'S627 (Summer 2025)
_Universiti

Parameterized
Hardness

27 May 2025

Prof. Dr. Sebastian Wild

Outline

5 Parameterized Hardness

5.1 Parameterized Reductions

5.2 Nondeterministic FPT: Para-NP
5.3 Bounded Nondeterminism: W[P]
5.4 Tail-nondeterministic NRAM

How to prove ¢ FPT?

» For some problems, no algorithm seems to achieve fpt running time

How to prove ¢ FPT?
» For some problems, no algorithm seems to achieve fpt running time
> example: p-CLIQUE

~» maybe no fpt algorithm can exist for p-CLIQUE!

How to prove ¢ FPT?
» For some problems, no algorithm seems to achieve fpt running time
> example: p-CLIQUE

~» maybe no fpt algorithm can exist for p-CLIQUE!

» Problem: Certainly exists in case P = NP

~~ strongest lower bound we can hope for will have to be conditional on P # NP

How to prove ¢ FPT?

» For some problems, no algorithm seems to achieve fpt running time
> example: p-CLIQUE

~» maybe no fpt algorithm can exist for p-CLIQUE!

» Problem: Certainly exists in case P = NP

~~ strongest lower bound we can hope for will have to be conditional on P # NP

» Typical complexity-theory results:
No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.

5.1 Parameterized Reductions

FPT Reductions

Goal: Compare relative hardness of parameterized problems
~> Need a notion of reductions on parameterized problems

> to preserve (non)existence of fpt algorithms, need to keep small k

FPT Reductions
Goal: Compare relative hardness of parameterized problems
~> Need a notion of reductions on parameterized problems

> to preserve (non)existence of fpt algorithms, need to keep small k

Definition 5.1 (Parameterized Reduction)

Let (L1, x1) and (Lp, k2) be two parameterized problems (over alphabets X1 resp. Xp).

An fpt-reduction (fpt many-one reduction) from (L1, k1) to (L2, k2) is a mapping A : & — L% so
that for all x € X}

1. (equivalence) x € L1 &= A(x) € Lo,
2. (fpt) A is computable by an fpt-algorithm (w.r.t. to x1), and

3. (parameter-preserving) 12 (A(x)) < g(x1(x)) for a computable function g : N — N.

We then write (L1, k1) <g (L2, k2). does et dipnd =)

Not all reductions are fpt

Many reductions from classical complexity theory are not parameter preserving.

o
Recall: K N@(
VERTEXCOVER @ °
Given: graph G = (V,E) and k € N

Question: V' c V : |V | <k A Y{u,0}€E: (ueV'Voe V)

[>o
INDEPENDENTSET
Given: graph G = (V,E) and k € N

Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V,E) and k € N

Question: V' c V : |V | <k A Y{u,0}€E: (ueV'Voe V)

INDEPENDENTSET

Given: graph G = (V,E) and k € N

Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E
» We know: INDEPENDENTSET <), VERTEXCOVER:

» SetG'=Gand k' =|V(G)| -k

(Complement of an indep. set must be a vertex cover, and vice versa!)

k=S K'=1-5 =4 wok paawehe

pmw\uj

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V,E) and k € N

Question: V' c V : |V | <k A Y{u,0}€E: (ueV'Voe V)

INDEPENDENTSET

Given: graph G = (V,E) and k € N

Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E
» We know: INDEPENDENTSET <), VERTEXCOVER:

> Set G’ =Gand k' = |V(G)| - k

(Complement of an indep. set must be a vertex cover, and vice versa!)

»> = p-INDEPENDENTSET <p p-VERTEXCOVER

» Indeed, we know VERTEXCOVER € FPT, but INDEPENDENTSET probably isn't.

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V,E) and k € N

Question: V' c V : |V | <k A Y{u,0}€E: (ueV'Voe V)

INDEPENDENTSET
Given: graph G = (V,E) and k € N
Question: V' cV : |V/| >k A Yu,ve V' :{u,v} ¢E

» We know: INDEPENDENTSET <), VERTEXCOVER:

» SetG'=Gand k' =|V(G)| -k

(Complement of an indep. set must be a vertex cover, and vice versa!)

»> = p-INDEPENDENTSET <p p-VERTEXCOVER

» Indeed, we know VERTEXCOVER € FPT, but INDEPENDENTSET probably isn't.

» But: p-INDEPENDENTSET <g p-CLIQUE (and p-CLIQUE <g; p-INDEPENDENTSET)

> SetG’ = (V,(5) \E)and K’ = k

(Independent set iff clique in complement graph)

5.2 Nondeterministic FPT: Para-NP

Parameterized NP: Non-deterministic NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Parameterized NP: Non-deterministic NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)
The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm.

(

L0 w

acn

Parameterized NP: Non-deterministic NP

Good, so we have reductions.
If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm.

Some nice properties:
< = NP
1. para-NP is closed under fpt-reductions. Agpn-MP o By A= Bapeet
2. FPT =para-NP <= P =NP

3. an analogue for kernalization in FPT holds for para-NP

Parameterized NP: Non-deterministic NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm.

Some nice properties:

1. para-NP is closed under fpt-reductions.
2. FPT =para-NP <= P =NP
3. an analogue for kernalization in FPT holds for para-NP
Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)
(L, x) is para-NP-hard if (L', k") <g (L, k) for all (L', k") € para-NP.

Hello hardness, my old friend

Theorem 5.4 (para-NP-complete — NP-complete for finite parameter)

Let (L, k) be a nontrivial (0 # L # £*) parameterized problem that is para-NP-complete.
Then L.y = {x € L : x(x) < d} is NP-hard.

The converse is essentially also true (using a generalization of kernelizations).

Proof: [l (L) FQM_NP-¢¢wPﬁJ~c

Lek L’ NP- "‘QW(’L&Q - CL/.' ‘Kow\ & eQrﬂ—/\]D
Yoo (O = 2 / ’
.,,,_A.Lx‘ 0‘0504‘“41,4_ Q./ A Ts 095\» \,«.g\d,\".
C\?(:;Qécn‘dlﬂw (;D‘ CL', Kavﬂ\w
P,,,g-[\JP—cawpﬁt[‘(.
= (%) = fot (L.'zr> e dde A xe Ll = AG)e /[

muw'?m% &’?M @& Z\ 'r(}'_c_;i@ : IX?C

d= Pn-ocy W

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!
For each of the following

» p-CLIQUE,
» p-INDEPENDENTSET
» p-DOMINATINGSET
bounding k by a constant d makes polytime algorithm possible.
DN
FPT VRIS “XP“\ o for combet &
Py pelybtus

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!
For each of the following

» p-CLIQUE,
» p-INDEPENDENTSET
» p-DOMINATINGSET
bounding k by a constant d makes polytime algorithm possible.
~+ L<g cannot be NP-complete for each of these
> but we rather expect them ¢ FPT

~> para-NP theory does not settle complexity status

5.3 Bounded Nondeterminism: W[P]

Bye bye, TM

para-NP is too large a class to have interesting complete problems
~> We must weaken the class. Unfortunately, TM inconvenient here.

We el VﬁS&“’\JCé suY S&vé(/ %g G%NMM{Y,T?&G(CS)U—;JQ\“"?V i\)

&HAL L\{:/ LM@ ﬁo ?mm& o Fm%,. is a»«Q«“M;}/ lb Mbw

aw FPT olsoste., .
gué [TV &a SeQ CﬁO—AM)T @ ’_A(‘ Lgﬂur,(_) < L\)C 1—1 < LLD/‘JWS)

(e ootd Se o gfwﬁu&ur; Frs Lad’

+ P - (Lo é{“p{ A

Bye bye, TM

para-NP is too large a class to have interesting complete problems
~> We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), k-restricted)

An NRAM M is a word-RAM with w = O(log 1) with the additional operation to
nondeterministically guess a number between 0 and a current register content.

An NRAM M that decides a parameterized problem (L, k) is k-testricted if on input x € X*
with n = |x| and k = x(x)

1.
2
St
4.

MEM

L A

it performs at most f (k) - p(n) steps, (feb meres k) 2 T

at most g(k) of them nondeterministic, veacder R_ . R.

wanssor y I
uses at most f(k) - p(n) registers, and

those never contain numbers larger than f (k) - p(n). w= O (logen - fw)

for computable functions f and g, and a polynomial p

caw(lm& IS p&rm»/\)P = Q, (S wews

PO u{ﬂw\;w‘g‘\I SLf(l S wo e (l@“"/w

WIP]
Definition 5.6 (W[P])

The class W[P] is the set of all parameterized problems (L, x) decidable by a k-restricted
NRAM.

!S P- (LLQUG v L'J{Pl 7’

bk fra - quers (um,&f\um‘gfs(n‘mﬂy) k- st S og rarcbtens
(b sheps | mmbis bahin ©-w))

CLLU_LR f& 3 e QQ:&U\(

we Hveties

wonbicas

A first W[P]-complete problem?

Define hardness and completeness for W[P| using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

A first W[P]-complete problem?

Define hardness and completeness for W[P| using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

» What can be guessed using k numbers in [7]?

A first W[P]-complete problem?

Define hardness and completeness for W[P| using <.

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

» What can be guessed using k numbers in [7]?

~ A subset of variables of size k!

Weighted SAT

Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula ¢ and integer k € N

Parameter: k

Recall: weight = #true variables

Question: 3 satisfying assignment with weight = k ?

leady i WP

Saune cQévale @ &ﬁ - CL:QVE S

10

Weighted SAT
Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula ¢ and integer k € N
Recall: weight = #true variables
Parameter: k

Question: 3 satisfying assignment with weight = k ?

Theorem 5.8 (p-WSAT(CIRC) is W[P]-complete)

The weighted satisfiability problem for boolean circuits parameterized by the weight is
W[P]-complete.

Proof (Rough Idea): Gool] - “harlab” amy ae-ceskricled NRAM
;—\ bo o walbd SAT fuwshieg
(

)
Roloar MR 7
creest }

*lez

J @GL(\;V‘ oD

'?rolwvveos a <Lv~Ul = Cl“"l‘...v"l)
% A

10

e of wduchees (LD e WPl (Lox) <g, p-WISAT C)

Ve
T aart & dhad dada £ and & x-vakickd

giwwiol’(M w[tLL\ a WJA,U—(» LCF(TM MI
sf\/\/umzmk M' bs/ =3 ge&lﬁaﬂ Q(Nrc/u\.i C

\LHC(K ot c?rW\J‘) afvres eframit D s |,

@ Sulﬂ'iq[t'm% =D D s §mf’p\€fc{9&l ot L"“‘*\SL{’ Af

-
w[p(l caMLm“u\r P,C/,(@UE ehe . bot r\{ &m;ﬁ Seneta ()Q.EL\‘LZ{

s dases P'wSAT[wa‘vS> <c) P»Gucgm‘z

5.4 Tail-nondeterministic NRAM

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.

11

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A «-restricted NRAM M for a problem (L, x) is called tail-nondeterministic if all
nondeterministic steps occur only among the last /(x(x)) steps.

11

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems.
~> We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A «-restricted NRAM M for a problem (L, x) is called tail-nondeterministic if all
nondeterministic steps occur only among the last /(x(x)) steps.

Definition 5.10 (W[1])
The class W[1] consists of all parameterized decision problems (L, k) that are decided by a
tail-nondeterministic x-restricted NRAM.

As before, define hardness and completeness for W[1] w.r.t. <.

11

Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and k € N be given.
Parameter: k

Question: Does M accepts x after at most k computation steps?

12

Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and k € N be given.
Parameter: k

Question: Does M accepts x after at most k computation steps?

> M is part of input, so state space and tape alphabet are not fixed!
~ up to n different non-deterministic choices in each step. (n is size of encoding of M)

~~ Trivial algorithm has to simulate up to n**! steps of M.

» Equivalent here to halting problem for x = ¢, since we can hard-wire the given input
into the states of a TM M’ constructed from M.

12

WI[1]-completeness
Theorem 5.12 (k-step halting problem W[1]-complete)
The k-step Halting Problem (for single-tape TM) parameterized by k is W[1]-complete.

Proals o Te wei”

Grvam TM M depub x shps &
We cowshoct an NRAM A

sudote A for k shkp lacd wopy Mwm)
xopeshickd 0k wondib slea

-\Lcu‘Q‘r,@u‘&Qr: — e — Com CoOuag /m&l ¢ Copy QJ seolbacd! 3C))

“ Lol - bard’ (L) e WEY
5 3 PRAM A for L xovestockd felm i oeditirr w25 ha

éivw Y o as 'HA{:uJ‘ I’% A, e (‘\'9 A QMMAQOLL A(}/) wa -SHP .

reéx/\cL\"eL.. (L(K) é&,;{r k-SdP

13

%\'m [[PUTON A Qer ?Lj JLLQXW"W‘(}'\‘C Pwé /‘{\F’{*W"‘"‘:LS h‘/">

Mi& c(§<r\nych‘nzN o& c\lr &{A:X qxsi-ﬂ;“
/Wnu/ a NJ;JL((.‘\L«.ﬂ(\/ £ @raéroh—\ raw%v—?

(@u;(’waé MQMAJ\}L‘ TM M Emw A G/\AA §M¢laf?/ua17
thal siudeho oo Uik NG @& A (I/‘L("K(V)) 5&195)

@uk@u% QQ MA_\-LQ{AE_ s (M{ I/\KKC/)M)
\K@L Uﬁé}kﬂ,é{ak > QCF{“{WM ,,,,,, ,,,,,,,,,,,,,,,
PmrnwLL«r *thwl/?uj
(CU‘MQL\AL\X b(/ O {‘mcé\‘uﬁ A O\CUY;J’E Vel

(= M lerwiecly
aller alxly)) Si«tﬂ[

()

More natural problems? SEAT NP -cowptd
2SAT e P

Definition 5.13 (p-WSAT(2CNF))

Given: Boolean formula ¢ in 2-CNF and integer k € N

Parameter: k

Question: I satisfying assignment with weight = k ?

Theorem 5.14
p-WSAT(2CNF) is W[1]-complete. Prool setbied

Theorem 5.15
p-WSAT(2CNEF") is W[1]-complete. (7[v¥z) A (=1v ;L\ A

p-WSAT(2CNF ") means: all literals negated.

14

p-Independent-Set is W[1]-complete

Theorem 5.16

p-INDEPENDENTSET is W([1]-complete. = Lded
i

Proof: - ° ¢ k,a{fg\ oie k won-dib oo SS{F' eg

ho qued s stHé T cV
AP T > TMJAF- szé,

» T ched” prore p-WSAT(ReMFT) <

é\‘v—e,ln f> /\(;LV’;)\) Z(

(eHex

NRAM

l—eﬁhuau&ﬁ

Hoew = OCY) ~

fpt
'(’QN§¢J

cous bk G = ([V"S[{{E,J‘S - ATﬂC"I) g Lirt

(:“‘G S Tmiﬂ;_ ?«r— o\f Size k/:ﬁ(\&/\uﬂ
TP R P S S
= ‘(3 qQL\\JQMJ

[DREE TL(‘

amuL\o&‘La

‘e’ [é\ ® L/tcn) a :ah‘){y?uj m)u‘sb«m} Q\ D"E:Su L\r

P'] OPEP. Se T

s L

[(

Hore
2 Lﬂuc vam'e [164

15

Mo W %aﬁvzwabﬂa) At O [Hé(r: sod i &

Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V,E), target size t € N, threshold k € N
Parameter: k

Questions: 3C C V : |C| = k A C covers at least ¢ edges?

16

Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V,E), target size t € N, threshold k € N

Parameter: k

Questions: 3C C V : |C| = k A C covers at least ¢ edges? <

Theorem 5.18
p-PARTIALVERTEXCOVER is W[1]-hard. <

Proof:
We show p-INDEPENDENTSET <t p-PARTIALVERTEXCOVER

Given gl & =CUE) Lk

&' (v e Vie Voo U {0 s imdo IVdglf
£= (dvl g :
E'=Co U (fuew) -~ =
ve

= Gf s l\fl— v€5u~[<f (Sou—-* &L{’jm)

16

Partial Vertex Cover [2]

Proof (continued):

17

