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How to prove ¢ FPT?

» For some problems, no algorithm seems to achieve fpt running time
> example: p-CLIQUE

~» maybe no fpt algorithm can exist for p-CLIQUE!

» Problem: Certainly exists in case P = NP

~~ strongest lower bound we can hope for will have to be conditional on P # NP

» Typical complexity-theory results:
No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.
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FPT Reductions
Goal: Compare relative hardness of parameterized problems
~> Need a notion of reductions on parameterized problems

> to preserve (non)existence of fpt algorithms, need to keep small k

Definition 5.1 (Parameterized Reduction)

Let (L1, x1) and (Lp, k2) be two parameterized problems (over alphabets X1 resp. Xp).

An fpt-reduction (fpt many-one reduction) from (L1, k1) to (L2, k2) is a mapping A : & — L% so
that for all x € X}

1. (equivalence) x € L1 &= A(x) € Lo,
2. (fpt) A is computable by an fpt-algorithm (w.r.t. to x1), and

3. (parameter-preserving) 12 (A(x)) < g(x1(x)) for a computable function g : N — N.

We then write (L1, k1) <g (L2, k2). does et dipnd =)



Not all reductions are fpt

Many reductions from classical complexity theory are not parameter preserving.
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INDEPENDENTSET

Given: graph G = (V,E) and k € N

Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E
» We know: INDEPENDENTSET <), VERTEXCOVER:

» SetG'=Gand k' =|V(G)| -k

(Complement of an indep. set must be a vertex cover, and vice versa!)
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Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V,E) and k € N

Question: V' c V : |V | <k A Y{u,0}€E: (ueV'Voe V)

INDEPENDENTSET
Given: graph G = (V,E) and k € N
Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E

» We know: INDEPENDENTSET <), VERTEXCOVER:

» SetG'=Gand k' =|V(G)| -k

(Complement of an indep. set must be a vertex cover, and vice versa!)

»> = p-INDEPENDENTSET <p p-VERTEXCOVER

» Indeed, we know VERTEXCOVER € FPT, but INDEPENDENTSET probably isn't.

» But: p-INDEPENDENTSET <g p-CLIQUE (and p-CLIQUE <g; p-INDEPENDENTSET)

> SetG’ = (V,(5) \E)and K’ = k

(Independent set iff clique in complement graph)
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Parameterized NP: Non-deterministic NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm.

Some nice properties:

1. para-NP is closed under fpt-reductions.
2. FPT =para-NP <= P =NP
3. an analogue for kernalization in FPT holds for para-NP
Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)
(L, x) is para-NP-hard if (L', k") <g (L, k) for all (L', k") € para-NP.



Hello hardness, my old friend

Theorem 5.4 (para-NP-complete — NP-complete for finite parameter)

Let (L, k) be a nontrivial (0 # L # £*) parameterized problem that is para-NP-complete.
Then L.y = {x € L : x(x) < d} is NP-hard.

The converse is essentially also true (using a generalization of kernelizations).

Proof: [l (L) FQM_NP-¢¢wPﬁJ~c
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para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!
For each of the following

» p-CLIQUE,
» p-INDEPENDENTSET
» p-DOMINATINGSET
bounding k by a constant d makes polytime algorithm possible.
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para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!
For each of the following

» p-CLIQUE,
» p-INDEPENDENTSET
» p-DOMINATINGSET
bounding k by a constant d makes polytime algorithm possible.
~+ L<g cannot be NP-complete for each of these
> but we rather expect them ¢ FPT

~> para-NP theory does not settle complexity status



5.3 Bounded Nondeterminism: W[P]



Bye bye, TM

para-NP is too large a class to have interesting complete problems
~> We must weaken the class. Unfortunately, TM inconvenient here.
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Bye bye, TM

para-NP is too large a class to have interesting complete problems
~> We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), k-restricted)

An NRAM M is a word-RAM with w = O(log 1) with the additional operation to
nondeterministically guess a number between 0 and a current register content.

An NRAM M that decides a parameterized problem (L, k) is k-testricted if on input x € X*
with n = |x| and k = x(x)

1.
2
St
4.

MEM

L A

it performs at most f (k) - p(n) steps, (feb meres k) 2 T

at most g(k) of them nondeterministic, veacder R_ . R.

wanssor y I
uses at most f(k) - p(n) registers, and

those never contain numbers larger than f (k) - p(n). w= O (logen - fw)

for computable functions f and g, and a polynomial p
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WIP]
Definition 5.6 (W[P])

The class W[P] is the set of all parameterized problems (L, x) decidable by a k-restricted
NRAM.
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A first W[P]-complete problem?

Define hardness and completeness for W[P| using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)
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A first W[P]-complete problem?

Define hardness and completeness for W[P| using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

» What can be guessed using k numbers in [7]?

~ A subset of variables of size k!



Weighted SAT

Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula ¢ and integer k € N

Parameter: k

Recall: weight = #true variables

Question: 3 satisfying assignment with weight = k ?
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Weighted SAT
Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula ¢ and integer k € N
Recall: weight = #true variables
Parameter: k

Question: 3 satisfying assignment with weight = k ?

Theorem 5.8 (p-WSAT(CIRC) is W[P]-complete)

The weighted satisfiability problem for boolean circuits parameterized by the weight is
W[P]-complete.

Proof (Rough Idea): Gool] - “harlab”  amy ae-ceskricled NRAM
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5.4 Tail-nondeterministic NRAM



Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.
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Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A «-restricted NRAM M for a problem (L, x) is called tail-nondeterministic if all
nondeterministic steps occur only among the last /(x(x)) steps.
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Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A «-restricted NRAM M for a problem (L, x) is called tail-nondeterministic if all
nondeterministic steps occur only among the last /(x(x)) steps.

Definition 5.10 (W[1])
The class W[1] consists of all parameterized decision problems (L, k) that are decided by a
tail-nondeterministic x-restricted NRAM.

As before, define hardness and completeness for W[1] w.r.t. <.

11



Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and k € N be given.
Parameter: k

Question: Does M accepts x after at most k computation steps?

12



Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and k € N be given.
Parameter: k

Question: Does M accepts x after at most k computation steps?

> M is part of input, so state space and tape alphabet are not fixed!
~ up to n different non-deterministic choices in each step. (n is size of encoding of M)

~~ Trivial algorithm has to simulate up to n**! steps of M.

» Equivalent here to halting problem for x = ¢, since we can hard-wire the given input
into the states of a TM M’ constructed from M.

12



WI[1]-completeness
Theorem 5.12 (k-step halting problem W[1]-complete)
The k-step Halting Problem (for single-tape TM) parameterized by k is W[1]-complete.
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More natural problems? SEAT NP -cowptd
2SAT e P

Definition 5.13 (p-WSAT(2CNF))

Given: Boolean formula ¢ in 2-CNF and integer k € N

Parameter: k

Question: I satisfying assignment with weight = k ?

Theorem 5.14
p-WSAT(2CNF) is W[1]-complete. Prool  setbied

Theorem 5.15
p-WSAT(2CNEF") is W[1]-complete. (7[ v¥z ) A (=1v ;L\ A

p-WSAT(2CNF ") means: all literals negated.
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p-Independent-Set is W[1]-complete

Theorem 5.16

p-INDEPENDENTSET is W([1]-complete. = Lded
i
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Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V,E), target size t € N, threshold k € N
Parameter: k

Questions: 3C C V : |C| = k A C covers at least ¢ edges?
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Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V,E), target size t € N, threshold k € N

Parameter: k

Questions: 3C C V : |C| = k A C covers at least ¢ edges? <

Theorem 5.18
p-PARTIALVERTEXCOVER is W[1]-hard. <

Proof:
We show p-INDEPENDENTSET <t p-PARTIALVERTEXCOVER

Given gl & =CUE) Lk

&' (v e Vie Voo U {0 s imdo IVdglf
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Partial Vertex Cover [2]

Proof (continued):

17



