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3.1 Integer Problems



Integer Problems

Definition 3.1 (Integer-Input Problem)

A problem U for which (part of the) input is a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary.)



Integer Problems

Definition 3.1 (Integer-Input Problem)

A problem U for which (part of the) input is a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary.)
Examples
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Clicker Question

How large can MaxInt(x) be as a function of n = |x|?
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Clicker Question
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Pseudopolynomial

o .onc 2 c i- jal (= 20(og" 1)
Definition 3.2 (Pseudopolynomial algorithm) # quasi-polynomial (= 220 1)

Let U be an integer-input problem and A an algorithm that solves U.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O(p(lxl,Maxlnt(x))),
/
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for every instance x to U.



Pseudopolynomial

Definition 3.2 (Pseudopolynomial algorithm) P IR S

Let U be an integer-input problem and A an algorithm that solves U.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O (p (le,Maxlnt(x))),

for every instance x to U.
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Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.

The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|).



Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.
The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|). <

Theorem 3.4 (Pseudopolynomial is polynomial for small )
Let U be an integer-input problem and A a pseudopolynomial algorithm for U.

Then for every polynomial / there is a polytime algorithm for Value(h)y;. <
Proof:
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Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.
The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|). <

Theorem 3.4 (Pseudopolynomial is polynomial for small h)

Let U be an integer-input problem and A a pseudopolynomial algorithm for U.
Then for every polynomial / there is a polytime algorithm for Value(h)y;. <

Proof:

Hence if U is a decision problem then Value(h);; € P,
if U is an optimization problem then Value(h);; € PO.



3.2 Knapsack



Knapsack (Optimization Version)

Definition 3.5 (Knapsack (Optimization Version)) et deim

Given: tuple (w1,...,wy; v1,...,0y; b) of 2n + 1 positive integers, n € N.

We call b the capacity of the knapsack, w; the weight and v; the value (profit) of the
i-th object, 1 < i < n.

Goal: The optimization problem KNAPSAcKk asks to find a subset T € {1,2,...,n} of items

with maximal total value cost(T) = ).t v; such that T fits into the knapsack, i.e.,
2ieT Wi < b.



Recap: The 6 Steps of Dynamic Programming

~ see Efficient Algorithms
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ~- local brute force
3. Set up DP recurrence (for quality of solution)
4. Recursive implementation with Memoization
5. Bottom-up table filling (topological sort of subproblem dependency graph)
6. Backtracing to reconstruct optimal solution
> Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time
~+ Correctness proof usually at level of DP recurrence

[ﬁ] running time too! worst case time = #subproblems - time to find single best guess



Dynamic Programming Solution

»> Subproblems: (1n’,b’): only items 1 < i < n’ and total weight b’
» Guess: whether to include item 7’
»> Recurrence: V[n’,b’] = max value in subproblem (1, b’)
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Pseudopolynomial Knapsack

Theorem 3.6 (DP for Knapsack is pseudopolynomial)
For every instance I to KNAPsACK we have
Timeppkp(I) = O(|I| - MaxInt(I) log(MaxInt(I))),

i.e., DPKP has pseudopolynomial time for KNAPSACK.
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Beyond Knapsack

» Similar trick works for some other NP-complete problems, e.g.,
PaRrTITION, MAKINGCHANGE

» for yet other NP-complete problems, e. g., TRAVELINGSALESMAN,
no such algorithms seems to exist . . .



Beyond Knapsack

» Similar trick works for some other NP-complete problems, e.g.,
PaRrTITION, MAKINGCHANGE

» for yet other NP-complete problems, e. g., TRAVELINGSALESMAN,
no such algorithms seems to exist . . .

... can we give evidence that likely no pseudopolynomial algorithm is possible?



3.3 Strong NP-hardness



Hardness

Definition 3.7 (strongly NP-hard)

An integer-input problem is called strongly NP-hard, if there exists a polynomial p such that
Value(p)yr is NP-hard.

So: strongly NP-hard ~» hard even for instances with “small” numbers.



Hardness

Definition 3.7 (strongly NP-hard)

An integer-input problem is called strongly NP-hard, if there exists a polynomial p such that
Value(p)yr is NP-hard. <

So: strongly NP-hard ~» hard even for instances with “small” numbers.

Theorem 3.8 (strongly NP-hard — no pseudopoly. algorithm)

Let P # NP and U a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for L. <
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Example

Theorem 3.9

TRAVELINGSALESMAN is strongly NP-hard.
Proof:
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It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)
An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard
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Theorem 3.10 (strongly hard iff unary hard)

An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard

For x € Value(p)a, unary encoding blows up |x| only by polynomial factor.
~» A encoded with unary numbers NP-hard.



It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)

An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard

For x € Value(p)a, unary encoding blows up |x| only by polynomial factor.
~» A encoded with unary numbers NP-hard.

Conversely, let A with unary numbers be NP-hard.
With unary encoding, MaxInt(x) < |x|, so Value(n — n), = A is NP-hard.
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Summary
[ﬁ) Pseudopolynomial algorithms can be practically efficient if numbers are (really) small

E@ Only applicable to few problems
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