'S627 (Summer 2025)
_Universiti

Pseudopolynomial
Algorithms

13 May 2025

Prof. Dr. Sebastian Wild

Outline

3 Pseudopolynomial Algorithms

3.1 Integer Problems
3.2 Knapsack
3.3 Strong NP-hardness

3.1 Integer Problems

Integer Problems

Definition 3.1 (Integer-Input Problem)

A problem U for which (part of the) input is a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary.)

Integer Problems

Definition 3.1 (Integer-Input Problem)

A problem U for which (part of the) input is a sequence of integers is called an integer-input
problem.

For any instance x of an integer-input problem, we write MaxInt(x) for the largest integer
occurring in the input encoding.

(As before, integers are encoded in binary.)
Examples
» TRAVELINGSALESMAN Moxlok = CQacgat dishawec
» SUBSETSUM
» BINPACKING
» ILP

» KNAPSACK

Clicker Question

How large can MaxInt(x) be as a function of n = |x|?

(A) o () o) () 200
O(logn) @ O(nlogn) @ 0(22”)
(o) O(n) @ 0(2") @ unbounded

~ p,

D ‘ - sli.do/cs627

Clicker Question

4 How large can MaxInt(x) be as a function of n = |x|? - &'WL\
®ony @omy (@6
O(ogn) v~ (E) o) " (H) ey
o om) (F) oy (1] wnbounded
- Y,

D |~ sli.do/cs627

Pseudopolynomial

o .onc 2 c i- jal (= 20(og" 1)
Definition 3.2 (Pseudopolynomial algorithm) # quasi-polynomial (= 220 1)

Let U be an integer-input problem and A an algorithm that solves U.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O(p(lxl,Maxlnt(x))),
/
coctd ba @

e

for every instance x to U.

Pseudopolynomial

Definition 3.2 (Pseudopolynomial algorithm) P IR S

Let U be an integer-input problem and A an algorithm that solves U.
A has pseudopolynomial time for U, if there is a polynomial p in two variables with

Timea(x) = O (p (le,Maxlnt(x))),

for every instance x to U.

w= (=l

w

Note: If MaxInt(x) < h(|x|) for a polynomial /, then Helodle) =

p (x|, MaxInt(x)) < g(|x|) for a polynomial g. plnc) £ ln)

plu, Mosleb) & (au®) o 5%

Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.

The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|).

Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.
The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|). <

Theorem 3.4 (Pseudopolynomial is polynomial for small)
Let U be an integer-input problem and A a pseudopolynomial algorithm for U.

Then for every polynomial / there is a polytime algorithm for Value(h)y;. <
Proof:
A [Aq; usicg Ko O/P()Y\. MO*’MNXX\\ welwl

for ne Va.LM.(Lf)U e Mar]u}(x) < Ll = C)(‘,\<> go: Cmujl‘w,g <

= A wads O@ln, 06Y) — O6Y) o conshut d

Pseudopolynomial Languages
Definition 3.3 (Value-Bounded Subproblem)

Let U be an integer-input problem and let & : N — N be weakly increasing.
The h-bounded subproblem of U (notation Value(h)) is the problem which results from U by
allowing only inputs x with MaxInt(x) < h(]x|). <

Theorem 3.4 (Pseudopolynomial is polynomial for small h)

Let U be an integer-input problem and A a pseudopolynomial algorithm for U.
Then for every polynomial / there is a polytime algorithm for Value(h)y;. <

Proof:

Hence if U is a decision problem then Value(h);; € P,
if U is an optimization problem then Value(h);; € PO.

3.2 Knapsack

Knapsack (Optimization Version)

Definition 3.5 (Knapsack (Optimization Version)) et deim

Given: tuple (w1,...,wy; v1,...,0y; b) of 2n + 1 positive integers, n € N.

We call b the capacity of the knapsack, w; the weight and v; the value (profit) of the
i-th object, 1 < i < n.

Goal: The optimization problem KNAPSAcKk asks to find a subset T € {1,2,...,n} of items

with maximal total value cost(T) =).t v; such that T fits into the knapsack, i.e.,
2ieT Wi < b.

Recap: The 6 Steps of Dynamic Programming

~ see Efficient Algorithms
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ~- local brute force
3. Set up DP recurrence (for quality of solution)
4. Recursive implementation with Memoization
5. Bottom-up table filling (topological sort of subproblem dependency graph)
6. Backtracing to reconstruct optimal solution
> Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time
~+ Correctness proof usually at level of DP recurrence

[ﬁ] running time too! worst case time = #subproblems - time to find single best guess

Dynamic Programming Solution

»> Subproblems: (1n’,b’): only items 1 < i < n’ and total weight b’
» Guess: whether to include item 7’
»> Recurrence: V[n’,b’] = max value in subproblem (1, b’)
o wl=0
Vb = Vin-t 6] N2l A W s b
mase § Vw1 ,67],

Vo t+ \/f\nvf l ¢ Byfwh/]

amiwe s V[ab)

cnm(NLt Vaae? " O (ﬂoj(qu{u#(»{“}

‘

‘(“\Avm‘uj \"\\M s
ﬁ’miv'b - b = O[[\ - qu[m4(xﬂ

Pseudopolynomial Knapsack

Theorem 3.6 (DP for Knapsack is pseudopolynomial)
For every instance I to KNAPsACK we have
Timeppkp(I) = O(|I| - MaxInt(I) log(MaxInt(I))),

i.e., DPKP has pseudopolynomial time for KNAPSACK.

(‘Nmth/ ! b vwds & be sl ; \

o

car Ga Layg)

Beyond Knapsack

» Similar trick works for some other NP-complete problems, e.g.,
PaRrTITION, MAKINGCHANGE

» for yet other NP-complete problems, e. g., TRAVELINGSALESMAN,
no such algorithms seems to exist . . .

Beyond Knapsack

» Similar trick works for some other NP-complete problems, e.g.,
PaRrTITION, MAKINGCHANGE

» for yet other NP-complete problems, e. g., TRAVELINGSALESMAN,
no such algorithms seems to exist . . .

... can we give evidence that likely no pseudopolynomial algorithm is possible?

3.3 Strong NP-hardness

Hardness

Definition 3.7 (strongly NP-hard)

An integer-input problem is called strongly NP-hard, if there exists a polynomial p such that
Value(p)yr is NP-hard.

So: strongly NP-hard ~» hard even for instances with “small” numbers.

Hardness

Definition 3.7 (strongly NP-hard)

An integer-input problem is called strongly NP-hard, if there exists a polynomial p such that
Value(p)yr is NP-hard. <

So: strongly NP-hard ~» hard even for instances with “small” numbers.

Theorem 3.8 (strongly NP-hard — no pseudopoly. algorithm)

Let P # NP and U a strongly NP-hard (integer-input) problem.
Then there exists no algorithm with pseudopolynomial time for L. <

Proof: () ey NP-ked = 3o Vokal), AP-lod
Asioee A Pmo&upo(‘y ods. for U
5 A e e b OC(n, Maclidg))) me Valel),
2 ol
= OCuS) cansl e
= Valwlp), e P = P=pMP 4 . = A commet aiad, u

Example

Theorem 3.9

TRAVELINGSALESMAN is strongly NP-hard.
Proof:

Show Hamitronvian Creri <

=p

Valwe (2) .,

10

It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)
An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard

It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)

An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard

For x € Value(p)a, unary encoding blows up |x| only by polynomial factor.
~» A encoded with unary numbers NP-hard.

It’s all about the encoding

Theorem 3.10 (strongly hard iff unary hard)

An integer-input problem is strongly NP-hard if, and only if, representing its instances with
unary encoding for integers remains NP-hard.

Proof:
A strongly NP-hard ~» 3 polynomial p s.t. Value(p)a NP-hard

For x € Value(p)a, unary encoding blows up |x| only by polynomial factor.
~» A encoded with unary numbers NP-hard.

Conversely, let A with unary numbers be NP-hard.
With unary encoding, MaxInt(x) < |x|, so Value(n — n), = A is NP-hard.

11

Summary
[ﬁ) Pseudopolynomial algorithms can be practically efficient if numbers are (really) small

E@ Only applicable to few problems

12

