

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-04-22 08:17

Outline

2 Complexity Theory Recap

- 2.1 P and NP Informally
- 2.2 Models of Computation
- 2.3 The Classes P und NP
- 2.4 Nondeterminism = Verification
- 2.5 Karp-Reductions und NP-Completeness
- 2.6 Important NP-Complete Problems

2.1 P and NP Informally

Hard problems

• Some algorithmic problems are **"hard nuts" to crack**.

 e.g., the Traveling Salesperson Problem (TSP): Given: n cities S₁,..., S_n, all n(n - 1) pairwise distances d(S_i, S_j) ∈ N (i ≠ j) Goal: Shortest round trip through all cities always exact, always correct polytime no general, efficient algorithm known! (despite decades of intensive research...) S_i ≤ S_i ≤ S_i ≤ S_i ≤ S_i ≤ S_i ≤ S_i = S_i

$$\operatorname{cost}) = \sum_{j=1}^{k-1} d(S_{i_j}, S_{i_{j+1}}) + d(S_{i_{m+1}}, S_{i_{j}})$$

Hard problems

• Some algorithmic problems are **"hard nuts" to crack**.

▶ e. g., the *Traveling Salesperson Problem (TSP):* Given: *n* cities $S_1, ..., S_n$, all n(n - 1) pairwise distances $d(S_i, S_j) \in \mathbb{N}$ $(i \neq j)$

Goal: Shortest round trip through all cities always exact, always correct polytime

 no general, efficient algorithm known! (despite decades of intensive research ...)

→ It *seems* as if there is no efficient algorithm for TSP!

Hard problems

• Some algorithmic problems are **"hard nuts" to crack**.

▶ e. g., the *Traveling Salesperson Problem (TSP):* Given: *n* cities $S_1, ..., S_n$, all n(n-1) pairwise distances $d(S_i, S_j) \in \mathbb{N}$ $(i \neq j)$

Goal: Shortest round trip through all cities always exact, always correct polytime

 no general, efficient algorithm known! (despite decades of intensive research...)

→ It *seems* as if there is no efficient algorithm for TSP!

But: can we *prove* that?

Despite similarly intensive research: No! (not yet)

United in incapacity

"I can't find an efficient algorithm, but neither can all these famous people." Garey, Johnson 1979

Complexity Theory

• *Complexity theory* allows us to *compare* the *hardness* of algorithmic problems.

A: old problem **Consensus: hard**

B: new problem **Status: unknown** (seems hard for *us* ...)

Complexity Theory

• *Complexity theory* allows us to *compare* the *hardness* of algorithmic problems.

A: old problem **Consensus: hard**

Intuitive idea:

- **1.** If *A* is a known hard nut, and
- **2.** B is at least as hard as A,

then *B* is a hard nut, too!

B: new problem **Status: unknown** (seems hard for *us*...)

Complexity Theory

• *Complexity theory* allows us to *compare* the *hardness* of algorithmic problems.

A: old problem **Consensus: hard**

"reduce A lo B

B: new problem **Status: unknown** (seems hard for *us* ...)

Intuitive idea:

- **1.** If *A* is a known hard nut, and
- **2.** B is at least as hard as A,

then *B* is a hard nut, too!

Formally:

efficient = polytime

- **1.** A is NP-hard: probably \nexists eff. alg. for A
- **2.** $\overbrace{A \leq_p B}$ \exists eff. alg. for $B \implies \exists$ eff. alg. for $A \implies B$ is NP-hart: probably \nexists eff. alg. for B!

- P = class of problems for which there is an algorithm A and a polynomial p such that A **solves** every instance I in time O(p(|I|)).
 - P for "polynomial" i. e., all problems where a solution can be *found* by a (deterministic) algorithm in polynomial time.

- P = class of problems for which there is an algorithm A and a polynomial p such that A**solves**every instance I in time <math>O(p(|I|)).
 - P for "polynomial" i. e., all problems where a solution can be *found* by a (deterministic) algorithm in polynomial time.
- NP = class of problems for which there is an algorithmus A and a polynomial p such that A can verify a given candidate solution l(I) of a given instance I in time O(p(|I|)), i. e., check whether l(I) solves I or not.
 - NP for "nondeterministically polynomial" i. e., all problems where a solution can be *found* by a *nondeterministic* algorithm in polynomial time.
 - ► This is equivalent to the above characterization via verification.

- P = class of problems for which there is an algorithm A and a polynomial p such that A **solves** every instance I in time O(p(|I|)).
 - P for "polynomial" i. e., all problems where a solution can be *found* by a (deterministic) algorithm in polynomial time.
- NP = class of problems for which there is an algorithmus A and a polynomial p such that A can verify a given candidate solution l(I) of a given instance I in time O(p(|I|)), i. e., check whether l(I) solves I or not.
 - NP for "nondeterministically polynomial" i. e., all problems where a solution can be *found* by a *nondeterministic* algorithm in polynomial time.
 - This is equivalent to the above characterization via verification.
- We know P ⊆ NP. We *think* P ⊊ NP, i. e., P ≠ NP.
 The question "P = NP?" is one of the famous millenium problems and arguably the most important open problem of theoretical computer science.

2.2 Models of Computation

Clicker Question

Clicker Question

Mathematical Models of Computation

- complexity classes talk about sets of problems based upon whether they allow an algorithm of a certain cost
- ▶ in general, this depends on the allowable algorithms and their costs!
- $\rightsquigarrow\,$ need to fix a machine model

Mathematical Models of Computation

- complexity classes talk about sets of problems based upon whether they allow an algorithm of a certain cost
- ▶ in general, this depends on the allowable algorithms and their costs!
- $\rightsquigarrow\,$ need to fix a machine model

A machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*
- **Goal:** Machine models should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM)

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of registers R_1, \ldots, R_r (say r = 100)

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM)

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of registers R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[*i*] and registers R_i store *w*-bit integers, i. e., numbers in $[0..2^w 1]$ *w* is the word width/size; typically $w \propto \lg n$ $\rightarrow 2^w \approx n$

Random Access Machines

Standard model for detailed complexity analysis:

Random access machine (RAM)

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of registers R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[*i*] and registers R_i store *w*-bit integers, i. e., numbers in $[0..2^w 1]$ *w* is the word width/size; typically $w \propto \lg n \rightarrow 2^w \approx n$

Instructions:

- load & store: $R_i := MEM[R_j] MEM[R_j] := R_i$
- ► operations on registers: $R_k := R_i + R_j$ (arithmetic is *modulo* 2^w!) also $R_i - R_j$, $R_i \cdot R_j$, $R_i \text{ div } R_j$, $R_i \text{ mod } R_j$ C-style operations (bitwise and/or/xor, left/right shift)
- conditional and unconditional jumps
- time cost: number of executed instructions
- space cost: total number of touched memory cells

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N numbers
- 3 R₂ := R₁;
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 $R_5 := R_3 + 1;$
- 7 $R_6 := MEM[R_5];$
- * **if** $(R_4 \le R_6)$ goto line 11;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 5;
- 13 *R*₂ := *R*₂ − 1;
- ¹⁴ **if** $(R_2 > 0)$ goto line 4;
- 15 // Done:

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N numbers
- 3 R₂ := R₁;
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 $R_5 := R_3 + 1;$
- 7 $R_6 := MEM[R_5];$
- * **if** $(R_4 \le R_6)$ goto line 11;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 5;
- 13 $R_2 := R_2 1;$
- ¹⁴ **if** $(R_2 > 0)$ goto line 4;
- 15 // Done: MEM[0..N) sorted

Example RAM program

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N number
- $3 R_2 := R_1;$
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 $R_5 := R_3 + 1;$
- 7 $R_6 := \text{MEM}[R_5];$
- s if $(R_4 \leq R_6)$ goto line 11;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 5;
- 13 R₂ := R₂ − 1;
- 14 **if** $(R_2 > 0)$ goto line 4;
- 15 // Done: MEM[0..N) sorted

5.2.2

they need not be examined on subsequent passes. Horizontal lines in Fig. 14 show the progress of the sorting from this standapoint; notice, for example, that five more elements are known to be in final position as a result of Pass 4. On the final pass, no exchanges are performed at all. With these observations we are ready to formulate the algorithm.

Algorithm B (Bubble sort). Records R_1, \ldots, R_N are rearranged in place; after sorting is complete their keys will be in order, $K_1 \leq \cdots \leq K_N$.

- B1. [Initialize BOUND.] Set BOUND ← N. (BOUND is the highest index for which the record is not known to be in its final position; thus we are indicating that nothing is known at this point.)
- **B2.** [Loop on j.] Set $t \leftarrow 0$. Perform step B3 for $j = 1, 2, \ldots$, BOUND 1, and then go to step B4. (If BOUND = 1, this means go directly to B4.)
- **B3.** [Compare/exchange $R_j: R_{j+1}$.] If $K_j > K_{j+1}$, interchange $R_j \leftrightarrow R_{j+1}$ and set $t \leftarrow j$.
- **B4.** [Any exchanges?] If t = 0, terminate the algorithm. Otherwise set BOUND $\leftarrow t$ and return to step B2.

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we assume that the items to be sorted are in locations INPUT+1 through INPUT+N, ril = t; ri2 = j.

01	START	ENT1	N	1	B1. Initialize BOUND. $t \leftarrow N$.
02	1H	ST1	BOUND(1:2)	A	BOUND $\leftarrow t$.
03		ENT2	1	A	B2. Loop on $j, j \leftarrow 1$.
04		ENT1	0	A	$t \leftarrow 0.$
05		JMP	BOUND	A	Exit if $j > BOUND$.
06	ЗH	LDA	INPUT,2	C	B3. Compare/exchange R _i : R _{i+1} .
07		CMPA	INPUT+1,2	C	
08		JLE	2F	C	No exchange if $K_i \leq K_{i+1}$.
09		LDX	INPUT+1.2	В	R _{i+1}
10		STX	INPUT,2	B	$\rightarrow R_i$.
11		STA	INPUT+1.2	В	$(\text{old } R_i) \rightarrow R_{i+1}$.
12		ENT1	0.2	В	$t \leftarrow i$
13	2H	INC2	1	C	$i \leftarrow i + 1$.
14	BOUND	ENTX	-*.2	A + C	$rX \leftarrow i - BOUND$. [Instruction modified
15		JXN	3B	A + C	Do step B3 for $1 \le j < BOUND$.
16	4H	J1P	1B	A	B4. Any exchanges? To B2 if $t > 0$.

Keep it Simple, Stupid

- word-RAM (rather) realistic, but complicated
 - note that the machine has to grow with the inputs(!)
- ▶ for a coarse distinction of running time complexity, simpler models suffice
 - useful to reason about "all algorithms"
 - machine is fixed for all inputs sizes apart from storage for input