
2 Complexity Theory
Recap

22 April 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-04-22 08:17

Outline

2 Complexity Theory Recap
2.1 P and NP Informally
2.2 Models of Computation
2.3 The Classes P und NP
2.4 Nondeterminism = Verification
2.5 Karp-Reductions und NP-Completeness
2.6 Important NP-Complete Problems

2.1 P and NP Informally

Hard problems
▶ Some algorithmic problems are “hard nuts” to crack.

▶ e. g., the Traveling Salesperson Problem (TSP):
Given: 𝑛 cities 𝑆1 , . . . , 𝑆𝑛 ,

all 𝑛(𝑛 − 1) pairwise
distances 𝑑(𝑆𝑖 , 𝑆𝑗) ∈ ℕ (𝑖 ≠ 𝑗)

Goal: Shortest round trip through all cities

▶ no general

always exact, always correct

, efficient

polytime

algorithm known!
(despite decades of intensive research . . .)

1

Hard problems
▶ Some algorithmic problems are “hard nuts” to crack.

▶ e. g., the Traveling Salesperson Problem (TSP):
Given: 𝑛 cities 𝑆1 , . . . , 𝑆𝑛 ,

all 𝑛(𝑛 − 1) pairwise
distances 𝑑(𝑆𝑖 , 𝑆𝑗) ∈ ℕ (𝑖 ≠ 𝑗)

Goal: Shortest round trip through all cities

▶ no general

always exact, always correct

, efficient

polytime

algorithm known!
(despite decades of intensive research . . .)

⇝ It seems as if there is no efficient algorithm for TSP!

1

Hard problems
▶ Some algorithmic problems are “hard nuts” to crack.

▶ e. g., the Traveling Salesperson Problem (TSP):
Given: 𝑛 cities 𝑆1 , . . . , 𝑆𝑛 ,

all 𝑛(𝑛 − 1) pairwise
distances 𝑑(𝑆𝑖 , 𝑆𝑗) ∈ ℕ (𝑖 ≠ 𝑗)

Goal: Shortest round trip through all cities

▶ no general

always exact, always correct

, efficient

polytime

algorithm known!
(despite decades of intensive research . . .)

⇝ It seems as if there is no efficient algorithm for TSP!

▶ But: can we prove that?

▶ Despite similarly intensive research: No! (not yet)

Doesn’t sound like a shining example for theoretical computer science? . . . stay tuned!

1

United in incapacity

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

2

Complexity Theory
▶ Complexity theory allows us to compare the hardness of algorithmic problems.

𝐴: old problem
Consensus: hard

𝐵: new problem
Status: unknown

(seems hard for us . . .)

3

Complexity Theory
▶ Complexity theory allows us to compare the hardness of algorithmic problems.

𝐴: old problem
Consensus: hard

𝐵: new problem
Status: unknown

(seems hard for us . . .)

≤𝑝

Intuitive idea:
1. If 𝐴 is a known hard nut, and
2. 𝐵 is at least as hard as 𝐴,

then 𝐵 is a hard nut, too!

3

Complexity Theory
▶ Complexity theory allows us to compare the hardness of algorithmic problems.

𝐴: old problem
Consensus: hard

𝐵: new problem
Status: unknown

(seems hard for us . . .)

≤𝑝

Intuitive idea:
1. If 𝐴 is a known hard nut, and
2. 𝐵 is at least as hard as 𝐴,

then 𝐵 is a hard nut, too!

Formally:
1. 𝐴 is NP-hard: probably � eff.

efficient = polytime

alg. for 𝐴
2. 𝐴 ≤𝑝 𝐵: ∃ eff. alg. for 𝐵 =⇒ ∃ eff. alg. for 𝐴
⇝ 𝐵 is NP-hart: probably � eff. alg. for 𝐵!

3

P and NP – Intuitive Synopsis

P = NP?
4

P and NP – Intuitive Synopsis

P = NP?

▶ P = class of problems for which there is an algorithm 𝐴 and a polynomial 𝑝
such that 𝐴 solves every instance 𝐼 in time 𝑂(𝑝(| 𝐼|)).

▶ P for “polynomial” – i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

4

P and NP – Intuitive Synopsis

P = NP?

▶ P = class of problems for which there is an algorithm 𝐴 and a polynomial 𝑝
such that 𝐴 solves every instance 𝐼 in time 𝑂(𝑝(| 𝐼|)).

▶ P for “polynomial” – i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

▶ NP = class of problems for which there is an algorithmus 𝐴 and a polynomial 𝑝
such that 𝐴 can verify a given candidate solution 𝑙(𝐼) of a given instance 𝐼
in time 𝑂(𝑝(| 𝐼|)), i. e., check whether 𝑙(𝐼) solves 𝐼 or not.

▶ NP for “nondeterministically polynomial” – i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

▶ This is equivalent to the above characterization via verification.

4

P and NP – Intuitive Synopsis

P = NP?

▶ P = class of problems for which there is an algorithm 𝐴 and a polynomial 𝑝
such that 𝐴 solves every instance 𝐼 in time 𝑂(𝑝(| 𝐼|)).

▶ P for “polynomial” – i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

▶ NP = class of problems for which there is an algorithmus 𝐴 and a polynomial 𝑝
such that 𝐴 can verify a given candidate solution 𝑙(𝐼) of a given instance 𝐼
in time 𝑂(𝑝(| 𝐼|)), i. e., check whether 𝑙(𝐼) solves 𝐼 or not.

▶ NP for “nondeterministically polynomial” – i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

▶ This is equivalent to the above characterization via verification.

▶ We know P ⊆ NP. We think P ⊊ NP, i. e., P ≠ NP.
The question “P = NP?” is one of the famous millenium problems and arguably
the most important open problem of theoretical computer science.

4

2.2 Models of Computation

Clicker Question

� → sli.do/cs627

What is the cost of adding two (decimal) 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time

B logarithmic in 𝑑

C proportional to 𝑑

D quadratic in 𝑑

E no idea what you are talking about

Clicker Question

� → sli.do/cs627

What is the cost of adding two (decimal) 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time✓
B logarithmic in 𝑑

C proportional to 𝑑✓
D quadratic in 𝑑

E no idea what you are talking about✓

Mathematical Models of Computation
▶ complexity classes talk about sets of problems based upon whether they allow an

algorithm of a certain cost

▶ in general, this depends on the allowable algorithms and their costs!

⇝ need to fix a machine model

5

Mathematical Models of Computation
▶ complexity classes talk about sets of problems based upon whether they allow an

algorithm of a certain cost

▶ in general, this depends on the allowable algorithms and their costs!

⇝ need to fix a machine model

A machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

5

Random Access Machines
Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

6

Random Access Machines
Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

6

Random Access Machines
Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

▶ Instructions:
▶ load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ time cost: number of executed instructions
▶ space cost: total number of touched memory cells

6

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done:

7

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done: MEM[0..𝑁) sorted

8

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done: MEM[0..𝑁) sorted

8

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done: MEM[0..𝑁) sorted

8

Keep it Simple, Stupid
▶ word-RAM (rather) realistic, but complicated

▶ note that the machine has to grow with the inputs(!)

▶ for a coarse distinction of running time complexity, simpler models suffice
▶ useful to reason about “all algorithms”
▶ machine is fixed for all inputs sizes apart from storage for input

9

