
9 Random Tricks

25 June 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025)

Philipps-Universität Marburg

version 2025-07-01 01:07 H

Outline

9 Random Tricks

9.1 Hashing – Balls Into Bins

9.2 Universal Hashing

9.3 Perfect Hashing

9.4 Primality Testing

9.5 Schöning’s Satisfiability

9.6 Karger’s Cuts

Uses of Randomness

▶ Since it is likely that BPP = P, we focus on the more fine-grained benefits of

randomization:

▶ simpler algorithms (with same performance)

▶ improving performance (but not jumping from exponential to polytime)

▶ improved robustness

▶ Here: Collection of examples illustrating different techniques

▶ fingerprinting / hashing

▶ exploiting abundance of witnesses

▶ random sampling

1

9.1 Hashing – Balls Into Bins

Fingerprinting / Hashing

▶ Often have elements from huge universe 𝑈 = [0..𝑢) of possible values,

but only deal with few actual items 𝑥1 , . . . , 𝑥𝑛 at one time.

Think: 𝑛 ≪ 𝑢

▶ Fingerprinting can help to be more efficient in this case

▶ fingerprints from [0..𝑚)
▶ 𝑚 ≪ 𝑢

▶ Hash Function ℎ : 𝑈 → [0..𝑚)

▶ Classic Example: hash tables and Bloom filters

2

Uniform – Universal – Perfect

Randomness is essential for hashing to make any sense! Three very different uses

1. uniform hashing assumption: (optimistic, often roughly right in practice!)

How good is hashing if input is “as nicely random” as possible?

2. Since fixed ℎ is prone to “algorithmic complexity attacks” (worst case inputs)

⇝ universal hashing: pick ℎ at random from class 𝐻 of suitable

universal class of hash functions

functions

3. For given keys, can construct collision-free hash function

⇝ perfect hashing

3

Uniform Hashing – Balls into Bins

Uniform Hashing Assumption:
When 𝑛 elements 𝑥1 , . . . , 𝑥𝑛 are inserted,

for their hash sequence ℎ(𝑥1), . . . , ℎ(𝑥𝑛),
all 𝑚𝑛

possible values are equally likely.

⇝
behavior of data structure completely

independent of 𝑥1 , . . . , 𝑥𝑛 !

⇝ might as well forget data!

Balls into bins model (a.k.a. balanced allocations)

▶ throw 𝑛 balls into 𝑚 bins Literature usually swaps 𝑛 and 𝑚!

▶ each ball picks bin i. i.d. uniformly at random

▶ classic abstract model to study randomized algorithms

▶ For hashing, effectively the best imaginable case

tends to be a bit optimistic!

▶ but: data in applications often not far from this

4

A Paradox?

▶ 𝑋𝑖 : Number of balls in bin 𝑖:

⇝ 𝑋1

D
= · · · D

= 𝑋𝑚
D
= Bin(𝑛, 1

𝑚)

⇝ All 𝑋𝑖 concentrated around expectation
𝑛
𝑚 (Chernoff

actually, just shows 𝑋𝑖 = 𝑛/𝑚 ± 𝒏0.501

!)

Consider 𝑚 = 𝑛 ⇝ 𝔼[𝑋𝑖] = 1

▶ But also: expected number of empty bins:

𝔼[#𝑖 with 𝑋𝑖 = 0] =

𝑚∑
𝑖=1

ℙ[𝑋𝑖 = 0]

= 𝑚 ·
(
1 − 1

𝑚

)𝑛
(𝑚 = 𝑛, (1 + 1/𝑛)𝑛 ≈ 𝑒)

= 𝑛 · 𝑒(1 ± 𝑂(𝑛−1)

⇝ In expectation,
1

𝑒 fraction (37%) of bins empty!

How does that fit together with 𝔼[𝑋𝑖] = 1? Which expectation should we expect?

5

Birthday Paradox

▶ Let’s consider a different question to approach this . . .

▶ Birthday ‘Paradox’:
How many people does it take to likely have two people with the same birthday?

▶ In balls-into-bins language: What 𝑛 makes it likely that ∃𝑗 ∈ [𝑚] : 𝑋𝑗 ≥ 2?

Compute counter-probability: ℙ[max𝑋𝑗 ≤ 1]

1 ·
(
1 − 1

𝑚

)
·
(
1 − 2

𝑚

)
· · ·

(
1 − 𝑛 − 1

𝑚

)
= 𝑒−

1

𝑚 · 𝑒− 2

𝑚 · · · 𝑒− 𝑛−1

𝑚 ·
(
1 ± 𝑂

((
𝑛

𝑚

)
2

))
= 𝑒−

𝑛2

2𝑚 ± 𝑂(𝑛
𝑚) (𝑛𝑚 → 0)

Taylor series 𝑒𝑥 = 1 + 𝑥 ± 𝑂(𝑥2) as 𝑥 → 0

⇝ Only for 𝑛 = Θ(
√
𝑚) nontrivial probability

▶ ℙ[max𝑋𝑗 ≤ 1] = 1

2
for 𝑛 ≈

√
2𝑚 ln(2), so for 𝑚 = 365 days, need 𝑛 ≈ 22.49 people

⇝ Can’t expect to see all bins close to expected occupancy.
6

Fullest Bin

Theorem 9.1

If we throw 𝑛 balls into 𝑛 bins, then w.h.p., the fullest bin has 𝑂

(
log 𝑛

log log 𝑛

)
balls. ◀

Proof:

7

Fullest Bin [2]

Proof (cont.):

■

8

Fullest Bin – Consequences

▶ Closer analysis shows for 𝑛 = 𝛼𝑚, constant 𝛼 (“load factor”),

max𝑋𝑗 =
ln 𝑛

ln(ln(𝑛)/𝛼) ·
(
1 + 𝑜(1)

)
w.h.p.

What can we learn from this?
1. Under uniform hashing assumption, even worst case of chaining hashing cost beats BST.

2. . . . but not by much.

3. Expected costs aren’t fully informative for hashing;

(big difference between expected average case and expected worst case)

Biggest caveat: uniform hashing assumption!

⇝ . . . we’ll come back to that

▶ Cool trick: Power of 2 choices
Assume two candidate bins per ball (hash functions), take less loaded bin

⇝ max𝑋𝑗 = ln ln 𝑛/ln 2 ± 𝑂(1) (!) analysis more technical; details in Mitzenmacher & Upfal

9

Coupon Collector

▶ Balls into bins nicely models other situations worth memorizing

▶ Coupon Collector Problem:
How many (wrapped) packs do I need to buy to get all collectibles?

▶ Balls-into-bins: What 𝑛 makes it likely that ∀𝑗 : 𝑋𝑗 ≥ 1?

▶ Define 𝑆𝑖 as the number of balls to get from 𝑖 empty bins to 𝑖 − 1 empty bins.

⇝ 𝑆 = 𝑆𝑚 + 𝑆𝑚−1 + · · · + 𝑆1 is the total number of balls for coupon collector

▶ 𝑆𝑖
D
= Geo(𝑝𝑖) where 𝑝𝑖 =

𝑖

𝑚
⇝ 𝔼[𝑆𝑖] =

1

𝑝𝑖
=

𝑚

𝑖

▶ 𝔼[𝑆] =

𝑚∑
𝑖=1

𝔼[𝑆𝑖] = 𝑚

𝑚∑
𝑖=1

1

𝑖
= 𝑚𝐻𝑚 = 𝑚 ln𝑚 ± 𝑂(𝑚)

▶ Can similarly show Var[𝑆] = Θ(𝑚2)
(since 𝑆𝑖 are independent, stdev is linear + using Var[𝑆𝑖] =

1 − 𝑝𝑖

𝑝2

𝑖

)

⇝ 𝜎[𝑆] = Θ(𝑚) = 𝑜(𝔼[𝑆]), so 𝑆 converges in probability to 𝔼[𝑆] (Chebyshev)

10

9.2 Universal Hashing

Randomized Hashing

▶ Balls-into-bins model is worryingly optimistic.

▶ Assumes that chosen bins 𝐵1 , . . . , 𝐵𝑛 ∈ [𝑚] are mutually independent.
⇝ Assumes both that input is not adversarial and that hash functions work well.

⇝ To replace the assumption about the input by explicit randomization,

would need a fully random hash function ℎ : [𝑛] → [𝑚]
▶ if we were to uniformly choose from 𝑚𝑛

possibilities

we’d need to store lg(𝑚𝑛) = 𝑛 lg𝑚 bits just for ℎ

▶ (even if we did so, how to efficiently evaluate ℎ then is unclear)

� too expensive

⇝ Pick ℎ at random, but from a smaller class H of “convenient” functions

11

Universal Hashing

What’s a convenient class?

Definition 9.2 (Universal Family)

Let H be a set of hash functions from 𝑈 to [𝑚] and |𝑈| ≥ 𝑚.

Assume ℎ ∈ H is chosen uniformly at random.

(a) Then H is called a universal if

∀𝑥1 , 𝑥2 ∈ 𝑈 : 𝑥1 ≠ 𝑥2 =⇒ ℙ
[
ℎ(𝑥1) = ℎ(𝑥2)

]
≤ 1

𝑚
.

(b) H is called strongly universal or pairwise independent if

∀𝑥1 , 𝑥2 ∈ 𝑈, 𝑦1 , 𝑦2 ∈ 𝑅 : 𝑥1 ≠ 𝑥2 =⇒ ℙ
[
ℎ(𝑥1) = 𝑦1 ∧ ℎ(𝑥2) = 𝑦2

]
≤ 1

𝑚2
. ◀

▶ strong universal implies universal

▶ In the following, always assume (uniformly) random ℎ ∈ H.

▶ by contrast, 𝑥1 , . . . , 𝑥𝑛 may be chosen adversarially (but all distinct) from [𝑢]

12

Examples of universal families

ℎ𝑎𝑏(𝑥) =

(
𝑎 · 𝑥 + 𝑏 mod 𝑝

)
mod 𝑚 𝑝 prime, 𝑝 ≥ 𝑚

ℎ𝑎(𝑥) =

(
𝑎 · 𝑥 mod 2

𝑘
)

div 2
𝑘−ℓ 𝑢 = 2

𝑘
, 𝑚 = 2

ℓ

▶ H1 =
{
ℎ𝑎𝑏 : 𝑎 ∈ [1..𝑝), 𝑏 ∈ [0..𝑝)

}
is universal

▶ H0 =
{
ℎ𝑎𝑏 : 𝑎 ∈ [0..𝑝), 𝑏 ∈ [0..𝑝)

}
is strongly universal

▶ H2 =
{
ℎ𝑎 : 𝑎 ∈ [1..2𝑘), 𝑎 odd

}
is universal

13

How good is universal hashing?

14

9.3 Perfect Hashing

Perfect Hashing: Random Sampling

A hash function ℎ : [𝑢] → [𝑚] is called

▶ perfect for a set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑖 ≠ 𝑗 implies ℎ(𝑥𝑖) ≠ ℎ(𝑥 𝑗)

▶ minimal for set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑚 = 𝑛

Perfect Hashing

▶ only possible for 𝑛 ≤ 𝑚

▶ stringent requirement ⇝ here focus on static X

▶ carefully chosen variants with partial rebuilding allow insertion and deletion

in 𝑂(1) amortized expected time

▶ further requirements

1. Hash function must be fast to evaluate (ideally 𝑂(1) time)

2. Hash function must be small to store (ideally 𝑂(𝑛) space)

3. should be fast to compute given X (ideally 𝑂(𝑛) time)

4. Have small 𝑚 (ideally 𝑚 = Θ(𝑛))

15

9.4 Primality Testing

Abundance of Witnesses

▶ Suppose 𝐿 ∈ NP and all of the following are true:

▶ alleged certificate must be easy to check

trivially in polytime; often very fast

▶ for 𝑥 ∈ 𝐿, there are many certificates that show 𝑥 ∈ 𝐿

not generally true, but sometimes!

⇝ Conceivable that a randomized algorithm succeeds:

▶ Guess a random certificate string

▶ Check if it decides the problem

16

Primality Testing

Testing if a given number is prime is one of the oldest algorithmic questions.

Factorizing products of large prime numbers seems very hard

much of cryptography builds on this being intractable!

17

Complexity of Primality Testing and Factorization

▶ Primes:

▶ Given: Integer 𝑛 in binary encoding

▶ Goal: Check if 𝑛 is a prime number

▶ IntegerFactorization:

▶ Given: Integer 𝑛 in binary encoding

▶ Goal: Find nontrivial factors 𝑛 = 𝑚1 · 𝑚2, 2 ≤ 𝑚1 , 𝑚2 < 𝑛 or determine “𝑛 prime”

▶ If 𝑛 is composite, a factorization is a certificate for non-primality ⇝ Primes ∈ co-NP

▶ we will show Primes ∈ co-RP ⊂ BPP

▶ Major theoretical breakthrough: Primes ∈ P Agrawal, Kayal, and Saxena (2004)

▶ This is not known for IntegerFactorization!

▶ However, Shor’s algorithm can factor integers on a (theoretical) quantum computer

18

Does Primes have abundance of witnesses?

19

Primality Testing: Fermat’s Little Theorem

Theorem 9.3 (Fermat’s Little Theorem)

For 𝑝 a prime and 𝑎 ∈ [1..𝑝 − 1] holds

𝑎𝑝−1 ≡ 1 (mod 𝑝) ◀

20

Primality Testing: Second Attempt

Theorem 9.4 (Euler’s Criterion)

Let 𝑝 > 2 an odd number.

𝑝 prime ⇐⇒ ∀𝑎 ∈ ℤ𝑝 \ {0} : 𝑎
𝑝−1

2 mod 𝑝 ∈ {1,−1} ◀

Theorem 9.5 (Number of Witnesses)

For every odd 𝑛 ∈ ℕ, (𝑛 − 1)/2 odd, we have:

1. If 𝑛 is prime then 𝑎(𝑛−1)/2
mod 𝑛 ∈ {1, 𝑛 − 1}, for all 𝑎 ∈ {1, . . . , 𝑛 − 1}.

2. If 𝑛 is not prime then 𝑎(𝑛−1)/2
mod 𝑛 ∉ {1, 𝑛 − 1} for at least half of the elements in

{1, . . . , 𝑛 − 1}. ◀

21

22

Simple Solovay-Strassen Primality Test

Input: an odd number 𝑛 with (𝑛 − 1)/2 odd.

1. Choose a random 𝑎 ∈ {1, 2, . . . , 𝑛 − 1}.
2. Compute 𝐴 := 𝑎(𝑛−1)/2

mod 𝑛.

3. If 𝐴 ∈ {1, 𝑛 − 1} then output “𝑛 probably prime” (reject);

4. otherwise output “𝑛 not prime” (accept).

Theorem 9.6 (Correctness)

The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect

composite numbers 𝑛 with 𝑛 mod 4 = 3. ◀

Corollary 9.7

For positive integers 𝑛 with 𝑛 mod 4 = 3 the simple Solovay-Strassen algorithm provides a

polynomial TSE-MC algorithm to detect prime numbers. ◀

23

Sampling Primes

RandomPrime(ℓ , 𝑘) Input: ℓ , 𝑘 ∈ ℕ, ℓ ≥ 3.

1. Set 𝑋 ≔ “not found yet”; 𝐼 ≔ 0;

2. while 𝑋 = “not found yet” and 𝐼 < 2ℓ 2 do
▶ generate random bit string 𝑎1 , 𝑎2 , . . . , 𝑎ℓ−2 and

▶ compute 𝑛 ≔ 2
ℓ−1 +

ℓ−2∑
𝑖=1

𝑎𝑖 · 2
𝑖 + 1

// This way 𝑛 becomes a random, odd number of length ℓ
▶ Realize 𝑘 independent runs of Solovay-Strassen-algorithm on 𝑛;

▶ if at least one output says “𝑛 ∉ PRIMES” then 𝐼 ≔ 𝐼 + 1

else 𝑋 ≔“PN found”; output 𝑛;

3. if 𝐼 = 2 · ℓ 2 then output ”no PN found”.

24

Theorem 9.8 (Correctness of RandomPrime)

Algorithm RandomPrime(𝑙 , 𝑙) is a polynomial (in 𝑙) TSE-MC algorithm to generate random

prime numbers of length 𝑙. ◀

25

9.5 Schöning’s Satisfiability

⇝ Focus on practical benefits of randomization

Randomized approaches can be grouped into categories:

1. Coping with adversarial inputs

Randomized Quicksort, randomized BSTs, Treaps, skip lists

2. Abundance of Witnesses

Solovay-Strassen primality test

3. Fingerprinting

universal hashing

4. Random Sampling

Perfect hashing, Schöning’s 3SAT algorithm, Karger’s Min-Cut algorithm

5. LP Relaxation & Randomized Rounding

Set-Cover Approximation (next chapter)

26

Warmup: A randomized 2SAT algorithm

1 procedure localSearch2SAT(𝜙, confidence):
2 𝑘 = number of variables of 𝜙
3 Choose assignment 𝛼 ∈ {0, 1}𝑘 uniformly at random.

4 for 𝑗 = 1, . . . , confidence · 2𝑘2

5 if 𝛼 fulfills 𝜙 return “𝜙 satisfiable”

6 Arbitrarily choose a clause 𝐶 = ℓ1 ∨ ℓ2 that is not satisfied under 𝛼.

7 Choose ℓ from {ℓ1 , ℓ2} uniformly at random.

8 𝛼 = assignment obtained by negating ℓ .

9 return “𝜙 probably not satisfiable”

Theorem 9.9 (localSearch2SAT is OSE-MC for 2SAT)

Let 𝜙 be a 2SAT formula.

1. If 𝜙 is unsatisfiable, localSearch2SAT always returns “probably not satisfiable”.

2. If 𝜙 is satisfiable, localSearch2SAT returns “satisfiable” with probability at least

1 − 2
−confidence

.

◀

27

Schöning’s Randomized 3SAT Algorithm

1 procedure Schöning3SAT(𝜙, confidence):
2 𝑘 = number of variables in 𝜙

3 for 𝑖 = 1, . . . , confidence · 24

⌈√
𝑘
(

4

3

) 𝑘⌉
do

4 Choose assignment 𝛼 ∈ {0, 1}𝑘 uniformly at random.

5 for 𝑗 = 1, . . . , 3𝑘 do

6 if 𝛼 fulfills 𝜙 return “𝜙 satisfiable”

7 Arbitrarily choose a clause 𝐶 = ℓ1 ∨ ℓ2 ∨ ℓ3 that is not satisfied under 𝛼.

8 Choose ℓ from {ℓ1 , ℓ2 , ℓ3} uniformly at random.

9 𝛼 = assignment obtained by negating ℓ .

10 return “𝜙 probably not satisfiable”

Theorem 9.10 (Schöning3SAT is OSE-MC for 2SAT)

Let 𝜙 be a 3SAT formula with 𝑛 clauses over 𝑘 variables.

1. If 𝜙 is unsatisfiable, Schöning3SAT always returns “probably not satisfiable”.

2. If 𝜙 is satisfiable, Schöning3SAT returns “satisfiable” with probability ≥ 1 − 2
−confidence

.

3. Schöning3SAT runs in time 𝑂
(
confidence · 𝑘3/2

(
4

3

) 𝑘
𝑛
)
.

◀

28

9.6 Karger’s Cuts

Smart probability amplification: Karger’s Min-Cut

Definition 9.11 (Min-Cut)

Given: A (multi)graph 𝐺 = (𝑉, 𝐸, 𝑐), where 𝑐 : 𝐸 → ℕ is the multiplicity of an edge

Feasible Solutions: cuts of 𝐺, i. e., 𝑀(𝐺) = {(𝑉1 , 𝑉2) : 𝑉1 ∪𝑉2 = 𝑉 ∧ 𝑉1 ∩𝑉2 = ∅},
Goal: Minimize

Costs:

∑
𝑒∈𝐶(𝑉1 ,𝑉2)

𝑐(𝑒), where 𝐶(𝑉1 , 𝑉2) =
{
{𝑢, 𝑣} ∈ 𝐸 : 𝑢 ∈ 𝑉1 ∧ 𝑣 ∈ 𝑉2

}
.

◀

29

Random Contraction

1 procedure contractionMinCut(𝐺 = (𝑉, 𝐸, 𝑐))
2 Set label(𝑣) := {𝑣} for every vertex 𝑣 ∈ 𝑉 .

3 while 𝐺 has more than 2 vertices

4 Choose random edge 𝑒 = {𝑥, 𝑦} ∈ 𝐸.

5 𝐺 := Contract(𝐺, 𝑒).
6 Set label(𝑧) := label(𝑥) ∪ label(𝑦) for 𝑧 the vertex resulting from 𝑥 and 𝑦.

7 Let 𝐺 = ({𝑢, 𝑣}, 𝐸′, 𝑐′); return (label(𝑢), label(𝑣)) with cost 𝑐′({𝑢, 𝑣}).

Theorem 9.12 (contractionMinCut correct with some probability)

contractionMinCut is a polytime randomized algorithm that finds a minimal cut for a given

multigraph 𝐺 with 𝑛 vertices with probability ≥ 2/
(
𝑛(𝑛 − 1)

)
. ◀

30

Lemma 9.13 (Threshold for contractionMinCut)

Let 𝑙 : ℕ → ℕ a monotonic, increasing function with 1 ≤ 𝑙(𝑛) ≤ 𝑛. If we stop

contractionMinCut whenever 𝐺 only has 𝑙(𝑛) vertices and determine for the resulting graph

𝐺/𝐹 deterministically a minimal cut, then we need time in

𝑂(𝑛2 + 𝑙(𝑛)3)

and we find a minimal cut for 𝐺 with probability at least(𝑙(𝑛)
2

)(
𝑛
2

)
◀

31

Karger’s Min-Cut Improved

1 procedure KargerSteinMinCut(𝐺(𝑉, 𝐸, 𝑐))
2 𝑛 = |𝑉|
3 if 𝑛 ≥ 6

4 compute minimal cut deterministically

5 else

6 ℎ =
⌈
1 + 𝑛√

2

⌉
7 𝐺/𝐹1 = Contract random edges in 𝐺 until ℎ nodes left

8 (𝐶1 , 𝑐𝑜𝑠𝑡1) = KargerSteinMinCut(𝐺/𝐹1)

9 𝐺/𝐹2 = Contract random edges in 𝐺 until ℎ nodes left

10 (𝐶2 , 𝑐𝑜𝑠𝑡2) = KargerSteinMinCut(𝐺/𝐹2)

11 if 𝑐𝑜𝑠𝑡1 < 𝑐𝑜𝑠𝑡2 return (𝐶1 , 𝑐𝑜𝑠𝑡1) else 𝐶2 , 𝑐𝑜𝑠𝑡2)

Theorem 9.14 (KargerSteinMinCut beats deterministic min-cut)

KargerSteinMinCut runs in time 𝑂(𝑛2 · log(𝑛)) and finds a minimal cut with probability

Ω(1

log(𝑛)). ◀

32

	Random Tricks
	Uses of Randomness
	Hashing – Balls Into Bins
	Fingerprinting / Hashing
	Uniform – Universal – Perfect
	Uniform Hashing – Balls into Bins
	A Paradox?
	Birthday Paradox
	Fullest Bin
	Fullest Bin [2]
	Fullest Bin – Consequences
	Coupon Collector

	Universal Hashing
	Randomized Hashing
	Universal Hashing
	Examples of universal families
	How good is universal hashing?

	Perfect Hashing
	Perfect Hashing: Random Sampling

	Primality Testing
	Abundance of Witnesses
	Primality Testing
	Complexity of Primality Testing and Factorization
	Does Primes have abundance of witnesses?
	Primality Testing: Fermat's Little Theorem
	Primality Testing: Second Attempt
	Simple Solovay-Strassen Primality Test
	Sampling Primes

	Schöning's Satisfiability
	Warmup: A randomized 2SAT algorithm
	Schöning's Randomized 3SAT Algorithm

	Karger's Cuts
	Smart probability amplification: Karger's Min-Cut
	Random Contraction
	Karger's Min-Cut Improved

