Randomized Complexity

17 June 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-06-12 00:04 H

Outline

8 Randomized Complexity

- 8.1 Randomized Complexity Classes
- 8.2 Derandomization

8.1 Randomized Complexity Classes

Does randomization extend the range of problems solvable by polytime algorithms? ---- back to *decision* problems.

Some simplifications:

- Only 3 sensible output values: 0, 1, ?.
- ► To allow full power of randomization, always allow $Random_A(c) = time_A(c)$, i. e., every step may use a random bit.

Definition 8.1 (ZPP)

ZPP (zero-error probabilistic polytime) is the class of all languages *L* with a polytime *Las Vegas* algorithm *A*, i. e., $Pr[A(x) = [x \in L]] \ge \frac{1}{2}$ (and $A(x) \ne [x \in L]$ implies A(x) = ?), and $time_A(n) = O(n^c)$ as $n \to \infty$ for some fixed *c*.

Definition 8.2 (BPP and PP)

BPP (bounded-error probabilistic polytime) and PP (probabilistic polytime) is the class of languages with a polytime *bounded-error resp. unbounded-error Monte Carlo* algorithm.

Error Bounds Matter

Remark 8.3 (Success Probability)

From the point of view of complexities, the success probability bounds are flexible:

- ▶ BPP only requires success probability $\frac{1}{2} + \varepsilon$, but using *Majority Voting*, we can also obtain any fixed success probability $\delta \in (\frac{1}{2}, 1)$, so we could also define BPP to require, say, $\Pr[A(x) = [x \in L]] \ge \frac{2}{3}$.
- Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to obtain any success probability δ ∈ (¹/₂, 1).

But recall: this is *not* true for unbounded errors and class PP. In fact, we have the following result.

```
Theorem 8.4 (PP can simulate nondeterminism)
NP \cup co-NP \subseteq PP.
```

~ Useful algorithms must avoid unbounded errors.

-

One-sided errors

In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT Guess assignment, output [ϕ satisfied]. (NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ϕ always yield 0. . . . does this help?

Definition 8.5 (One-sided error Monte Carlo algorithms)

A randomized algorithm *A* for language *L* (i. e., for $f(x) = [x \in L]$) is a one-sided-error Monte-Carlo (OSE-MC) algorithm if we have

- **1.** $\mathbb{P}[A(x) = 1] \ge \frac{1}{2}$ for all $x \in L$, and
- 2. $\mathbb{P}[A(x) = 0] = 1$ for all $x \notin L$.

Definition 8.6 (RP, co-RP)

The classes RP and co-RP are the sets of all languages *L* with a polytime OSE-MC algorithm for *L* resp. \overline{L} .

Theorem 8.7 (Complementation feasible \rightarrow **errors avoidable)** RP \cap co-RP = ZPP.

Note the similarly to the open problem NP \cap co-NP $\stackrel{?}{=}$ P; ... a first hint that randomization might not help too much?

8.2 Derandomization

Derandomization

Trivial observation: If $Random_A(n) \le c \operatorname{ld} n$, there are only $2^{Random_A(n)} = n^c$ different computations.

 \leadsto We can simply execute all of them sequentially in polytime!

We can extend this to more random' bits using *pseudorandom generators*, i. e., algorithms that use a limited amount of real randomness and compute from this a much longer sequence of bits that look random (pseudorandom) to *every* efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on circuit complexity lower bounds, there is such a pseudorandom generator that allows to derandomize BPP (!)

Current belief is BPP = P ... and hence BPP = RP = co-RP = ZPP = P (!)
For solving hard problems in theory, randomization does not help at all!
(or: no sufficiently strong lower bound techniques known!)