
6 Advanced
Parameterized Ideas

3 June 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-06-03 23:20

Outline

6 Advanced Parameterized Ideas
6.1 Linear Programs – A Mighty Blackbox Tool
6.2 Linear Programs – Reformulation Tricks
6.3 Linear Programs – The Simplex Algorithm
6.4 Integer Linear Programs
6.5 LP-Based Kernelization
6.6 Lower Bounds by ETH

6.1 Linear Programs – A Mighty Blackbox Tool

Linear Programs
▶ Linear programs (LPs) are a class of optimization problems

of continuous (numerical) variables

▶ can be exactly solved in worst case polytime (LinearProgramming ∈ P)
▶ interior-point methods, Ellipsoid method

▶ routinely solved in practice to optimality with millions of variables and constraints
▶ Simplex algorithm, interior-point methods
▶ many existing solvers, commercial and open source (e. g., HiGHS)

1

Hessy James’s Apple Farm
▶ Hessy tries to maximize the profit of his apple farm

▶ He is committed to promote regional Hessian heirloom varieties, so he only grows
“Sossenheimer Roter” and “Korbacher Edelrenette”

▶ each tree of “Sossenheimer Roter” yields apples worth =C 195 per year
▶ each tree of “Korbacher Edelrenette” yields applies worth =C 255 per year
▶ He has an orchard of 5 000 m²
▶ each tree needs 4 m² of orchard space
▶ each tree of “Sossenheimer Roter” needs 6 kg of organic fertilizer and 1 h harvest effort per year
▶ each tree of “Korbacher Edelrenette” needs 4.5 kg of organic fertilizer and 3 h harvest effort per

year
▶ Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

2

Hessy James’s Apple Farm
▶ Hessy tries to maximize the profit of his apple farm

▶ He is committed to promote regional Hessian heirloom varieties, so he only grows
“Sossenheimer Roter” and “Korbacher Edelrenette”

▶ each tree of “Sossenheimer Roter” yields apples worth =C 195 per year
▶ each tree of “Korbacher Edelrenette” yields applies worth =C 255 per year
▶ He has an orchard of 5 000 m²
▶ each tree needs 4 m² of orchard space
▶ each tree of “Sossenheimer Roter” needs 6 kg of organic fertilizer and 1 h harvest effort per year
▶ each tree of “Korbacher Edelrenette” needs 4.5 kg of organic fertilizer and 3 h harvest effort per

year
▶ Hessy can only afford 3000 kg of fertilizer and 1700 h of harvester time per year

⇝ How many trees of each variety should Hessy plant?
▶ What will constrain us most? Space? Fertilizer? Harvest hours?
▶ What profit can Hessy expect?

2

Formal Linear Program for Hessy James’s Apple Farm
▶ Classic application of linear programming in operations research (OR)

▶ We formally write LPs as follows:

Maximize:

optimization goal

195𝑠 +
objective function

255𝑘
Subject to: 4𝑠 + 4𝑘 ≤

constraint

5000 (Orchard constraint)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer constraint)
1𝑠 + 3𝑘 ≤ 1700 (Harvest constraint) (𝑃)
𝑠 ≥ 0 (Non-negativity)

𝑘 ≥ 0 (Non-negativity)

name of the LP

3

Formal Linear Program for Hessy James’s Apple Farm
▶ Classic application of linear programming in operations research (OR)

▶ We formally write LPs as follows:

Maximize:

optimization goal

195𝑠 +
objective function

255𝑘
Subject to: 4𝑠 + 4𝑘 ≤

constraint

5000 (Orchard constraint)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer constraint)
1𝑠 + 3𝑘 ≤ 1700 (Harvest constraint) (𝑃)
𝑠 ≥ 0 (Non-negativity)

𝑘 ≥ 0 (Non-negativity)

name of the LP

▶ Terminology:
▶ 𝑠 and 𝑘 are the two variables of the problem; these are always real numbers.
▶ A vector (𝑠 , 𝑘) ∈ ℝ2 is a feasible solution for the LP if it satisfied all constraints.
▶ The largest value of the objective function (over all feasible solutions)

is the (optimal) value 𝑧∗of the LP
▶ A feasible solution (𝑠∗ , 𝑘∗) ∈ 𝑅2 with optimal objective value 𝑧∗ is called an optimal solution

3

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

)

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C50 000

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C75 000

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C125 000

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C155 500

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C155 500

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function
Optimal Solution

(𝑠∗ , 𝑘∗) = (100, 533.3)

4

2D LPs – Graphical Solution
LPs with two variables can be solved graphically

0 200 400 600 800 1,000 1,200 1,400
0

200

400

600

800

=C155 500

#Sossenheimer Roter Trees (𝑠)

#K
or

ba
ch

er
Ed

el
re

ne
tte

Tr
ee

s
(𝑘

) 4𝑠 + 4𝑘 ≤ 5000 (Orchard)
𝑠 + 3𝑘 ≤ 1700 (Harvest)
6𝑠 + 4.5𝑘 ≤ 3000 (Fertilizer)
Feasible Region
Objective Function
Optimal Solution

(𝑠∗ , 𝑘∗) = (100, 533.3)

⇝ Hessy should plant
▶ 100 Sossenheimer Roter trees

and
▶ 533+ 1

3

hmm . . .

Korbacher Edelrenette
trees

▶ Harvest and fertilizer tight
▶ orchard space isn’t

⇝ know what to change

4

LPs – The General Case
▶ General LP:

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶

“don’t care” (just to make it explicit)

0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)
▶ arbitrary linear objective function
▶ arbitrary linear constraints, of type “=”, “≤” or “≥”
▶ variables with non-negativity constraint and unconstrained variables

5

LPs – The General Case
▶ General LP:

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶

“don’t care” (just to make it explicit)

0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)
▶ arbitrary linear objective function
▶ arbitrary linear constraints, of type “=”, “≤” or “≥”
▶ variables with non-negativity constraint and unconstrained variables

▶ In general, an LP can
(a) have a finite optimal objective value
(b) be infeasible (contradictory constraints / empty feasibility region), or
(c) be unbounded (allow arbitrarily small objective values “−∞”)

⇝ in polytime, can detect which case applies and compute optimal solution in case (a)
5

Classic Modeling Example – Max Flow
▶ The maximum-𝑠-𝑡-flow problem in a graph 𝐺 = (𝑉 , 𝐸) can be reduced to an LP (Flow)

▶ variable 𝑓𝑒 for each edge 𝑒 ∈ 𝐸
▶ maximize flow value 𝐹 = flow out of 𝑠
▶ constraint for edge capacity 𝐶(𝑒) at each edge
▶ constraint for flow conservation at each vertex 𝑣 (except 𝑠 and 𝑡)

max 𝐹

s. t. 𝐹 =
Õ
𝑣∈𝑉

𝑓𝑠𝑣 −
Õ
𝑣∈𝑉

𝑓𝑣𝑠

𝑓𝑣𝑤 ≤ 𝐶(𝑣𝑤) (for 𝑣𝑤 ∈ 𝐸) (Flow)Õ
𝑤∈𝑉

𝑓𝑤𝑣 =
Õ
𝑤∈𝑉

𝑓𝑣𝑤 (for 𝑣 ∈ 𝑉 \ {𝑠 , 𝑡})

𝑓𝑒 ≥ 0 (for 𝑒 ∈ 𝐸)

6

6.2 Linear Programs – Reformulation Tricks

How to solve an LP?
▶ Our focus will be on using LPs as a tool

▶ in theory: reducing problem to an LP means polytime solvable
▶ in practice: call good solver!

7

How to solve an LP?
▶ Our focus will be on using LPs as a tool

▶ in theory: reducing problem to an LP means polytime solvable
▶ in practice: call good solver!

▶ But as with any good tool, it helps to gave an idea of how it works to effectively use it

⇝ We will briefly visit the conceptual ideas of the simplex algorithm

7

Recall: General Form of LPs
▶ General LP:

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

▶ linear objective function and constraints (“=”, “≤”, or “≥”)
▶ variables with non-negativity constraint and unconstrained variables

▶ Conventions:
▶ 𝑛 variables (always called 𝑥𝑗)
▶ 𝑚 constraints (coefficients always called 𝑎𝑖 , 𝑗 , right-hand sides 𝑏𝑖)
▶ minimize objective (“cost”), coefficients 𝑐𝑗 ; objective value 𝑧 = 𝑐1𝑥1 + · · · 𝑐𝑛𝑥𝑛

8

Enter Linear Algebra
▶ Spelling out all those linear combinations is cumbersome

⇝ Concise notation via matrix and vector products

▶ We write

▶ variables 𝒙 =
©­­
«
𝑥1
...
𝑥𝑛

ª®®
¬

cost coefficients 𝒄

bold ⇝ vector/matrix

=
©­­
«
𝑐1
...
𝑐𝑛

ª®®
¬
∈ ℝ𝑛 ⇝ objective: min 𝒄𝑇 · 𝒙

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

9

Enter Linear Algebra
▶ Spelling out all those linear combinations is cumbersome

⇝ Concise notation via matrix and vector products

▶ We write

▶ variables 𝒙 =
©­­
«
𝑥1
...
𝑥𝑛

ª®®
¬

cost coefficients 𝒄

bold ⇝ vector/matrix

=
©­­
«
𝑐1
...
𝑐𝑛

ª®®
¬
∈ ℝ𝑛 ⇝ objective: min 𝒄𝑇

transpose

·
dot product / scalar product

𝒙

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

9

Enter Linear Algebra
▶ Spelling out all those linear combinations is cumbersome

⇝ Concise notation via matrix and vector products

▶ We write

▶ variables 𝒙 =
©­­
«
𝑥1
...
𝑥𝑛

ª®®
¬

cost coefficients 𝒄

bold ⇝ vector/matrix

=
©­­
«
𝑐1
...
𝑐𝑛

ª®®
¬
∈ ℝ𝑛 ⇝ objective: min 𝒄𝑇

transpose

·
dot product / scalar product

𝒙

▶ “=”-constraints

𝑨(=) =
©­­­
«

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛
...

...
. . .

...
𝑎𝑝 ,1 𝑎𝑝 ,2 · · · 𝑎𝑝 ,𝑛

ª®®®
¬
∈ ℝ𝑝×𝑛 𝒃(=) =

©­­
«
𝑏1
...
𝑏𝑝

ª®®
¬
∈ ℝ𝑝 ⇝ 𝑨(=) · 𝒙 = 𝒃(=)

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

9

Enter Linear Algebra
▶ Spelling out all those linear combinations is cumbersome

⇝ Concise notation via matrix and vector products

▶ We write

▶ variables 𝒙 =
©­­
«
𝑥1
...
𝑥𝑛

ª®®
¬

cost coefficients 𝒄

bold ⇝ vector/matrix

=
©­­
«
𝑐1
...
𝑐𝑛

ª®®
¬
∈ ℝ𝑛 ⇝ objective: min 𝒄𝑇

transpose

·
dot product / scalar product

𝒙

▶ “=”-constraints

𝑨(=) =
©­­­
«

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛
...

...
. . .

...
𝑎𝑝 ,1 𝑎𝑝 ,2 · · · 𝑎𝑝 ,𝑛

ª®®®
¬
∈ ℝ𝑝×𝑛 𝒃(=) =

©­­
«
𝑏1
...
𝑏𝑝

ª®®
¬
∈ ℝ𝑝 ⇝ 𝑨(=) · 𝒙 = 𝒃(=)

▶ similarly for “≤” and “≥” constraints: 𝑨(≤)𝒙 ≤
elementwise ≤

𝒃(≤) and 𝑨(≥)𝒙 ≥ 𝒃(≥)

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

9

Enter Linear Algebra
▶ Spelling out all those linear combinations is cumbersome

⇝ Concise notation via matrix and vector products

▶ We write

▶ variables 𝒙 =
©­­
«
𝑥1
...
𝑥𝑛

ª®®
¬

cost coefficients 𝒄

bold ⇝ vector/matrix

=
©­­
«
𝑐1
...
𝑐𝑛

ª®®
¬
∈ ℝ𝑛 ⇝ objective: min 𝒄𝑇

transpose

·
dot product / scalar product

𝒙

▶ “=”-constraints

𝑨(=) =
©­­­
«

𝑎1,1 𝑎1,2 · · · 𝑎1,𝑛
...

...
. . .

...
𝑎𝑝 ,1 𝑎𝑝 ,2 · · · 𝑎𝑝 ,𝑛

ª®®®
¬
∈ ℝ𝑝×𝑛 𝒃(=) =

©­­
«
𝑏1
...
𝑏𝑝

ª®®
¬
∈ ℝ𝑝 ⇝ 𝑨(=) · 𝒙 = 𝒃(=)

▶ similarly for “≤” and “≥” constraints: 𝑨(≤)𝒙 ≤
elementwise ≤

𝒃(≤) and 𝑨(≥)𝒙 ≥ 𝒃(≥)

⇝ a single constraint 𝑖 can be written as 𝑨𝑖 ,• 𝒙 = 𝑏𝑖

(generally write 𝑨𝑖 ,• for the 𝑖th row of 𝑨 and 𝑨•, 𝑗 for the 𝑗th column)

min 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛
s. t. 𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 = 𝑏𝑖 (for 𝑖 = 1, . . . , 𝑝)

𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≤ 𝑏𝑖 (for 𝑖 = 𝑝 + 1, . . . , 𝑞)
𝑎𝑖 ,1𝑥1 + · · · + 𝑎𝑖 ,𝑛𝑥𝑛 ≥ 𝑏𝑖 (for 𝑖 = 𝑞 + 1, . . . ,𝑚)

𝑥𝑗 ≥ 0 (for 𝑗 = 1 . . . , 𝑟)
𝑥𝑗 ≶ 0 (for 𝑗 = 𝑟 + 1 . . . , 𝑛)

9

Reformulations
Tricks of the Trade for working with LPs:

▶ min suffices: max 𝒄𝑇𝒙 = −min(−𝒄)𝑇𝒙
▶ “≥”-constraints: 𝑨𝑖 ,• 𝒙 ≥ 𝑏𝑖 ⇐⇒ (−𝑨)𝑖 ,• 𝒙 ≤ −𝑏𝑖

10

Reformulations
Tricks of the Trade for working with LPs:

▶ min suffices: max 𝒄𝑇𝒙 = −min(−𝒄)𝑇𝒙
▶ “≥”-constraints: 𝑨𝑖 ,• 𝒙 ≥ 𝑏𝑖 ⇐⇒ (−𝑨)𝑖 ,• 𝒙 ≤ −𝑏𝑖
▶ slack variables: 𝑨𝑖 ,• 𝒙 ≤ 𝑏𝑖 ⇐⇒ 𝑨𝑖 ,• 𝒙 + 𝒙𝒔𝒊 = 𝑏𝑖 and 𝑥𝑠𝑖 ≥ 0

(𝑥𝑠𝑖 is a new additional variable)

10

Reformulations
Tricks of the Trade for working with LPs:

▶ min suffices: max 𝒄𝑇𝒙 = −min(−𝒄)𝑇𝒙
▶ “≥”-constraints: 𝑨𝑖 ,• 𝒙 ≥ 𝑏𝑖 ⇐⇒ (−𝑨)𝑖 ,• 𝒙 ≤ −𝑏𝑖
▶ slack variables: 𝑨𝑖 ,• 𝒙 ≤ 𝑏𝑖 ⇐⇒ 𝑨𝑖 ,• 𝒙 + 𝒙𝒔𝒊 = 𝑏𝑖 and 𝑥𝑠𝑖 ≥ 0

(𝑥𝑠𝑖 is a new additional variable)

▶ nonnegative: variable 𝑥𝑗 ≶ 0 ⇐⇒ 𝑥𝑗 = 𝑥𝑗 ,+ − 𝑥𝑗 ,− and 𝑥𝑗 ,+ , 𝑥𝑗 ,− ≥ 0

(𝑥𝑗 ,+ and 𝑥𝑗 ,− are new additional variables)

10

Reformulations
Tricks of the Trade for working with LPs:

▶ min suffices: max 𝒄𝑇𝒙 = −min(−𝒄)𝑇𝒙
▶ “≥”-constraints: 𝑨𝑖 ,• 𝒙 ≥ 𝑏𝑖 ⇐⇒ (−𝑨)𝑖 ,• 𝒙 ≤ −𝑏𝑖
▶ slack variables: 𝑨𝑖 ,• 𝒙 ≤ 𝑏𝑖 ⇐⇒ 𝑨𝑖 ,• 𝒙 + 𝒙𝒔𝒊 = 𝑏𝑖 and 𝑥𝑠𝑖 ≥ 0

(𝑥𝑠𝑖 is a new additional variable)

▶ nonnegative: variable 𝑥𝑗 ≶ 0 ⇐⇒ 𝑥𝑗 = 𝑥𝑗 ,+ − 𝑥𝑗 ,− and 𝑥𝑗 ,+ , 𝑥𝑗 ,− ≥ 0

(𝑥𝑗 ,+ and 𝑥𝑗 ,− are new additional variables)

⇝ To solve LPs, can assume one of the following normal forms

min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
or

min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
with 𝑨 ∈ ℝ𝑚×𝑛 , 𝒃 ∈ ℝ𝑚 , and 𝒄 ∈ ℝ𝑛

10

6.3 Linear Programs – The Simplex Algorithm

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point
⇝ vertex {𝒙𝐼} =

Ñ
𝑖∈𝐼 𝐻=

𝑖 (for 𝐼 ⊂ [𝑚], | 𝐼| = 𝑛)

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point
⇝ vertex {𝒙𝐼} =

Ñ
𝑖∈𝐼 𝐻=

𝑖 (for 𝐼 ⊂ [𝑚], | 𝐼| = 𝑛)

▶ always have 𝒄𝑇𝒙∗ = 𝒄𝑇𝒙𝑰∗ for a vertex 𝒙𝐼∗

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point
⇝ vertex {𝒙𝐼} =

Ñ
𝑖∈𝐼 𝐻=

𝑖 (for 𝐼 ⊂ [𝑚], | 𝐼| = 𝑛)

▶ always have 𝒄𝑇𝒙∗ = 𝒄𝑇𝒙𝑰∗ for a vertex 𝒙𝐼∗

▶ “only”
𝑚
𝑛
�

vertices 𝒙𝐼 (all 𝑛-subsets of [𝑚])

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point
⇝ vertex {𝒙𝐼} =

Ñ
𝑖∈𝐼 𝐻=

𝑖 (for 𝐼 ⊂ [𝑚], | 𝐼| = 𝑛)

▶ always have 𝒄𝑇𝒙∗ = 𝒄𝑇𝒙𝑰∗ for a vertex 𝒙𝐼∗

▶ “only”
𝑚
𝑛
�

vertices 𝒙𝐼 (all 𝑛-subsets of [𝑚])
⇝ Simplex algorithm:

Move to better neighbor until optimal.
▶ 𝒙𝐼 and 𝒙𝐼′ neighbors if | 𝐼 ∩ 𝐼′| = 𝑛 − 1

11

Simplex – Geometric Intuition
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ constraint 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖 𝑛 = 2,𝑚 = 12
defines a hyperplane/halfspace

⇝ 𝐻=
𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 = 𝑏𝑖}

𝐻𝑖 = {𝒙 ∈ ℝ𝑛 : 𝑨𝑖 ,•𝒙 ≤ 𝑏𝑖}
▶ 𝒄 = direction of improvement in ℝ𝑛

(normal vector for hyperplane {𝒙 ∈ ℝ𝑛 : 𝒄𝑇𝒙 = 0})
▶ “Roll a ball downhill inside feasible region”
⇝ Optimal point 𝒙∗ must lie on boundary!

(assuming finite optimal objective value 𝑧∗)

▶ intersection of 𝑛 hyperplanes 𝐻=
𝑖 is unique

assuming nondegeneracy

point
⇝ vertex {𝒙𝐼} =

Ñ
𝑖∈𝐼 𝐻=

𝑖 (for 𝐼 ⊂ [𝑚], | 𝐼| = 𝑛)

▶ always have 𝒄𝑇𝒙∗ = 𝒄𝑇𝒙𝑰∗ for a vertex 𝒙𝐼∗

▶ “only”
𝑚
𝑛
�

vertices 𝒙𝐼 (all 𝑛-subsets of [𝑚])
⇝ Simplex algorithm:

Move to better neighbor until optimal.
▶ 𝒙𝐼 and 𝒙𝐼′ neighbors if | 𝐼 ∩ 𝐼′| = 𝑛 − 1

1 procedure simplexIteration(𝐻 = {𝐻1 , . . . ,𝐻𝑚}):
2 if

Ñ
𝐻 == ∅ return INFEASIBLE

3 𝒙 := any feasible vertex
4 while 𝒙 is not locally optimal // 𝒄 “against wall”
5 // pivot towards better objective function
6 if ∀ feasible neighbor vertex 𝒙′ : 𝒄𝑇𝒙′ > 𝒄𝑇𝒙
7 return UNBOUNDED
8 else
9 𝑥 := some feasible lower neighbor of 𝒙

10 return 𝒙

11

Simplex – Linear Algebra Realization
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ Here use equality constraints ⇝ 𝑚 ≤ 𝑛

▶ Assume rank(𝑨) = 𝑚 (nondegeneracy)
▶ every 𝐽 = { 𝑗1 , . . . , 𝑗𝑚} ⊆ [𝑛] corresponds to basis

assuming nondegeneracy

of 𝑨: {𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚 }

12

Simplex – Linear Algebra Realization
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ Here use equality constraints ⇝ 𝑚 ≤ 𝑛

▶ Assume rank(𝑨) = 𝑚 (nondegeneracy)
▶ every 𝐽 = { 𝑗1 , . . . , 𝑗𝑚} ⊆ [𝑛] corresponds to basis

assuming nondegeneracy

of 𝑨: {𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚 }

▶ Notation:
▶ 𝒙𝐽 = (𝑥𝑗1 , . . . , 𝑥𝑗𝑚)𝑇 vector of basis variables
▶ 𝒙𝐽 = (𝑥𝚥1 , . . . , 𝑥𝚥𝑛−𝑚)𝑇 vector of non-basis variables for 𝐽 = [𝑛] \ 𝐽 = { 𝚥1 , . . . , 𝚥𝑛−𝑚}

12

Simplex – Linear Algebra Realization
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ Here use equality constraints ⇝ 𝑚 ≤ 𝑛

▶ Assume rank(𝑨) = 𝑚 (nondegeneracy)
▶ every 𝐽 = { 𝑗1 , . . . , 𝑗𝑚} ⊆ [𝑛] corresponds to basis

assuming nondegeneracy

of 𝑨: {𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚 }

▶ Notation:
▶ 𝒙𝐽 = (𝑥𝑗1 , . . . , 𝑥𝑗𝑚)𝑇 vector of basis variables
▶ 𝒙𝐽 = (𝑥𝚥1 , . . . , 𝑥𝚥𝑛−𝑚)𝑇 vector of non-basis variables for 𝐽 = [𝑛] \ 𝐽 = { 𝚥1 , . . . , 𝚥𝑛−𝑚}
▶ 𝑨𝐽 = (𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚) ∈ ℝ𝑚×𝑚 ; similarly 𝑨𝐽 = (𝑨•, 𝚥1 , . . . ,𝑨•, 𝚥𝑛−𝑚) ∈ ℝ(𝑛−𝑚)×𝑚
▶ 𝒄𝐽 and 𝒄𝐽 defined similarly

12

Simplex – Linear Algebra Realization
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ Here use equality constraints ⇝ 𝑚 ≤ 𝑛

▶ Assume rank(𝑨) = 𝑚 (nondegeneracy)
▶ every 𝐽 = { 𝑗1 , . . . , 𝑗𝑚} ⊆ [𝑛] corresponds to basis

assuming nondegeneracy

of 𝑨: {𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚 }

▶ Notation:
▶ 𝒙𝐽 = (𝑥𝑗1 , . . . , 𝑥𝑗𝑚)𝑇 vector of basis variables
▶ 𝒙𝐽 = (𝑥𝚥1 , . . . , 𝑥𝚥𝑛−𝑚)𝑇 vector of non-basis variables for 𝐽 = [𝑛] \ 𝐽 = { 𝚥1 , . . . , 𝚥𝑛−𝑚}
▶ 𝑨𝐽 = (𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚) ∈ ℝ𝑚×𝑚 ; similarly 𝑨𝐽 = (𝑨•, 𝚥1 , . . . ,𝑨•, 𝚥𝑛−𝑚) ∈ ℝ(𝑛−𝑚)×𝑚
▶ 𝒄𝐽 and 𝒄𝐽 defined similarly

⇝ We have 𝑨𝒙 = 𝒃 ⇐⇒ 𝑨

square & full rank

𝐽𝒙𝐽 + 𝑨𝐽𝒙𝐽 = 𝒃 ⇐⇒ 𝒙𝐽 = 𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽

𝒙𝐽 is uniquely determined by choosing 𝒙𝐽

12

Simplex – Linear Algebra Realization
min 𝒄𝑇𝒙

s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

▶ Here use equality constraints ⇝ 𝑚 ≤ 𝑛

▶ Assume rank(𝑨) = 𝑚 (nondegeneracy)
▶ every 𝐽 = { 𝑗1 , . . . , 𝑗𝑚} ⊆ [𝑛] corresponds to basis

assuming nondegeneracy

of 𝑨: {𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚 }

▶ Notation:
▶ 𝒙𝐽 = (𝑥𝑗1 , . . . , 𝑥𝑗𝑚)𝑇 vector of basis variables
▶ 𝒙𝐽 = (𝑥𝚥1 , . . . , 𝑥𝚥𝑛−𝑚)𝑇 vector of non-basis variables for 𝐽 = [𝑛] \ 𝐽 = { 𝚥1 , . . . , 𝚥𝑛−𝑚}
▶ 𝑨𝐽 = (𝑨•, 𝑗1 , . . . ,𝑨•, 𝑗𝑚) ∈ ℝ𝑚×𝑚 ; similarly 𝑨𝐽 = (𝑨•, 𝚥1 , . . . ,𝑨•, 𝚥𝑛−𝑚) ∈ ℝ(𝑛−𝑚)×𝑚
▶ 𝒄𝐽 and 𝒄𝐽 defined similarly

⇝ We have 𝑨𝒙 = 𝒃 ⇐⇒ 𝑨

square & full rank

𝐽𝒙𝐽 + 𝑨𝐽𝒙𝐽 = 𝒃 ⇐⇒ 𝒙𝐽 = 𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽

𝒙𝐽 is uniquely determined by choosing 𝒙𝐽

▶ basic solution setting 𝒙𝐽 = 0 gives 𝒙𝐽 = 𝑨−1
𝐽 𝒃 ⇝ correspond to vertices from before

▶ may or may not be a feasible basic solution: 𝒙𝐽 ≥ 0?

⇝ given 𝐽, can easily compute basic solution and check feasibility

12

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

▶ rewrite cost: 𝒄𝑇𝒙 = 𝒄𝐽𝒙𝐽 + 𝒄𝑇
𝐽
𝒙𝐽

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

▶ rewrite cost: 𝒄𝑇𝒙 = 𝒄𝐽𝒙𝐽 + 𝒄𝑇
𝐽
𝒙𝐽

= 𝒄𝐽

𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽
� + 𝒄𝑇

𝐽
𝒙𝐽

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

▶ rewrite cost: 𝒄𝑇𝒙 = 𝒄𝐽𝒙𝐽 + 𝒄𝑇
𝐽
𝒙𝐽

= 𝒄𝐽

𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽
� + 𝒄𝑇

𝐽
𝒙𝐽

= 𝒄𝐽𝑨−1
𝐽 𝒃 +

𝒄𝑇
𝐽
− 𝒄𝐽𝑨−1

𝐽 𝑨𝐽| {z }
𝒄̃𝑇
𝐽

�
𝒙𝐽

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

▶ rewrite cost: 𝒄𝑇𝒙 = 𝒄𝐽𝒙𝐽 + 𝒄𝑇
𝐽
𝒙𝐽

= 𝒄𝐽

𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽
� + 𝒄𝑇

𝐽
𝒙𝐽

= 𝒄𝐽𝑨−1
𝐽 𝒃 +

𝒄𝑇
𝐽
− 𝒄𝐽𝑨−1

𝐽 𝑨𝐽| {z }
𝒄̃𝑇
𝐽

�
𝒙𝐽

⇝ No (local) improvement possible ⇐⇒ 𝒄̃𝐽 ≥ 0 ⇐⇒ current basic solution optimal

Convex function over a convex domain
⇝ local opt =⇒ global opt

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Simplex – Local Optimality Test
▶ basic solution: 𝒙𝐽 = 𝑨−1

𝐽 𝒃 − 𝑨−1
𝐽 𝑨𝐽𝒙𝐽 and 𝒙𝐽 = 0

▶ How to locally modify basic solution without violating constraints?
▶ can’t change 𝑥𝑗𝑘 for 𝑗𝑘 ∈ 𝐽 (equality constraint);
▶ can’t decrease 𝑥𝚥𝑘 for 𝚥𝑘 ∈ 𝐽 (nonnegativity);
⇝ can only increase 𝑥𝚥𝑘 by small 𝛿 > 0

▶ rewrite cost: 𝒄𝑇𝒙 = 𝒄𝐽𝒙𝐽 + 𝒄𝑇
𝐽
𝒙𝐽

= 𝒄𝐽

𝑨−1
𝐽 𝒃 − 𝑨−1

𝐽 𝑨𝐽𝒙𝐽
� + 𝒄𝑇

𝐽
𝒙𝐽

= 𝒄𝐽𝑨−1
𝐽 𝒃 +

𝒄𝑇
𝐽
− 𝒄𝐽𝑨−1

𝐽 𝑨𝐽| {z }
𝒄̃𝑇
𝐽

�
𝒙𝐽

⇝ No (local) improvement possible ⇐⇒ 𝒄̃𝐽 ≥ 0 ⇐⇒ current basic solution optimal

Convex function over a convex domain
⇝ local opt =⇒ global opt

▶ Otherwise: Bring 𝚥𝑘 with 𝒄̃ 𝚥𝑘 < 0 into basis
▶ This means we increase 𝑥𝚥𝑘 as much as possible until some 𝑥𝑗𝑘 becomes 0
⇝ corresponds to moving to neighbor vertex

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
+ nondegeneracy

13

Summary LP Algorithms
▶ Simplex Algorithm

simple and mostly combinatorial algorithm
easy to implement
usually fast in practice (in most open source solvers)

14

Summary LP Algorithms
▶ Simplex Algorithm

simple and mostly combinatorial algorithm
easy to implement
usually fast in practice (in most open source solvers)

worst case running time actually exponential
details depend on how better neighboring vertex is chosen (pivoting rule)
but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

14

Summary LP Algorithms
▶ Simplex Algorithm

simple and mostly combinatorial algorithm
easy to implement
usually fast in practice (in most open source solvers)

worst case running time actually exponential
details depend on how better neighboring vertex is chosen (pivoting rule)
but no rule known that guarantees polytime

but smoothed analysis proves: random perturbations of input yield expected polytime on any input

▶ Alternative methods
▶ ellipsoid method (separation-oracle based)
▶ interior-point methods (numeric algorithms)

worst case polytime
interior-point method fastest in practice
more complicated, harder to implement well

14

6.4 Integer Linear Programs

When LPs Are Too Smooth
▶ Many natural optimization problems have linear objective and constraints

▶ Example: The Knapsack Problem
Given: items 1, . . . , 𝑛 with weights 𝒘 ∈ ℕ𝑛 and values 𝒗 ∈ ℕ𝑛

knapsack weight capacity 𝑏 ∈ ℕ

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

⇝ Introduce variable 𝑥𝑖 , such that
“item included” iff 𝑥1 = 1 max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack)
𝒙 ≤ 1
𝒙 ≥ 0

15

When LPs Are Too Smooth
▶ Many natural optimization problems have linear objective and constraints

▶ Example: The Knapsack Problem
Given: items 1, . . . , 𝑛 with weights 𝒘 ∈ ℕ𝑛 and values 𝒗 ∈ ℕ𝑛

knapsack weight capacity 𝑏 ∈ ℕ

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

⇝ Introduce variable 𝑥𝑖 , such that
“item included” iff 𝑥1 = 1 max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack)
𝒙 ≤ 1
𝒙 ≥ 0

▶ via LP solvers, we obtain exact worst-case polytime algorithms

15

When LPs Are Too Smooth
▶ Many natural optimization problems have linear objective and constraints

▶ Example: The Knapsack Problem
Given: items 1, . . . , 𝑛 with weights 𝒘 ∈ ℕ𝑛 and values 𝒗 ∈ ℕ𝑛

knapsack weight capacity 𝑏 ∈ ℕ

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

⇝ Introduce variable 𝑥𝑖 , such that
“item included” iff 𝑥1 = 1 max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack)
𝒙 ≤ 1
𝒙 ≥ 0

▶ via LP solvers, we obtain exact worst-case polytime algorithms

▶ Hold on; where’s the catch?
These problems are NP-hard; so there must be something wrong?

15

When LPs Are Too Smooth
▶ Many natural optimization problems have linear objective and constraints

▶ Example: The Knapsack Problem
Given: items 1, . . . , 𝑛 with weights 𝒘 ∈ ℕ𝑛 and values 𝒗 ∈ ℕ𝑛

knapsack weight capacity 𝑏 ∈ ℕ

Goal: Select subset of items of maximal total value, subject to fitting in the knapsack

⇝ Introduce variable 𝑥𝑖 , such that
“item included” iff 𝑥1 = 1 max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack)
𝒙 ≤ 1
𝒙 ≥ 0

▶ via LP solvers, we obtain exact worst-case polytime algorithms

▶ Hold on; where’s the catch?
These problems are NP-hard; so there must be something wrong?

� Integrality! Optimal fractional Knapsack 𝒙∗ can be nonsensical:
Could have 𝑥𝑖 = 1

2 for a single high-value item of weight 2𝑏, etc.

15

Integer Linear Programs
▶ A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,

where (some) variables are constrained to integers, 𝑥𝑖 ∈ ℤ.
▶ focus here on the case that all variables are integral: 𝒙 ∈ ℤ𝑛

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 ≤ 𝒃 (ILP)

𝒙 ≥ 0
𝒙 ∈ ℤ𝒏

16

Integer Linear Programs
▶ A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,

where (some) variables are constrained to integers, 𝑥𝑖 ∈ ℤ.
▶ focus here on the case that all variables are integral: 𝒙 ∈ ℤ𝑛

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 ≤ 𝒃 (ILP)

𝒙 ≥ 0
𝒙 ∈ ℤ𝒏

Example: Knapsack
max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack-ILP)
𝒙 ≤ 1
𝒙 ≥ 0
𝒙 ∈ ℤ𝑛

16

Integer Linear Programs
▶ A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,

where (some) variables are constrained to integers, 𝑥𝑖 ∈ ℤ.
▶ focus here on the case that all variables are integral: 𝒙 ∈ ℤ𝑛

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 ≤ 𝒃 (ILP)

𝒙 ≥ 0
𝒙 ∈ ℤ𝒏

Example: Knapsack
max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack-ILP)
𝒙 ≤ 1
𝒙 ≥ 0
𝒙 ∈ ℤ𝑛

⇝ feasibility region of an LP is a polyhedron

intersection of halfspaces

𝑃 = {𝒙 ∈ ℝ𝑛 : 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 0}
feasibility region of an ILP is the intersection of 𝑃 with the integer lattice:
𝑃ℤ = 𝑃 ∩ℤ𝑛 ⊂ 𝑃

16

Integer Linear Programs
▶ A (mixed) integer linear program (ILP/IP resp. MILP) is a linear program,

where (some) variables are constrained to integers, 𝑥𝑖 ∈ ℤ.
▶ focus here on the case that all variables are integral: 𝒙 ∈ ℤ𝑛

min 𝒄𝑇𝒙
s. t. 𝑨𝒙 ≤ 𝒃 (ILP)

𝒙 ≥ 0
𝒙 ∈ ℤ𝒏

Example: Knapsack
max 𝒗𝑇𝒙

s. t. 𝒘𝑇𝒙 ≤ 𝑏 (Knapsack-ILP)
𝒙 ≤ 1
𝒙 ≥ 0
𝒙 ∈ ℤ𝑛

⇝ feasibility region of an LP is a polyhedron

intersection of halfspaces

𝑃 = {𝒙 ∈ ℝ𝑛 : 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 0}
feasibility region of an ILP is the intersection of 𝑃 with the integer lattice:
𝑃ℤ = 𝑃 ∩ℤ𝑛 ⊂ 𝑃

⇝ Still get a lower bound on objective value

optimal objective value of LP ≤ optimal objective value of ILP

16

LP Relaxations
▶ Given a combinatorial optimization problem as ILP,

its LP relaxation is the LP obtained by dropping all integrality constraints.

17

LP Relaxations
▶ Given a combinatorial optimization problem as ILP,

its LP relaxation is the LP obtained by dropping all integrality constraints.

▶ Example: Independent Set
▶ Given: 𝐺 = (𝑉 , 𝐸)

Goal: Maximum-cardinality independent set
▶ Introduce variable 𝑥𝑣 ∈ {0, 1} for 𝑣 ∈ 𝑉

max
Õ
𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑣 + 𝑥𝑤 ≤ 1 (∀𝑣𝑤 ∈ 𝐸) (IS-ILP)
𝑥𝑣 ∈ {0, 1} (∀𝑣 ∈ 𝑉)

max
Õ
𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑣 + 𝑥𝑤 ≤ 1 (∀𝑣𝑤 ∈ 𝐸) (IS-LP)
0 ≤ 𝑥𝑣 ≤ 1 (∀𝑣 ∈ 𝑉)

17

Integrality Gap

▶ The ratio
𝑧∗ILP
𝑧∗LP

is called the integrality gap of an LP relaxation.

18

Integrality Gap

▶ The ratio
𝑧∗ILP
𝑧∗LP

is called the integrality gap of an LP relaxation.

▶ Hessy James’s apple trees: use 533 instead of 533.33 . . . trees
⇝ actual profit =C 155 415 instead of =C 155 500 ⇝ minuscule difference

18

Integrality Gap

▶ The ratio
𝑧∗ILP
𝑧∗LP

is called the integrality gap of an LP relaxation.

▶ Hessy James’s apple trees: use 533 instead of 533.33 . . . trees
⇝ actual profit =C 155 415 instead of =C 155 500 ⇝ minuscule difference

▶ If integrality gap is small, can potentially use LP for approximate solutions ⇝ Unit 12

18

Integrality Gap

▶ The ratio
𝑧∗ILP
𝑧∗LP

is called the integrality gap of an LP relaxation.

▶ Hessy James’s apple trees: use 533 instead of 533.33 . . . trees
⇝ actual profit =C 155 415 instead of =C 155 500 ⇝ minuscule difference

▶ If integrality gap is small, can potentially use LP for approximate solutions ⇝ Unit 12

▶ in the worst case, integrality gap can be bad

18

Integrality Gap

▶ The ratio
𝑧∗ILP
𝑧∗LP

is called the integrality gap of an LP relaxation.

▶ Hessy James’s apple trees: use 533 instead of 533.33 . . . trees
⇝ actual profit =C 155 415 instead of =C 155 500 ⇝ minuscule difference

▶ If integrality gap is small, can potentially use LP for approximate solutions ⇝ Unit 12

▶ in the worst case, integrality gap can be bad

▶ actual example: Independent Set
▶ Consider complete graph 𝐺 = 𝐾𝑛
▶ Largest independent set is single

vertex ⇝ 𝑧∗ILP = 1
▶ Fractional solution possible with

𝑧∗LP = 𝑛/2 by setting all 𝑥𝑣 = 1
2

⇝ unbounded integrality gap

18

6.5 LP-Based Kernelization

Vertex Cover as (Integer) Linear Program
Consider optimization version of VertexCover:
Given: Graph 𝐺 = (𝑉 , 𝐸)
Goal: Vertex cover of 𝐺 with minimal cardinality.

19

Vertex Cover as (Integer) Linear Program
Consider optimization version of VertexCover:
Given: Graph 𝐺 = (𝑉 , 𝐸)
Goal: Vertex cover of 𝐺 with minimal cardinality.

⇝ equivalent to the following integer linear program
min

Í
𝑣∈𝑉 𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢 , 𝑣} ∈ 𝐸
𝑥𝑣 ∈ {0, 1} for all 𝑣 ∈ 𝑉

19

Vertex Cover as (Integer) Linear Program
Consider optimization version of VertexCover:
Given: Graph 𝐺 = (𝑉 , 𝐸)
Goal: Vertex cover of 𝐺 with minimal cardinality.

⇝ equivalent to the following integer linear program
min

Í
𝑣∈𝑉 𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢 , 𝑣} ∈ 𝐸
𝑥𝑣 ∈ {0, 1} for all 𝑣 ∈ 𝑉

Consider relaxation to 𝑥𝑣 ∈ ℝ, 𝑥𝑣 ≥ 0.
⇝ LP that can by solved in polytime.

19

Vertex Cover as (Integer) Linear Program
Consider optimization version of VertexCover:
Given: Graph 𝐺 = (𝑉 , 𝐸)
Goal: Vertex cover of 𝐺 with minimal cardinality.

⇝ equivalent to the following integer linear program
min

Í
𝑣∈𝑉 𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all {𝑢 , 𝑣} ∈ 𝐸
𝑥𝑣 ∈ {0, 1} for all 𝑣 ∈ 𝑉

Consider relaxation to 𝑥𝑣 ∈ ℝ, 𝑥𝑣 ≥ 0.
⇝ LP that can by solved in polytime.

For an optimal solution ®𝑥 of the relaxation, we define

𝐼0 = {𝑣 ∈ 𝑉 : 𝑥𝑣 < 1
2}

𝑉0 = {𝑣 ∈ 𝑉 : 𝑥𝑣 = 1
2}

𝐶0 = {𝑣 ∈ 𝑉 : 𝑥𝑣 > 1
2}

19

Kernel for VC
Theorem 6.1 (Kernel for Vertex Cover)
Let (𝐺 = (𝑉 , 𝐸), 𝑘) an instance of 𝑝-Vertex-Cover.

1. There exists a minimal vertex cover 𝑆 with 𝐶0 ⊆ 𝑆 and 𝑆 ∩ 𝐼0 = ∅.
2. 𝑉0 implies a problem kernel

𝐺[𝑉0], 𝑘 − |𝐶0|

�
with |𝑉0| ≤ 2𝑘.

Here 𝐺[𝑉0] is the induced subgraph of 𝑉0 in 𝐺.
Proof:

20

Kernel for VC [2]
Proof (cont.):

21

Kernel for VC [3]
Proof (cont.):

■

22

6.6 Lower Bounds by ETH

The Exponential Time Hypothesis

Definition 6.2 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant 𝜀 > 0 so that every
algorithm for 𝑝-3SAT requires Ω(2𝜀𝑘) time, where 𝑘 is the number of variables. ◀

23

The Exponential Time Hypothesis

Definition 6.3 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant 𝜀 > 0 so that every
algorithm for 𝑝-3SAT requires Ω(2𝜀𝑘) time, where 𝑘 is the number of variables. ◀

Equivalent formulations:

▶ There is a 𝛿 > 0 so that every 3-SAT algorithm needs Ω((1 + 𝛿)𝑘) time.

▶ There is no 𝑂(2𝑜(𝑘)𝑛𝑐)-time algorithm for 3-SAT.

▶ There is no subexponential-time algorithm for 3-SAT.

23

Lower Bounds Conditional on ETH
▶ Idea: Show that solving 𝑋 in time 𝑓 (𝑘 , 𝑛)

implies a 𝑂(2𝜀𝑘𝑛𝑐) algorithm for 3SAT for all 𝜀 > 0.

⇝ unless ETH false, no such 𝑓 (𝑘 , 𝑛)-time algorithm for 𝑋 exists.

▶ That needs a 3SAT-reduction that preserves parameter 𝑘 tightly.

24

Recall: Classical Reduction from 3SAT to Vertex Cover

(ii) 3SAT ≤𝒑 VertexCover – Example
𝜑 = (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥3 ∨ 𝑥4) ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥4) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)

𝑥1

𝑥2 ¬𝑥3

¬𝑥1

𝑥3 𝑥4

¬𝑥1

¬𝑥2 ¬𝑥4

𝑥2

𝑥3 𝑥4

𝐶1 𝐶2

𝐶3 𝐶4

Set 𝑆 (a VC of size 2𝑛)

▶ Idea: Vertices not in vertex cover 𝑆
define a variable assignment.

▶ Cannot be contradictory, otherwise
“negation”-edge not covered.

▶ Must take ≥ 2 vertices per clause into 𝑆
(otherwise triangle not covered)

⇝ |𝑆| ≥ 2𝑛 for every vertex cover.

▶ In the example:
▶ Fat vertices form a vertex cover for 𝐺
▶ corresponding assignment:

𝑉 = {𝑥1 ↦→ 0, 𝑥2 ↦→ 0, 𝑥3 ↦→ 0, 𝑥4 ↦→ 1}
(0 b= false, 1 b= true)

⇝ 𝜑 satisfiable

39

25

Sparsification Lemma

Lemma 6.4 (Sparsification Lemma)
For all 𝜀 > 0, there is a constant 𝐾 so that we can compute for every formula 𝜑 in 3-CNF with
𝑛 clauses over 𝑘 variables an equivalent formula

Ô𝑡
𝑖=1 𝜓𝑖 where each 𝜓𝑖 is in 3-CNF and over

the same 𝑘 variables and has ≤ 𝐾 · 𝑘 clauses. Moreover, 𝑡 ≤ 2𝜀𝑘 and the computation takes
𝑂(2𝜀𝑘𝑛𝑐) time. ◀

Rough Idea:
Iteratively remove sunflowers by retaining only the heart or only the petals.
Proof in Impagliazzo, Paturi, Zane (2001): Which Problems Have Strongly Exponential Complexity?

26

Lower Bounds – 3SAT [1]

Theorem 6.5 (Lower Bound by Size)
Unless ETH fails, there is a constant 𝑐 > 0 so that every algorithm for 𝑝-3SAT needs time
Ω(2𝑐(𝑛+𝑘)) where 𝑛 is the number of clauses and 𝑘 is the number of variables. ◀

Proof:

27

Lower Bounds – 3SAT [2]
Proof (cont.):

■

28

Lower Bounds – Vertex Cover

Theorem 6.6 (No Subexponential Algorithm Vertex Cover)
Unless ETH fails, there is a constant 𝑐 > 0 so that every algorithm for 𝑝-Vertex-Cover needs
time Ω(2𝑐𝑘). ◀

⇝ Apart from constant basis, exponential dependence on 𝑘 likely best possible.

Proof:

■

29

Lower Bounds – Closest String

Theorem 6.7 (Lower Bound Closest String)
Unless ETH fails, there is a constant 𝑐 > 0 so that every algorithm for 𝑝-Closest-String needs
time Ω(2𝑐(𝑘 lg 𝑘)) = Ω(𝑘𝑐𝑘). ◀

Proof omitted.
see Cygan et al. (2015): Parameterized Algorithms

⇝ Again, apart from constant in basis, 𝑘𝑘 growth in 𝑘 likely best possible.

30

Summary
▶ LPs as a versatile tool

▶ in particular, give linear-size kernel for 𝑝-VertexCover

▶ assuming the Exponential Time Hypothesis (instead of only P ≠ NP),
can show lower bounds for 𝑓 (𝑘) part of ant fpt algorithm

31

