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11.1 (Integer) Linear Optimization Recap



LPs in Standard Form

Definition 11.1 (LP)
A linear program (LP) in standard form with 𝑛 variables and 𝑚 constraints is characterized by a

matrix 𝑨 ∈ ℤ𝑚×𝑛
, a vector 𝒃 ∈ ℤ𝑚

, and a vector 𝒄 ∈ ℤ𝑛
and is written as

min 𝒄𝑇𝒙 min

∑𝑛
𝑗=1

𝑐 𝑗 · 𝑥 𝑗
s. t. 𝑨𝒙 ≥ 𝒃 s. t.

∑𝑛
𝑗=1

𝑎𝑖 𝑗 · 𝑥 𝑗 ≥ 𝑏𝑖 for all 𝑖 ∈ [𝑚]
𝒙 ≥ 0 𝑥 𝑗 ≥ 0 for all 𝑗 ∈ [𝑛]

(Inequalities on vectors apply componentwise.)

Any vector 𝑥 ∈ ℝ𝑛
with 𝐴𝑥 ≥ 𝑏 and 𝑥 ≥ 0 is called a feasible solution for the LP, and 𝑐𝑇𝑥 is its

objective value. An optimal solution is a feasible vector 𝑥∗ with minimal objective value. ◀

Remark 11.2 (Rational coefficients)
We can in general allow 𝐴 ∈ ℚ𝑚×𝑥

, 𝑏 ∈ ℚ𝑚
and 𝑐 ∈ ℚ𝑛

; by multiplying constraints and

scaling objective function with the common denominator we obtain an equivalent LP. ◀
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Example LP
min 7𝑥1 + 𝑥2 + 5𝑥3

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

⇝ Optimal solution 𝑥∗ = (1.75, 0, 2.75) with 𝑐𝑇𝑥∗ = 26.

Extreme point: feasible point that is not a convex combination of two distinct feasible solutions.

Remark 11.3 (Facts on LPs)
1. More general versions of LP possible:

= constraints, unrestricted variables, max instead of min . . .

⇝ can all be transformed into equivalent one in standard form.

2. LP can be infeasible (no solution), unbounded (no optimal solution) or finite.

3. If LP has optimal solution, there is an optimal extreme point⇝ finite problem!

4. Optimal solutions can be computed in polytime (ellipsoid method).

◀
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Integer Linear Program in Standard Form

Definition 11.4 (ILP)
An integer linear program in standard form is an LP with the additional integrality constraints

𝑥 𝑗 ∈ ℕ0:

min 𝒄𝑇𝑥

s. t. 𝑨𝒙 ≥ 𝒃

𝒙 ∈ ℕ𝑛
0

◀

Remark 11.5 (Facts on ILPs)
1. Generalized versions can again be transformed into standard form.

2. Decision version of the problem NP-complete.

◀
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11.2 LP Relaxations & Rounding



LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

⇝ A natural idea to obtain approximately optimal solutions for NPO problems:

1. Formulate problem as ILP (𝐼)

2. Drop integrality constraints from (𝐼) ⇝ LP (𝑃)

3. Obtain optimal fractional solution 𝒙∗ for (𝑃)

4. . . . ?

Somehow get back to feasible solution for (𝐼)
Simplest version: Round to nearest integer!

Note: Integrality gap of (I)LP is key barrier in this approach
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Set Cover as ILP
The Set Cover ILP
Idea 𝑥 𝑗 = 1 iff 𝑆 𝑗 in cover.

Notation: For 𝑒 ∈ 𝑈 = [𝑛] set 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆 𝑗}.

min

𝑘∑
𝑗=1

𝑐(𝑆 𝑗) · 𝑥 𝑗

s. t.

∑
𝑗∈𝑉(𝑒)

𝑥 𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (I)

𝑥 ∈ ℕ𝑘
0

Observation: Any optimal solution

fulfills 𝑥 ∈ {0, 1}𝑘

min

𝑘∑
𝑗=1

𝑐(𝑆 𝑗) · 𝑥 𝑗

s. t.

∑
𝑗∈𝑉(𝑒)

𝑥 𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (P)

𝑥 ≥ 0

LP Relaxation: replace 𝑥 ∈ ℕ𝑘
0

by 𝑥 ≥ 0.

⇝ efficiently solvable, but might get

fractional solutions 𝑥∗.

Write OPT(𝐼) resp. OPT(𝑃) for the optimal objective value ⇝ OPT(𝐼) ≤ OPT(𝑃)
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Simple Rounding

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)

2 𝑓 := global frequency of 𝑆

3 𝑥∗ := optimal solution of relaxed set cover LP.

4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘

6 if 𝑥∗
𝑗
≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an

𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a

2-approximation for VertexCover. ◀

Proof:
(1) C is a set cover

Let 𝑒 ∈ 𝑈 be arbitrary. Since 𝑥∗ is feasible, we have

∑
𝑗∈𝑉(𝑒)

≥ 1.

|𝑉(𝑒)| = 𝑓𝑒 ≤ 𝑓 ⇝ one 𝑥 𝑗 with 𝑗 ∈ 𝑉(𝑒) must be 𝑥 𝑗 ≥ 1/ 𝑓 .
⇝ 𝑗 ∈ C and 𝑒 is covered.

(2) 𝑓 -approximation.

𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤
min-problem

OPT(𝐼)
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Simple Rounding [2]
Proof (cont.):
For every 𝑗 ∈ C, 𝑥∗

𝑗
≥ 1/ 𝑓 .

⇝ 𝑐(C) =

∑
𝑗∈C

𝑐(𝑆 𝑗)

≤
∑
𝑗∈C

𝑓 · 𝑥∗𝑗 · 𝑐(𝑆 𝑗)

= 𝑓 ·
∑
𝑗∈C

·𝑥∗𝑗 · 𝑐(𝑆 𝑗)

≤ 𝑓 ·
∑
𝑗∈[𝒌]

·𝑥∗𝑗 · 𝑐(𝑆 𝑗)

= 𝑓 · OPT(𝑃)

≤ 𝑓 · OPT(𝐼) ■
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Simple Rounding – Analysis is tight
In the worst case, the above threshold method cannot be better than an 𝑓 -approximation

Consider the “Fully Symmetric instance:”
Suppose 𝑓 | 𝑛
𝑈 = [0..𝑛) with 𝑆 𝑗 = { 𝑗 , 𝑗 + 1, . . . , 𝑗 + 𝑓 − 1} mod 𝑛, for all 𝑗 ∈ [0..𝑛)
All sets of equal cost, 𝑐(𝑆 𝑗) = 1

⇝ 𝑛/ 𝑓 sets suffice;

but 𝑥∗ = ( 1

𝑓 , . . . ,
1

𝑓 ) is optimal for (𝑃) ⇝ frequencyCutoffSetCover outputs C = [0..𝑛)
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11.3 Randomized Rounding



Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗

𝑗
∈ (0, 1): include 𝑆 𝑗 with probability 𝑥∗

𝑗
in C

⇝ 𝔼[𝑐(C)] =

𝑘∑
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆 𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can be rescued.

Intuition: If 𝑒 occurs in 𝑓𝑒 sets, we have

ℙ[𝑒 covered] = 1 − ℙ

[ ⋂
𝑗∈𝑉(𝑒)

𝑆 𝑗 ∉ C

]
= 1 −

∏
𝑗∈𝑉(𝑒)

(
1 − 𝑥∗𝑗

)
≥ 1 −

(
1 − 1

𝑓𝑒

) 𝑓𝑒
≥ 1 − 1

𝑒

⇝ Coupon collector

Assuming we keep trying and collect all sets ever chosen

with 𝑛 coupons ⇝ ≈ 𝐻𝑛 repetitions

Probably not better than greedy in worst case, but technique is general & tweakable
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Randomized Rounding

1 procedure randomizedRoundingSet(𝑛, 𝑆, 𝑐, 𝑟)

2 𝑥∗ := optimal solution of relaxed set cover LP.

3 for 𝑖 := 1, . . . , 𝑟

4 C𝑖 := ∅
5 for 𝑗 := 1, . . . , 𝑘

6 𝑏 := coin flip with prob 𝑥∗
𝑗

7 if 𝑏 == 1 then C𝑖 := C𝑖 ∪ { 𝑗}
8 return C :=

⋃𝑟
𝑖=1

C𝑖

For simplicity, always set 𝑟 = ⌈ln(4𝑛)⌉

Lemma 11.8
randomizedRoundingSet computes a

feasible set-cover with probability ≥ 3

4
. ◀

Proof:
Recall from calculation above that for 𝑒 ∈ 𝑈 and a single iteration of the outer loop:

ℙ[𝑒 not covered by C𝑖] ≤
(
1 − 1

𝑓𝑒

) 𝑓𝑒
≤ 1

𝑒

⇝ ℙ[𝑒 not covered by C] =

𝑟∏
𝑖=1

ℙ[𝑒 not covered by C𝑖] ≤
(
1

𝑒

) 𝑟
With the union bound over all 𝑛 elements and 𝑟 = ln(4𝑛), we obtain

ℙ[C not a set cover] ≤ 𝑛𝑒−𝑟 = 1

4
. ■
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Randomized Rounding – Analysis

Lemma 11.9 (Expected quality)
Let C by computed by randomizedRoundingSet with 𝑟 repetitions.

The expected cost are 𝔼[𝑐(C)] ≤ 𝑟 · OPT(𝑃). ◀

⇝ For 𝑟 = ln(4𝑛) we have by Markov’s inequality: ℙ
[
𝑐(C) ≥ 4 ln(4𝑛) · OPT(𝑃)

]
≤ 1

4

Proof:
We choose C = C1 ∪ · · · ∪ C𝑟 .

For the cost we get

𝔼[𝑐(C)] ≤ 𝔼

[
𝑟∑

𝑖=1

𝑐(C𝑖)
]

=

𝑟∑
𝑖=1

𝔼[𝑐(C𝑖)] = 𝑟 · OPT(𝑃) ■
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Randomized Rounding Approximation for Set Cover
1 procedure randomizedRoundingSetCover(𝑛, 𝑆, 𝑐)

2 C = randomizedRoundingSet(𝑛, 𝑆, 𝑐, ⌈ln(4𝑛)⌉)
3 if C is a set cover

4 return C

5 else
6 return 𝑆

Theorem 11.10 (randomizedRoundingSetCover randomized approx)
randomizedRoundingSetCover is a randomized 4 ln(4𝑛)-approximation for SetCover. ◀

Proof:
ℙ[C not SC ∨ 𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)] ≤ ℙ[C not SC] + ℙ[𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)]

≤
Lemma 11.8, Lemma 11.9

1

4
+ 1

4

= 1

2
.

■
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11.4 LP Duality



Bounding optimal values of LPs
Starting with an original (“primal”) LP, how can we bound on its optimal objective value?

min 7𝑥1 + 𝑥2 + 5𝑥3

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

Optimal solution:

𝑥∗ = (1.75, 0, 2.75) with 𝑐𝑇𝑥∗ = 26.
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Dual LPs

min 𝑐𝑇𝑥

s. t. 𝐴𝑥 ≥ 𝑏 (P)

𝑥 ≥ 0

max 𝑏𝑇𝑦

s. t. 𝐴𝑇𝑦 ≤ 𝑐 (D)

𝑦 ≥ 0

Generalizations:
▶ 𝑖th constraint in primal with ‘≥’ ↭ 𝑦𝑖 ≥ 0

▶ 𝑖th constraint in primal with ‘=’ ↭ 𝑦𝑖 unconstrained

Lemma 11.11 (Weak Duality)
If 𝑥 and 𝑦 are feasible solutions for the primal resp. dual LP, it holds that 𝑐𝑇𝑥 ≥ 𝑏𝑇𝑦. ◀

Proof:
Dual constraint 𝐴𝑇𝑦 ≤ 𝑐 implies 𝑐𝑇 ≥ (𝐴𝑇𝑦)𝑇 = 𝑦𝑇𝐴.

⇝ 𝑐𝑇𝑥 ≥ (𝑦𝑇𝐴)𝑥 = 𝑦𝑇(𝐴𝑥) ≥
prim. constr.

𝑦𝑇𝑏 = 𝑏𝑇𝑦 ■
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Duality Theory
Indeed, one can show by a closer study that the optimal objective values always coincide.

Theorem 11.12 (Strong duality)
The primal LP has a finite optimal objective if and only if the dual has. If 𝑥∗ resp. 𝑦∗ are two

optimal solutions to the primal resp. dual LP then 𝑐𝑇𝑥∗ = 𝑏𝑇𝑦∗ holds. ◀

Theorem 11.13 (Complementary Slackness Conditions (CSC))
Let 𝑥 and 𝑦 be feasible solutions to the primal and dual LP.

The pair (𝑥, 𝑦) is optimal if and only if
1. ∀𝑗 ∈ [𝑛] : 𝑥 𝑗 = 0 ∨ ∑

1≤𝑖≤𝑚 𝑎𝑖 , 𝑗 · 𝑦𝑖 = 𝑐 𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨ ∑
1≤ 𝑗≤𝑛 𝑎𝑖 , 𝑗 · 𝑥 𝑗 = 𝑏𝑖 . ◀

Remark 11.14
1. Strong duality implies that the LP threshold decision problem is in NP ∩ co-NP:

Yes-certificate: feasible solution; No-certificate: feasible solution for the dual.
(We know it actually lies in P)

2. For ILPs, we only get weak duality. ◀
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11.5 Vertex Cover and Matching Revisited



Vertex Cover & Maximum Matching
Vertex Cover

min

∑
𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑣 + 𝑥𝑤 ≥ 1 ∀𝑣𝑤 ∈ 𝐸

𝑥𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉

Maximum Matching

max

∑
𝑒∈𝐸

𝑦𝑒

s. t.

∑
𝑣𝑤∈𝐸

𝑦𝑣𝑤 ≤ 1 ∀𝑣 ∈ 𝑉

𝑦𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸

⇝ Consider the LP relaxations

16



Vertex Cover & Maximum Matching – Example

Graph 𝐺

𝑣1 𝑣2

𝑣3 𝑣4

𝑒1

𝑒2

𝑒3

𝑒4

𝑒5

Minimum Vertex Cover
min 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

s. t. 𝑥1 + 𝑥2 ≥ 1

𝑥1 + 𝑥3 ≥ 1

𝑥3 + 𝑥4 ≥ 1

𝑥1 + 𝑥4 ≥ 1

𝑥2 + 𝑥4 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

©­­­­­«
1 1 0 0

1 0 1 0

0 0 1 1

1 0 0 1

0 1 0 1

ª®®®®®¬

Maximum Matching

max 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

s. t. 𝑦1 + 𝑦2 + 𝑦4 ≤ 1

𝑦1 + 𝑦5 ≤ 1

𝑦2 + 𝑦3 ≤ 1

𝑦3 + 𝑦4 + 𝑦5 ≤ 1

𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 , 𝑦5 ≥ 0

©­­­«
1 1 0 1 0

1 0 0 0 1

0 1 1 0 0

0 0 1 1 1

ª®®®¬
incidence matrix of 𝐺!
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Vertex Cover & Maximum Matching – Dual Problems
Problems are dual!
⇝ Our earlier lemma “VC ≥ M” is just weak duality (on the ILPs)

⇝ Can generally try to build approximation algorithm by constructing pair of

primally/dually feasible solutions

Note: Dual LPs have equal optimal objective value;

For dual ILPs, can have a duality gap

𝑣1

𝑣2 𝑣3

1

2

1

2

1

2

⇝ For VertexCover/MaximumMatching, duality gap is 2.
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Bipartite Graphs
Except for bipartite graphs!
Bipartite graph: 𝑉(𝐺) = 𝐿 ¤∪ 𝑅, 𝐸(𝐺) ⊂ 𝐿 × 𝑅

Known:

▶ incidence matrix 𝐴 of bipartite 𝐺 is a totally

every square submatrix has determinant 0, 1, or −1

unimodular (TU) matrix

▶ 𝐴 TU ⇝ LPs min{𝑐𝑇𝑥 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0} and max{𝑏𝑇𝑦 : 𝐴𝑇𝑦 ≤ 𝑐, 𝑦 ≥ 0}
with integral 𝑏 and 𝑐 have integral optimal solutions 𝑥∗ and 𝑦∗

⇝ No integrality gap and no duality gap!

Here, also easy to see directly:

▶ Maximum matching in bipartite graph must have one side (𝐿 or 𝑅) completely matched

⇝ Taking all of these vertices must be a VC
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11.6 Set Cover Duality & Dual Fitting



Dual Fitting
Dual fitting uses (I)LPs for a minimization problem as follows:

▶ Simple algorithm maintains primally feasible and integral 𝑐𝑇𝑥.

▶ In the analysis, we show that cost of 𝒙 ist at most the cost of an implicitly computed

(nonintegral) dual 𝑦.

However, 𝑦 is not in general dually feasible.

▶ By scaling 𝑦 down by a factor 𝛿 > 1, we obtain a feasible dual solution, with cost a factor

𝛿 larger

⇝ 𝑐𝑇𝑥 ≤ 𝛿 · OPT
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Set Cover LP and its dual
Recall: Input: 𝑆 = (𝑆1 , . . . , 𝑆𝑘) over universe 𝑈 ; define 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆 𝑗}.

min

𝑘∑
𝑗=1

𝑐(𝑆 𝑗) · 𝑥 𝑗

s. t.

∑
𝑗∈𝑉(𝑒)

𝑥 𝑗 ≥ 1 ∀𝑒 ∈ 𝑈

𝒙 ≥ 0

max

∑
𝑒∈𝑈

𝑦𝑒

s. t.

∑
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆 𝑗) ∀𝑗 ∈ [𝑘]

𝒚 ≥ 0

Intuition:
Pack as much (𝑦𝑢) of good 𝑢 as possible, so that for group 𝑆 𝑗 its capacity 𝑐(𝑆 𝑗) is exceeded.
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Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)

2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1

4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗

8 // For analysis only:

9 // 𝛼𝑖 :=
𝑐(𝑆𝑖∗ )

|𝑆𝑖∗ \ 𝐶|
10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖

11 // 𝑖 := 𝑖 + 1

12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dual-feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly

feasible. (Recall

∑
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆 𝑗 :∑
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆 𝑗). Write ℓ = |𝑆 𝑗|.

Let 𝑒1 , . . . , 𝑒𝑛 be elements in order as covered by

algorithm.

When 𝑒𝑖 covered, 𝑆 𝑗 contains ≥ ℓ −(𝑖−1) uncovered
elements.

⇝ 𝑆 𝑗 covers 𝑒𝑖 at price ≤
𝑐(𝑆 𝑗)

ℓ − 𝑖 + 1

per element.

⇝ price(𝑒𝑖) ≤
𝑐(𝑆 𝑗)

ℓ − 𝑖 + 1

⇝ 𝑦𝑒𝑖 ≤ 1

𝐻𝑛

𝑐(𝑆 𝑗)
ℓ − 𝑖 + 1
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Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆 𝑗 :∑
𝑒∈𝑆𝑗

𝑦𝑒 =

ℓ∑
𝑚=1

𝑦𝑒𝑖𝑚 ≤
𝑐(𝑆 𝑗)
𝐻𝑛

ℓ∑
𝑚=1

1

𝑚
=

𝐻ℓ

𝐻𝑛
𝑐(𝑆 𝑗) ≤ 𝑐(𝑆 𝑗) ■

⇝ 𝑐(C) ≤ 𝐻𝑛 · OPT(𝐷) = 𝐻𝑛 · OPT(𝑃).

Also note: actually suffices to scale by 𝐻ℓ for ℓ = max |𝑆 𝑗|.
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Integrality Gap of Set Cover
Previous result shows that integrality gap

OPT
OPT(𝑃)

≤ 𝐻𝑛 .

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)
For the set cover ILP and its relaxation holds

OPT
OPT(𝑃)

≥
log

2
(𝑛 + 1)

2
𝑛

𝑛+1

∼ 1

2 ln 2

𝐻𝑛 ≈ 0.721𝐻𝑛 ◀
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11.7 The Primal-Dual Schema



Primal-Dual Schema
So far:

▶ ad hoc methods, a posteriori justified by LP arguments

▶ rounding algorithms, must solve primal LP to optimality (expensive!)

Can we use duality more directly?
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CSC for set cover
Complementary Slackness Conditions for Set Cover

𝑥 𝑗 = 0 ∨
∑
𝑢∈𝑆𝑗

𝑦𝑢 = 𝑐(𝑆 𝑗) ∀𝑗 ∈ [𝑘]

𝑦𝑢 = 0 ∨
∑

𝑗∈𝑉(𝑢)
𝑥 𝑗 = 1 ∀𝑢 ∈ 𝑈

Problem: In general only simultaneously fulfilled by fractional solutions

Relax dual constraints to

𝑦𝑢 = 0 ∨
∑

𝑗∈𝑉(𝑢)
𝑥 𝑗 ≤ 𝑓 ∀𝑢 ∈ 𝑈

i. e., every element at most 𝑓 times⇝ trivially fulfilled.

26



Primal Dual Set Cover

1 procedure primalDualSetCover(𝑛,𝑆,𝑐)

2 𝑓 = global frequency

3 𝒙 = 0, 𝒚 = 0, 𝑇 = [𝑛]
4 while 𝑇 ≠ ∅
5 Choose 𝑢 ∈ 𝑇 arbitrary

6 Increase 𝑦𝑢 until CSC holds for (at least) one more set 𝑆𝑗

7 for all 𝑆𝑗 with

∑
𝑢∈𝑆𝑗 𝑦𝑢 = 𝑐(𝑆𝑗)

8 𝑇 = 𝑇 \ 𝑆𝑗

9 𝑥 𝑗 = 1

10 return { 𝑗 ∈ [𝑘] : 𝑥 𝑗 = 1}

Theorem 11.17
primalDualSetCover is an 𝑓 -approximation for SetCover. ◀
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