'S627 (Summer 2025)
_Universiti

Fixed-Parameter
Algorithms

14 May 2025

Prof. Dr. Sebastian Wild



Outline

4 Fixed-Parameter Algorithms

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Fixed-Parameter Tractability

Depth-Bounded Exhaustive Search I

Problem Kernels

Depth-Bounded Search II: Planar Independent Set
Depth-Bounded Search III: Closest String

Linear Recurrences & Better Vertex Cover

Interleaving



Philosophy of FPT

»> Goal: Principled theory for studying complexity based on two dimensions:
input size n = |x| (encoding length) and some additional parameter k

» generalize ideas from k = MaxInt(x)

> investigate influence of k (and 7) on running time



Philosophy of FPT

»> Goal: Principled theory for studying complexity based on two dimensions:
input size n = |x| (encoding length) and some additional parameter k

» generalize ideas from k = MaxInt(x)
> investigate influence of k (and 7) on running time
~+ Try to find a parameter k such that

(1) the problem can be solved efficiently as long as k is small, and
(2) practical instances have small values of k (even where 1 gets big).



Motivation: Satisfiability

Consider Satisfiability of CNF formula the drosophila melanogaster of complexity theory

» general worst case: NP-complete
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Motivation: Satisfiability

Consider Satisfiability of CNF formula the drosophila melanogaster of complexity theory

» general worst case: NP-complete

> k = #literals per clause
> k<2 ~ inP
» k > 3 NP-complete

» [ = #variables
> 02k . n) time possible (try all assignments)

> k = #clauses?
> k = #literals?
> k = #ones in satisfying assignment

» k = structural property of formula

> for Max-SAT, k = #optimal clauses to satisfy



Parameters

Definition 4.1 (Parameterization)
Let ¥ a (finite) alphabet. A parameterization (of £*) is a mapping « : ©* — N that is polytime
computable. <

Definition 4.2 (Parameterized problem)

A parameterized (decision) problem is a pair (L, k) of a language L C =* and a parameterization
x of I*. <

Definition 4.3 (Canonical Parameterizations)
We can often specify a parameterized problem conveniently as a language of pairs L € * x N
with

(x,k)eL A (x,k)eL — k=k

using the canonical parameterization x(x, k) = k. |



Examples

As before: Typically leave encoding implicit.

Definition 4.4 (p-variables-SAT)

Given: formula boolean ¢ (same as before)

Parameter: number of variables

Question: Is there a satisfying assignment v : [n] — {0,1} ?
Definition 4.5 (p-Clique)

Given: graph G = (V,E)and k e N

Parameter: k

Question: AV cV : |V/| >k A Yu,ve V' :{u,v} €E?



Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)
Let U = (X;,X0,L,L;, M, cost, goal) be an optimization problem.

Then p-U denotes the (canonically) parameterized (decision) problem given by the threshold
problem Lang;.

Recall: Lang, is the set of pairs (x, k) of all instances x € L; that have solutions that are
weakly “better” than k.



Canonical Parameterization

Definition 4.6 (Canonically Parameterized Optimization Problems)

Let U = (X;,X0,L,L;, M, cost, goal) be an optimization problem.

Then p-U denotes the (canonically) parameterized (decision) problem given by the threshold
problem Lang;.

Recall: Lang, is the set of pairs (x, k) of all instances x € L; that have solutions that are
weakly “better” than k.

Examples:

»> p-CLIQUE

» p-VERTEX-COVER

»> p-GRAPH-COLORING
> ..

Naming convention for other parameters:
p-clause-CNF-SAT: CNF-SAT with parameter “number of clauses”



4.1 Fixed-Parameter Tractability



Exemplary Running Times of Parameterized Problems

» p-variables-SAT (consider simplest brute-force methods for problems)
» [k variables, n length of formula

~ 02k - 1) running time
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» p-variables-SAT (consider simplest brute-force methods for problems)
» [k variables, n length of formula

~ 02k - 1) running time

» p-CLIQUE
> k threshold (clique size); 1 vertices, m edges in graph
~ (Z) candidates to check, each takes time O(k?) to check
~~ Total time O(nk - k2)

» p-VERTEXCOVER
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Exemplary Running Times of Parameterized Problems

» p-variables-SAT (consider simplest brute-force methods for problems)
» [k variables, n length of formula k= O(%os m} - faO/ ..
~ O(Zk 1) running time
7 > p CLIQUE B 555
> k threshold (clique size); 1 vertices, m edges in graph k= 0C) ~o oy e,

~ (”) candidates to check, each takes time O(k?) to check
~ Total time O( k. k2)

» p-VERTEXCOVER
» k threshold (VC size); n vertices, m edges in graph
~ (Z) candidates to check, each takes time O(m) to check
~~ Total time O(n¥ - 1)

n

» p-GraPHCOLORING k=l ~ polyraial

» k threshold (#colors); 1 vertices, m edges in graph Lol AP-leard
~ k™ candidates to check, each takes time O(m) » -

~ Total time O(k" - m)



FPT Running Time

Definition 4.7 (fpt-algorithm)
Let k be a parameterization for X*.
A (deterministic) algorithm A (with input alphabet ) is a fixed-parameter tractable algorithm

(fpt-algorithm) w.r.t. « if its running time on x € X* with «x(x) = k is at most
ouly dgrd oo efpeewsal
e FE R = O(F()-1xl°)

where p is a polynomial of degree c and f is an arbitrary computable function.



FPT Running Time

Definition 4.7 (fpt-algorithm)

Let k be a parameterization for X*.

A (deterministic) algorithm A (with input alphabet ) is a fixed-parameter tractable algorithm
(fpt-algorithm) w.r.t. « if its running time on x € X* with «x(x) = k is at most

fk)-pllxl) = O(f(k)-1x|)

where p is a polynomial of degree c and f is an arbitrary computable function.

Definition 4.8 (FPT)

A parameterized problem (L, k) is fixed-parameter tractable if there is an fpt-algorithm that
decides it.
The complexity class of all such problems is denoted by FPT.

Intuitively, FPT plays the role of P.



A First FPT Example

Theorem 4.9 (p-variables-SAT is FPT)
p-variables-SAT € FPT.



A First FPT Example

Theorem 4.9 (p-variables-SAT is FPT)
p-variables-SAT € FPT.

Proof:
Sulffices to use brute force satisfiability for p-variables-SAT

1 procedure bruteForceSat(p, X = {x1,...,xr})

2 if k==

3 if ¢ == true return () else UNSATISFIABLE
4 for value in {true, false} do

5 A = {x1 — value}

6 Y := @|x1/value] // Substitute value for x|
7 B := bruteForceSat(y), {x2, ..., xi})

8 if B # UNSATISFIABLE

9 return AU B

.. but #variables not usually small
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Worst case running time: O@ n) forn = |¢|.
2k recursive calls;
base case needs time O(|¢|) to check whether formula evaluates to true




A First FPT Example

Theorem 4.9 (p-variables-SAT is FPT)
p-variables-SAT € FPT.

Proof:
Sulffices to use brute force satisfiability for p-variables-SAT

1 procedure bruteForceSat(p, X = {x1,...,xr})

2 ifk==0

3 if ¢ == true return () else UNSATISFIABLE
4 for value in {true, false} do

5 A = {x1 — value}

6 Y := @|x1/value] // Substitute value for x|
7 B := bruteForceSat(y), {x2, ..., xi})

8 if B # UNSATISFIABLE

9 return AU B

Worst case running time: 02" n) for n = |g].
2k recursive calls;
base case needs time O(|¢|) to check whether formula evaluates to true

... but #variables not usually small



Aren’t we all FPT?

Theorem 4.10 (k never decreases — FPT)
Let ¢ : N — N weakly increasing, unbounded and computable, and « a parameterization
with
Vx € 2% x(x) > g(|x|)-
Then (L, x) € FPT for any decidable L. 3{“\122:’5 Qo5 Ix]
r)e)m"
g weakly increasing: n <m — g(n) < g(m)
gunbounded: Vt3n : g(n)>t
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Aren’t we all FPT? — Proof

Proof (cont.):
(1\ 6 Lu&chgY lwev, g. U«Ssu-—@hé ) I/\ LAJG_Q—Q" dﬂﬁw&
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Back to “sensible” parameters

~ always check if parameter is reasonable (can be expected to be small)

» if not, FPT might not even mean in NP!

11



Back to “sensible” parameters

~ always check if parameter is reasonable (can be expected to be small)

» if not, FPT might not even mean in NP!

> but now, for some positive examples!

11



4.2 Depth-Bounded Exhaustive Search I



FPT Design Pattern

» The simplest FPT algorithms use exhaustive search

» but with a search tree bounded by f (k)

12



FPT Design Pattern

» The simplest FPT algorithms use exhaustive search

» but with a search tree bounded by f (k)

> bruteforceSat was a typical example!

» does this work on other problems?

12



Depth-Bounded Search for Vertex Cover

le <
Let’s try p-VERTEXCOVER. bk foree () ¢ () = Oln" o) o Lol wowicg i
Key insight: for every edge {v, w}, any vertex cover must contain v or w

13



Depth-Bounded Search for Vertex Cover

Let’s try p-VERTEXCOVER.
Key insight: for every edge {v, w}, any vertex cover must contain v or w

1 procedure simpleFptVertexCover(G = (V, E), k):

2 if E == () then return ()

3 if k == 0 then return NOT_POSSIBLE //truncate search

4 Choose {v, w} € E (arbitrarily)

5 for u in {v, w} do:

6 Gy == (V \{u}, E\ {{u, x} € E}) //Remove u from G
7 Cy := simpleFptVertexCover(G,, k — 1)

8 if C, == NOT_POSSIBLE then return C,, U {w}

9 if Cyy == NOT_POSSIBLE then return C, U {v}

10 if |Cy| < |Cy| then return C, U {v} else return C,, U {w}




Depth-Bounded Search for Vertex Cover

Let’s try p-VERTEXCOVER.
Key insight: for every edge {v, w}, any vertex cover must contain v or w

1
2
]
4
5
6
7
8
9

10

procedure simpleFptVertexCover(G = (V, E), k):

if E == () then return ()

if k == 0 then return NOT_POSSIBLE //truncate search

Choose {v, w} € E (arbitrarily)

for u in {v, w} do:
Gy == (V \{u}, E\ {{u, x} € E}) //Remove u from G
Cy := simpleFptVertexCover(G,, k — 1)

if C, == NOT_POSSIBLE then return C,, U {w}

if C, == NOT_POSSIBLE then return C, U {v}

if |Cy| < |Cy| then return C, U {v} else return C,, U {w}

» Does not need explicit checks of solution candidates!

> runs in time O@n +m)) ~ fpt-algorithm for p-VERTEX-COVER ¢ ¥ PT

13



Guessing the parameter

»> Note: Previous algorithm only uses k to truncate branches.

~» We can guess a k and it still works

14



Guessing the parameter

»> Note: Previous algorithm only uses k to truncate branches.

~» We can guess a k and it still works

~ Try all k!

1 procedure vertexCoverBfs(G = (V, E))

2 fork :=0,1,...,|V| do

3 C := simpleFptVertexCover(G, k)
4 if C # NOT_POSSIBLE return C

14



Guessing the parameter

»> Note: Previous algorithm only uses k to truncate branches.
~+ We can guess a k and it still works

~ Try all k!

1 procedure vertexCoverBfs(G = (V, E))

2 fork :=0,1,...,|V| do

3 C := simpleFptVertexCover(G, k)
4 if C # NOT_POSSIBLE return C

k
» Running time: Z 0" (n +m)) = 0Q%(n +m))
k’=0

~ For exponentially growing cost, trying all values up to k costs only constant factor more

14



4.3 Problem Kernels



Preprocessing

» Second key fpt technique are reduction rules

> Idea: Reduce the size of the instance (in polytime)
without changing its outcome

15
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» Trivial example for SAT:

If a CNF formula contains a single-literal clause {x} resp. {—x},
set x to true resp. false and remove the clause.

> doesn’t do anything in the worst case ... .
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» special case of resolution calculus rule
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Preprocessing

» Second key fpt technique are reduction rules

> Idea: Reduce the size of the instance (in polytime)
without changing its outcome

» Trivial example for SAT:

If a CNF formula contains a single-literal clause {x} resp. {—x},
set x to true resp. false and remove the clause.

> doesn’t do anything in the worst case ... .
agVayV---Vx, byVbyV---V-x
ayVayV---VbyVbyV---

» special case of resolution calculus rule

» basis of practical SAT solvers

» Trivial example for VERTEXCOVER

[Remove vertices of degree 0 or 1.] (never needed as part of optimal VC)

» Here: reduction rules that provably shrink an instance to size g(k)

15



Buss’s Reduction Rule for VC

» Given a p-VERTEXCOVER instance (G, k)

“deg > k” Rule: If G contains vertex v of degree deg(v) > k,
include v in potential solution and remove it from the graph.

» Can apply this simultaneously to degree > k vertices.

» Either rule applies, or all vertices bounded degree(!)

16



Kernels

Definition 4.11 (Kernelization)
Let (L, k) be a parameterized problem. A function K : ©* — X* is kernelization of L w.r.t. « if
it maps any x € L to an instance x” = K(x) with k" = x(x’) so that

1. (self-reduction) x € L & x' €L

2. (polytime) K is computable in polytime.

3. (kernel-size) |x’| < g(k) for some computable function g

We call x” the (problem) kernel of x and g the size of the problem kernel.

17



Buss’s Kernel

Buss’s Reduction for Vertex Cover: (repeatedly apply until no more changes)
»> deg > k rule

» Remove degree 0 and 1 vertices

Theorem 4.12 (Buss’s Reduction is Kernelization)
Buss’ reduction yields a kernelization for p-VERTEX-COVER with kernel size O(k?).

18
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Buss’s Reduction for Vertex Cover: (repeatedly apply until no more changes)

»> deg > k rule

» Remove degree 0 and 1 vertices

Theorem 4.12 (Buss’s Reduction is Kernelization)
Buss’ reduction yields a kernelization for p-VERTEX-COVER with kernel size O(k?).

Proof:

After repeatedly applying Buss’s rule as well as the isolated /leaf rule until neither applies
further, we have Vv € V : 2 < deg(v) < k.

(Note that the rule might reduce the parameter k).
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In the resulting graph, any VC of size < k covers < k> edges.

If m > k2, we output a trivial No-instance (e. g., a Ki+1 a complete graph on k + 1 vertices).



Buss’s Kernel

Buss’s Reduction for Vertex Cover: (repeatedly apply until no more changes)

»> deg > k rule

» Remove degree 0 and 1 vertices

Theorem 4.12 (Buss’s Reduction is Kernelization)
Buss’ reduction yields a kernelization for p-VERTEX-COVER with kernel size O(k?).

Proof:

After repeatedly applying Buss’s rule as well as the isolated/leaf rule until neither applies
further, we have Vv € V : 2 < deg(v) < k.

(Note that the rule might reduce the parameter k).

In the resulting graph, any VC of size < k covers < k? edges.

If m > k2, we output a trivial No-instance (e. g., a Ki+1 a complete graph on k + 1 vertices).
If m < k?, then the input size is now bounded by g(k) = 2k>.

18



FPT iff Kernelization

Theorem 4.13 (FPT & kernel)

A computable, parameterized problem (L, ) is fixed-parameter tractable if and only if there
is a kernelization for L w.r.t. x.

Proof:
6" hevwelizalien W for (L %) givens

L las decder A o( O ey b T () (w.gmi» w&qu ‘"vff‘f‘dflﬁ)
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Il < gl

(2) we A e X
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Yegu,
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FPT iff Kernelization [2]

Proof (cont.):

‘= Gree fpbodsoitbn A for (Lix) Lol ke € () 0S
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R AVE . Mo -
- o&-\w\rw:i-n\ V\Q*! £ \.(CLA V\C =5 v £ QU;)

=5) a\xtﬂwé erw‘_s?\q,_a \'ufauz
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Max-SAT Kernel

ks # Qaso b salaby

Theorem 4.14 (Kernel for Max-SAT)
p-Max-SAT has a problem kernel of size O(k?) which can be constructed in linear time

Proof:
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S e
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Max-SAT Kernel [2]

Proof (cont.):
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Max-SAT Kernel [3]
s A sl kLl - R

Proof (cont.): =
A e clomse cobatns a e Q.“on( ~ k-7

co.:L
o A ey Lo kel vanally
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Corollary 4.15
p-Max-SAT € FPT
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4.4 Depth-Bounded Search II: Planar Independent
Set



Deeper results (towards more shallow trees)

» Our previous examples of depth-bounded search were basically brute force

»> Here we will see two more examples that exploit the problem structure in more
interesting ways

24



Independent Set on Planar Graphs

Parameter: k
Question: V' cV : |V/|>k A Yu,ve V' :{u,v}¢E?

FQQMW ,BCQPL G

2.

9 W%ecl&hj (Péa(QMM&} a& w(n‘a; (e I

cuACL . AJQWQU‘S QC QJSQA L,.A'H/\eu( CVDSXJ(,js

e wotd san @

Reeadl: general problem p-INDEPENDENT-SET is W([1]-hard. \
Definition 4.16 (p-PLANAR-INDEPENDENT-SET) /

Given: a planar graph G = (V,E) and k € N O/@
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Independent Set on Planar Graphs
Recall: general problem p-INDEPENDENT-SET is W[1]-hard.

Definition 4.16 (p-PLANAR-INDEPENDENT-SET)

Given: a planar graph G = (V,E) and k € N
Parameter: k
Question: V' cV : |V/|>k A Yu,ve V' :{u,v}¢E?

Theorem 4.17 (Depth-Bounded Search for Planar Independent Set)

p-PLANAR-INDEPENDENT-SET is in FPT and can be solved in time O (67).

25



Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler’s formula) [““5
In any finite, connected planar graph G with n nodes, m edges, f holds n—m+f=2.

7-3+%
@r@uQ IICLLQ ) [“CLALMOI,‘ oy '\p
‘)[Qu:
6 r: 1L = G ic a \vee ~ ‘)
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=D n =4 | O&' R1
TS “add a o Lface

ks VC++

e
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Elementary Knowledge on Planar Graphs

Theorem 4.18 (Euler’s formula)
In any finite, connected planar graph G with n nodes, m edges f holds n —m + f = 2.

Corollary 4.19

A simple planar graph G on 7 > 3 nodes has m < 3n — 6 edges.
The average degree in G is < 6.
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Depth-Bounded Search for Planar Independent Set

1
2
&
4
5
6
7
8
9

10

procedure planarIndependentSet(G = (V, E), k):

if k == 0 then return ()
if k > |V| then return NOT_POSSIBLE // truncate search
Choose v € V with minimal degree; let wy, ..., w, be v's neighbors
// By planarity, we know d < 5.
foruin {v,wq,...,w;} do
D := {u} UN(u)}— Wby ¢ @ «“ @u: G[\/\D}
Gy == (V\D,E\{{x,y} € E: x € D}) // Delete u and its neighbors
I, := {u} U planarIndependentSet(G,, k — 1)
return largest I;, or NOT_POSSIBLE if none exists

S é MCU"S‘/U“C (QMS

w.Q, L enm L u»\L\‘-Z CYDO
gl( recurdee  cady T &QFQ,Q

eacl lalc 6(VL+MA'§ = @(M)

= Yoled e OCCE W)

N

O O corl a
4 e ML
oMy MmN e vt
7S by s

Tmil? 5 CL{

(f&: o a{ v wrsllor,
[l %‘L& LLJL (qui \/j
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Summary Planar Independent Set

> Note: INDEPENDENTSET is NP-hard on planar graphs even with vertex degrees at most 3
» planarIndependentSet will often be faster than O(6"1)

» works unchanged in O((d + 1)) time for any degeneracy-d graph

every (induced) subgraph has vertex of degree at most d

28



4.5 Depth-Bounded Search III: Closest String



Closest String

Definition 4.20 (p-CLOSEST-STRING)

Given: S set of m strings sq, s,

..., sy of length L over alphabet X and a k € N.
Parameter: k

Question: Is there a string s for which dp (s, s;) < k holds foralli =1,...,m?

W dy =4
|

\
 wircaldad pmsthons
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Dirty Columns

Definition 4.21 (Dirty Column)

A column of the m X L matrix corresponding to m strings of length L is called dirty if it
contains at least 2 different symbols.
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Dirty Columns

Definition 4.21 (Dirty Column)

A column of the m X L matrix corresponding to m strings of length L is called dirty if it
contains at least 2 different symbols.

Lemma 4.22 (Many Dirty Columns — No)

Let an instance to CLOSEST-STRING with 1 strings of length L and parameter k be given.

If the corresponding m X L matrix contains more than m - k dirty columns, then no solution
for the given instance exists.

{C Use IAQ\'*L = VV‘{,( dfr‘y CDQS g(
S

no mm'u‘-( L»’Lﬂ\k S £

oL S- veu bawe = lee | MA:TMAQK(AKJ

¢
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Depth-Bounded Search for Closest String

procedure closestStringFpt(s, d):

1
2 if d < 0 then return NOT POSSIBLE
3 if dpy(s,s;) > k+d forani € {1,...,m} then
4 return NOT_POSSIBLE \l ek sl
5 if dy(s,s;) < kforalli =1,...,m then return s
6 Choose i € {1, ..., m} arbitrarily with dg (s, s;) > k
7 P:={p:slpl # silpl}
8 Choose arbitrary P’ C P with |[P’| = k + 1
9 for p in P’ do L 1
W s'i=s Sga_rgL s()mcz (k#(‘) =3 O(ﬁ( >
1 s'[p] = si[p]
12 Spet := closestStringFpt(s’, d — 1) A A
1 if 5,01 # NOT_POSSIBLE then return s, (loet) bit) g 1
14 return NOT POSSIBLE Qo —— = L(r) = (\ 7’()
- 06 [([( b
» initial call closestStringFpt(s1, k) - e
T aan = O(t)

. T\™
lim (1 + —) ="
n—o0 n

1+ <e<(1+2

+1
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Too Much Dirt

Lemma 4.23 (Pair Too Different —» No)

LetS = {s1,52,...,5nu} asetof strings and k € N. If thereare 7, j € {1,...,m} with
dy(si,sj) > 2k, then there is no string s with maxi<j<u dy(s, si) < k.

|
S.[ a < G < 3 TQ/’_’?
—T ¢ ¢ < T 5 k]
N s 5 5 s ¢/
f—/_o\/’_? Y b N /E/Q_/)7 S L\QX &LLMCJL

2 kel bo il oo or g,

Cl[_{ s a U\MLV\'Q o clg(*(,y') > O / ¥
- A“ (K\X\:O xo‘\\gl

“ “

o A iy Viera = dylx2) < c{;_‘(k,yh';/u(ya)
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Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)
There is a search tree of size O (k") for problem p-CLOSEST-STRING.
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Depth-Bounded Search for Closest String

Theorem 4.24 (Search Tree for Closest String)

There is a search tree of size O(k¥) for problem p-CLOSEST-STRING.

Corollary 4.25 (Closest String is FPT)

p-CLOSEST-STRING can be solved in time O (mL + mk - k¥).
{ e
> preprocessing (O(mL) time) moybe com gal devel k&
» ignore any clean columns
» reject if more than mk dirty columns

~ effective string length after preprocessing is L” < mk
> call closestStringFpt(s1, k)
» maintain dy (s, s;) in an array
~+ checking any distance dy (s, s;) takes O(1) time
» before and after recursive call, update array to reflect dp(s’, s;)

Single character changed, so update only needs to check single position
~» Can maintain distances in O () time per recursive call

» P’ can be computed in O(mk) time
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4.6 Linear Recurrences & Better Vertex Cover



A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2 for VERTEX-COVER.
Can we do better?

34



A Better Algorithm for Vertex Cover

Recall: Branching on endpoints of k edges gives search space of size 2 for VERTEX-COVER.

Can we do better?

Idea: Enlarge base case with “easy inputs”

Here: Consider graphs G with deg(v) < 2 forallv € V(G).
& O
0o B oo K
o
& & é@ °
>

= ollecwnn  dig(V) @ 1001 kel k2. )
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Depth-Bounded Search for Vertex Cover

1 procedure betterFptVertexCover(G = (V, E), k):

2 if E = () then return (

3 if k = 0 then return NOT POSSIBLE //truncate search <

4 if all node have degree < 2 then

5 Find connected components of G

6 for each component G; do ®/ @

7 Fill C; by picking every other node,

8 starting with the neighbor of a degree-one node if one exists

9 C=JCs

10 if |C| < k then return C else return NOT POSSIBLE

11 Choose v with maximal degree, let wy, ..., w, be its neighbors //d > 3

12 For D in {{v},{w1,...,w,}} do:

13 Gp := (V\D,E\{{x,y} € E: x € D}) //Remove D from G

14 Cp = D U betterFptVertexCover(G,, k —|D|) recuose  @w Covmo ) - I
15 return smallest Cpp or NOT POSSIBLE if none exists b %
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Depth-Bounded Search for Vertex Cover

1 procedure betterFptVertexCover(G = (V, E), k):
2 if E = () then return (

3 if k = 0 then return NOT POSSIBLE //truncate search
4 if all node have degree < 2 then

5 Find connected components of G
6

7

8
9

for each component G; do
Fill C; by picking every other node,
starting with the neighbor of a degree-one node if one exists

C=JCs
10 if |C| < k then return C else return NOT POSSIBLE
11 Choose v with maximal degree, let wy, ..., w, be its neighbors //d > 3
12 For D in {{v},{w1,...,w,}} do:
13 Gp := (V\D,E\{{x,y} € E: x € D}) //Remove D from G
14 Cp = D U betterFptVertexCover(G,, k —|D|)
15 return smallest Cpp or NOT POSSIBLE if none exists

How to analyze running time of betterFptVertexCover?
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Analysis of betterFptVertexCover
worst case running time
» never have all degrees < 2
» always need both recursive calls (until base case)
» ignore that graph gets smaller

eusle,  Cstwple TphVorker Coves)
T = ©(1) previously  Comple FolVerkr
T = O(V] + |E|) + T3 + Tic—1 T.- &

(r %

“ s

—Tk = Q'Tk'x u e(k&u‘)
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Analysis of betterFptVertexCover
worst case running time

» never have all degrees < 2

» always need both recursive calls (until base case)

» ignore that graph gets smaller

@<

Ol ( Y

5g“§f

S

To = ©(1)

T = O(V] + |E|) + T3 + Tic—1 T = Olus) - Hron-bese cases
= O(uéw’\ (&ibape corey — (7

If we only number of base cases B, we obtain T, = O(B,n?) .

Bp=1, B1=1, Bb=1
By = Bx—3 + Bx-1 (k> 3)

# ven-Haie coss

B, = 6(54¢ f‘)

13

calll s

oC—

<o -

VS
o))

< Hbase caicy

(@)
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Solving Linear Recurrences

= nggk oréfmm\/ ng’i‘nm 891/\&\’*0:4
k=0 oi saqiuemaz (Bﬂha

2" = T - a= ol 4,44,
: I 5 hem
Taylor’s series: ) ]
fz% B(=z) = B, f<-r>:f<~)+<.r—a>f'<~)+("'%')_f”mw---:zwf%).
(%) . : =0
_ B approxivmabe £ by polyontel
=@ f( )7 g;:r x ofosa o o
( l, O\Q‘V o =0 B/r( w
PRIV ¢ 7 ’ o]
T ’ Blzy = BlS) + 2 B(0) 4 2° —
FDL{\I\UAA‘UAF Lm L/uzv "
3 BN
+ 2 + -
oo o i
k . _ g5(e)
Wey = L Bz =432 +1.2 42" - ZTZ
k2o L o .
+ 72 B oe
kz3 o
gt By
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k%3

& e
= 4d4+2 ¢ ZZ ‘ Zg&'zz + ZBL;.\E
k=2

3 k-2 !
= — = + 2 Z@LEZ + 2 ?:gkd%

k=3 k=3
3! " — 0 &k . s b, 0,
= - T 42 jigkz Lo+ 2 Z 8L<? < (B[% ’*Bezof; B2 ‘G“?>
i ko k22 W
: B ©
Rlz) = 412 ¢2° & 2 BR + 28(3) — 25— 2
~ 41 2°BR)+ 28()
1
e _ Bla\= =5
B@(i Ay 1 2 N



(> = 5 _

s dog® -2
mbk\ u% Zoc2. 2,
A

2- 24

A/Zb ~A/2.=

= A _— + e — (B_Q_O mt:i“\
Z¥'2§_ 2*?, Z*zz o éiJLv"uc{‘)

Input interpretation

roots 1-2° -2

1-2%2 = (2-2) (?/Zl\(?—?J

Results

z ~ 0.68233

= [.LESS
~ -0.34116 - 1.16154i O®6328
~ -0.34116 + 1.16154
1 &
_ 2.2 | 3.3 1 ... _ i
- =1+cr+c'z®+c’z’ + —;CT/«, !
= - Z
g A A a
] A
E=De . EN

T g
) - g(;>/ = (‘;/2) @/{ZB B S




Solving Linear Recurrences — Result

Theorem 4.26 (Linear Recurrences)
Letdy,...,d; € Nand d = maxd,;.
The solution to the homogeneous linear recurrence equation

Tn = Tn—fﬁ + T;l—dz +e 4+ T;i—d,'r (” > d)

is always given by
pe—1

T, = Z Z Cejzy nl

¢ j=0

where we sum over all roots z; of multiplicity 1, of the so-called characteristic polynomial
ol _ pd=di _ yd—dy | _ d—d;

The d coefficients ¢, ; are determined by the d initial values Ty, T, . .., Tj-1.

Corollary 4.27

T, = O(zgnd) for zo the root of the characteristic polynomial with largest absolute value.
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Analysis of betterFptVertexCover [2]

To = ©(1)
T = O(|V| + |E|) + Tx—3 + Ti—1

If we only number of base cases B, we obtain T, = O(B,, n?)

Bp=1, B1=1, Bb=1
By = Bx_3 + Bi_1 (k> 3)
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Analysis of betterFptVertexCover [2]

To = ©(1)
T = O(|V| + |E|) + Tx—3 + Ti—1

If we only number of base cases B, we obtain T, = O(B,, n?)

Bp=1, B1=1, Bb=1
By = Bx_3 + Bi_1 (k> 3)

~ d= (1,3); characteristic polynomial z> — z% — 1
roots at zg & 1.4656 and z1 » ~ —0.2328 + 0.7926i
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Analysis of betterFptVertexCover [2]

To = ©(1)

T = O(| V] + |E|) + Ti—3 + Ti—1

If we only number of base cases B, we obtain T,, = O(B,n?)
Bo=1, Bi=1, By=1

By = By_3 + Bx_1 (k> 3)

~ d = (1,3); characteristic polynomial z3 — z2 — 1
roots at zg & 1.4656 and z1 » ~ —0.2328 + 0.7926i

Theorem 4.28 (Depth-Bounded Search for Vertex Cover)

p-VERTEX-COVER can be solved in time O(1.4656"12).
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4.7 Interleaving



Motivation

Up to now, considered two-phase algorithms
1. Reduction to problem kernel

2. Solve kernel by depth-bounded exhaustive search

Idea: Apply kernelization in each recursive step.

40



(Extreme) Example: Vertex Cover with large-degree rule

> As a (slightly artificial) example, consider only using the simple reduction rule

“deg > k” Rule: If G contains vertex v of degree deg(v) > k,
include v in potential solution and remove it from the graph.

> Algorithm A:

1. Apply deg > k rule until saturation (oudy s b))

2. Call simpleFptVertexCover (recursively branch over arbitrary edge)
> Algorithm B: Same, interleaved:

» Modified simpleFptVertexCover

» Before choosing each new edge
to branch on, apply deg > k rule.
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SimpleFptVertexCover Interleaved

1 procedure simpleFptVertexCover(G = (V, E), k):
2 if E == () then return ()

3 if k == 0 then return NOT_POSSIBLE

4 // nothing

5 // new

6 // on

7 // this

8 // side

9 Choose {v, w} € E (arbitrarily)

10 for u in {v, w} do:

1 Gy = G[V \ {u}]

12 Cy = simpleFptVertexCover(G,, k — 1)

13 if C;, == NOT_POSSIBLE then return C,, U {w}
14 if C;, == NOT_POSSIBLE then return C, U {v}
15 if |Cy| < |Cy| then

16 return C, U {v}
17 else
18 return C, U {w}

1
2
e
4
G}
6
7
8
9

10
11

procedure simplelnterleavedVC(G = (V, E), k):

if E == () then return ()
if k == 0 then return NOT_POSSIBLE
C:=0
while Jv € V : deg(v) > k
G := G[V \ {v}] // Remove v
C := CU{v}
k:=k-1
Choose {v, w} € E (arbitrarily)
for u in {v, w} do:
Gy = G[V \ {u}]
Cy = C UsimplelnterleavedVC(G,, k — 1)
if C, == NOT_POSSIBLE then return C,, U {w}
if Cy, == NOT_POSSIBLE then return C, U {v}
if |Cy| < |Cy| then
return C, U {0}
else
return C, U {w}
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Comparison on Lollipop Flowers s
P L‘
¢ -
Consider family of graphs G “Lollipop Flowers”:
“head” vertex with k — 2 stars of k — 2 leaves each attached + “tail” of 3k + 1 vertex path

k=7
Qw VA ON ‘{‘\w k:?

o W

leoa & l@@
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Comparison on Lollipop Flowers

Consider family of graphs G “Lollipop Flowers”:
“head” vertex with k — 2 stars of k — 2 leaves each attached + “tail” of 3k + 1 vertex path

n=|VG)| = (k=2)(k=1)+1 + 3k+1 = k2 +4 PN

i \o < o k-2
Algorithm A Algorithm B
deg > k rule does nothing initially same (no reduction)
search space remains 2" after 2 edges removed from tail, parameter k —2
Answer No after exploring all branches vertices in head have degree k — 1

Output No (parameter 0, but tail edges left)
~  time ©(2Kk?) ~  time ©(k?)



Setting for Interleaving

Can we prove a general speedup?
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Setting for Interleaving

Can we prove a general speedup?

Assumptions: (more restrictive than general kernelization!)
» K kernelization that
» produces kernel of size < q(k) for q a polynomial
» in time < p(n) for p a polynomial

» Branch in depth-bounded search tree (133

» into i subproblems with branching vector d= (dy,...,d;)
(i. e., parameter in subproblems k — dy, ..., k —d;)
» Branching is computed in time < r(n) for r a polynomial

~~ search space has size O(a").
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Setting for Interleaving

Can we prove a general speedup?

Assumptions: (more restrictive than general kernelization!)
» K kernelization that
» produces kernel of size < q(k) for q a polynomial
» in time < p(n) for p a polynomial
» Branch in depth-bounded search tree

» into i subproblems with branching vector d= (dy,...,d;)
(i. e., parameter in subproblems k — dy, ..., k —d;)
» Branching is computed in time < r(n) for r a polynomial

~~ search space has size O(a").

~+ Running time of two-phase approach on input x with n = |x| and k = x(x):
Yool oo Geguduies

O(p(\n) + rf(q\(k)) -ak)

(el
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With Interleaving

Generic interleaving:

K s c‘u\rrm{ ererMLLV

1 if [I| > ¢ - g(k) then

2 (I, k) := (I’, k") where (I’, k”) forms a problem kernel // Conditional Reduction
3 end

4 replace (I, k) with (I1, k — dy), (Io, k — da), ..., (I;, k — d;) // Branching

~~ Running time of interleaved approach on input x with n = |x| and k = x(x) is at most Tj:

T[ = T(_d1 +~--+T[_d,. a4 p(q(l))) +7‘(q(l]))

Compare to non-interleaved version:

T[ = Tp_d] AFoo0 qF T(_d,. ar 7(q(k))

Here the inhomogeneous term is constant w.r.t. £, but depends on k
~+ cannot ignore constant factors
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Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > k rule added.

» Initial call has unbounded 7 and m; after applying degree 0,1, > k rules (in O(n + m)
time) size of graph 1 + m = O(k?)
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Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > k rule added.

» Initial call has unbounded 7 and m; after applying degree 0,1, > k rules (in O(n + m)
time) size of graph 1 + m = O(k?)

> interleaving ~+ graph also bounded recursively (in terms of new k)
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Analysis of interleaved betterFptVertexCover [1]

Consider betterFptVertexCover from before, but with deg > k rule added.

» Initial call has unbounded 7 and m; after applying degree 0,1, > k rules (in O(n + m)
time) size of graph 1 + m = O(k?)

> interleaving ~+ graph also bounded recursively (in terms of new k)

» Recursive worst-case time after first reduction:
o = ©(1)
Tk = O(kz) + Tk73 + kal
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Inhomogenous Linear Recurrences

(Tk>l('l~c ~’ 6?
Tr= 20 T, vl TRV~ D _To2% = dsz-2
k7o
» (T,

k2%

T2

k

= 2(’?(2’% ) et T(2)

flk R d2

ko

k- =& _t I:E
Zu 2 =<(l-2) -(n = b | 4,

k7l
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Inhomogenous Linear Recurrences Summary

Theorem 4.29 (Linear Recurrences II)
Letdy,...,d; € Nand d = maxd;.
Consider the inhomogeneous linear recurrence equation

’1—;1 = Tl’l—dl + T;l—dz tee+ T;'I—dl' + fnl (7’1 > d)

with (fu)ner., @ known sequence of positive numbers, satisfying f,, = O(n°)
and 4 initial values Ty, ..., T;_1 € R..

Let z( be the root with largest absolute value of z/ — Z;Zl 2979 and assume £Z=DH7Z-FT")
for some fixed ¢ > 0.
Then T,, = O(T) where T_ is defined as T,, with f, = 0.
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A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations
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A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations

Sequence Land Generating Function Land
» number sequence (4, )n>0 — » (ordinary) generating function A(z) = Z ayz"
n>0
» recurrence equation — » (functional) equation for A(z)

| solve, simplify (e. g., partial fractions)
~ closed form for A(z)

» closed form for a, — > exact coefficients [z"|A(z)
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A Little Excursion: Singularity Analysis

General strategy: use generating functions for asymptotic approximations

Sequence Land Generating Function Land
» number sequence (4, )n>0 — » (ordinary) generating function A(z) = Z ayz"
n>0
» recurrence equation — » (functional) equation for A(z)

| solve, simplify (e. g., partial fractions)
~ closed form for A(z)
» closed form for a, — > exact coefficients [z"|A(z)

OR approximate A(z)
near its dominant singularity

» asymptotic approximation e singular expansion at z = zg
ay = 27" (1 £ 0m™) T A@R) = f(z) £ O((1-z2/20)%)  esz.
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O-Transfer

Theorem 4.30 (Transfer-Theorem of Singularity Analysis)
Assume f(z) is A-analytic and admits the singular expansion

fz) = g(z) £ O(1-2)%) (z—1)
with « € R. Then

[z"]1f(z) = [2"]g(z) + O(n*")  (n— o).
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Possible Extensions

>

>

(constant) coefficients c; - T;,—g ; in recurrence
~ different characteristic polynomial, same ideas

any recurrence that leads to a representation of the generating function as a singular
expansion around the dominant singularity.

fl2) = c-z/z2)™ = O((1-z/20)™*")  (z— 20)

~ [2"] f(z) = ﬁza”n’”_l . (1 EE O(n_l)) (n — o)
other powers a in 1/(1 — z)*:
; 1 ~ Zanna—l . —a ¢ NO
Fla—zr = T (1= 00)  mow 20> 0

much more! ~» analytic combinatorics

51



Analysis of interleaved betterFptVertexCover [2]

> T = 0(1)
Tk = O(k?) + Tk—3 + Tx—1

~ Ti = 0(1.46565) (same characteristic polynomial)

» Total time: O(1.4656 + n + m)
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Analysis of interleaved betterFptVertexCover [2]

> T, = 01)
Tk = O(k?) + Tk—3 + Tx—1

~ Ti = 0(1.46565) (same characteristic polynomial)

» Total time: O(1.4656 + n + m)

» The current record is O(1.2738% + kn) time
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Summary

> Strategies for fpt algorithms

» Use parameter to bound depth of exhaustive search

» Use problem specific reduction rules to shrink input ~» kernel(ization)s

> analysis of exact exponential searches often reduces to linear recurrences

» generating functions!
» more clever branching reduces exponent of search space

> interleaving kernelization and exhaustive search improves polynomial parts
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