'S627 (Summer 2025)
_Universiti

Complexity Theory
Recap

22 April 2025

Prof. Dr. Sebastian Wild

Outline

2 Complexity Theory Recap

2.1
2272
2.3
2.4
2.5
2.6

P and NP Informally

Models of Computation

The Classes P und NP

Nondeterminism = Verification
Karp-Reductions und NP-Completeness
Important NP-Complete Problems

2.1 P and NP Informally

Hard problems

» Some algorithmic problems are “hard nuts” to crack.

» e.g., the Traveling Salesperson Problem (TSIi):
Given: n cities Sq,...,S,, ‘Q N
all n(n — 1) pairwise XS :
distances d(S;,Sj) € N ()y i)
Goal: Shortest round trip through all cities l' 7

always exact, always correct polytime
» no general, efficient algorithm known
(despite decades of intensive research ...) [lakog

Zi.wwg
Sii'g,{ - Sy N fu/)

el e Fus, s ye A, sy

J

Hard problems

» Some algorithmic problems are “hard nuts” to crack.

» e.g., the Traveling Salesperson Problem (TSP):

Given: n cities S1,...,S;,

all n(n — 1) pairwise

distances d(S;,Sj) € N ()
Goal: Shortest round trip through all cities

always exact, always correct polytime

» no general, efficient algorithm known!

(despite decades of intensive research ...)

~+ It seems as if there is no efficient algorithm for TSP!

Hard problems

» Some algorithmic problems are “hard nuts” to crack.

» e.g., the Traveling Salesperson Problem (TSP):

Given: n cities S1,...,S;,

all n(n — 1) pairwise

distances d(S;,Sj) € N ()
Goal: Shortest round trip through all cities

always exact, always correct polytime

» no general, efficient algorithm known!

(despite decades of intensive research ...)

~+ It seems as if there is no efficient algorithm for TSP!

» But: can we prove that? ‘l

» Despite similarly intensive research: No! (not yet)

Doesn’t sound like a shining example for theoretical computer science? ... stay tuned!

United in incapacity

AL L D
5 0 o
I 7{% d%@

“I can’t find an efficient algorithm, but neither can all these famous people.”
Garey, Johnson 1979

Complexity Theory

» Complexity theory allows us to compare the hardness of algorithmic problems.

B: new problem
Status: unknown
(seems hard for us .. .)

A: old problem
Consensus: hard

Complexity Theory

» Complexity theory allows us to compare the hardness of algorithmic problems.

A: old problem
Consensus: hard

Intuitive idea:
1. If A is a known hard nut, and
2. [B is at least as hard as A,]

then B is a hard nut, too!

B: new problem
Status: unknown
(seems hard for us .. .)

Complexity Theory

» Complexity theory allows us to compare the hardness of algorithmic problems.

A: old problem
Consensus: hard

Intuitive idea:
1. If A is a known hard nut, and
2. [B is at least as hard as A,]

then B is a hard nut, too!

“edmea Ak B

B: new problem
Status: unknown
(seems hard for us .. .)

Formally: efficient/ = polytime
1. Ais NP-hard: probably 7 eff. alg. for A
2.] A <, Bf Jeff. alg. for B = Jeff. alg. for A
~~ B is NP-hart: probably A eff. alg. for B!

P and NP - Intuitive Synopsis

5

P and NP - Intuitive Synopsis

» [P = class of problems for which there is an algorithm A and a polynomial p
such that A solves every instance [in time O(p(|1])).

» P for “polynomial” —i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

P and NP - Intuitive Synopsis

» [P = class of problems for which there is an algorithm A and a polynomial p
such that A solves every instance [in time O(p(|1])).

» P for “polynomial” —i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

» | NP = class of problems for which there is an algorithmus A and a polynomial p
such that A can verify a given candidate solution /(I) of a given instance [
in time O(p(|1])), i. e., check whether /(I) solves I or not.

» NP for “nondeterministically polynomial” —i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

» This is equivalent to the above characterization via verification.

P and NP - Intuitive Synopsis

» | P = class of problems for which there is an algorithm A and a polynomial p
such that A solves every instance [in time O(p(|1])).

» P for “polynomial” —i. e., all problems where a solution can be found by a (deterministic)
algorithm in polynomial time.

» | NP = class of problems for which there is an algorithmus A and a polynomial p
such that A can verify a given candidate solution /(I) of a given instance [
in time O(p(|1|)), i.e., check whether I(I) solves I or not.

» NP for “nondeterministically polynomial” —i. e., all problems where a solution can be found
by a nondeterministic algorithm in polynomial time.

» This is equivalent to the above characterization via verification.

» | We know P € NP. We think P C NP, i.e., P # NP.

The question “P = NP?” is one of the famous millenium problems and arguably
the most important open problem of theoretical computer science.

2.2 Models of Computation

Clicker Question

Vs

What is the cost of adding two (decimal) d-digit integers?
(For example, for d = 5, what is 45235 + 91 342°?)

@ constant time
logarithmic in d
proportional to d

@ quadratic in d

@ no idea what you are talking about

D |~ sli.do/cs627

Clicker Question

-~
What is the cost of adding two (decimal) d-digit integers?

(For example, for d = 5, what is 45235 + 91 342°?)

@ constant time \/
proportional to d \/
@ no idea what you are talking about \/

D |~ sli.do/cs627 |

Mathematical Models of Computation

> complexity classes talk about sets of problems based upon whether they allow an
algorithm of a certain cost

» in general, this depends on the allowable algorithms and their costs!

~+ need to fix a machine model

Mathematical Models of Computation

> complexity classes talk about sets of problems based upon whether they allow an
algorithm of a certain cost

» in general, this depends on the allowable algorithms and their costs!

~+ need to fix a machine model

A machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[0], MEM[1], MEM[2], . . .
» fixed number of registers Ry, ..., R, (say 7 = 100)

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[0], MEM[1], MEM[2], . . .
» fixed number of registers Ry, ..., R, (say 7 = 100)
» memory cells MEM[i]| and registers R; store w-bit integers, i. e., numbers in [0..2 — 1]

w is the word width/size; typically ~ 2% xn

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[0], MEM[1], MEM[2], . . .
» fixed number of registers Ry, ..., R, (say 7 = 100)
» memory cells MEM[i]| and registers R; store w-bit integers, i. e., numbers in [0..2 — 1]

w is the word width/size; typically ~ 2% xn

» Instructions:
> load & store: R; := MEM[R;] MEM[R;] := R;
> operations on registers: Ry := R;j + R; (arithmetic is modulo 21)
also R; — Rj, Ri-Rj, R; div Rj, R; mod Rj
C—style operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

» time cost: number of executed instructions

> space cost: total number of touched memory cells

RAM-Program Example

Example RAM program

1 // Assume: Rq stores number N
2 // Assume: MEM[0..N) contains list of N numbers

3 Ry :

R3 :=

Ry

Rs :

ISV

IRy =23
MEM[R3];
Rz +1;
MEM[R5J;

if (R4 < Rg) goto line 11;
MEM[R3] := Rg;

10 MEM[R5] := Ry;

11 R3 = R3 —1;

12 if (R3 > 0) goto line 5;

13 Ry := Ry —1;

14 if (Ro > 0) goto line 4;

15 // Done:

4
5
6
7 Rg =
8
9

RAM-Program Example

Example RAM program

1 // Assume: Rq stores number N
2 // Assume: MEM[0..N) contains list of N numbers

3 Ry :

R3 :=

Ry

Rs :

ISV

IRy =23
MEM[R3];
Rz +1;
MEM[R5J;

if (R4 < Rg) goto line 11;
MEM[R3] := Rg;

10 MEM[R5] := Ry;

11 R3 = R3 —1;

12 if (R3 > 0) goto line 5;

13 Ry := Ry —1;

14 if (Ro > 0) goto line 4;

15 // Done: MEM[0..N) sorted

4
5
6
7 Rg =
8
9

RAM-Program Example

Example RAM program

1 // Assume: Rq stores number N
2 // Assume: MEM[0..N) contains list of N numbers
3 Ry := Ry;

4 R3 :=R;-2;

5 R4 := MEM[R3];

6 R5 := R3+1;

7 Rg := MEM[R5];

8 if (R4 < Rg) goto line 11;
9 MEM[R3] := Rg;

10 MEM[R5] := Ry;

11 R3 :=R3—-1;

12 if (R3 > 0) goto line 5;
13 Ry := Ry —1;

1 if (R2 > 0) goto line 4;

15 // Done: MEM[0..N) sorted

E Thetn
. 20 0{Co"""""'P""Kl‘lmm n

A Aigorittm

B

RAM-Program Example

Example RAM program

1 // Assume: Rq stores number N
2 // Assume: MEM[0..N) contains list of N numbe
Ry;

Ry -2;

MEM[R3];

Rz +1;

Rg := MEM[R5];

if (R4 < Rg) goto line 11;
MEM[R3] := Rg;

10 MEM[R5] := Ry;

11 R3 R3-1;

12 if (R3 > 0) goto line 5;

13 Ry := Ry —1;

1 if (R2 > 0) goto line 4;

15 // Done: MEM[0..N) sorted

522 SORTING BY EXCHANGING 107

Horizontal

e sorting from this standpoint; notice
five more elements are known to be in final position as
the final pass, no exchanges are performed at all. With th
are ready to formulate the algorithm.

observations we

Algorithm B (Bubble sort). Records Ry...., Ry
sorting is complete their keys will be in order, K;

ged in place; after

B1. [Initialize BOUND. | Set BOUND ¢« N. (BOUND is th
the record i
that noth

B2. [Loop on j

then go to step

highest index for which
1s we are indicating

1ot known to be in its final position

g is known at this point.)

0. Perform step B3 for j = 1,2, ..., BOUND — 1, and

If BOUND = 1, this means go directly to B4.)

B3. [Compare/exchange R,: R, ;1. If K, > K1, interchange R; ¢ R4, and
sett< j

B4. [Any exch
and return t

ges?] 1ft = 0, terminate the
step B2 1

rithm. Otherwise set BOUND ¢

B2. Loop on j

" j=BoUND
v |Yes

Fig. 15. Flow chart for bubt

e sorting.

e sort). As in previous MIX p f this chapter, we

arough INPUT+N

at the items to be sorted are in locations

N 1
BOUND(1:2) 1
1 1
0 1t 0
BOUND A Exit if j > BOUND.
INPUT, 2 C B3 Com xchange R;: R;.y
INPUT+1,2 c
oF € Noexchange if K; < K
INPUT+1,2 B
1 INPUT, 2 B
1 INPUT+1,2 B
12 0,2 B
13 1 ¢
y *,2 1+ Instruction modified]
15 38 A+C Dostep B3 for 1
16 1B A B4 Any exch To B2ift>0. 1|

Keep it Simple, Stupid
» word-RAM (rather) realistic, but complicated

» note that the machine has to grow with the inputs(!)

» for a coarse distinction of running time complexity, simpler models suffice

» useful to reason about “all algorithms”
» machine is fixed for all inputs sizes apart from storage for input

