
5 Parameterized
Hardness

27 May 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-05-27 16:50

Outline

5 Parameterized Hardness
5.1 Parameterized Reductions
5.2 Nondeterministic FPT: Para-NP
5.3 Bounded Nondeterminism: W[P]
5.4 Tail-nondeterministic NRAM

How to prove ∉ FPT?
▶ For some problems, no algorithm seems to achieve fpt running time

1

How to prove ∉ FPT?
▶ For some problems, no algorithm seems to achieve fpt running time

▶ example: 𝑝-Clique

⇝ maybe no fpt algorithm can exist for 𝑝-Clique!

1

How to prove ∉ FPT?
▶ For some problems, no algorithm seems to achieve fpt running time

▶ example: 𝑝-Clique

⇝ maybe no fpt algorithm can exist for 𝑝-Clique!

▶ Problem: Certainly exists in case P = NP

⇝ strongest lower bound we can hope for will have to be conditional on P ≠ NP

1

How to prove ∉ FPT?
▶ For some problems, no algorithm seems to achieve fpt running time

▶ example: 𝑝-Clique

⇝ maybe no fpt algorithm can exist for 𝑝-Clique!

▶ Problem: Certainly exists in case P = NP

⇝ strongest lower bound we can hope for will have to be conditional on P ≠ NP

▶ Typical complexity-theory results:
No algorithm has property X unless (more of less widely believed) complexity hypothesis Y fails.

1

5.1 Parameterized Reductions

FPT Reductions
Goal: Compare relative hardness of parameterized problems

⇝ Need a notion of reductions on parameterized problems

▶ to preserve (non)existence of fpt algorithms, need to keep small 𝑘

2

FPT Reductions
Goal: Compare relative hardness of parameterized problems

⇝ Need a notion of reductions on parameterized problems

▶ to preserve (non)existence of fpt algorithms, need to keep small 𝑘

Definition 5.1 (Parameterized Reduction)
Let (𝐿1 , 𝜅1) and (𝐿2 , 𝜅2) be two parameterized problems (over alphabets Σ1 resp. Σ2).
An fpt-reduction (fpt many-one reduction) from (𝐿1 , 𝜅1) to (𝐿2 , 𝜅2) is a mapping 𝐴 : Σ★

1 → Σ★
2 so

that for all 𝑥 ∈ Σ★
1

1. (equivalence) 𝑥 ∈ 𝐿1 ⇐⇒ 𝐴(𝑥) ∈ 𝐿2,

2. (fpt) 𝐴 is computable by an fpt-algorithm (w.r.t. to 𝜅1), and

3. (parameter-preserving) 𝜅2
�
𝐴(𝑥)� ≤ 𝑔

�
𝜅1(𝑥)

�
for a computable function 𝑔 : ℕ → ℕ.

We then write (𝐿1 , 𝜅1) ≤fpt (𝐿2 , 𝜅2). ◀

2

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:
VertexCover
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀{𝑢 , 𝑣} ∈ 𝐸 :
�
𝑢 ∈ 𝑉 ′ ∨ 𝑣 ∈ 𝑉 ′�

IndependentSet
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢 , 𝑣 ∈ 𝑉 ′ : {𝑢 , 𝑣} ∉ 𝐸

3

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:
VertexCover
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀{𝑢 , 𝑣} ∈ 𝐸 :
�
𝑢 ∈ 𝑉 ′ ∨ 𝑣 ∈ 𝑉 ′�

IndependentSet
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢 , 𝑣 ∈ 𝑉 ′ : {𝑢 , 𝑣} ∉ 𝐸

▶ We know: IndependentSet ≤𝑝 VertexCover:
▶ Set 𝐺′ = 𝐺 and 𝑘′ = |𝑉(𝐺)| − 𝑘 (Complement of an indep. set must be a vertex cover, and vice versa!)

3

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:
VertexCover
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀{𝑢 , 𝑣} ∈ 𝐸 :
�
𝑢 ∈ 𝑉 ′ ∨ 𝑣 ∈ 𝑉 ′�

IndependentSet
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢 , 𝑣 ∈ 𝑉 ′ : {𝑢 , 𝑣} ∉ 𝐸

▶ We know: IndependentSet ≤𝑝 VertexCover:
▶ Set 𝐺′ = 𝐺 and 𝑘′ = |𝑉(𝐺)| − 𝑘 (Complement of an indep. set must be a vertex cover, and vice versa!)

▶ ⇏ 𝑝-IndependentSet ≤fpt 𝑝-VertexCover
▶ Indeed, we know VertexCover ∈ FPT, but IndependentSet probably isn’t.

3

Not all reductions are fpt
Many reductions from classical complexity theory are not parameter preserving.

Recall:
VertexCover
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≤ 𝑘 ∧ ∀{𝑢 , 𝑣} ∈ 𝐸 :
�
𝑢 ∈ 𝑉 ′ ∨ 𝑣 ∈ 𝑉 ′�

IndependentSet
Given: graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ∈ ℕ

Question: ∃𝑉 ′ ⊂ 𝑉 : |𝑉 ′| ≥ 𝑘 ∧ ∀𝑢 , 𝑣 ∈ 𝑉 ′ : {𝑢 , 𝑣} ∉ 𝐸

▶ We know: IndependentSet ≤𝑝 VertexCover:
▶ Set 𝐺′ = 𝐺 and 𝑘′ = |𝑉(𝐺)| − 𝑘 (Complement of an indep. set must be a vertex cover, and vice versa!)

▶ ⇏ 𝑝-IndependentSet ≤fpt 𝑝-VertexCover
▶ Indeed, we know VertexCover ∈ FPT, but IndependentSet probably isn’t.

▶ But: 𝑝-IndependentSet ≤fpt 𝑝-Clique (and 𝑝-Clique ≤fpt 𝑝-IndependentSet)

▶ Set 𝐺′ = (𝑉 ,
�𝑉
2
� \ 𝐸) and 𝑘′ = 𝑘 (Independent set iff clique in complement graph)

3

5.2 Nondeterministic FPT: Para-NP

Parameterized NP: Non-deterministic NP
Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

4

Parameterized NP: Non-deterministic NP
Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)
The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm. ◀

4

Parameterized NP: Non-deterministic NP
Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)
The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm. ◀

Some nice properties:
1. para-NP is closed under fpt-reductions.

2. FPT = para-NP ⇐⇒ P = NP

3. an analogue for kernalization in FPT holds for para-NP

4

Parameterized NP: Non-deterministic NP
Good, so we have reductions.

If P corresponds to FPT . . . but what is the analogue for NP?

Definition 5.2 (para-NP)
The class para-NP consists of all parameterized decision problems that are solved by a
non-deterministic fpt-algorithm. ◀

Some nice properties:
1. para-NP is closed under fpt-reductions.

2. FPT = para-NP ⇐⇒ P = NP

3. an analogue for kernalization in FPT holds for para-NP

Can define para-NP-hard and para-NP-complete similarly as for NP:

Definition 5.3 (para-NP-hard)
(𝐿, 𝜅) is para-NP-hard if (𝐿′, 𝜅′) ≤fpt (𝐿, 𝜅) for all (𝐿′, 𝜅′) ∈ para-NP. ◀

4

Hello hardness, my old friend

Theorem 5.4 (para-NP-complete → NP-complete for finite parameter)
Let (𝐿, 𝜅) be a nontrivial (∅ ≠ 𝐿 ≠ Σ★) parameterized problem that is para-NP-complete.
Then 𝐿≤𝑑 = {𝑥 ∈ 𝐿 : 𝜅(𝑥) ≤ 𝑑} is NP-hard. ◀

The converse is essentially also true (using a generalization of kernelizations).

Proof:

■

5

para-NP-complete is too strict
Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

▶ 𝑝-Clique,

▶ 𝑝-IndependentSet

▶ 𝑝-DominatingSet

bounding 𝑘 by a constant 𝑑 makes polytime algorithm possible.

6

para-NP-complete is too strict
Above Theorem means that many problems cannot be para-NP-complete!

For each of the following

▶ 𝑝-Clique,

▶ 𝑝-IndependentSet

▶ 𝑝-DominatingSet

bounding 𝑘 by a constant 𝑑 makes polytime algorithm possible.

⇝ 𝐿≤𝑑 cannot be NP-complete for each of these

▶ but we rather expect them ∉ FPT

⇝ para-NP theory does not settle complexity status

6

5.3 Bounded Nondeterminism: W[P]

Bye bye, TM
para-NP is too large a class to have interesting complete problems
⇝ We must weaken the class. Unfortunately, TM inconvenient here.

7

Bye bye, TM
para-NP is too large a class to have interesting complete problems
⇝ We must weaken the class. Unfortunately, TM inconvenient here.

Definition 5.5 (Nondeterministic RAM (NRAM), 𝜿-restricted)
An NRAM 𝑀 is a word-RAM with 𝑤 = 𝑂(log 𝑛) with the additional operation to
nondeterministically guess a number between 0 and a current register content.
An NRAM 𝑀 that decides a parameterized problem (𝐿, 𝜅) is 𝜅-restricted if on input 𝑥 ∈ Σ★

with 𝑛 = |𝑥| and 𝑘 = 𝜅(𝑥)
1. it performs at most 𝑓 (𝑘) · 𝑝(𝑛) steps,

2. at most 𝑔(𝑘) of them nondeterministic,

3. uses at most 𝑓 (𝑘) · 𝑝(𝑛) registers, and

4. those never contain numbers larger than 𝑓 (𝑘) · 𝑝(𝑛).
for computable functions 𝑓 and 𝑔, and a polynomial 𝑝 ◀

7

W[P]

Definition 5.6 (W[𝑷])
The class W[𝑃] is the set of all parameterized problems (𝐿, 𝜅) decidable by a 𝜅-restricted
NRAM. ◀

8

A first W[𝑷]-complete problem?
Define hardness and completeness for W[𝑃] using ≤fpt.

What could be the mother of all W[𝑃]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

9

A first W[𝑷]-complete problem?
Define hardness and completeness for W[𝑃] using ≤fpt.

What could be the mother of all W[𝑃]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

▶ What can be guessed using 𝑘 numbers in [𝑛]?

9

A first W[𝑷]-complete problem?
Define hardness and completeness for W[𝑃] using ≤fpt.

What could be the mother of all W[𝑃]-complete problems?

Some parameterized version of SAT? Parameter #variables does not work. (Why?)

▶ What can be guessed using 𝑘 numbers in [𝑛]?
⇝ A subset of variables of size 𝑘!

9

Weighted SAT
Definition 5.7 (Weighted Satisfiability)
Given: Boolean formula 𝜑 and integer 𝑘 ∈ ℕ

Parameter: 𝑘
Question: ∃ satisfying assignment with weight

Recall: weight = #true variables

= 𝑘 ? ◀

10

Weighted SAT
Definition 5.7 (Weighted Satisfiability)
Given: Boolean formula 𝜑 and integer 𝑘 ∈ ℕ

Parameter: 𝑘
Question: ∃ satisfying assignment with weight

Recall: weight = #true variables

= 𝑘 ? ◀

Theorem 5.8 (𝒑-WSAT(CIRC) is W[𝑷]-complete)
The weighted satisfiability problem for boolean circuits parameterized by the weight is
W[𝑃]-complete. ◀

Proof (Rough Idea):

10

5.4 Tail-nondeterministic NRAM

Tail-nondeterminism
Circuit satisfiability still too strong to show hardness of many interesting problems.
⇝ We must weaken the class further.

11

Tail-nondeterminism
Circuit satisfiability still too strong to show hardness of many interesting problems.
⇝ We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A 𝜅-restricted NRAM 𝑀 for a problem (𝐿, 𝜅) is called tail-nondeterministic if all
nondeterministic steps occur only among the last ℎ(𝜅(𝑥)) steps. ◀

11

Tail-nondeterminism
Circuit satisfiability still too strong to show hardness of many interesting problems.
⇝ We must weaken the class further.

Definition 5.9 (tail-nondeterministic NRAM)
A 𝜅-restricted NRAM 𝑀 for a problem (𝐿, 𝜅) is called tail-nondeterministic if all
nondeterministic steps occur only among the last ℎ(𝜅(𝑥)) steps. ◀

Definition 5.10 (W[1])
The class W[1] consists of all parameterized decision problems (𝐿, 𝜅) that are decided by a
tail-nondeterministic 𝜅-restricted NRAM. ◀

As before, define hardness and completeness for W[1] w.r.t. ≤fpt.

11

Stop

Definition 5.11 (𝒌-step Halting Problem)
Given: A nondeterministic (single-tape) Turing machine 𝑀, an input 𝑥 and 𝑘 ∈ ℕ be given.
Parameter: 𝑘
Question: Does 𝑀 accepts 𝑥 after at most 𝑘 computation steps? ◀

12

Stop

Definition 5.11 (𝒌-step Halting Problem)
Given: A nondeterministic (single-tape) Turing machine 𝑀, an input 𝑥 and 𝑘 ∈ ℕ be given.
Parameter: 𝑘
Question: Does 𝑀 accepts 𝑥 after at most 𝑘 computation steps? ◀

▶ 𝑀 is part of input, so state space and tape alphabet are not fixed!

⇝ up to 𝑛 different non-deterministic choices in each step. (𝑛 is size of encoding of 𝑀)

⇝ Trivial algorithm has to simulate up to 𝑛𝑘+1 steps of 𝑀.

▶ Equivalent here to halting problem for 𝑥 = 𝜀, since we can hard-wire the given input
into the states of a TM 𝑀′ constructed from 𝑀.

12

W[1]-completeness

Theorem 5.12 (𝒌-step halting problem W[1]-complete)
The 𝑘-step Halting Problem (for single-tape TM) parameterized by 𝑘 is W[1]-complete. ◀

13

More natural problems?

Definition 5.13 (𝒑-WSAT(2CNF))
Given: Boolean formula 𝜑 in 2-CNF and integer 𝑘 ∈ ℕ

Parameter: 𝑘
Question: ∃ satisfying assignment with weight = 𝑘 ? ◀

Theorem 5.14
𝑝-WSAT(2CNF) is W[1]-complete. ◀

Theorem 5.15
𝑝-WSAT(2CNF−) is W[1]-complete. ◀

𝑝-WSAT(2CNF−) means: all literals negated.

14

p-Independent-Set is W[1]-complete

Theorem 5.16
𝑝-IndependentSet is W[1]-complete. ◀

Proof:

■

15

Partial Vertex Cover
Definition 5.17 (Partial Vertex Cover)
Given: graph 𝐺 = (𝑉 , 𝐸), target size 𝑡 ∈ ℕ, threshold 𝑘 ∈ ℕ

Parameter: 𝑘
Questions: ∃𝐶 ⊆ 𝑉 : |𝐶| = 𝑘 ∧ 𝐶 covers at least 𝑡 edges? ◀

16

Partial Vertex Cover
Definition 5.17 (Partial Vertex Cover)
Given: graph 𝐺 = (𝑉 , 𝐸), target size 𝑡 ∈ ℕ, threshold 𝑘 ∈ ℕ

Parameter: 𝑘
Questions: ∃𝐶 ⊆ 𝑉 : |𝐶| = 𝑘 ∧ 𝐶 covers at least 𝑡 edges? ◀

Theorem 5.18
𝑝-PartialVertexCover is W[1]-hard. ◀

Proof:
We show 𝑝-IndependentSet ≤fpt 𝑝-PartialVertexCover

16

Partial Vertex Cover [2]
Proof (continued):

■

17

