

Advanced Parameterized Ideas

3 June 2025

Prof. Dr. Sebastian Wild

Outline

6 Advanced Parameterized Ideas

- 6.1 Linear Programs A Mighty Blackbox Tool
- 6.2 Linear Programs Reformulation Tricks
- 6.3 Linear Programs The Simplex Algorithm
- 6.4 Integer Linear Programs
- 6.5 LP-Based Kernelization
- 6.6 Lower Bounds by ETH

6.1 Linear Programs – A Mighty Blackbox Tool

Linear Programs

- ► *Linear programs (LPs)* are a class of optimization problems of **continuous** (numerical) variables
- ► can be exactly solved in worst case polytime (LinearProgramming ∈ P)
 - ▶ interior-point methods, Ellipsoid method
- routinely solved in practice to optimality with millions of variables and constraints
 - ► Simplex algorithm, interior-point methods
 - many existing solvers, commercial and open source (e.g., HiGHS)

Hessy James's Apple Farm

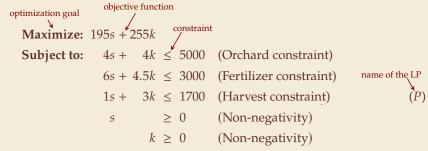
- ► Hessy tries to maximize the profit of his apple farm
 - ▶ He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - ► He has an orchard of 5 000 m²
 - ► each tree needs 4 m² of orchard space
 - ▶ each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - ► Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

Hessy James's Apple Farm

- ► Hessy tries to maximize the profit of his apple farm
 - ▶ He is committed to promote regional Hessian heirloom varieties, so he only grows "Sossenheimer Roter" and "Korbacher Edelrenette"
 - ▶ each tree of "Sossenheimer Roter" yields apples worth € 195 per year
 - ▶ each tree of "Korbacher Edelrenette" yields applies worth € 255 per year
 - ► He has an orchard of 5 000 m²
 - each tree needs 4 m² of orchard space
 - each tree of "Sossenheimer Roter" needs 6 kg of organic fertilizer and 1 h harvest effort per year
 - each tree of "Korbacher Edelrenette" needs 4.5 kg of organic fertilizer and 3 h harvest effort per year
 - ▶ Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year
- → How many trees of each variety should Hessy plant?
 - ▶ What will constrain us most? Space? Fertilizer? Harvest hours?
 - What profit can Hessy expect?

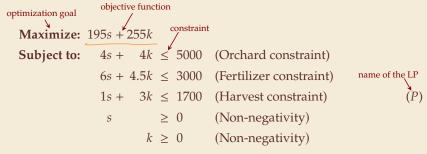
Formal Linear Program for Hessy James's Apple Farm

- ► Classic application of linear programming in *operations research* (*OR*)
- ► We formally write LPs as follows:



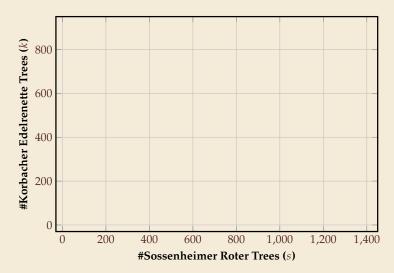
Formal Linear Program for Hessy James's Apple Farm

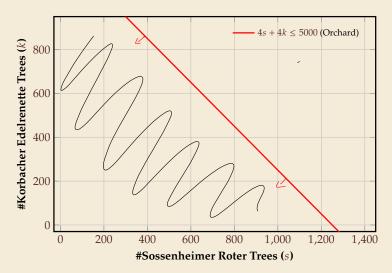
- ► Classic application of linear programming in *operations research* (OR)
- ► We formally write LPs as follows:

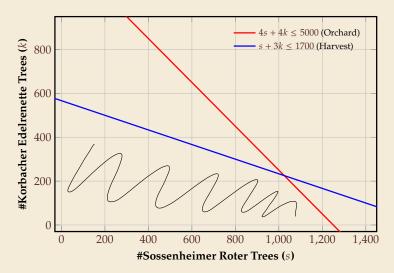


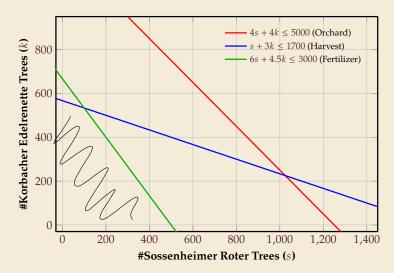
► Terminology:

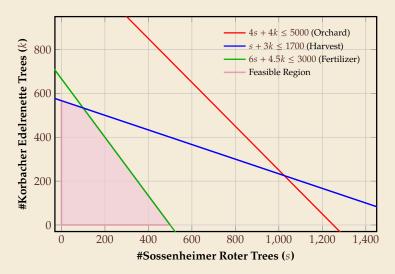
- \triangleright s and k are the two *variables* of the problem; these are always real numbers.
- ▶ A vector $(s, k) \in \mathbb{R}^2$ is a *feasible solution* for the LP if it satisfied all constraints.
- ► The largest value of the objective function (over all feasible solutions) is the (optimal) value(z*) of the LP
- ▶ A feasible solution $(s^*, k^*) \in \mathbb{R}^2$ with optimal objective value z^* is called an *optimal solution*

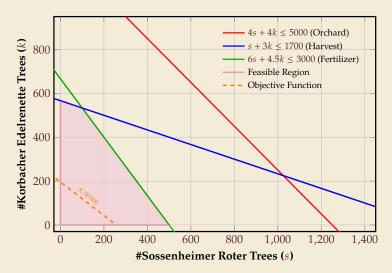


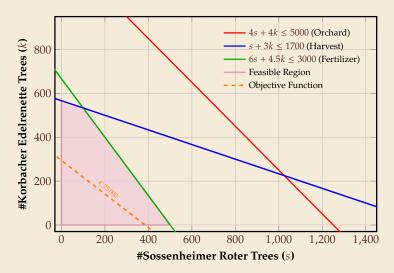


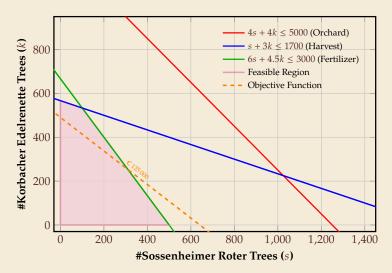


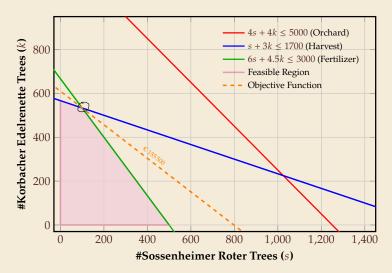


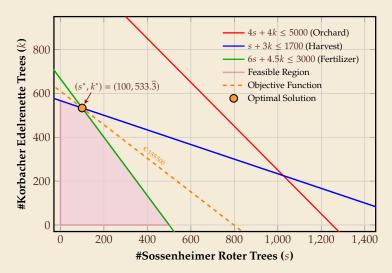


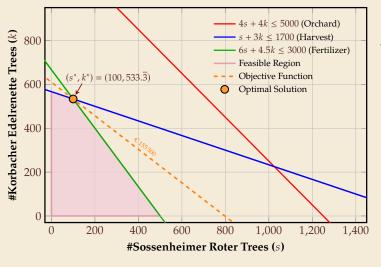












- → Hessy should plant
 - ► 100 Sossenheimer Roter trees and hmm...
- ► 533+¹/₃ Korbacher Edelrenette trees
- ► Harvest **and** fertilizer *tight*
- orchard space isn't
- \rightsquigarrow know what to change

LPs – The General Case

► General LP:

min
$$c_1x_1 + \cdots + c_nx_n$$

s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \geq b_i$ (for $i = q + 1, \dots, m$)
 $x_j \geq 0$ (for $j = 1, \dots, r$)
 $x_j \leq 0$ (for $j = r + 1, \dots, n$)
jective function "don't care" (just to make it explicit)

arbitrary linear objective function

- ▶ arbitrary **linear** constraints, of type "=", " \leq " or " \geq "
- variables with non-negativity constraint and unconstrained variables

LPs – The General Case

► General LP:

min
$$c_1x_1 + \cdots + c_nx_n$$

s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \leq b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \cdots + a_{i,n}x_n \geq b_i$ (for $i = q + 1, \dots, m$)
 $x_j \geq 0$ (for $j = 1, \dots, r$)
 $x_j \leq 0$ (for $j = r + 1, \dots, n$)
jective function "don't care" (just to make it explicit)

- arbitrary linear objective function
- ▶ arbitrary **linear** constraints, of type "=", "≤" or "≥"
- variables with non-negativity constraint and unconstrained variables
- ► In general, an LP can
 - (a) have a finite optimal objective value
 - (b) be infeasible (contradictory constraints / empty feasibility region), or
 - (c) be *unbounded* (allow arbitrarily small objective values " $-\infty$ ")
- → in polytime, can detect which case applies and compute optimal solution in case (a)

Classic Modeling Example - Max Flow

- ▶ The maximum-s-t-flow problem in a graph G = (V, E) can be reduced to an LP (Flow)
 - ▶ variable f_e for each edge $e \in E$
 - ightharpoonup maximize flow value F = flow out of s
 - ightharpoonup constraint for edge capacity C(e) at each edge
 - ightharpoonup constraint for flow conservation at each vertex v (except s and t)

$$\begin{array}{lll} \max & F \\ \text{s. t.} & F & = & \sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs} \\ & & & \\ f_{vw} & \leq & C(vw) & \text{(for } vw \in E) \\ & & \sum_{w \in V} f_{wv} & = & \sum_{w \in V} f_{vw} & \text{(for } v \in V \setminus \{s,t\}) \\ & & & \\ f_{e} & \geq & 0 & \text{(for } e \in E) \end{array}$$

6.2 Linear Programs – Reformulation Tricks

How to solve an LP?

- ▶ Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - ▶ in practice: call good solver!

How to solve an LP?

- Our focus will be on using LPs as a tool
 - ▶ in theory: reducing problem to an LP means polytime solvable
 - ▶ in practice: call good solver!
- ▶ But as with any good tool, it helps to gave an idea of **how** it works to effectively use it
- → We will briefly visit the conceptual ideas of the simplex algorithm

Recall: General Form of LPs

► General LP:

min
$$c_1x_1 + \dots + c_nx_n$$

s. t. $a_{i,1}x_1 + \dots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \le b_i$ (for $i = p + 1, \dots, q$)
 $a_{i,1}x_1 + \dots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$)
 $x_j \ge 0$ (for $j = 1, \dots, r$)
 $x_j \le 0$ (for $j = r + 1, \dots, n$)

- ▶ linear objective function and constraints ("=", "≤", or "≥")
- variables with non-negativity constraint and unconstrained variables

▶ Conventions:

- ightharpoonup n variables (always called x_i)
- \blacktriangleright *m* constraints (coefficients always called $a_{i,j}$, right-hand sides b_i)
- ▶ minimize objective (" \underline{c} ost"), coefficients c_j ; objective value $z = c_1x_1 + \cdots + c_nx_n$

- ▶ Spelling out all those linear combinations is cumbersome
- → Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 cost coefficients $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: $\min c^T \cdot x$

```
min c_1x_1 + \cdots + c_nx_n
s.t. a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i (for i = 1, \dots, p)
         a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)
         a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i (for i = q + 1, \dots, m)
                                x_i \geq 0 \quad (\text{for } j = 1 \dots, r)
                                x_i \leq 0 \quad (\text{for } i = r + 1 \dots, n)
```


- ▶ Spelling out all those linear combinations is cumbersome
- Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

```
▶ variables x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} bold \rightsquigarrow vector/matrix c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n \rightarrow objective: min c^T \cdot x dot product / scalar product
```

```
min c_1x_1 + \cdots + c_nx_n
s.t. a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i (for i = 1, ..., p)
        a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)
        a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i (for i = q + 1, \ldots, m)
                               x_j \ge 0 \quad (\text{for } j = 1 \dots, r)
                              x_i \leq 0 \quad (\text{for } j = r + 1 \dots, n)
```

- ▶ Spelling out all those linear combinations is cumbersome
- Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \rightarrow objective: min $c^T \cdot x$ dot product / scalar product

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for $i = 1, \dots, p$) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } i = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

- ▶ Spelling out all those linear combinations is cumbersome
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \rightarrow objective: min $c^T \cdot x$ dot product / scalar product

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

$$\bullet \text{ similarly for "\leq" and "\geq" constraints:} \qquad A^{(\leq)} x \stackrel{\leq}{\leq} b^{(\leq)} \quad \text{and} \quad A^{(\geq)} x \geq b^{(\geq)}$$

tentwise
$$\leq$$

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for i = 1, ..., p) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } j = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

- ▶ Spelling out all those linear combinations is cumbersome
- → Concise notation via matrix and vector products
- ▶ We write

▶ variables
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 bold \rightsquigarrow vector/matrix $c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in \mathbb{R}^n$ \sim objective: min $c^T \cdot x$ dot product / scalar product

min $c_1x_1 + \cdots + c_nx_n$ s.t. $a_{i,1}x_1 + \cdots + a_{i,n}x_n = b_i$ (for i = 1, ..., p) $a_{i,1}x_1 + \cdots + a_{i,n}x_n \le b_i \text{ (for } i = p + 1, \dots, q)$ $a_{i,1}x_1 + \cdots + a_{i,n}x_n \ge b_i$ (for $i = q + 1, \dots, m$) $x_i \geq 0 \quad (\text{for } j = 1 \dots, r)$ $x_i \leq 0 \quad (\text{for } i = r + 1, \dots, n)$

► "="-constraints

$$A^{(=)} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p,1} & a_{p,2} & \cdots & a_{p,n} \end{pmatrix} \in \mathbb{R}^{p \times n} \qquad b^{(=)} = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} \in \mathbb{R}^p \qquad \rightsquigarrow A^{(=)} \cdot x = b^{(=)}$$

$$\text{elementwise} \leq b^{(\leq)} \qquad \text{and} \qquad A^{(\geq)} x \geq b^{(\geq)}$$

$$\text{similarly for "\leq" and "\geq" constraints:} \qquad A^{(\leq)} x \leq b^{(\leq)} \qquad \text{and} \qquad A^{(\geq)} x \geq b^{(\geq)}$$

- ▶ similarly for "≤" and "≥" constraints:
- \rightarrow a single constraint i can be written as $A_{i,\bullet}x = b_{i}$ ASi .: 3 (generally write $A_{i,\bullet}$ for the *i*th row of A and $A_{\bullet,i}$ for the *j*th column)

Tricks of the Trade for working with LPs:

- ightharpoonup min suffices: $\max c^T x = -\min(-c)^T x$
- ▶ "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$

Tricks of the Trade for working with LPs:

- $ightharpoonup min suffices: max <math>c^T x = -min(-c)^T x$
- ▶ "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ▶ slack variables: $A_{i,\bullet} x \leq b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \geq 0$

(x_{s_i} is a new additional variable)

Tricks of the Trade for working with LPs:

- ► "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ► slack variables: $A_{i,\bullet} x \le b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \ge 0$ $(x_{s_i} \text{ is a new additional variable})$
- ▶ *nonnegative*: variable $x_j \le 0 \iff x_j = x_{j,+} x_{j,-}$ and $x_{j,+}, x_{j,-} \ge 0$ ($x_{j,+}$ and $x_{j,-}$ are new additional variables)

Tricks of the Trade for working with LPs:

- ▶ "≥"-constraints: $A_{i,\bullet} x \ge b_i \iff (-A)_{i,\bullet} x \le -b_i$
- ► slack variables: $A_{i,\bullet} x \leq b_i \iff A_{i,\bullet} x + x_{s_i} = b_i$ and $x_{s_i} \geq 0$

 $(x_{s_i} \text{ is a new additional variable})$

- ▶ *nonnegative*: variable $x_j \le 0 \iff x_j = x_{j,+} x_{j,-} \text{ and } x_{j,+}, x_{j,-} \ge 0$ $(x_{j,+} \text{ and } x_{j,-} \text{ are new additional variables})$
- → To solve LPs, can assume one of the following **normal forms**

$$\begin{array}{ccc}
\min & c^T x \\
\text{s. t. } & Ax \leq b \\
& x \geq 0
\end{array} \quad \text{or} \quad \begin{bmatrix}
\min & c^T x \\
\text{s. t. } & Ax = b \\
& x \geq 0
\end{bmatrix} \quad \text{with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, \text{ and } c \in \mathbb{R}^n$$

6.3 Linear Programs – The Simplex Algorithm

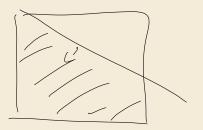
$$\min c^{T} x$$
s.t. $Ax \le b$

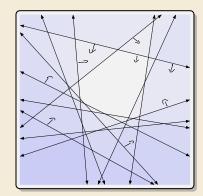
$$x \ge 0$$
+ nondegeneracy

► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

$$H_i^{=} = \{ x \in \mathbb{R}^n : A_{i,\bullet} x = b_i \}$$

$$H_i = \{ x \in \mathbb{R}^n : A_{i,\bullet} x \le b_i \}$$

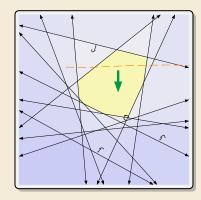




```
\min c^{T} x
s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

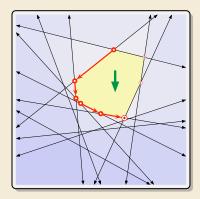
- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"



```
\min c^{T}x
s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

► constraint $A_{i, \bullet} x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)



```
\min c^{T} x

s.t. Ax \le b

x \ge 0

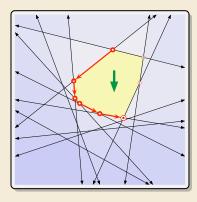
+ nondegeneracy
```

► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightsquigarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

ightharpoonup intersection of n hyperplanes $H_i^=$ is unique point



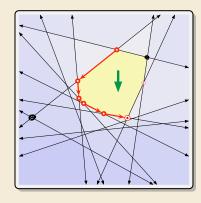
```
\min c^{T}x
s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - → Optimal point x* must lie on boundary!
 (assuming finite optimal objective value z*)

assuming nondegeneracy

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)



```
\min c^{T} x

s.t. Ax \le b

x \ge 0

+ nondegeneracy
```

► constraint $A_{i, \bullet} x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

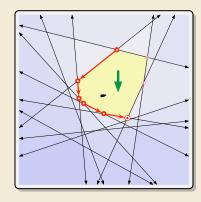
- ► c = **direction** of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

▶ intersection of n hyperplanes $H_i^=$ is unique point

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)

► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}



$$\min c^{T} x$$
s.t. $Ax \le b$

$$x \ge 0$$
+ nondegeneracy

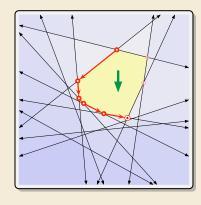
► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \leadsto Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - ► "only" (m) vertices x [(all n-subsets of [m]) (n court ~ paly him bute form)



$\min c^{T} x$ s.t. $Ax \le b$ $x \ge 0$ + nondegeneracy

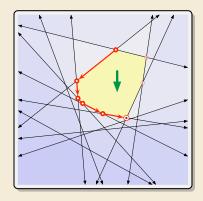
► constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - \rightarrow Optimal point x^* must lie on boundary! (assuming finite optimal objective value z^*)

assuming nondegeneracy

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])
 - → Simplex algorithm:Move to better neighbor until optimal.
 - ▶ x_I and $x_{I'}$ neighbors if $|I \cap I'| = n 1$



```
\min c^{T}x
s.t. Ax \le b
x \ge 0
+ nondegeneracy
```

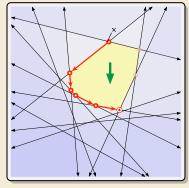
constraint $A_{i,\bullet}x \le b_i$ n = 2, m = 12 defines a *hyperplane/halfspace*

- ► c =direction of improvement in \mathbb{R}^n (normal vector for hyperplane $\{x \in \mathbb{R}^n : c^T x = 0\}$)
 - ► "Roll a ball downhill inside feasible region"
 - → Optimal point x* must lie on boundary!
 (assuming finite optimal objective value z*)

assuming nondegeneracy

$$\rightsquigarrow$$
 vertex $\{x_I\} = \bigcap_{i \in I} H_i^=$ (for $I \subset [m], |I| = n$)

- ► always have $c^T x^* = c^T x_{I^*}$ for a vertex x_{I^*}
 - "only" $\binom{m}{n}$ vertices x_I (all *n*-subsets of [m])
 - Simplex algorithm:
 Move to better neighbor until optimal.
 - ▶ x_I and $x_{I'}$ neighbors if $|I \cap I'| = n 1$



```
procedure simplexIteration(H = \{H_1, \dots, H_m\}):

if \bigcap H = \emptyset return INFEASIBLE

x := \text{any feasible vertex}

while x is not locally optimal // c "against wall"

// \text{pivot towards better objective function}

if \forall feasible neighbor vertex x' : c^T x' > c^T x

return UNBOUNDED

else

x := \text{some feasible lower neighbor of } x

return x
```

min $c^T x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

- ► Here use equality constraints $\rightsquigarrow m \leq n$
- ightharpoonup Assume rank(A) = m (nondegeneracy)
- every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet, j_1}, \dots, A_{\bullet, j_m}\}$

$$\min c^{T}x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)

► Notation:

- $ightharpoonup x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{J}} = (x_{\bar{J}_1}, \dots, x_{\bar{J}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{\jmath}_1, \dots, \bar{\jmath}_{n-m}\}$

$$\min c^{T} x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- ► Assume rank(A) = m (nondegeneracy)

- $ightharpoonup x_I = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $ightharpoonup x_{\bar{I}} = (x_{\bar{I}_1}, \dots, x_{\bar{I}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{J}_1, \dots, \bar{J}_{n-m}\}$
- $ightharpoonup c_{\bar{l}}$ and $c_{\bar{l}}$ defined similarly

$$min cT x$$
s.t. $Ax = b$

$$x \ge 0$$
+ nondegeneracy

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- min c^Tx s.t. Ax = b $x \ge 0$ Here use equality constants

 Assume rank(A) = m (nondegeneracy)

 every $J = \{j_1, \dots, j_m\} \subseteq [n]$ correspond • every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of $A: \{A_{\bullet, j_1}, \dots, A_{\bullet, j_m}\}$

► Notation:

- $ightharpoonup x_J = (x_{j_1}, \dots, x_{j_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{I}} = (x_{\bar{I}_1}, \dots, x_{\bar{I}_{n-m}})^T$ vector of non-basis variables for $\bar{I} = [n] \setminus I = \{\bar{I}_1, \dots, \bar{I}_{n-m}\}$

- $ightharpoonup c_{\bar{J}}$ and $c_{\bar{J}}$ defined similarly square & full rank $ightharpoonup We have <math>Ax = b \iff A_{\bar{J}}^{-1}x_{\bar{J}} + A_{\bar{J}}x_{\bar{J}} = b \iff x_{\bar{J}} = A_{\bar{J}}^{-1}b A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$

 $x_{\bar{l}}$ is uniquely determined by choosing $x_{\bar{l}}$

min
$$c^Tx$$

s.t. $Ax = b$
 $x \ge 0$
+ nondegeneracy

Are there use equality constraints $\rightsquigarrow m \le m$
Assume rank $(A) = m$ (nondegeneracy)

• every $J = \{j_1, \dots, j_m\} \subseteq [n]$ correspond

- ► Here use equality constraints \rightsquigarrow $m \leq n$
- every $J = \{j_1, \dots, j_m\} \subseteq [n]$ corresponds to *basis* of A: $\{A_{\bullet,j_1}, \dots, A_{\bullet,j_m}\}$

► Notation:

- $\blacktriangleright x_I = (x_{i_1}, \dots, x_{i_m})^T$ vector of basis variables
- $\blacktriangleright x_{\bar{1}} = (x_{\bar{1}_1}, \dots, x_{\bar{1}_{n-m}})^T$ vector of non-basis variables for $\bar{J} = [n] \setminus J = \{\bar{j}_1, \dots, \bar{j}_{n-m}\}$
- $ightharpoonup c_{ar{J}}$ and $c_{ar{J}}$ defined similarly square & full rank
- \Rightarrow We have $Ax = b \iff A_J^{x_J} + A_{\bar{J}}x_{\bar{J}} = b \iff x_J = A_J^{-1}b A_J^{-1}A_{\bar{J}}x_{\bar{J}}$ $x_{\bar{l}}$ is uniquely determined by choosing $x_{\bar{l}}$
- ▶ basic solution setting $x_{\bar{l}} = 0$ gives $x_{\bar{l}} = A_{\bar{l}}^{-1}b$ \longrightarrow correspond to vertices from before
 - ▶ may or may not be a *feasible basic solution*: $x_I \ge 0$?
- → given *J*, can easily compute basic solution and check feasibility

b basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

min $c^T x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ▶ can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightsquigarrow can only increase $x_{\bar{j}_k}$ by small $\delta > 0$

min c^T xs. t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ▶ can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- ► rewrite cost: $c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$

min c^T xs.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ▶ can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$

► rewrite cost:
$$c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$$

= $c_J (A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}) + c_{\bar{J}}^T x_{\bar{J}}$

 $\min c^{T} x$ s.t. Ax = b $x \ge 0$ + nondegeneracy

▶ basic solution:
$$\left[x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}\right]$$
 and $x_{\bar{J}} = 0$

- ▶ How to locally modify basic solution without violating constraints?
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - ► can't *decrease* $x_{\bar{l}_k}$ for $\bar{l}_k \in \bar{l}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$

rewrite cost:
$$c^{T}x = c_{J}x_{J} + c_{\bar{J}}^{T}x_{\bar{J}}$$
$$= c_{J}(A_{J}^{-1}b - A_{J}^{-1}A_{\bar{J}}x_{\bar{J}}) + c_{\bar{J}}^{T}x_{\bar{J}}$$
$$= c_{J}A_{J}^{-1}b + (\underline{c_{\bar{J}}^{T} - c_{J}A_{J}^{-1}A_{\bar{J}}})x_{\bar{J}}$$
$$\tilde{c}_{\bar{J}}^{T}$$

 $\begin{array}{ll}
\min \ c^{T} x \\
\text{s.t.} \ Ax = b \\
x \ge 0 \\
+ nondegeneracy
\end{array}$

- ▶ basic solution: $x_{\bar{J}} = A_{\bar{J}}^{-1}b A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$
- ► How to locally modify basic solution without violating constraints? $x \ge 0$ + nondegeneracy
 - ► can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - can't *decrease* $x_{\bar{j}_k}$ for $\bar{j}_k \in \bar{J}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- rewrite cost: $c^{T}x = c_{J}x_{J} + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}(A_{J}^{-1}b A_{J}^{-1}A_{\bar{J}}x_{\bar{J}}) + c_{\bar{J}}^{T}x_{\bar{J}}$ $= c_{J}A_{J}^{-1}b + (\underbrace{c_{\bar{J}}^{T} c_{J}A_{J}^{-1}A_{\bar{J}}}_{\tilde{c}_{\bar{J}}^{T}})x_{\bar{J}}$

Convex function over a convex domain

→ local opt ⇒ global opt

 \rightsquigarrow **No** (local) improvement possible \iff $\tilde{c}_{\bar{l}} \geq 0 \iff$ current basic solution **optimal**

▶ basic solution: $x_{\bar{J}} = A_{\bar{J}}^{-1}b - A_{\bar{J}}^{-1}A_{\bar{J}}x_{\bar{J}}$ and $x_{\bar{J}} = 0$

s.t. Ax = b $x \ge 0$ + nondegeneracy

- ▶ How to locally modify basic solution without violating constraints?
 - ▶ can't change x_{j_k} for $j_k \in J$ (equality constraint);
 - can't *decrease* $x_{\bar{l}_k}$ for $\bar{l}_k \in \bar{l}$ (nonnegativity);
 - \rightarrow can only increase $x_{\bar{l}k}$ by small $\delta > 0$
- ► rewrite cost: $c^T x = c_J x_J + c_{\bar{J}}^T x_{\bar{J}}$ $= c_J (A_J^{-1} b - A_J^{-1} A_{\bar{J}} x_{\bar{J}}) + c_{\bar{J}}^T x_{\bar{J}}$ $= c_J A_J^{-1} b + (c_{\bar{J}}^T - c_J A_J^{-1} A_{\bar{J}}) x_{\bar{J}}$ $\tilde{c}_{\bar{I}}^T$

Convex function over a convex domain

→ local opt ⇒ global opt

- ightharpoonup No (local) improvement possible \iff $\tilde{c}_{\tilde{J}} \geq 0 \iff$ current basic solution optimal
- ▶ Otherwise: Bring $\bar{\jmath}_k$ with $\tilde{c}_{\bar{\jmath}_k} < 0$ into basis
 - ▶ This means we increase $x_{\bar{l}k}$ as much as possible until some $x_{\bar{l}k}$ becomes 0
 - → corresponds to moving to neighbor vertex

Summary LP Algorithms

► Simplex Algorithm

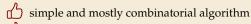


easy to implement

usually fast in practice (in most open source solvers)

Summary LP Algorithms

► Simplex Algorithm



easy to implement

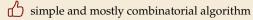
usually fast in practice (in most open source solvers)

worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

Summary LP Algorithms

► Simplex Algorithm



easy to implement

usually fast in practice (in most open source solvers)

worst case running time actually **exponential** details depend on how better neighboring vertex is chosen (*pivoting rule*) but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

► Alternative methods

- ellipsoid method (separation-oracle based)
- ▶ interior-point methods (numeric algorithms)

worst case polytime

interior-point method fastest in practice

more complicated, harder to implement well

- ▶ Many natural optimization problems have linear objective and constraints
 - ► Example: The Knapsack Problem

Given: items $1, \ldots, n$ with weights $w \in \mathbb{N}^n$ and values $v \in \mathbb{N}^n$ knapsack weight capacity $b \in \mathbb{N}$

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

 \rightarrow Introduce variable x_i , such that "item included" iff $x_1 = 1$

$$\max v^{T} x$$
s.t. $w^{T} x \leq b$ (Knapsack)
$$x \leq 1$$

$$x \geq 0$$

- ▶ Many natural optimization problems have linear objective and constraints
 - ► Example: The Knapsack Problem

```
Given: items 1,\ldots,n with weights w\in\mathbb{N}^n and values v\in\mathbb{N}^n knapsack weight capacity b\in\mathbb{N}
```

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

 \rightarrow Introduce variable x_i , such that "item included" iff $x_1 = 1$

$$\max v^{T} x$$
s. t. $w^{T} x \le b$ (Knapsack)
$$x \le 1$$

$$x > 0$$

▶ via LP solvers, we obtain exact worst-case polytime algorithms

- Many natural optimization problems have linear objective and constraints
 - ► Example: The Knapsack Problem

```
Given: items 1, \ldots, n with weights w \in \mathbb{N}^n and values v \in \mathbb{N}^n knapsack weight capacity b \in \mathbb{N}
```

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

 \rightarrow Introduce variable x_i , such that "item included" iff $x_1 = 1$

$$\max v^{T} x$$
s. t. $w^{T} x \le b$ (Knapsack)
$$x \le 1$$

$$x \ge 0$$

- ▶ via LP solvers, we obtain exact worst-case polytime algorithms
- ► Hold on; where's the catch?

 These problems are NP-hard; so there must be something wrong?

- ▶ Many natural optimization problems have linear objective and constraints
 - ► Example: The Knapsack Problem

```
Given: items 1, \ldots, n with weights w \in \mathbb{N}^n and values v \in \mathbb{N}^n knapsack weight capacity b \in \mathbb{N}
```

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

 \rightarrow Introduce variable x_i , such that "item included" iff $x_1 = 1$

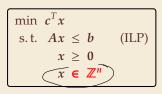
$$\max v^{T} x$$
s. t. $w^{T} x \le b$ (Knapsack)
$$x \le 1$$

$$x \ge 0$$

- ▶ via LP solvers, we obtain exact worst-case polytime algorithms
- ► Hold on; where's the catch?

 These problems are NP-hard; so there must be something wrong?
- Integrality! Optimal fractional Knapsack x^* can be nonsensical: Could have $x_i = \frac{1}{2}$ for a single high-value item of weight 2b, etc.

- ▶ A (*mixed*) *integer linear program* (ILP/IP resp. MILP) is a linear program, where (some) variables are constrained to integers, $x_i \in \mathbb{Z}$.
 - focus here on the case that all variables are integral: $x \in \mathbb{Z}^n$



- ▶ A (*mixed*) *integer linear program* (ILP/IP resp. MILP) is a linear program, where (some) variables are constrained to integers, $x_i \in \mathbb{Z}$.
 - focus here on the case that all variables are integral: $x \in \mathbb{Z}^n$

```
min c^T x

s.t. Ax \le b (ILP)

x \ge 0

x \in \mathbb{Z}^n
```

Example: Knapsack max $v^T x$ s.t. $w^T x \le b$ (Knapsack-ILP) $x \le 1$ $x \ge 0$ $x \in \mathbb{Z}^n$

- ▶ A (*mixed*) *integer linear program* (ILP/IP resp. MILP) is a linear program, where (some) variables are constrained to integers, $x_i \in \mathbb{Z}$.
 - focus here on the case that all variables are integral: $x \in \mathbb{Z}^n$

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax \le b \\
& x \ge 0 \\
& x \in \mathbb{Z}^n
\end{array} (ILP)$$

Example: Knapsack

max $v^T x$ s. t. $w^T x \le b$ (Knapsack-ILP) $x \le 1$ $x \ge 0$ $x \in \mathbb{Z}^n$

intersection of halfspaces

 \rightarrow feasibility region of an LP is a *polyhedron* $P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ feasibility region of an ILP is the intersection of P with the integer lattice: $P_{\mathbb{Z}} = P \cap \mathbb{Z}^n \subset P$

- ▶ A (*mixed*) *integer linear program* (ILP/IP resp. MILP) is a linear program, where (some) variables are constrained to integers, $x_i \in \mathbb{Z}$.
 - focus here on the case that all variables are integral: $x \in \mathbb{Z}^n$

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax \le b \\
& x \ge 0 \\
& x \in \mathbb{Z}^n
\end{array} (ILP)$$

intersection of halfspaces

Example: Knapsack

max
$$v^T x$$

s. t. $w^T x \le b$ (Knapsack-ILP)

 $x \le 1$
 $x \ge 0$
 $x \in \mathbb{Z}^n$

- → feasibility region of an LP is a *polyhedron* $P = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ feasibility region of an ILP is the intersection of P with the integer lattice: $P_{\mathbb{Z}} = P \cap \mathbb{Z}^n \subset P$
- → Still get a lower bound on objective value

optimal objective value of LP \leq optimal objective value of ILP

LP Relaxations

► Given a combinatorial optimization problem as ILP, its *LP relaxation* is the LP obtained by dropping all integrality constraints.

LP Relaxations

- ► Given a combinatorial optimization problem as ILP, its *LP relaxation* is the LP obtained by dropping all integrality constraints.
- **Example:** Independent Set
 - ► Given: G = (V, E)Goal: Maximum-cardinality independent set
 - ▶ Introduce variable $x_v \in \{0, 1\}$ for $v \in V$

$$\max \sum_{v \in V} x_v$$

$$\text{s.t. } x_v + x_w \le 1 \qquad (\forall vw \in E) \quad \text{(IS-ILP)}$$

$$x_v \in \{0,1\} \quad (\forall v \in V) \qquad \qquad \text{s.t. } x_v + x_w \le 1 \quad (\forall vw \in E) \quad \text{(IS-LP)}$$

$$0 \le x_v \le 1 \quad (\forall v \in V)$$

Integrality Gap

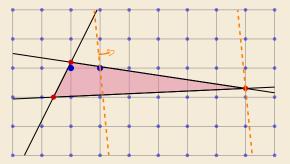
▶ The ratio
$$\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$$
 is called the *integrality gap* of an LP relaxation.

Can also reduce to integrally gap of a problem

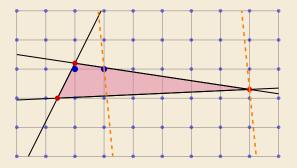
- ► The ratio $\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$ is called the *integrality gap* of an LP relaxation.
 - ► Hessy James's apple trees: use 533 instead of 533.33... trees
 - → actual profit € 155 415 instead of € 155 500 → minuscule difference

- ► The ratio $\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$ is called the *integrality gap* of an LP relaxation.
 - ► Hessy James's apple trees: use 533 instead of 533.33... trees
 - → actual profit € 155 415 instead of € 155 500 → minuscule difference
 - ► If integrality gap is small, can potentially use LP for approximate solutions → Unit 12

- ► The ratio $\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$ is called the *integrality gap* of an LP relaxation.
 - ► Hessy James's apple trees: use 533 instead of 533.33... trees
 - → actual profit € 155 415 instead of € 155 500 → minuscule difference
 - ► If integrality gap is small, can potentially use LP for approximate solutions → Unit 12
- ▶ in the worst case, integrality gap can be bad



- ▶ The ratio $\frac{z_{\text{ILP}}^*}{z_{\text{LP}}^*}$ is called the *integrality gap* of an LP relaxation.
 - ► Hessy James's apple trees: use 533 instead of 533.33... trees
 - → actual profit € 155 415 instead of € 155 500 → minuscule difference
 - ► If integrality gap is small, can potentially use LP for approximate solutions → Unit 12
- ▶ in the worst case, integrality gap can be bad



- actual example: Independent Set
 - ► Consider complete graph $G = K_n$
 - Largest independent set is single vertex \rightarrow $z_{\text{II},P}^* = 1$
 - Fractional solution possible with $z_{\text{LP}}^* = n/2$ by setting all $x_v = \frac{1}{2}$
 - → unbounded integrality gap

6.5 LP-Based Kernelization

Consider optimization version of VertexCover:

Given: Graph G = (V, E)

Goal: Vertex cover of ${\it G}$ with minimal cardinality.

solvable in
$$O(1.3^k n^c)$$
 $O(h^2)$ berwl

Consider optimization version of VertexCover:

Given: Graph G = (V, E)

Goal: Vertex cover of *G* with minimal cardinality.

→ equivalent to the following integer linear program

$$\min \sum_{v \in V} x_v$$
s. t. $x_u + x_v \ge 1$ for all $\{u, v\} \in E$

$$x_v \in \{0, 1\}$$
 for all $v \in V$

Consider optimization version of VertexCover:

Given: Graph G = (V, E)

Goal: Vertex cover of *G* with minimal cardinality.

 \rightsquigarrow equivalent to the following integer linear program

$$\min \sum_{v \in V} x_v$$
s. t. $x_u + x_v \ge 1$ for all $\{u, v\} \in E$

$$x_v \in \{0, 1\}$$
 for all $v \in V$

Consider optimization version of VertexCover:

Given: Graph G = (V, E)

Goal: Vertex cover of *G* with minimal cardinality.

→ equivalent to the following integer linear program

$$\min \sum_{v \in V} x_v$$
s. t. $x_u + x_v \ge 1$ for all $\{u, v\} \in E$

$$x_v \in \{0, 1\}$$
 for all $v \in V$

Consider *relaxation* to $x_v \in \mathbb{R}$, $x_v \ge 0$.

→ LP that can by solved in polytime.

For an *optimal* solution \vec{x} of the *relaxation*, we define

$$I_0 = \{v \in V : x_v < \frac{1}{2}\}$$

$$V_0 = \{v \in V : x_v = \frac{1}{2}\}$$

$$C_0 = \{v \in V : x_v > \frac{1}{2}\}$$

Kernel for VC

Theorem 6.1 (Kernel for Vertex Cover)

Let (G = (V, E), k) an instance of *p*-Vertex-Cover.

- **1.** There exists a minimal vertex cover *S* with $C_0 \subseteq S$ and $S \cap I_0 = \emptyset$.
- **2.** V_0 implies a problem kernel $(G[V_0], k |C_0|)$ with $|V_0| \le 2k$.

Here $G[V_0]$ is the induced subgraph of V_0 in G.

Proof:

ad (1) Let
$$S^*$$
 be optimal VC for G

Claim, $S := (S^* \setminus I_0) \cup C_0$ is also optimal VC

$$= (S^* \setminus S_T) \cup \overline{S}_C \qquad S_T = S^* \cap T_0, \quad \overline{S}_C = C_0 \setminus S^*$$

"S VC" only edges with endpoints in T_0 could remain our overed

$$e = vw \qquad v \in T_0 \qquad \Rightarrow \qquad x_v^* < \frac{1}{2} \implies x_w^* > \frac{1}{2} \implies w \in C_0 \text{ if } C_0 \text{ is also optimal } C_0 \text{ is also opti$$

Kernel for VC [2]

Proof (cont.):

"
$$|S| = |S^*|$$
" $S_{\pm} \subseteq S^*$, $S_{c} \cap S^* = \emptyset$

$$\Rightarrow |S| = |S^*| - |S_{\pm}| + |S_{c}|$$

$$\text{softwan ho show that } |S_{c}| \leq |S_{\pm}|$$

$$\epsilon := \min \{x_v - \frac{1}{2} : v \in C_0\} > 0$$

$$x' = x^* \text{ except for}$$

$$\circ \text{ all } S_{\pm} = x'_{a} + \epsilon$$

$$\circ \text{ all } S_{\pm} = x'_{a} + \epsilon$$

$$\circ \text{ all } S_{c} = x'_{a} - \epsilon \geq \frac{1}{2} \quad \text{ (th)}$$

$$\text{Claim: } x' \text{ folfull rountrainty of LP}$$

$$x'_{v} + x'_{u} \geq 1 \quad \text{for } vw \in E \quad \text{could only be violated}$$

$$\text{for } vw \text{ with } v \in S_{c}$$

Kernel for VC [3]

Proof (cont.):

$$\times'_{w}+\chi'_{v} = \chi''_{w}+\chi''_{v} \geqslant \frac{1}{2}$$

(3)
$$\omega \notin \mathbb{T}_0 \implies \mathbf{x}'_{\omega} \geqslant \frac{1}{2}, \quad \mathbf{x}'_{v} \geqslant \frac{1}{2}$$

$$\Rightarrow \mathbf{x}'_{\omega} + \mathbf{x}'_{\omega} \geqslant 1$$

$$\sum_{v} x_{v} + \varepsilon \left(|S_{\mp}| - |\overline{S}_{c}| \right) \implies |\overline{S}_{c}| \le |S_{\pm}|$$

$$\Rightarrow |S^*| \geq \sum_{v} \times_{v}^*$$

=> xx = = YveVo

apply reduction whe until only to vertices left;

$$\Rightarrow |S^*| \geq \sum_{v} x_v^* = \frac{1}{2} |V_v|$$

If |Vol > 2k => no VC for sice & k

(output No destance)

6.6 Lower Bounds by ETH

so for, WEN-hardness to show "probably & FPT"

how about problems in FPT

can we get Roundounds for f(h) in fpt runhine?

VC allows fot algorithm Example, with home O(1.4 h n2) can we do bethe? unlarly f(6) = O(6°) for const but could be subexpouenhel $2^{m} \qquad 2^{\log^{5}(u)} = n^{\log^{5}u}$

The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)

The *Exponential-Time Hypothesis (ETH)* asserts that there is a constant $\varepsilon > 0$ so that every algorithm for p-3SAT requires $\Omega(2^{\varepsilon k})$ time, where k is the number of variables.

The Exponential Time Hypothesis

Definition 6.3 (Exponential-Time Hypothesis)

The *Exponential-Time Hypothesis (ETH)* asserts that there is a constant $\varepsilon > 0$ so that every algorithm for p-3SAT requires $\Omega(2^{\varepsilon k})$ time, where k is the number of variables.

Equivalent formulations:

- ▶ There is a $\delta > 0$ so that every 3-SAT algorithm needs $\Omega((1 + \delta)^k)$ time.
- ▶ There is no $O(2^{o(k)}n^c)$ -time algorithm for 3-SAT.
- ► There is no subexponential-time algorithm for 3-SAT.

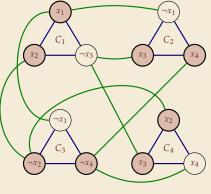
Lower Bounds Conditional on ETH

- ▶ **Idea:** Show that solving *X* in time f(k, n) implies a $O(2^{\varepsilon k}n^c)$ algorithm for 3SAT *for all* $\varepsilon > 0$.
- \rightsquigarrow unless ETH false, no such f(k, n)-time algorithm for X exists.
- ► That needs a 3SAT-reduction that preserves parameter *k* tightly.

Recall: Classical Reduction from 3SAT to Vertex Cover

(ii) 3SAT \leq_p VertexCover – Example

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (x_2 \lor x_3 \lor x_4)$$



Set S (a VC of si

- ► **Idea:** Vertices *not in* vertex cover *S* define a variable assignment.
 - Cannot be contradictory, otherwise "negation"-edge not covered.
 - Must take ≥ 2 vertices per clause into S (otherwise triangle not covered)
 - \Rightarrow $|S| \ge 2n$ for every vertex cover.
- ▶ In the example:
 - ► Fat vertices form a vertex cover for *G*
 - corresponding assignment: $V = \{x_1 \mapsto 0, x_2 \mapsto 0, x_3 \mapsto 0, x_4 \mapsto 1\}$ $\{0 = \text{false}, 1 = \text{true}\}$
 - $\rightsquigarrow \varphi$ satisfiable

39

Sparsification Lemma

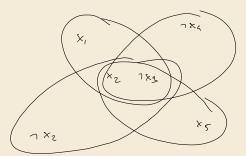
Lemma 6.4 (Sparsification Lemma)

For all $\varepsilon > 0$, there is a constant K so that we can compute for every formula φ in 3-CNF with n clauses over k variables an equivalent formula $\bigvee_{i=1}^t \psi_i$ where each ψ_i is in 3-CNF and over the same k variables and has $\le K \cdot k$ clauses. Moreover, $t \le 2^{\varepsilon k}$ and the computation takes $O(2^{\varepsilon k} n^c)$ time.

Rough Idea:

Iteratively remove *sunflowers* by retaining only the *heart* or only the *petals*.

 $Proof \ in \ Impagliazzo, Paturi, Zane \ (2001): \ \textit{Which Problems Have Strongly Exponential Complexity?}$



Lower Bounds – 3SAT [1]

Lemma 6.4 (Sparsification Lemma)

 $O(2^{rk}n^c)$ time.

Lemma 0.4 (Sparishcattoff Lemma) For all $\varepsilon > 0$, there is a constant K so that we can compute for every formula φ in 3-CNF with n clauses over k variables an equivalent formula $\bigvee_{i=1}^{\ell} \psi_i$ where each ψ_i is in 3-CNF and over the same k variables and has $\leq K \cdot K$ clauses. Moreover, $\ell \leq 2^{1.6}$ and the computation takes

Theorem 6.5 (Lower Bound by Size)

Unless ETH fails, there is a constant c > 0 so that every algorithm for p-3SAT needs time $\Omega(2^{c(n+k)})$ where n is the number of clauses and k is the number of variables.

Proof: Assume
$$\forall c > 0$$
 Ac is an absorphin that solves p-3SAT in $O(2^{c(n+h)})^b$.

Let $\delta > 0$ since. To show: \exists absorphin Bs that solve p-3SAT in $O(2^c n^b)$.

Set $\epsilon = \frac{\delta}{2}$ and let $K = K(\epsilon)$ the constant from sparsification lemma.

(1) Construct from input φ equive formula $\bigvee_{i=1}^{k} \varphi_i$ as in i with $\epsilon = \frac{\delta}{2}$.

(2) Call A_c for each ψ_i with $c = \frac{\delta}{2(K+1)}$.

Lower Bounds – 3SAT [2]

Proof (cont.):

Remains him of B8

(1)
$$O(\lambda^{\epsilon k} n^{\epsilon'}) = O(\lambda^{\frac{\delta}{2}k} n^{\epsilon'})$$

$$= O(\lambda^{\frac{\delta}{2}k} n^{\epsilon'})$$

$$= O(\lambda^{\frac{\delta}{2}k} n^{\epsilon'})$$

$$= O(\lambda^{\frac{\delta}{2}k} n^{\epsilon'})$$

$$= O(\lambda^{\frac{\delta}{2}k} n^{\epsilon'})$$

Lower Bounds - Vertex Cover

Theorem 6.5 (Lower Bound by Size)

Unless ETH fails, there is a constant c>0 so that every algorithm for p-3SAT needs time $\Omega(2^{c(n+k)})$ where n is the number of clauses and k is the number of variables.

Theorem 6.6 (No Subexponential Algorithm Vertex Cover)

Unless ETH fails, there is a constant c > 0 so that every algorithm for p-Vertex-Cover needs time $\Omega(2^{ck})$.

 \rightarrow Apart from constant basis, exponential dependence on k likely best possible.

Proof: Same keeplake

Assume
$$\forall c > 0$$
 Ac is an absorblue that solves $p - VC$ in $O(2^{ck} - n^b)$
 $8 > 0$ given so construct Bs solving 3-SAT in time $O(2^{6n} - n^b)$

(1) Given φ , construct $(G_1(h))$ using "standard" reduction $(G_1(h))$ $C = \frac{S}{2}$ $C = \frac{$

Lower Bounds – Closest String

Theorem 6.7 (Lower Bound Closest String)

Unless ETH fails, there is a constant c > 0 so that every algorithm for p-Closest-String needs time $\Omega(2^{c(k \lg k)}) = \Omega(k^{ck})$.

Proof omitted.

see Cygan et al. (2015): Parameterized Algorithms

 \rightarrow Again, apart from constant in basis, k^k growth in k likely best possible.

Summary

- ► LPs as a versatile tool
- ▶ in particular, give linear-size kernel for *p*-VertexCover
- ▶ assuming the Exponential Time Hypothesis (instead of only $P \neq NP$), can show lower bounds for f(k) part of ant fpt algorithm