

Prof. Dr. Sebastian Wild

Outline

11 LP-Based Approximation

- 11.1 (Integer) Linear Optimization Recap
- 11.2 LP Relaxations & Rounding
- 11.3 Randomized Rounding
- 11.4 LP Duality
- 11.5 Vertex Cover and Matching Revisited
- 11.6 Set Cover Duality & Dual Fitting
- 11.7 The Primal-Dual Schema

11.1 (Integer) Linear Optimization Recap

LPs in Standard Form

Definition 11.1 (LP)

A linear program (LP) in *standard form* with *n variables* and *m constraints* is characterized by a matrix $A \in \mathbb{Z}^{m \times n}$, a vector $b \in \mathbb{Z}^m$, and a vector $c \in \mathbb{Z}^n$ and is written as

min
$$c^T x$$
 min $\sum_{j=1}^n c_j \cdot x_j$
s. t. $Ax \ge b$ s. t. $\sum_{j=1}^n a_{ij} \cdot x_j \ge b_i$ for all $i \in [m]$
 $x \ge 0$ $x_j \ge 0$ for all $j \in [n]$

(Inequalities on vectors apply componentwise.)

Any vector $x \in \mathbb{R}^n$ with $Ax \ge b$ and $x \ge 0$ is called a *feasible solution* for the LP, and c^Tx is its objective value. An *optimal solution* is a feasible vector x^* with **min**imal objective value.

Remark 11.2 (Rational coefficients)

We can in general allow $A \in \mathbb{Q}^{m \times x}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$; by multiplying constraints and scaling objective function with the common denominator we obtain an equivalent LP.

1

Example LP

min
$$7x_1 + x_2 + 5x_3$$

s. t. $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

 \rightsquigarrow Optimal solution $x^* = (1.75, 0, 2.75)$ with $c^T x^* = 26$.

Extreme point: feasible point that is *not* a convex combination of two distinct feasible solutions.

Remark 11.3 (Facts on LPs)

- **1.** More general versions of LP possible:
 - = constraints, unrestricted variables, max instead of min . . .
 - → can all be transformed into equivalent one in standard form.
- **2.** LP can be *infeasible* (no solution), *unbounded* (no optimal solution) or *finite*.
- 3. If LP has optimal solution, there is an optimal extreme point → finite problem!
- **4.** Optimal solutions can be computed in polytime (ellipsoid method).

Integer Linear Program in Standard Form

Definition 11.4 (ILP)

An *integer linear program* in standard form is an LP with the additional integrality constraints $x_j \in \mathbb{N}_0$:

$$\min \quad c^T x$$
s.t. $Ax \ge b$

$$x \in \mathbb{N}_0^n$$

Remark 11.5 (Facts on ILPs)

- **1.** Generalized versions can again be transformed into standard form.
- **2.** Decision version of the problem NP-complete.

•

11.2 LP Relaxations & Rounding

LP Relaxation Approximations

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

- → A natural idea to obtain approximately optimal solutions for NPO problems:
- **1.** Formulate problem as ILP (*I*)
- **2.** Drop integrality constraints from $(I) \rightsquigarrow LP(P)$
- **3.** Obtain optimal fractional solution x^* for (P)
- 4. ...?Somehow get back to feasible solution for (*I*)Simplest version: Round to nearest integer!

Note: Integrality gap of (I)LP is key barrier in this approach

Set Cover as ILP

The Set Cover ILP

Idea $x_i = 1$ iff S_i in cover.

Notation: For $e \in U = [n]$ set $V(e) = \{j : e \in S_j\}$.

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$
 (I)
$$x \in \mathbb{N}_0^k$$

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$

s.t. $\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$ (P)
 $x > 0$

Observation: Any optimal solution fulfills $x \in \{0, 1\}^k$

LP Relaxation: replace $x \in \mathbb{N}_0^k$ by $x \ge 0$. \rightarrow efficiently solvable, but might get fractional solutions x^* .

Write $OPT_{(I)}$ resp. $OPT_{(P)}$ for the optimal objective value $\rightsquigarrow OPT_{(I)} \leq OPT_{(P)}$

Simple Rounding

```
procedure frequencyCutoffSetCover(n,S,c)

f := \text{global frequency of } S

x^* := \text{optimal solution of relaxed set cover LP.}

\mathcal{C} := \emptyset

for j := 1, \dots, k

if x_j^* \ge 1/f then add j to \mathcal{C}

return \mathcal{C}
```

Theorem 11.6

frequencyCutoffSetCover is an f-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for VertexCover.

Proof:

(1) \mathcal{C} is a set cover

Let $e \in U$ be arbitrary. Since x^* is feasible, we have $\sum_{i \in V(e)} \ge 1$.

 $|V(e)| = f_e \le f \quad \Rightarrow \quad \text{one } x_j \text{ with } j \in V(e) \text{ must be } x_j \ge 1/f.$ $\Rightarrow \quad j \in \mathcal{C} \text{ and } e \text{ is covered.}$

(2) f-approximation. $\xrightarrow{\text{min-problem}}$ x^* optimal for $(P) \iff c^T x^* = OPT_{(P)} \stackrel{\checkmark}{\leq} OPT_{(I)}$

Simple Rounding [2]

Proof (cont.):

For every
$$j \in \mathcal{C}$$
, $x_j^* \ge 1/f$.

$$\begin{array}{lll}
\text{As } c(\mathcal{C}) &=& \sum_{j \in \mathcal{C}} c(S_j) \\
&\leq & \sum_{j \in \mathcal{C}} f \cdot x_j^* \cdot c(S_j) \\
&= & f \cdot \sum_{j \in \mathcal{C}} \cdot x_j^* \cdot c(S_j) \\
&\leq & f \cdot \sum_{j \in [k]} \cdot x_j^* \cdot c(S_j) \\
&= & f \cdot OPT_{(P)} \\
&\leq & f \cdot OPT_{(I)}
\end{array}$$

Simple Rounding – Analysis is tight

In the worst case, the above threshold method cannot be better than an f-approximation

Consider the "Fully Symmetric instance:"

```
Suppose f \mid n U = [0..n) with S_j = \{j, j+1, \ldots, j+f-1\} \mod n, for all j \in [0..n) All sets of equal cost, c(S_j) = 1 \implies n/f sets suffice; but x^* = (\frac{1}{f}, \ldots, \frac{1}{f}) is optimal for (P) \implies frequencyCutoffSetCover outputs \mathcal{C} = [0..n)
```

11.3 Randomized Rounding

Fractions as probabilities

Another intuitive use of fractional solutions $x_j^* \in (0,1)$: include S_j with probability x_j^* in \mathbb{C}

$$\longrightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can be rescued.

Intuition: If e occurs in f_e sets, we have

$$\mathbb{P}[e \text{ covered}] = 1 - \mathbb{P}\left[\bigcap_{j \in V(e)} S_j \notin \mathcal{C}\right] = 1 - \prod_{j \in V(e)} \left(1 - x_j^*\right) \geq 1 - \left(1 - \frac{1}{f_e}\right)^{f_e} \geq 1 - \frac{1}{e}$$

 \sim Coupon collector with *n* coupons \sim $\approx H_n$ repetitions

Assuming we keep trying and collect all sets ever chosen

Probably not better than greedy in worst case, but technique is general & tweakable

Randomized Rounding

```
procedure randomizedRoundingSet(n, S, c, r)

x^* := \text{optimal solution of relaxed set cover LP.}

for i := 1, \ldots, r

\mathcal{C}_i := \emptyset

for j := 1, \ldots, k

b := \text{coin flip with prob } x_j^*

if b == 1 then \mathcal{C}_i := \mathcal{C}_i \cup \{j\}

return \mathcal{C} := \bigcup_{i=1}^r \mathcal{C}_i
```

For simplicity, always set $r = \lceil \ln(4n) \rceil$

Lemma 11.8

randomizedRoundingSet computes a feasible set-cover with probability $\geq \frac{3}{4}$.

Proof:

Recall from calculation above that for $e \in U$ and a single iteration of the outer loop:

$$\mathbb{P}[e \text{ not covered by } \mathcal{C}_i] \leq \left(1 - \frac{1}{f_e}\right)^{f_e} \leq \frac{1}{e}$$

$$\longrightarrow \mathbb{P}[e \text{ not covered by } \mathcal{C}] = \prod_{i=1}^r \mathbb{P}[e \text{ not covered by } \mathcal{C}_i] \leq \left(\frac{1}{e}\right)^r$$

With the union bound over all n elements and $r = \ln(4n)$, we obtain $\mathbb{P}[\mathcal{C} \text{ not a set cover}] \leq ne^{-r} = \frac{1}{4}$.

Randomized Rounding - Analysis

Lemma 11.9 (Expected quality)

Let \mathcal{C} by computed by randomizedRoundingSet with r repetitions.

The *expected* cost are $\mathbb{E}[c(\mathbb{C})] \leq r \cdot OPT_{(P)}$.

 \rightarrow For $r = \ln(4n)$ we have by Markov's inequality: $\mathbb{P}\left[c(\mathcal{C}) \ge 4\ln(4n) \cdot OPT_{(P)}\right] \le \frac{1}{4}$

Proof:

We choose $\mathcal{C} = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_r$.

For the cost we get

$$\mathbb{E}[c(\mathfrak{C})] \leq \mathbb{E}\left[\sum_{i=1}^{r} c(\mathfrak{C}_i)\right] = \sum_{i=1}^{r} \mathbb{E}[c(\mathfrak{C}_i)] = r \cdot OPT_{(P)}$$

Randomized Rounding Approximation for Set Cover

```
      1
      procedure randomizedRoundingSetCover(n, S, c)

      2
      \mathcal{C} = randomizedRoundingSet(n, S, c, \lceil \ln(4n) \rceil)

      3
      if \mathcal{C} is a set cover

      4
      return \mathcal{C}

      5
      else

      6
      return S
```

Theorem 11.10 (randomizedRoundingSetCover randomized approx)

randomized Rounding Set Cover is a randomized $4 \ln(4n)$ -approximation for Set Cover.

Proof:

$$\mathbb{P}[\mathcal{C} \text{ not SC } \lor c(\mathcal{C}) > 4 \ln(4n) \cdot OPT_{(P)}] \leq \mathbb{P}[\mathcal{C} \text{ not SC}] + \mathbb{P}[c(\mathcal{C}) > 4 \ln(4n) \cdot OPT_{(P)}]$$

$$\leq \frac{1}{4} + \frac{1}{4}$$

$$= \frac{1}{2}.$$

11.4 LP Duality

Bounding optimal values of LPs

Starting with an original ("primal") LP, how can we bound on its optimal objective value?

min
$$7x_1 + x_2 + 5x_3$$

s.t. $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

Optimal solution:

$$x^* = (1.75, 0, 2.75)$$
 with $c^T x^* = 26$.

Dual LPs

min
$$c^T x$$
 max $b^T y$
s.t. $Ax \ge b$ (P) s.t. $A^T y \le c$ (D)
 $x \ge 0$ $y \ge 0$

Generalizations:

- ▶ *i*th constraint in primal with $'\ge' \iff y_i \ge 0$
- ▶ *i*th constraint in primal with $'=' \iff y_i$ unconstrained

Lemma 11.11 (Weak Duality)

If x and y are feasible solutions for the primal resp. dual LP, it holds that $c^Tx \ge b^Ty$.

Proof:

Dual constraint
$$A^T y \le c$$
 implies $c^T \ge (A^T y)^T = y^T A$.

$$\leadsto$$
 $c^T x \ge (y^T A) x = y^T (Ax) \ge \text{prim. constr.} y^T b = b^T y$

Duality Theory

Indeed, one can show by a closer study that the optimal objective values *always coincide*.

Theorem 11.12 (Strong duality)

The primal LP has a finite optimal objective if and only if the dual has. If x^* resp. y^* are two optimal solutions to the primal resp. dual LP then $c^Tx^* = b^Ty^*$ holds.

Theorem 11.13 (Complementary Slackness Conditions (CSC))

Let *x* and *y* be feasible solutions to the primal and dual LP.

The pair (x, y) is optimal *if and only if*

- **1.** $\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le m} a_{i,j} \cdot y_i = c_j \text{ and }$
- **2.** $\forall i \in [m] : y_i = 0 \lor \sum_{1 \le j \le n} a_{i,j} \cdot x_j = b_i$.

Remark 11.14

- Strong duality implies that the LP threshold decision problem is in NP ∩ co-NP: Yes-certificate: feasible solution; No-certificate: feasible solution for the dual. (We know it actually lies in P)
- 2. For ILPs, we only get weak duality.

11.5 Vertex Cover and Matching Revisited

Vertex Cover & Maximum Matching

Vertex Cover

$$\min \sum_{v \in V} x_v$$
s.t. $x_v + x_w \ge 1 \quad \forall vw \in E$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

→ Consider the LP relaxations

Maximum Matching

$$\max \sum_{e \in E} y_e$$
s.t.
$$\sum_{vw \in E} y_{vw} \le 1 \quad \forall v \in V$$

$$y_e \in \{0, 1\} \qquad \forall e \in E$$

Vertex Cover & Maximum Matching – Example

Graph G

Minimum Vertex Cover

min
$$x_1 + x_2 + x_3 + x_4$$

s. t. $x_1 + x_2 \ge 1$
 $x_1 + x_3 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_1 + x_4 \ge 1$
 $x_2 + x_4 \ge 1$
 $x_1 + x_2 + x_4 \ge 0$

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)$$

Maximum Matching

$$\left(\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)$$

incidence matrix of *G*!

Vertex Cover & Maximum Matching – Dual Problems

Problems are dual!

- \longrightarrow Our earlier lemma "VC \geq M" is just weak duality (on the ILPs)
- ~ Can generally try to build approximation algorithm by constructing pair of primally/dually feasible solutions

Note: Dual **LPs** have **equal** optimal objective value; For dual **ILPs**, can have a *duality gap*

→ For VertexCover/MaximumMatching, duality gap is 2.

Bipartite Graphs

Except for bipartite graphs!

Bipartite graph: $V(G) = L \dot{\cup} R, E(G) \subset L \times R$

Known:

every square submatrix has determinant 0, 1, or -1

- ightharpoonup incidence matrix A of bipartite G is a *totally unimodular (TU)* matrix
- ▶ *A* TU \leadsto LPs min{ $c^Tx : Ax \ge b, x \ge 0$ } and max{ $b^Ty : A^Ty \le c, y \ge 0$ } with integral b and c have **integral** optimal solutions x^* and y^*
- → No integrality gap and no duality gap!

Here, also easy to see directly:

- ▶ Maximum matching in bipartite graph must have one side (*L* or *R*) completely matched
- → Taking all of these vertices must be a VC

11.6 Set Cover Duality & Dual Fitting

Dual Fitting

Dual fitting uses (I)LPs for a minimization problem as follows:

- ▶ Simple algorithm maintains primally feasible and **integral** c^Tx .
- ▶ In the analysis, we show that cost of *x* ist at most the cost of an implicitly computed (nonintegral) dual *y*.

However, *y* is not in general dually feasible.

▶ By *scaling* y down by a factor $\delta > 1$, we obtain a feasible dual solution, with cost a factor δ larger

$$\leadsto c^T x \leq \delta \cdot OPT$$

Set Cover LP and its dual

Recall: Input: $S = (S_1, ..., S_k)$ over universe U; define $V(e) = \{j : e \in S_j\}$.

$$\min \sum_{j=1}^{k} c(S_j) \cdot x_j \qquad \max \sum_{e \in U} y_e$$

$$\text{s.t. } \sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U \qquad \text{s.t. } \sum_{e \in S_j} y_e \le c(S_j) \quad \forall j \in [k]$$

$$x \ge 0 \qquad y \ge 0$$

Intuition:

Pack as much (y_u) of good u as possible, so that for group S_j its capacity $c(S_j)$ is exceeded.

Analysis of greedySetCover by dual fitting

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
          \mathcal{C} := \emptyset; C := \emptyset
          // For analysis: i := 1
          while C \neq [n]
                i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
        \mathcal{C} := \mathcal{C} \cup \{i^*\}
    C := C \cup S_{i^*}
        // For analysis only:
               //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
                //i := i + 1
11
          return C
12
```

Lemma 11.15

 $y_e = price(e)/H_n$ is dual-feasible.

Proof:

price(e) essentially dual variable, but not directly **feasible.** (Recall $\sum_{e \in IJ} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

$$\sum_{e \in S_j} y_e \le c(S_j). \qquad \text{Write } \ell = |S_j|.$$

Let e_1, \ldots, e_n be elements in order as covered by algorithm.

When e_i covered, S_i contains $\geq \ell - (i-1)$ uncovered elements.

$$\Rightarrow$$
 S_j covers e_i at price $\leq \frac{c(S_j)}{\ell - i + 1}$ per element.
 \Rightarrow $price(e_i) \leq \frac{c(S_j)}{\ell - i + 1} \Rightarrow y_{e_i} \leq \frac{1}{H_n} \frac{c(S_j)}{\ell - i + 1}$

$$\rightsquigarrow price(e_i) \le \frac{c(S_j)}{\ell - i + 1} \rightsquigarrow y_{e_i} \le \frac{1}{H_n} \frac{c(S_j)}{\ell - i + 1}$$

Analysis of greedySetCover by dual fitting [2]

Proof (cont.):

Consider dual constraint for S_i :

$$\sum_{e \in S_j} y_e = \sum_{m=1}^{\ell} y_{e_{i_m}} \le \frac{c(S_j)}{H_n} \sum_{m=1}^{\ell} \frac{1}{m} = \frac{H_{\ell}}{H_n} c(S_j) \le c(S_j)$$

$$\rightsquigarrow$$
 $c(\mathcal{C}) \leq H_n \cdot OPT_{(D)} = H_n \cdot OPT_{(P)}.$

Also note: actually suffices to scale by H_{ℓ} for $\ell = \max |S_j|$.

Integrality Gap of Set Cover

Previous result shows that integrality gap $\frac{OPT}{OPT_{(P)}} \leq H_n$.

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)

For the set cover ILP and its relaxation holds

$$\frac{OPT}{OPT_{(P)}} \ge \frac{\log_2(n+1)}{2\frac{n}{n+1}} \sim \frac{1}{2\ln 2}H_n \approx 0.721H_n$$

11.7 The Primal-Dual Schema

Primal-Dual Schema

So far:

- ▶ ad hoc methods, a posteriori justified by LP arguments
- ▶ rounding algorithms, must solve primal LP to optimality (expensive!)

Can we use duality more directly?

CSC for set cover

Complementary Slackness Conditions for Set Cover

$$x_j = 0 \quad \forall \sum_{u \in S_j} y_u = c(S_j) \qquad \forall j \in [k]$$

 $y_u = 0 \quad \forall \sum_{j \in V(u)} x_j = 1 \qquad \forall u \in U$

Problem: In general only simultaneously fulfilled by fractional solutions Relax dual constraints to

$$y_u = 0 \ \lor \ \sum_{j \in V(u)} x_j \le f \qquad \forall u \in U$$

i. e., every element at most f times \leadsto trivially fulfilled.

Primal Dual Set Cover

```
1 procedure primalDualSetCover(n,S,c)
2   f = \text{global frequency}
3   x = 0, y = 0, T = [n]
4   while T \neq \emptyset
5   Choose u \in T arbitrary
6   Increase y_u until CSC holds for (at least) one more set S_j
7   for all S_j with \sum_{u \in S_j} y_u = c(S_j)
8   T = T \setminus S_j
9   x_j = 1
10  return \{j \in [k] : x_j = 1\}
```

Theorem 11.17

primalDualSetCover is an f-approximation for SetCover.

7