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8.1 Randomized Complexity Classes



Does randomization extend the range of problems solvable by polytime algorithms?
⇝ back to decision problems.
Some simplifications:
▶ Only 3 sensible output values: 0, 1, ?.
▶ To allow full power of randomization, always allow Random𝐴(𝑐) = time𝐴(𝑐), i. e., every

step may use a random bit.

Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages 𝐿 with a polytime Las
Vegas algorithm 𝐴, i. e., Pr

[
𝐴(𝑥) = [𝑥 ∈ 𝐿]

]
≥ 1

2 (and 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ?), and
time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ for some fixed 𝑐. ◀

Definition 8.2 (BPP and PP)
BPP (bounded-error probabilistic polytime) and PP (probabilistic polytime) is the class of
languages with a polytime bounded-error resp. unbounded-error Monte Carlo algorithm. ◀
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Error Bounds Matter

Remark 8.3 (Success Probability)
From the point of view of complexities, the success probability bounds are flexible:
▶ BPP only requires success probability 1

2 + 𝜀, but using Majority Voting, we can also
obtain any fixed success probability 𝛿 ∈ ( 1

2 , 1), so we could also define BPP to require,
say, Pr

[
𝐴(𝑥) = [𝑥 ∈ 𝐿]

]
≥ 2

3 .
▶ Similarly for ZPP, we can use probability amplification on Las Vegas algorithms to

obtain any success probability 𝛿 ∈ ( 1
2 , 1).

◀

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result.

Theorem 8.4 (PP can simulate nondeterminism)
NP ∪ co-NP ⊆ PP. ◀

⇝ Useful algorithms must avoid unbounded errors.
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One-sided errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT
Guess assignment, output [𝜙 satisfied].
(NB: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable 𝜙 always yield 0.
. . . does this help?

Definition 8.5 (One-sided error Monte Carlo algorithms)
A randomized algorithm 𝐴 for language 𝐿 (i. e., for 𝑓 (𝑥) = [𝑥 ∈ 𝐿]) is a one-sided-error
Monte-Carlo (OSE-MC) algorithm if we have

1. ℙ[𝐴(𝑥) = 1] ≥ 1
2 for all 𝑥 ∈ 𝐿, and

2. ℙ[𝐴(𝑥) = 0] = 1 for all 𝑥 ∉ 𝐿.
◀
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Definition 8.6 (RP, co-RP)
The classes RP and co-RP are the sets of all languages 𝐿 with a polytime OSE-MC algorithm
for 𝐿 resp. 𝐿. ◀

Theorem 8.7 (Complementation feasible → errors avoidable)
RP ∩ co-RP = ZPP. ◀

Note the similarly to the open problem NP ∩ co-NP ?
= P;

. . . a first hint that randomization might not help too much?
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8.2 Derandomization



Derandomization
Trivial observation: If Random𝐴(𝑛) ≤ 𝑐 ld 𝑛, there are only 2Random𝐴(𝑛) = 𝑛𝑐 different
computations.
⇝We can simply execute all of them sequentially in polytime!

We can extend this to more random‘ bits using pseudorandom generators, i. e., algorithms that
use a limited amount of real randomness and compute from this a much longer sequence of
bits that look random (pseudorandom) to every efficient algorithm.

It is not proven that such a method exists, but under widely believed assumptions on circuit
complexity lower bounds, there is such a pseudorandom generator that allows to
derandomize BPP (!)

⇝ Current belief is BPP = P . . . and hence BPP = RP = co-RP = ZPP = P (!)
For solving hard problems in theory, randomization does not help at all!
(or: no sufficiently strong lower bound techniques known!)
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