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6.1 Linear Programs — A Mighty Blackbox Tool



Linear Programs

» Linear programs (LPs) are a class of optimization problems
of continuous (numerical) variables

> can be exactly solved in worst case polytime (LINEARPROGRAMMING € P)
» interior-point methods, Ellipsoid method

» routinely solved in practice to optimality with millions of variables and constraints
» Simplex algorithm, interior-point methods

»> many existing solvers, commercial and open source (e. g., HIGHS)



Hessy James’s Apple Farm

> Hessy tries to maximize the profit of his apple farm

>

vV VvV Vv VvV Vvyy

He is committed to promote regional Hessian heirloom varieties, so he only grows
“Sossenheimer Roter” and “Korbacher Edelrenette”

each tree of “Sossenheimer Roter” yields apples worth € 195 per year
each tree of “Korbacher Edelrenette” yields applies worth € 255 per year
He has an orchard of 5000 m?

each tree needs 4 m? of orchard space

each tree of “Sossenheimer Roter” needs 6 kg of organic fertilizer and 1h harvest effort per year

each tree of “Korbacher Edelrenette” needs 4.5 kg of organic fertilizer and 3 h harvest effort per
year

Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year



Hessy James’s Apple Farm

> Hessy tries to maximize the profit of his apple farm

>

vV VvV Vv VvV Vvyy

>

He is committed to promote regional Hessian heirloom varieties, so he only grows
“Sossenheimer Roter” and “Korbacher Edelrenette”

each tree of “Sossenheimer Roter” yields apples worth € 195 per year

each tree of “Korbacher Edelrenette” yields applies worth € 255 per year

He has an orchard of 5000 m?

each tree needs 4 m? of orchard space

each tree of “Sossenheimer Roter” needs 6 kg of organic fertilizer and 1 h harvest effort per year

each tree of “Korbacher Edelrenette” needs 4.5 kg of organic fertilizer and 3 h harvest effort per
year

Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

~» How many trees of each variety should Hessy plant?

>
>

What will constrain us most? Space? Fertilizer? Harvest hours?

What profit can Hessy expect?



Formal Linear Program for Hessy James’s Apple Farm
» Classic application of linear programming in operations research (OR)

»> We formally write LPs as follows:
s objective function
optimization goal

\
Maximize: 195s + 255k
Subjectto: 4s + 4k

constraint

IA

5000 (Orchard constraint)

6s + 4.5k < 3000 (Fertilizer constraint) name of the LP
1s + 3k < 1700 (Harvest constraint) (P)
s >0 (Non-negativity)

k>0 (Non-negativity)



Formal Linear Program for Hessy James’s Apple Farm
» Classic application of linear programming in operations research (OR)

»> We formally write LPs as follows:

s objective function
optimization goal

B nstrain
Maximize: 195s + 255k o™
Subjectto:  4s+ 4k < 5000 (Orchard constraint)

6s + 4.5k < 3000 (Fertilizer constraint) name of the LP
1s + 3k < 1700 (Harvest constraint) (P)
s >0 (Non-negativity)

k>0 (Non-negativity)

» Terminology:
» s and k are the two variables of the problem; these are always real numbers.
> A vector (s, k) € R%isa feasible solution for the LP if it satisfied all constraints.

» The largest value of the objective function (over all feasible solutions)
is the (optimal) value/z*pf the LP

> A feasible solution (s*, k*) € R? with optimal objective value z* is called an optimal solution



2D LPs - Graphical Solution

LPs with two variables can be solved graphically
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2D LPs - Graphical Solution

LPs with two variables can be solved graphically

| | |
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LPs — The General Case

» General LP:
min  C1X1+ .-+ CpXy

s.t. ajix1+--+ajnx, = b; (forizl,...,p)
Ai1X1+--+aiux, < by (fori=p+1,...,9)
Ai1X1+ -+ ainxy, = by (fori=q+1,...,m)
xj 2 0 (forj=1...,7)
xj §\0 (forj=r+1...,n)
» arbitrary linear objective function “don’t care” (just to make it explicit)

» arbitrary linear constraints, of type “=", “<” or “>"

» variables with non-negativity constraint and unconstrained variables



LPs — The General Case

» General LP:
min X1+ + CpXy

s.t. aiix1+---+ainx, = b (fori=1,...,p)
Ai1X1+--+aiux, < by (fori=p+1,...,9)
Ai1X1+ -+ ainxy, = by (fori=q+1,...,m)
xj 2 0 (forj=1...,7)
xj §\0 (forj=r+1...,n)
» arbitrary linear objective function “don’t care” (just to make it explicit)

» arbitrary linear constraints, of type “=", “<” or “>"

» variables with non-negativity constraint and unconstrained variables

» In general, an LP can
(a) have a finite optimal objective value
(b) be infeasible (contradictory constraints / empty feasibility region), or
(c) be unbounded (allow arbitrarily small objective values “—co”)

~+ in polytime, can detect which case applies and compute optimal solution in case (a)



Classic Modeling Example — Max Flow

» The maximum-s-t-flow problem in a graph G = (V, E) can be reduced to an LP (Flow)
> variable fem
> maximi;e?low value F = flow out of s ® Cé /§
» constraint for edge capacity C(e) at each edge /
>

constraint for flow conservation at each vertex v (except s and t)

max F
s. t. F = Zfsv - vas
veV veV v (v
fow < C(ow) (for vw € E) (Flow)
Vol = D (forv e V\ {s,1})
weV weV
fe =2 0 (fore € E)



6.2 Linear Programs — Reformulation Tricks



How to solve an LP?

» Our focus will be on using LPs as a tool

» in theory: reducing problem to an LP means polytime solvable

» in practice: call good solver!



How to solve an LP?

» Our focus will be on using LPs as a tool

» in theory: reducing problem to an LP means polytime solvable

» in practice: call good solver!

» But as with any good tool, it helps to gave an idea of how it works to effectively use it

~> We will briefly visit the conceptual ideas of the simplex algorithm



Recall: General Form of LPs

» General LP:
min  c1xX1 4+ CpXy

st ajx1+--+aigx, = by (fori=1,...,p)
Ai1X1+--+aiux, < bp (fori=p+1,...,9)
ai1x1+--+aiax, = bi (fori=q+1,...,m)

xji 2 0 (forj=1...,7)
xji s 0 (forj=r+1...,n)

» linear objective function and constraints (“=", “<”, or “>")

» variables with non-negativity constraint and unconstrained variables

» Conventions:
> 1 variables (always called x;)
> m constraints (coefficients always called 4; j, right-hand sides b;)

» minimize objective (“cost” ), coefficients c i objective valu@ €1X1 + - CnXxy



Enter Linear Algebra

min  c1xp+-+ CuXy

st @11+ Qiuky

» Spelling out all those linear combinations is cumbersome Qg eoeibCighiy & W (RIS onoon),
@igx1 4+ +ainxy 2 b (fori=q+1,..., m)
. . . . x> 0 (forj=1...,r)

~ Concise notation via matrix and vector products xS0 (orj=r+l...n)
» We write <\
— <

X1 bold ~ vector/matrix [C1
> variables x = | : cost coefficients ¢ = | : | € R” ~~ objective: minc’ - x

Xn Cn



Enter Linear Algebra N

s.t. ajxi+-oo+aiax, = by (fori=1,..., p)
» Spelling out all those linear combinations is cumbersome Qg eoeibCighiy & W (RIS onoon),
@igx1 4+ +ainxy 2 b (fori=q+1,..., m)
. . . . xj 2 0 (forj=1...,7)
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X1 bold ~~ vector/matrix [Cq /trar\spose
» variables x = | : cost coefficients ¢ = | : | € R” ~~ objective: minc’ - x
Xn Cn dot product / scalar product



Enter Linear Algebra
» Spelling out all those linear combinations is cumbersome

~ Concise notation via matrix and vector products

» We write
X1 bold ~~ vector/matrix [Cq
» variables x = cost coefficients ¢ = € R"
Xn Cn
> “="_constraints
a1 41,2 a1,n by
A = A CO
1 Ap2 ap,n by

€ R?

min  c1xp+-+ CuXy

s.t. ajxi+-oo+aiax, = by (fori=1,..., p)
igX1+---+ainxy < by (fori=p+1,..., q)
@igx1 4+ +ainxy 2 b (fori=q+1,..., m)

x 2 0 (forj=1...,r)
X €0 (forj=r+1l...,n)

transpose
T/ ’
~> objective: minc’ - x

dot product / scalar product

- AG) .y = B



Enter Linear Algebra N

s.t. ajaxy+-c+aigxy, = by (fori=1,..., p)
» Spelling out all those linear combinations is cumbersome famite o < b (forisp+l,....q)
@igx1 4+ +ainxy 2 b (fori=q+1,..., m)
. . . . x> 0 (forj=1...,r)
~ Concise notation via matrix and vector products xS0 (orj=r+l...n)
» We write
X1 bold ~~ vector/matrix [Cq /trar\spose
> variables x = | : cost coefficients ¢ = | : | € R” ~~ objective: minc’ - x
Xn Cn dot product / scalar product
» “="_constraints
a1 a1 o A1y by
AG) = | S o | e R b = | : | e RP ~ AP .x = p
ap1 Adp2 0 Apn by

elementwise <

.

» similarly for “<” and “>" constraints: A®x < b and A®x > p>)



Enter Linear Algebra N

s.t. ajaxy+-c+aigxy, = by (fori=1,..., p)
» Spelling out all those linear combinations is cumbersome e ety & By (@R0Ep & hnoert)
@igx1 4+ +ainxy 2 b (fori=q+1,..., m)
. . . . x 2 0 (forj=1...,r)
~ Concise notation via matrix and vector products xS0 (orj=r+l...n)
» We write
X1 bold ~~ vector/matrix [Cq transpose
> variables x = | : cost coefficients ¢ = | : | € R” ~~ objective: minc’ - x
Xn Cn dot product / scalar product
» “="_constraints
a1 412t A by
AP = | Do s lerrr b =i | e RP ~ A .x = p®
ap1 Adp2 0 Apn by

elementwise <

» similarly for “<” and “>" constraints: A®)x < b and AR)x > p®)
~+ a single constraint i can be writtenas A; o x = b; AVi, -}

(generally write A; , for the ith row of A and A, ; for the jth column)



Reformulations

Tricks of the Trade for working with LPs:

» min suffices:

» “>”_constraints:

max c

T

x = —min(—c)Tx

Aiex 2 by & (-A)i.x < -0,

10



Reformulations

Tricks of the Trade for working with LPs:

T

» min suffices: maxc'x = —min(—c)"x

» “>”_constraints:

» slack variables:

Al-,.x > b (—A)l-,.x
Ajex < b & Aj.x+xg

(x5, is a new additional variable)

IA

b;

and x5 > 0

10
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Reformulations

Tricks of the Trade for working with LPs:

» min suffices: maxc'x = —min(—c)"x
» “>"-constraints: Aiex 2 by & (-A)i.x < -0,
» slack variables: Ajex < b & Ajex+tx;; =b; and x; >0

(x5, is a new additional variable)

> nonnegative: variablex; S 0 & «x; = xj+—xj- and xj4,%xj- > 0

(xj,+ and x; - are new additional variables)

~ To solve LPs, can assume one of the following normal forms

with A € R™", b e R", and ¢ € R"

10



6.3 Linear Programs — The Simplex Algorithm



Simplex — Geometric Intuition

min x| > constmaint Ajux < b,

s.t. Ax <b
x>0

defines a hyperplane/ halfspace
v HE ={x € R" 1 Aj ox = b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

25
/
=P




Simplex — Geometric Intuition

FaE @ > constraint A; ox < b;

s.t. Ax <b
x>0

defines a hyperplane/ halfspace
v HE ={x € R" 1 Aj ox = b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})

» “Roll a ball downhill inside feasible region”
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» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})

» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!

(assuming finite optimal objective value z*)
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Simplex — Geometric Intuition

w5 > constraint A; ox < b;

s.t. Ax <b
x>0

defines a hyperplane/ halfspace
v HE ={x € R" 1 Aj ox = b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})
» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!

(assuming finite optimal objective value z*)

assuming nondegeneracy

> intersection of n hyperplanes H" is unique point

11



Simplex — Geometric Intuition

w5 > constraint A; ox < b;

s.t. Ax <b
x>0

defines a hyperplane/ halfspace
v HE ={x € R" 1 Aj ox = b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})
» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!
(assuming finite optimal objective value z*)
assuming nondegeneracy

> intersection of n hyperplanes H" is unique point
~ vertex {x]} = it H; (for I C [m],|I| =n)

11



Simplex — Geometric Intuition

w5 > constraint A; ox < b;

st. Ax < b defines a hyperplane/ halfspace
x2>0| 7 Hi={xeR* A x=b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})

» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!
(assuming finite optimal objective value z*)

assuming nondegeneracy
> intersection of n hyperplanes H" is unique point
~ vertex {x]} = it H; (for I C [m],|I| =n)

> always have ¢/ x* = ¢! xJ- for a vertex x|-
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Simplex — Geometric Intuition

FaE @ > constraint A; ox < b;

st. Ax < b defines a hyperplane/ halfspace
x2>0| 7 Hi={xeR* A x=b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})

» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!
(assuming finite optimal objective value z*)

assuming nondegeneracy
> intersection of n hyperplanes H" is unique point
~ vertex {x]} = it H; (for I C [m],|I| =n)
> always have ¢/ x* = ¢! xJ- for a vertex x|-

> “only” (') vertices x[ (all n-subsets of []) (o couck

Fuf,( (n‘w fan—:/‘t Q;m)

11



Simplex — Geometric Intuition

w5 > constraint A; ox < b;

st. Ax < b defines a hyperplane/ halfspace
x2>0| 7 Hi={xeR* A x=b}
+ nondegeneracy H; ={xeR" 1Ajox < b;}

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : cTx =0})
» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!
(assuming finite optimal objective value z*)
assuming nondegeneracy

> intersection of n hyperplanes H" is unique point
~ vertex {x]} = it H; (for I C [m],|I| =n)

> always have ¢/ x* = ¢! xJ- for a vertex x|-

> "Ol‘lly" (:’Z ) vertices x| (all n-subsets of [1])
~ Simplex algorithm:

Move to better neighbor until optimal.
» x;and xp neighborsif [INI'| =n -1

11



Simplex — Geometric Intuition

min ¢’ x > constraint A; ox < b;
Ax < b defines a hyperplane/ halfspace
x>0]| v H ={xeR":1 A4 x=b;}

Hi = {x e R" iAi,-X < bi}

s. t.

+ nondegeneracy

» ¢ = direction of improvement in R”
(normal vector for hyperplane {x € R" : ¢Tx = 0})

» “Roll a ball downhill inside feasible region”
~+ Optimal point x* must lie on boundary!
(assuming finite optimal objective value z*)

assuming nondegeneracy
> intersection of n hyperplanes H" is unique point
~ vertex {x]} = it H; (for I C [m],|I| =n)

T o+ T

» always have ¢’ x* = ¢* xp+ for a vertex x -

> "Ol‘lly" (?11) vertices x| (all n-subsets of [1])
~ Simplex algorithm:

Move to better neighbor until optimal.
» x;and xp neighborsif [INI'| =n -1

1
2
B}
4
5]
6
7
8
9

10

procedure simplexIteration(H = {Hy, ..., Hy}):
if (| H == 0 return INFEASIBLE
x := any feasible vertex
while x is not locally optimal // ¢ “against wall”
// pivot towards better objective function
if V feasible neighbor vertex x’ : ¢’ x’" > ¢ x
return UNBOUNDED
else
x := some feasible lower neighbor of x
return x

11



Simplex — Linear Algebra Realization "

min ¢ x

s.t. Ax = b

x>0
+ nondegeneracy

» Here use equality constraints ~» m <n w
»> Assume rank(A) = m (nondegeneracy)

» every | ={ji,..

|

.

., jm} C [n] corresponds to basis of A: {A'/h' ... ,A.,jm}

assuming nondegeneracy

12



Simplex — Linear Algebra Realization L {

min ¢ x »> Here use equality constraints ~» m <n

st Ax =b »> Assume rank(A) = m (nondegeneracy)

x>0
+ nondegeneracy

> every | ={j1,...,jm} € [n] corresponds to basis of A: {Aeji,...,Aej,}

assuming nondegeneracy

» Notation:

> xp=(xjp, ..., X, )T vector of basis variables
> X7 = X )T vector of non-basis variables forJ =[]\ ={7,--, Jn-m}

12



Simplex — Linear Algebra Realization

min ¢ x »> Here use equality constraints ~» m <n

s.t. Ax »> Assume rank(A) = m (nondegeneracy)

x 2>
+ nondegeneracy

» every ] ={ji,...,jm} C [n] corresponds to basis of A: {A, Ao i,

assuming nondegeneracy

s

> Notation:
> x; = (le pooan i )T vector of basis variables
> xj = (50005 B ) vector of non-basis variables for J = [n)\J = {71, -, Tn-m}
> Aj=(A.j, .., Asj,) €R™M; similarly A7 = (Aej;, ..., As, ) € RUZTXM
> cj and cj defined similarly
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Simplex — Linear Algebra Realization

min ¢ x »> Here use equality constraints ~» m <n

s.t. Ax »> Assume rank(A) = m (nondegeneracy)

x 2>
+ nondegeneracy

> every | ={j1,...,jm} € [n] corresponds to basis of A: {Aeji,...,Aej,}

assuming nondegeneracy
> Notation:
> x; = (le pooan i )T vector of basis variables
> xj = (50005 B )T vector of non-basis variables for J = [n)\J = {71, -, Tn-m}
> Aj=(A.j, .., Asj,) €R™M; similarly A7 = (Aej;, ..., As, ) € RUZTXM
> cj and cj defined similarly

square & full rank

~ Wehave Ax = b < Ajxj +Aij =b — |x = Aj_lb - Al_lA]xj

x7 is uniquely determined by choosing x;
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Simplex — Linear Algebra Realization

min ¢ x »> Here use equality constraints ~» m <n

s.t. Ax

»> Assume rank(A) = m (nondegeneracy)

x>0 ] ] .
+ nondegeneracy > every | ={j1,...,jm} € [n] corresponds to basis of A: {Aeji,...,Aej,}

assuming nondegeneracy
» Notation:

> x; = (le pooan i )T vector of basis variables

> xj = (50005 B )T vector of non-basis variables for J = [n)\J = {71, -, Tn-m}
> Aj=(A.j, .., Asj,) €R™M; similarly A7 = (Aej;, ..., As, ) € RUZTXM
> cj and cj defined similarly

square & full rank

~ Wehave Ax = b < Ajxj +Aij =b — |x = Aj_lb - Al_lA]xj

x7 is uniquely determined by choosing x;
> basic solution setting x7 = 0 gives x] = Al_lb ~~ correspond to vertices from before
> may or may not be a feasible basic solution: x; > 0?
S

~+ given |, can easily compute basic solution and check feasibility

12



Simplex — Local Optimality Test

> basic solution: |x; = A;'b — A;'Apx;

and

xf=0

min ¢x
s.t. Ax

X
+ nondegeneracy

13



Simplex — Local Optimality Test

» basic solution: |x; = A]”b = A]”ijj and x;=0

» How to locally modify basic solution without violating constraints?
> can’t change x;, for ji € | (equality constraint);
> can’t decrease xj, for jj € | (nonnegativity);
~+ can only increase xj, by small 6 > 0

min ¢x

s. t.

+ nondegeneracy
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Simplex — Local Optimality Test

» basic solution: |x; = A]”b = A]”ijj and x;=0

» How to locally modify basic solution without violating constraints?
> can’t change x;, for ji € | (equality constraint);
> can’t decrease xj, for jj € | (nonnegativity);
~+ can only increase xj, by small 6 > 0

T

» rewrite cost: c’'x = cjxy +c]

7

min ¢x

s. t.

+ nondegeneracy
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Simplex — Local Optimality Test

» basic solution: |x; = A]”b = A]”ijj and x;=0

» How to locally modify basicselution without violating constraints?
> can’t change x;, for ji € | (equallty constraint);
> can't decrease x7, for ji € | (nonnegptivity);

~+ can only increase xj, by small 6 >0

T
J

C](Al_lb —Al_lijj) + CTTJCj

» rewrite cost: cTx cjxy+c¢ Xy

min ¢x

s. t.

+ nondegeneracy
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Simplex — Local Optimality Test

» basic solution: |x; = A]”b = A]”ijj and x;=0

» How to locally modify basic solution without violating constraints?
> can’t change x;, for ji € | (equality constraint);
> can’t decrease xj, for jj € | (nonnegativity);
~+ can only increase xj, by small 6 > 0
T
J

C](Al_lb —Al_lijj) + CTTJCj

c]Aj_lb +* (CIT = c]Aj_lAj)xf
————

» rewrite cost: c’'x = cjxy+c¢ Xy

c

—i

min ¢x

s. t.

+ nondegeneracy
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Simplex — Local Optimality Test

min ¢x

> basic solution: |x; = A]”b - A]”ijj and x;=0 s.t. Ax

b

x>0
+ nondegeneracy

» How to locally modify basic solution without violating constraints?
> can’t change x;, for ji € | (equality constraint);
> can’t decrease xj, for jj € | (nonnegativity);
~+ can only increase xj, by small 6 > 0

T

> rewrite cost: c/x = cjxy + c] Xy
= c](Al_lb _A/_lijj) 3 CTTJCj
= c]Aj_lb + (CIT - c]Aj_lAj)xf
~T Convex function over a convex domain
C]— ~+ local opt = global opt

~> No (local) improvement possible <= & > 0 <<= current basic solution optimal
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Simplex — Local Optimality Test

» basic solution: |x; = A]”b = A]”ijj and x;=0

» How to locally modify basic solution without violating constraints?

> can’t change x;, for ji € | (equality constraint);

> can't decrease x7, for ji € | (nonnegativity);

~+ can only increase xj, by small 6 > 0
T
J
cy (Al_lb = Al_lijj) + CTTJCj
C]Aj_lb + (C}_ - C]Aj_lAj)xi
———

» rewrite cost: c’'x = cjxy+c¢ Xy

c

—i

min ¢x
s.t. Ax

X
+ nondegeneracy

Convex function over a convex domain
~+ local opt = global opt

~> No (local) improvement possible <= & > 0 <<= current basic solution optimal

» Otherwise: Bring ji with ¢; < 0 into basis

> This means we increase xj, as much as possible until some x;, becomes 0

~ corresponds to moving to neighbor vertex

13



Summary LP Algorithms

»> Simplex Algorithm
[C] simple and mostly combinatorial algorithm
[{b easy to implement

[b usually fast in practice (in most open source solvers)
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worst case running time actually exponential
details depend on how better neighboring vertex is chosen (pivoting rule)
but no rule known that guarantees polytime

[b but smoothed analysis proves: random perturbations of input yield expected polytime on any input
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Summary LP Algorithms

»> Simplex Algorithm
[C] simple and mostly combinatorial algorithm
[{b easy to implement

[b usually fast in practice (in most open source solvers)

EG) worst case running time actually exponential
details depend on how better neighboring vertex is chosen (pivoting rule)
but no rule known that guarantees polytime

[b but smoothed analysis proves: random perturbations of input yield expected polytime on any input

» Alternative methods
> ellipsoid method (separation-oracle based)
» interior-point methods (numeric algorithms)
[b worst case polytime
[b interior-point method fastest in practice

E(p more complicated, harder to implement well

14



6.4 Integer Linear Programs



When LPs Are Too Smooth

» Many natural optimization problems have linear objective and constraints
» Example: The Knapsack Problem

Given: items1,...,n with weights w € N” and values v € N
knapsack weight capacity b € N

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

~ Introduce variable x;, such that

“item included” iff x; = 1 max o' x
st wix <b (Knapsack)
x <1
x>0
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When LPs Are Too Smooth

» Many natural optimization problems have linear objective and constraints
» Example: The Knapsack Problem

Given: items1,...,n with weights w € N” and values v € N
knapsack weight capacity b € N

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

~ Introduce variable x;, such that

“item included” iff x; = 1 max o' x
st wix <b (Knapsack)
x <1
x>0

» via LP solvers, we obtain exact worst-case polytime algorithms

» Hold on; where’s the catch?
These problems are NP-hard; so there must be something wrong?

¥ Integrality! Optimal fractional Knapsack x* can be nonsensical:
Could have x; = 3 for a single high-value item of weight 2, etc.

15



Integer Linear Programs

> A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,
where (some) variables are constrained to integers, x; € Z.

» focus here on the case that all variables are integral: x € Z"

min c’x
s.t. Ax <D (ILP)
x>0

GGZ"




Integer Linear Programs

> A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,
where (some) variables are constrained to integers, x; € Z.

» focus here on the case that all variables are integral: x € Z"

Example: Knapsack
min c¢’x max ovlx
s.t. Ax <b (ILP) s.t. wlx < b (Knapsack-ILP)
X = 0 x <

e Z" x =
€

X

X
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Integer Linear Programs

> A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,
where (some) variables are constrained to integers, x; € Z.

» focus here on the case that all variables are integral: x € Z"

Example: Knapsack
min ¢ x max o'x
s.t. Ax <b (ILP) s.t. wlx < b (Knapsack-ILP)
x >0 x <1
x € Z" x>0
intersection of halfspaces x € Z"

v
~+ feasibility region of an LP is a polyhedron P = {x € R" : Ax < b, x > 0}
feasibility region of an ILP is the intersection of P with the integer lattice:
Pz =PnZ" c P

Sulvries 1LP is NP-Vard { &/1 - [vreeea pQQGRAMM(MC\
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Integer Linear Programs

> A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,
where (some) variables are constrained to integers, x; € Z.

» focus here on the case that all variables are integral: x € Z"

Example: Knapsack
min ¢ x max o'x
s.t. Ax <b (ILP) s.t. wlx < b (Knapsack-ILP)
x >0 x <1
x € Z" x>0
intersection of halfspaces x € Z"

v
~ feasibility region of an LP is a polyhedron P = {x € R" : Ax < b, x > 0}
feasibility region of an ILP is the intersection of P with the integer lattice:
Pz =PnZ" c P

~- Still get a lower bound on objective value

[optimal objective value of LP < optimal objective value of ILP]
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LP Relaxations

» Given a combinatorial optimization problem as ILP,
its LP relaxation is the LP obtained by dropping all integrality constraints.

H}LQ - CLu:C,rJ wey do bq‘( oo lODu~J5 g'tﬂ eﬁ)kﬁwcﬁ Uaﬂ,(,(
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LP Relaxations

» Given a combinatorial optimization problem as ILP,
its LP relaxation is the LP obtained by dropping all integrality constraints.

» Example: Independent Set
» Given: G =(V,E)
Goal: Maximum-cardinality independent set

» Introduce variable x;, € {0,1} forv e V

max Z Xy

veV

s.t. xp+xy < 1 (Yow € E) (ISIILP)
xp € {0,1} (VoeV) 0<x <1 VoeV)

(IS-LP)

17



Integrality Gap

.
Z1Lp

%

Zrp

» The ratio

is called the integrality gap of an LP relaxation.

LQM adss Nzéw ho mLeéon»‘ly Se Q‘Q

53 V"\’D[ﬂ‘&hbl
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Integrality Gap

*

z
» The ratio —-~

is called the integrality gap of an LP relaxation.

%

zZ
LP
» Hessy James's apple trees: use 533 instead of 533.33 . .. trees
~+ actual profit € 155415 instead of €155500 ~+ minuscule difference
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Integrality Gap

*

z
» The ratio —-~

%

zZ
LP
» Hessy James's apple trees: use 533 instead of 533.33 . .. trees
~+ actual profit € 155415 instead of €155500 ~+ minuscule difference

is called the integrality gap of an LP relaxation.

> If integrality gap is small, can potentially use LP for approximate solutions ~+ Unit 12

» in the worst case, integrality gap can be bad

A

/
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Integrality Gap

*

z
» The ratio —-~

%

Zrp

is called the integrality gap of an LP relaxation.

» Hessy James's apple trees: use 533 instead of 533.33 . .. trees
~+ actual profit € 155415 instead of €155500 ~+ minuscule difference

> If integrality gap is small, can potentially use LP for approximate solutions ~+ Unit 12

» in the worst case, integrality gap can be bad

A

/

> actual example: Independent Set

» Consider complete graph G = K,

> Largest independent set is single
vertex ~ zpp, =1

» Fractional solution possible with
z] p = /2 by setting all x;, = %

~ unbounded integrality gap

18



6.5 LP-Based Kernelization



Vertex Cover as (Integer) Linear Program

Consider optimization version of VERTEXCOVER:
Given: Graph G = (V,E)

Goal: Vertex cover of G with minimal cardinality.

suluatls i Of1.3%,°)

OlL™) kel
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Vertex Cover as (Integer) Linear Program

Consider optimization version of VERTEXCOVER:
Given: Graph G = (V,E)
Goal: Vertex cover of G with minimal cardinality.

~+ equivalent to the following integer linear program hodip. se !
min Y, ey Xo o Tomy
s.t. xy +x,>1 forall{u,v}€E sl xg ity <

X, €{0,1} forallv eV
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Vertex Cover as (Integer) Linear Program
Consider optimization version of VERTEXCOVER:
Given: Graph G = (V,E)

Goal: Vertex cover of G with minimal cardinality.

~+ equivalent to the following integer linear program

min Y.y Xp
s.t. x, +x,>1 forall{u,v} €E
X, €{0,1} forallv eV
Consider relaxation to x, € R, x, > 0.
~> LP that can by solved in polytime.

j/fc [i.’ Qto.r ij >
Readans 41,\1; geasfgq‘ald 2 V‘QST\Q <
tr o way Hel varer Q\AC’}.MS&)

Z* (X2 { X* e C,TXG = zﬁg
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Vertex Cover as (Integer) Linear Program

Consider optimization version of VERTEXCOVER:
Given: Graph G = (V,E)
Goal: Vertex cover of G with minimal cardinality.

~+ equivalent to the following integer linear program

min Y.y Xp
s.t. x, +x,>1 forall{u,v} €E

X, €{0,1} forallv eV

Consider relaxation to x, € R, x, > 0.

~> LP that can by solved in polytime. oumg X w2l sebisf g

For an optimal solution X of the relaxation, we define

Iy = {UGV:XU<%}
Vo = {veV:ix,=1}
Co = {veVix,>1}

Q<

=

4
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Kernel for VC

Theorem 6.1 (Kernel for Vertex Cover)
Let (G = (V, E), k) an instance of p-VERTEX-COVER.

1. There exists a minimal vertex cover S with Co € S and S N Iy = 0.
2.V implies a problem kernel (G[V;], k — |Co|) with |Vp| < 2k.

Here G[Vp] is the induced subgraph of Vj in G.

Proof:
ad @y Lt S ke cphtua? VC Sor G
Lyt & = (S‘{\‘ IB\ v Cs 7s ofyo Qwauﬁ vV
:(S&‘;%I\\'ch SI:S’/\IO, [ N

’ S ’\/Ch ®v\Q</ LASLB ot &l '{LACLFB"M&\J - Ao con@d vemcans

-«
e = v v e T, = X, & 5 =D X, >

(QQQ o“&v LAsz; uf—-c!«mé;é

(S O’V\Qr‘&

(
2 = wel(
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Kernel for VC [2]

Proof (cont.):

h[S?"\S*\Q SICS* ?Cngd‘:gz{
- |5l = Is*l —(sz] T

solhen lo skew Het |81 2

2 1S.l
£ = w:m{y\ﬁ’lz“"vefcg > D
X = & &KMF{ Sor
o we St wii= b e g
> ae S x, °= X2 -z 2 d CY)
CCxiu .

k’ g\)éwl CQ\AJLT&A\A\\J Qb [,p
x/\, + Xl 3[ al for vwe = conld olly G wiclahd

%f v w u—«"H/x Veé;

o
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Kernel for VC [3] Alw e T_NG* ved st e ST

- 5 8* V¢
Proof (cont.): @) we St > x, = X% ag & Resll
/
Xt Xy = x‘w4xf s A4
sz"\’ﬁjb =% X;E‘\z( )(;,é
69
el li D(‘faﬁu\
el T3 T
'v// LV
Sx v e(15el-15l) = 3.0 < 1S2] o
v [ —@)
20O

N
O
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CILA (2) LP a%\/ch{V\ ZX? < TLP Q[ojch{V\g VQ\‘N Oty im(;r,(

=> 23*? = D 3 ¥
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6.6 Lower Bounds by ETH
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The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)

The Exponential-Time Hypothesis (ETH) asserts that there is a constant ¢ > 0 so that every
algorithm for p-3SAT requires Q(2¢%) time, where k is the number of variables.
A

v

[l-(—%)k >0

vamtalde
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The Exponential Time Hypothesis

Definition 6.3 (Exponential-Time Hypothesis)

The Exponential-Time Hypothesis (ETH) asserts that there is a constant ¢ > 0 so that every
algorithm for p-3SAT requires Q(2¢%) time, where k is the number of variables.
g IO MITIDE RO VAT S D IES

Equivalent formulations:

» Thereis a 6 > 0 so that every 3-SAT algorithm needs Q((1 + 5)k) time.
» There is no O(Zf"@n“)—time algorithm for 3-SAT.

» There is no subexponential-time algorithm for 3-SAT.

23



Lower Bounds Conditional on ETH

» Idea: Show that solving X in time f(k, n)
implies a O(2¢1¢) algorithm for 3SAT for all & > 0.

A
~+ unless ETH false, no such f(k, n)-time algorithm for X exists.

» That needs a 35AT-reduction that preserves parameter k tightly.

24



Recall: Classical Reduction from 3SAT to Vertex Cover

(i1) 3SAT <, VERTEXCOVER — Example
Q= (X1 V xy V —|X3) A (—|X1 V x3V X4) A (ﬂxl V —xoy V ﬁX4) A (Xz V x3V X4)

> Idea: Vertices not in vertex cover S

define a variable assignment.

» Cannot be contradictory, otherwise
“negation”-edge not covered.

> Must take > 2 vertices per clause into S
(otherwise triangle not covered)

~ |§| > 2n for every vertex cover.

» In the example:
» Fat vertices form a vertex cover for G
» corresponding assignment:
V={x1~0,x—0,x3—0,x4+— 1}
(0 = false, 1 = true)

~ ¢ satisfiable

r=r=2

39
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Sparsification Lemma

Lemma 6.4 (Sparsification Lemma)
For all ¢ > 0, there is a constant K so that we can compute for every formula ¢ in 3-CNF with
n clauses over k variables an equivalent formula \/!_, ¢; where each ¢; is in 3-CNF and over

the same k variables and has < K - k clauses. Moreover, t < 2¢¥ and the computation takes
O(2¢%n°) time.

Rough Idea:
Iteratively remove sunflowers by retaining only the heart or only the petals.
Proof in Impagliazzo, Paturi, Zane (2001): Which Problems Have Strongly Exponential Complexity?

26



Lower Bounds _ 3SAT [1] Lemma 6.4 (Sparsification Lemma)

For all ¢ > 0, there is a constant K so that we can compute for every formula ¢ in 3-CNF with
1 clauses over k variables an equivalent formula \/!_, ¢; where each ¢; is in 3-CNF and over
the same k variables and has < K - k clauses. Moreover, f < 2°* and the computation takes

Theorem 6.5 (Lower Bound by Size) 0@a")time ‘

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-3SAT needs time
Q(2¢0**k)) where 7 is the number of clauses and k is the number of variables.

Proof: AQUM Ve o Ao s an aﬂjnwﬂw Hod ol p-3SAT
¢ (nek)
iw O(3 V\b»

Sl g
Lk 550 gwe. To dow + 3 alsedlen Bg dled sl p 38T o O( )

€ ~> li BT,

Sl g= = o QL{ KtL((ﬁ) Lo Ccu\LaM( Yimw ypcr:#/:‘cauog ,@_wwg.

0 Cobonl G il B g fsta Vg Ll esd
S
(Z) Csﬁ_ﬂ Ac &:c( cocR« 'LHL. wt“’\ c = S (e

(Y Rdu boc ey 2 sebs{rall,
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Lower Bounds — 3SAT [2]

Proof (cont.):

@UM\M"uS (\V-—« a! BS Aa-= ('l{)() < ML(
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Lower Bounds - Vertex Cover

Theorem 6.5 (Lower Bound by Size)

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-3SAT needs time

Q(2¢01t5)) where 1 is the number of clauses and k is the number of variables.

Theorem 6.6 (No Subexponential Algorithm Vertex Cover)

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-VERTEX-COVER needs
time Q(2°F).

~» Apart from constant basis, exponential dependence on k likely best possible.
Proof: Same e plale

ck 1}
AssuM \’/c >0 AL s am aﬁnw#m ol colines P/\/C W O(2 v )

S>O ivee  ~D (Q‘Juslwa‘ %8 sua\,;us -SAT i L{M O(;}g.mwb)
o (\L\
Ci) Given cous b ol (éﬁé‘) vsle gy “slamdond »’bcl,uchg\ /j);/\
S f &
(2) Cott Ac o (G c= 2 .
ck ¢ %—Qm
=5 By selus 2IAT o OCH Y= 0(9

V\SQ = O(ggmmb)
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Lower Bounds - Closest String

Theorem 6.7 (Lower Bound Closest String)

Unless ETH fails, there is a constant ¢ > 0 so that every algorithm for p-CLOSEST-STRING needs
time Q(2¢k18K)) = Q(kek).

Proof omitted.

see Cygan et al. (2015): Parameterized Algorithms

~~ Again, apart from constant in basis, k* growth in k likely best possible.
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Summary

» LPs as a versatile tool

» in particular, give linear-size kernel for p-VERTEXCOVER

» assuming the Exponential Time Hypothesis (instead of only P # NP),
can show lower bounds for f(k) part of ant fpt algorithm
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