽, 𝜌′𝑞𝜌′′) ⊢★ (𝑞halt𝑦, 𝜌

′𝑞halt𝜌
′′)
}

and similarly
Random𝑀(𝑛) = sup

{
random𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
.

Further, the expected random-bit cost are defined as
𝔼-random𝑀(𝑥) = 𝔼𝜌[random𝑀(𝑥)] and
𝔼-Random𝑀(𝑛) = sup

{
𝔼-random𝑀(𝑥) : 𝑥 ∈ Σ𝑛

}
◀

24

Randomization vs. Nondeterminism
▶ Superficially similar concepts

▶ Key difference: meaning of number of computations of TM
▶ nondeterministic TM: accept if some (single) accepting computation is possible
▶ randomized TM: accept if most possible computations are accepting

⇝ nondeterminism = purely theoretical construction (overly powerful yardstick)

▶ randomization = widely applied efficient design technique

25

7.5 Classification of Randomized Algorithms

Las Vegas
Consider here the general problem to compute some function 𝑓 : Σ★ → Γ★.

⇝ Covers decision problems 𝐿 ⊆ Σ★ by setting Γ = {0, 1} and 𝑓 (𝑤) =
{

1 𝑤 ∈ 𝐿

0 𝑤 ∉ 𝐿

Definition 7.6 (Las Vegas Algorithm)
A randomized algorithm 𝐴 is a Las-Vegas (LV) algorithm for a problem 𝑓 : Σ★ → Γ★

if for all 𝑥 ∈ Σ★ holds
1. Pr

[
time𝐴(𝑥) < ∞

]
= 1 (terminate almost surely)

2. 𝐴(𝑥) ∈ { 𝑓 (𝑥), ?} (answer always correct or “don’t know”)
3. Pr

[
𝐴(𝑥) = 𝑓 (𝑥)

]
≥ 1

2 (correct half the time)
◀

26

Don’t Know vs. Won’t Terminate

Theorem 7.7 (Don’t know don’t needed)
Every Las Vegas algorithm 𝐴 for 𝑓 : Σ★ → Γ★ can be transformed into a randomized
algorithm 𝐵 for 𝑓 so that for all 𝑥 ∈ Σ★ holds

1. ℙ[𝐵(𝑥) = 𝑓 (𝑥)] = 1 (always correct)
2. 𝔼-time𝐵(𝑥) ≤ 2 · time𝐴(𝑥) ◀

Proof:
See exercises. ■

Theorem 7.8 (Termination Enforcible)
Every randomized algorithm 𝐵 for 𝑓 : Σ★ → Γ★ with ℙ[𝐵(𝑥) = 𝑓 (𝑥)] = 1 can be transformed
into a Las Vegas algorithm 𝐴 for 𝑓 so that for all 𝑥 ∈ Σ★ holds time𝐴(𝑥) ≤ 2 · 𝔼-time𝐵(𝑥). ◀

Proof:
See exercises. ■

⇝ Can trade expected time bound for worst-case bound by allowing “don’t know” and vice versa!

Both types are called LV algorithms.
27

Las Vegas Examples
rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 7.6:

1 procedure rollDieLasVegas:
2 Draw 3 random bits 𝑏2 , 𝑏1 , 𝑏0
3 𝑛 =

∑2
𝑖=0 2𝑖𝑏𝑖 // Interpret as binary representation of a number in [0 : 7]

4 if (𝑛 = 0 ∨ 𝑛 = 7)
5 return ?
6 else
7 return 𝑛

Other famous examples: (randomized) Quicksort and Quickselect
▶ always correct and
▶ time(𝑛) = 𝑂(𝑛2) < ∞
▶ much better average:

▶ 𝔼-timeQSort(𝑛) = Θ(𝑛 log 𝑛)
▶ 𝔼-timeQSelect(𝑛) = Θ(𝑛)

28

To Err is Algorithmic
Sometimes sensible to allow wrong/imprecise answers . . . but random should not mean
arbitrary.

Definition 7.9 (Monte Carlo Algorithm)
A randomized algorithm 𝐴 is a Monte Carlo algorithm for 𝑓 : Σ★ → Γ★

▶ with bounded error if ∃𝜀 > 0∀𝑥 ∈ Σ★ : ℙ[𝐴(𝑥) = 𝑓 (𝑥)] ≥ 1
2 + 𝜀.

▶ with unbounded error if ∀𝑥 ∈ Σ★ : ℙ[𝐴(𝑥) = 𝑓 (𝑥)] >
1
2 .

◀

Seems like a minuscule difference? We will see it is vital!

29

7.6 Tail Bounds and Concentration of Measure

Theorem 7.10 (Markov’s Inequality)
Let 𝑋 ∈ ℝ≥0 be a r.v. that assumes only weakly positive values. Then holds

∀𝑎 > 0 : ℙ[𝑋 ≥ 𝑎] ≤ 𝔼[𝑋]
𝑎

◀

Since 𝑋 ≥ 0 implies 𝔼[𝑋] ≥ 0, nicer equivalent form: ∀𝑎 > 0 : Pr
[
𝑋 ≥ 𝑎𝔼[𝑋]

]
≤ 1

𝑎

30

Definition 7.11 (Moments, variance, standard deviation)
For random variable 𝑋, 𝔼[𝑋 𝑘] is the 𝑘th moment of 𝑋.
The variance (second centered moment) of 𝑋 is given by Var[𝑋] = 𝔼

[
(𝑋 − 𝔼[𝑋])2

]
and its

standard deviation is 𝜎[𝑋] =
√

Var[𝑋]. ◀

Theorem 7.12 (Chebychev’s Inequality)
Let 𝑋 be a random variable. We have

∀𝑎 > 0 : ℙ
[
|𝑋 − 𝔼[𝑋]| ≥ 𝑎

]
≤ Var[𝑋]

𝑎2

◀

31

Corollary 7.13 (Chebychev Concentration)
Let 𝑋1 , 𝑋2 , . . . be a sequence of random variables and assume
▶ 𝔼[𝑋𝑛] and Var[𝑋𝑛] exist for all 𝑛 and
▶ 𝜎[𝑋𝑛] = 𝑜(𝔼[𝑋𝑛]) as 𝑛 → ∞.

Then holds

∀𝜀 > 0 : ℙ

[���� 𝑋𝑛

𝔼[𝑋𝑛]
− 1

���� ≥ 𝜀

]
→ 0 (𝑛 → ∞),

i. e., 𝑋
𝔼[𝑋] converges in probability to 1. ◀

32

Chernoff Bounds
For specific distribution, much stronger tail concentration inequalities are possible.

Theorem 7.14 (Chernoff Bound for Poisson trials)
Let 𝑋1 , . . . , 𝑋𝑛 ∈ {0, 1} be (mutually) independent with 𝑋𝑖

D
= B(𝑝𝑖). Define 𝑋 = 𝑋1 + · · · + 𝑋𝑛

and 𝜇 = 𝔼[𝑋1] + · · · + 𝔼[𝑋𝑛] = 𝑝1 + · · · + 𝑝𝑛 . Then holds

∀𝛿 > 0 : ℙ[𝑋 ≥ (1 + 𝛿)𝜇] <

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
∀𝛿 ∈ (0, 1] : ℙ[𝑋 ≥ (1 + 𝛿)𝜇] ≤ exp(−𝜇𝛿2/3)

◀

33

Corollary 7.15 (Chernoff Bound for Binomial Distribution)
Let 𝑋 D

= Bin(𝑛, 𝑝). Then

∀𝛿 ≥ 0 : Pr

[����𝑋𝑛 − 𝑝

���� ≥ 𝛿

]
≤ 2 exp(−2𝛿2𝑛)

◀

34

Application 1: Can we trust Quicksort’s expectation?

Definition 7.16 (With high probability)
We say
▶ an event 𝑋 = 𝑋(𝑛) happens with high probability (w.h.p.) when

∀𝑐 : ℙ[𝑋(𝑛)] = 1 ± 𝑂(𝑛−𝑐) as 𝑛 → ∞.
▶ a random variable 𝑋 = 𝑋(𝑛) is in 𝑂(𝑓 (𝑛)) with high probability (w.h.p.) when

∀𝑐∃𝑑 : ℙ[𝑋 ≤ 𝑑𝑓 (𝑛)] = 1 ± 𝑂(𝑛−𝑐) as 𝑛 → ∞.
(This means, the constant in 𝑂(𝑓 (𝑛)) may depend on 𝑐.)

◀

Theorem 7.17 (Quicksort Concentration)
The height of the recursion tree of (randomized) Quicksort is in 𝑂(log 𝑛) w.h.p. ◀

Hence the number of comparisons are in 𝑂(𝑛 log 𝑛) w.h.p.

35

Application 2: Majority Voting for Monte Carlo
Monte Carlo algorithms are allowed to err half the time.
That sound unusable in practice . . . can we improve upon that?

Idea: Use 𝑡 independent repetitions of 𝐴 on 𝑥.
If at least ⌈𝑡/2⌉ runs (i. e., an absolute majority) yield result 𝑦, return 𝑦, otherwise return ?

Theorem 7.18 (Majority Voting)
Let 𝐴 be a Monte Carlo algorithm for 𝑓 with bounded error. Then, a majority vote of
𝑡 = 𝜔(log 𝑛) repetitions of 𝐴 is correct with high probability. ◀

36

Majority Voting for Unbounded Error?

Theorem 7.19 (Majority Voting with unbounded error)
There are Monte Carlo algorithms 𝐴 with unbounded error that use only a linear number of
random bits (Random𝐴(𝑛) = Θ(𝑛) as 𝑛 → ∞), so that a guarantee for successful majority votes
with fixed probability 𝛿 ∈ (1

2 , 1) requires the number of repetitions 𝑡 to satisfy 𝑡 = 𝜔(𝑛𝑐) for
every constant 𝑐 as 𝑛 → ∞. ◀

That means, probability amplification for unbounded error Monte Carlo methods requires a
superpolynomial number of repetitions and is thus not feasible.

37

Summary

38

	Randomization Basics
	Motivation
	Computational Lottery?
	Why Could Randomization Help?
	Average-Case Analysis vs. Randomized Algorithms

	Randomized Selection
	Separation Example
	Introductory Example – Quickselect
	A closer look at Selection
	A Median Adversary
	Randomized Selection
	Power of Randomness

	Recap of Probability Theory
	Probability Theory
	Probability Spaces
	Events
	Random Variables
	Independent Random Variables
	Expected Values
	Conditional Expectation
	Famous Distributions

	Probabilistic Turing Machines
	Model of Computation
	Randomized Computation
	Warmup: Rejection Sampling
	What can go wrong?
	Random Termination
	(Expected) Time
	A New Complexity Measure: Random Bits
	Randomization vs. Nondeterminism

	Classification of Randomized Algorithms
	Las Vegas
	Don't Know vs. Won't Terminate
	Las Vegas Examples
	To Err is Algorithmic

	Tail Bounds and Concentration of Measure
	Chernoff Bounds
	Application 1: Can we trust Quicksort's expectation?
	Application 2: Majority Voting for Monte Carlo
	Majority Voting for Unbounded Error?
	Summary

