Parameterized Hardness

27 May 2025

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-05-27 16:50

Outline

5 Parameterized Hardness

- 5.1 Parameterized Reductions
- 5.2 Nondeterministic FPT: Para-NP
- 5.3 Bounded Nondeterminism: W[P]
- 5.4 Tail-nondeterministic NRAM

▶ For some problems, no algorithm seems to achieve fpt running time

- ▶ For some problems, no algorithm seems to achieve fpt running time
- ► example: *p*-CLIQUE
- → maybe no fpt algorithm can exist for *p*-CLIQUE!

- ▶ For some problems, no algorithm seems to achieve fpt running time
- ► example: *p*-CLIQUE
- → maybe no fpt algorithm can exist for *p*-CLIQUE!
- Problem: Certainly exists in case P = NP
- \rightsquigarrow strongest lower bound we can hope for will have to be conditional on P \neq NP

- ▶ For some problems, no algorithm seems to achieve fpt running time
- ▶ example: *p*-CLIQUE
- \rightsquigarrow maybe no fpt algorithm can exist for *p*-CLIQUE!
- Problem: Certainly exists in case P = NP
- → strongest lower bound we can hope for will have to be conditional on $P \neq NP$
- Typical complexity-theory results: No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.

5.1 Parameterized Reductions

FPT Reductions

Goal: Compare relative hardness of parameterized problems

- $\rightsquigarrow\,$ Need a notion of reductions on parameterized problems
- ▶ to preserve (non)existence of fpt algorithms, need to keep small *k*

FPT Reductions

Goal: Compare relative hardness of parameterized problems

- $\rightsquigarrow\,$ Need a notion of reductions on parameterized problems
- ▶ to preserve (non)existence of fpt algorithms, need to keep small *k*

Definition 5.1 (Parameterized Reduction)

Let (L_1, κ_1) and (L_2, κ_2) be two parameterized problems (over alphabets Σ_1 resp. Σ_2). An *fpt-reduction* (*fpt many-one reduction*) from (L_1, κ_1) to (L_2, κ_2) is a mapping $A : \Sigma_1^* \to \Sigma_2^*$ so that for all $x \in \Sigma_1^*$

- **1.** (equivalence) $x \in L_1 \iff A(x) \in L_2$,
- **2.** (*fpt*) *A* is computable by an fpt-algorithm (w.r.t. to κ_1), and
- 3. (*parameter-preserving*) $\kappa_2(A(x)) \leq g(\kappa_1(x))$ for a computable function $g : \mathbb{N} \to \mathbb{N}$.

We then write $(L_1, \kappa_1) \leq_{fpt} (L_2, \kappa_2)$. does not depend $|\times|$

4

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

VERTEXCOVER

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$

Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

INDEPENDENTSET

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

VERTEXCOVERINDEPENDENTSETGiven: graph G = (V, E) and $k \in \mathbb{N}$ Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

• We know: INDEPENDENTSET \leq_p VERTEXCOVER:

Set G' = G and k' = |V(G)| - k (Complement of an indep. set must be a vertex cover, and vice versa!)

Many reductions from classical complexity theory are **not** parameter preserving.

Recall:

VERTEXCOVERINDEPENDENTSETGiven: graph G = (V, E) and $k \in \mathbb{N}$ Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

- We know: INDEPENDENTSET \leq_p VERTEXCOVER:
 - Set G' = G and k' = |V(G)| k (Complement of an indep. set must be a vertex cover, and vice versa!)
- ▶ \Rightarrow *p*-IndependentSet \leq_{fpt} *p*-VertexCover
 - ▶ Indeed, we know VERTEXCOVER ∈ FPT, but INDEPENDENTSET probably isn't.

Many reductions from classical complexity theory are not parameter preserving.

Recall:

VERTEXCOVERINDEPENDENTSETGiven: graph G = (V, E) and $k \in \mathbb{N}$ Given: graph G = (V, E) and $k \in \mathbb{N}$ Question: $\exists V' \subset V : |V'| \le k \land \forall \{u, v\} \in E : (u \in V' \lor v \in V')$ Question: $\exists V' \subset V : |V'| \ge k \land \forall u, v \in V' : \{u, v\} \notin E$

- We know: INDEPENDENTSET \leq_p VERTEXCOVER:
 - Set G' = G and k' = |V(G)| k (Complement of an indep. set must be a vertex cover, and vice versa!)
- ► \Rightarrow *p*-IndependentSet \leq_{fpt} *p*-VertexCover
 - ▶ Indeed, we know VertexCover ∈ FPT, but INDEPENDENTSET probably isn't.
- ▶ But: *p*-IndependentSet $\leq_{fpt} p$ -Clique (and *p*-Clique $\leq_{fpt} p$ -IndependentSet)

Set $G' = (V, {\binom{V}{2}} \setminus E)$ and k' = k (Independent set iff clique in complement graph)

5.2 Nondeterministic FPT: Para-NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Some nice properties:

- **1.** para-NP is closed under fpt-reductions.
- 2. FPT = para-NP \iff P = NP
- 3. an analogue for *kernalization* in FPT holds for para-NP

-

AEpare-NP, BSFot A => BEpare-NP

Good, so we have reductions.

If P corresponds to FPT ... but what is the analogue for NP?

Definition 5.2 (para-NP)

The class para-NP consists of all parameterized decision problems that are solved by a *non-deterministic* fpt-algorithm.

Some nice properties:

- **1.** para-NP is closed under fpt-reductions.
- 2. FPT = para-NP \iff P = NP
- 3. an analogue for *kernalization* in FPT holds for para-NP

Can define para-NP-hard and para-NP-complete similarly as for NP: **Definition 5.3 (para-NP-hard)** (L, κ) is para-NP-hard if $(L', \kappa') \leq_{fvt} (L, \kappa)$ for all $(L', \kappa') \in$ para-NP.

Hello hardness, my old friend

Theorem 5.4 (para-NP-complete \rightarrow **NP-complete for finite parameter)** Let (L, κ) be a nontrivial ($\emptyset \neq L \neq \Sigma^*$) parameterized problem that is para-NP-complete. Then $L_{\leq d} = \{x \in L : \kappa(x) \leq d\}$ is NP-hard.

The converse is essentially also true (using a generalization of kernelizations).

A maps L' to
$$L_{\leq d} = \{x \in L : x(x) \leq d\}$$

in poly time
=> $L' \leq p \mid L_{\leq d} = L_{\leq d} \quad NP-hard$

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

► *p*-Clique,

Ŧ

- ► *p*-IndependentSet
- ► *p*-DominatingSet

bounding *k* by a **constant** *d* makes *polytime* algorithm possible.

6

para-NP-complete is too strict

Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

- ► *p*-Clique,
- ► *p*-IndependentSet
- ► *p*-DominatingSet

bounding *k* by a **constant** *d* makes *polytime* algorithm possible.

- \rightsquigarrow $L_{\leq d}$ cannot be NP-complete for each of these
- ▶ but we rather expect them ∉ FPT
- → para-NP theory does not settle complexity status

5.3 Bounded Nondeterminism: W[P]

Bye bye, TM

para-NP is too large a class to have interesting complete problems ~> We must weaken the class. Unfortunately, TM inconvenient here.

Bye bye, TM

para-NP is too large a class to have interesting complete problems ~> We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), κ-restricted)

An NRAM *M* is a word-RAM with $w = O(\log n)$ with the additional operation to nondeterministically guess a number between 0 and a current register content. An NRAM *M* that decides a parameterized problem (L, κ) is <u> κ -restricted</u> if on input $x \in \Sigma^*$ with n = |x| and $k = \kappa(x)$

- 1. it performs at most $f(k) \cdot p(n)$ steps, (for which is $k \rightarrow$)
- **2.** at most g(k) of them nondeterministic,
- **3.** uses at most $f(k) \cdot p(n)$ registers, and

- $\frac{MEM}{J} \sim \frac{11}{J} \sim \frac{11}{J}$
- **4.** those never contain numbers larger than $f(k) \cdot p(n)$. $\omega = \bigcirc (\ell_{2} \cup \dots f(k))$ for computable functions f and g, and a polynomial p

W[P]

Definition 5.6 (**W**[*P*])

The class $\mathsf{W}[P]$ is the set of all parameterized problems (L,κ) decidable by a $\kappa\text{-restricted}$ NRAM.

A first **W**[*P*]-complete problem?

Define hardness and completeness for W[P] using \leq_{fpt} .

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

A first **W**[*P*]-complete problem?

Define hardness and completeness for W[P] using \leq_{fpt} .

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

▶ What can be guessed using *k* numbers in [*n*]?

A first **W**[*P*]-complete problem?

Define hardness and completeness for W[P] using \leq_{fpt} .

What could be the mother of all W[P]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

- ▶ What can be guessed using *k* numbers in [*n*]?
- \rightsquigarrow A subset of variables of *size* k!

Weighted SAT

Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula φ and integer $k \in \mathbb{N}$ Parameter: kQuestion: \exists satisfying assignment with weight = k?

Weighted SAT

Definition 5.7 (Weighted Satisfiability)

Given: Boolean formula φ and integer $k \in \mathbb{N}$ Parameter: kQuestion: \exists satisfying assignment with weight = k ?

Theorem 5.8 (*p*-WSAT(CIRC) is **W**[*P*]-complete)

The weighted satisfiability problem for boolean **circuits** parameterized by the weight is W[P]-complete.

Proof (Rough Idea): Goal: "translate" any x-restricted NRAM boulean instance do a weighted SAT instance

W[P] contains p-CLIQUE etc. but it does not seem poss to show p-WSAT(Circuis) = fpt p-CLIQUE

5.4 Tail-nondeterministic NRAM

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems. ~> We must weaken the class *further*.

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems. ~> We must weaken the class *further*.

Definition 5.9 (tail-nondeterministic NRAM)

A κ -restricted NRAM *M* for a problem (*L*, κ) is called *tail-nondeterministic* if all nondeterministic steps occur only among the last $h(\kappa(x))$ steps.

Tail-nondeterminism

Circuit satisfiability still too strong to show hardness of many interesting problems. ~> We must weaken the class *further*.

Definition 5.9 (tail-nondeterministic NRAM)

A κ -restricted NRAM *M* for a problem (*L*, κ) is called *tail-nondeterministic* if all nondeterministic steps occur only among the last $h(\kappa(x))$ steps.

Definition 5.10 (W[1])

The class W[1] consists of all parameterized decision problems (L, κ) that are decided by a tail-nondeterministic κ -restricted NRAM.

As before, define hardness and completeness for W[1] w.r.t. \leq_{fpt} .

-

Stop

Definition 5.11 (*k***-step Halting Problem)**

Given: A nondeterministic (single-tape) Turing machine *M*, an input *x* and $k \in \mathbb{N}$ be given. Parameter: *k*

Question: Does *M* accepts *x* after at most *k* computation steps?

Stop

Definition 5.11 (k-step Halting Problem)

Given: A nondeterministic (single-tape) Turing machine M, an input x and $k \in \mathbb{N}$ be given. Parameter: k -

Question: Does *M* accepts *x* after at most *k* computation steps?

- M is part of input, so state space and tape alphabet are not fixed!
- \rightarrow up to *n* different non-deterministic choices in *each* step. (*n* is size of encoding of *M*)
- \rightsquigarrow Trivial algorithm has to simulate up to n^{k+1} steps of *M*.
- Equivalent here to halting problem for $x = \varepsilon_i$, since we can hard-wire the given input into the states of a TM M' constructed from M.

W[1]-completeness

Theorem 5.12 (*k*-step halting problem **W**[1]-complete) The k-step Halting Problem (for single-tape TM) parameterized by k is W[1]-complete. Proofi · ~ E W(13) Given TM M, input x, shep h We construct an NRAM A simulate A for k stops (and copy autput) x-restricted : to wondert. steps can come last a copy of autput B(1) tail-norder: ---· "WLI]-hard" (L, r) E W[1] =>] NRAM A for L x-restricted, feil-wondertruin wishe Given y as input to A, we fig to simulate A(y) via k-SHP. reduction (L.x) = fot k-SHP

[]

More natural problems?

Definition 5.13 (*p*-WSAT(2CNF))

Given: Boolean formula φ in 2-CNF and integer $k \in \mathbb{N}$ Parameter: k

Question: \exists satisfying assignment with weight = k ?

Theorem 5.14 *p*-WSAT(2CNF) is W[1]-complete.

Proof omitted.

Theorem 5.15 p-WSAT(2CNF⁻) is W[1]-complete.

$$(\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_3} \vee \overline{x_2}) \wedge \cdots$$

p-WSAT(2CNF⁻) means: *all* literals *negated*.

-

-

p-Independent-Set is W[1]-complete

Theorem 5.16 *p*-INDEPENDENTSET is W[1]-complete. x-restricted Proof: · EWEB use k non-det guesning steps of NRAM check I is indep. sed. Hune = O(h2) = text-wondet. · "W(I)-hard' prove p-WSAT(RCNF") < Fot p-INDED.SET Given $\varphi = \bigwedge (\overline{x_i} \vee \overline{x_j})$, k torset weight (i, j) EI construct $G = ([w], \{\{i,j\}: (i,j)\in I\}, k'=k$ "=" G has indop. set of size k'= k, then we set there variables to true and us clause exchains 2 force variables => & satisfied 'e' If q has a satisfying assignment of weight he

Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover)

Given: graph G = (V, E), target size $t \in \mathbb{N}$, threshold $k \in \mathbb{N}$ **Parameter:** k

Questions: $\exists C \subseteq V : |C| = k \land C$ covers at least *t* edges?

Partial Vertex Cover

Definition 5.17 (Partial Vertex Cover) Given: graph G = (V, E), target size $t \in \mathbb{N}$, threshold $k \in \mathbb{N}$ Parameter: kQuestions: $\exists C \subseteq V : |C| = k \land C$ covers at least t edges?

Theorem 5.18

```
p-PartialVertexCover is W[1]-hard.
```

Proof:

We show *p*-INDEPENDENTSET $\leq_{fpt} p$ -PARTIALVERTEXCOVER

Given graph G = (V, E), k G' = (V, E') $V' = V_U \bigcup_{v \in V} \{W_{v,i} : i = 1, ..., |V| - deg(v)\}^{2}$ f = k dVl $E' = E_U \bigcup_{v \in V} \{\{v_{v, w_{v,i}\}\} - - - \}$ = > G' is |V| - veguler (some degree)

Partial Vertex Cover [2]

Proof (continued):

н.