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The Power of Randomness
We’ve seen examples where randomized algorithms are provably more powerful . . .
but how general are such improvements?
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The Power of Randomness
We’ve seen examples where randomized algorithms are provably more powerful . . .
but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of
randomization:
Does randomization extend the range of problems solvable by polytime algorithms?

⇝ back to decision problems.
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8.1 Randomized Complexity Classes



Randomization for Decision Problems
▶ Recall: P and NP consider decision problems only

⇝ equivalently: languages 𝐿 ⊆ Σ★
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Randomization for Decision Problems
▶ Recall: P and NP consider decision problems only

⇝ equivalently: languages 𝐿 ⊆ Σ★

Can make some simplifications for algorithms:

▶ Only 3 sensible output values: 0, 1, ?

▶ Unless specified otherwise, allow unlimited #random bits,
i. e., random𝐴(𝑥) = time𝐴(𝑥) (Can’t read more than one random bit per step)
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Randomized Complexity Classes
Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages 𝐿 with a
polytime Las Vegas algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ (In particular: always terminate!)

(b) ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2
(c) 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ? ◀
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polytime Las Vegas algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ (In particular: always terminate!)

(b) ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2
(c) 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ? ◀

Definition 8.2 (BPP)
BPP (bounded-error probabilistic polytime) is the class of languages 𝐿 with a
polytime bounded-error Monte Carlo algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞
(b) ∃𝜀 > 0 : ℙ

�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2 + 𝜀 ◀
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Definition 8.2 (BPP)
BPP (bounded-error probabilistic polytime) is the class of languages 𝐿 with a
polytime bounded-error Monte Carlo algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞
(b) ∃𝜀 > 0 : ℙ

�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2 + 𝜀 ◀

Definition 8.3 (PP)
PP (probabilistic polytime) is the class of languages 𝐿 with a polytime unbounded-error
Monte Carlo algorithm: (a) as above (b) ℙ[𝐴(𝑥) = [𝑥 ∈ 𝐿]] > 1

2 . ◀
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Error Bounds

Remark 8.4 (Success Probability)
From the point of view of complexity classes, the success probability bounds are flexible:
▶ BPP only requires success probability 1

2 + 𝜀, but using Majority Voting, we can also
obtain any fixed success probability 𝛿 ∈ ( 1

2 , 1).
▶ Similarly for ZPP, we can use probability amplification on Las Vegas algorithms
⇝ Unless otherwise stated,

for BPP and ZPP algorithms 𝐴, require ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 2

3 ◀
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From the point of view of complexity classes, the success probability bounds are flexible:
▶ BPP only requires success probability 1

2 + 𝜀, but using Majority Voting, we can also
obtain any fixed success probability 𝛿 ∈ ( 1

2 , 1).
▶ Similarly for ZPP, we can use probability amplification on Las Vegas algorithms
⇝ Unless otherwise stated,

for BPP and ZPP algorithms 𝐴, require ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 2

3 ◀

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result:

Theorem 8.5 (PP can simulate nondeterminism)
NP ∪ co-NP ⊆ PP. ◀

⇝ Useful algorithms must avoid unbounded errors.
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PP can simulate nondeterminism [1]
Proof (Theorem 8.5):
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PP can simulate nondeterminism [2]
Proof (Theorem 8.5):

■
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One-Sided Errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [𝜙 satisfied].
(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable 𝜙 always yield 0.
. . . could this help?
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One-Sided Errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [𝜙 satisfied].
(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable 𝜙 always yield 0.
. . . could this help?

Definition 8.6 (One-sided error Monte Carlo algorithms)
A randomized algorithm 𝐴 for language 𝐿 is a one-sided-error Monte-Carlo (OSE-MC) algorithm
if we have

(a) ℙ[𝐴(𝑥) = 1] ≥ 1
2 for all 𝑥 ∈ 𝐿, and

(b) ℙ[𝐴(𝑥) = 0] = 1 for all 𝑥 ∉ 𝐿. ◀

⇝ OSE-MC: 𝐴(𝑥) = 1 must always be correct; 𝐴(𝑥) = 0 may be a lie
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One-Sided Error Classes

Definition 8.7 (RP, co-RP)
The classes RP and co-RP are the sets of all languages 𝐿 with a polytime OSE-MC algorithm
for 𝐿 resp. 𝐿. ◀
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One-Sided Error Classes

Definition 8.7 (RP, co-RP)
The classes RP and co-RP are the sets of all languages 𝐿 with a polytime OSE-MC algorithm
for 𝐿 resp. 𝐿. ◀

Theorem 8.8 (Complementation feasible → errors avoidable)
RP ∩ co-RP = ZPP. ◀

Proof:
See exercises. ■

Note the similarity to the wide open problem NP ∩ co-NP ?
= P.

For the latter, the common belief is NP ∩ co-NP ⊋ P, in sharp contrast to the randomized
classes.
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8.2 Pseudorandom Generators



Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛
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Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛

▶ The derandomization of 𝐴 is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

▶ In general, the exponential blowup makes this uninteresting.

▶ But: If Random𝐴(𝑛) ≤ 𝑐 · lg

= log2

(𝑛),
the derandomization of 𝐴 runs in polytime: 𝑛𝑐 · Time𝐴(𝑛)
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Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛

▶ The derandomization of 𝐴 is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

▶ In general, the exponential blowup makes this uninteresting.

▶ But: If Random𝐴(𝑛) ≤ 𝑐 · lg

= log2

(𝑛),
the derandomization of 𝐴 runs in polytime: 𝑛𝑐 · Time𝐴(𝑛)

� Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.
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Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”
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Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/
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Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/

▶ must somehow keep the random distribution . . .
in general not clear what “sufficiently random” would mean

⇝ Breakthrough idea in TCS: Pseudorandom Generators
▶ generate an exponential number of bits from a 𝑛 given truly random bits such that

no efficient algorithm
in a model to be specified

can distinguish them from truly random

▶ Key (Open!) Question: Do they exist?!
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Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/

▶ must somehow keep the random distribution . . .
in general not clear what “sufficiently random” would mean

⇝ Breakthrough idea in TCS: Pseudorandom Generators
▶ generate an exponential number of bits from a 𝑛 given truly random bits such that

no efficient algorithm
in a model to be specified

can distinguish them from truly random

▶ Key (Open!) Question: Do they exist?!
▶ Surprising answer: We have good evidence in favor (!)
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8.3 Excursion: Boolean Circuits



Boolean Circuits
For technical reasons (stay tuned . . . ), another model of computation more convenient than TM here.
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Boolean Circuits
For technical reasons (stay tuned . . . ), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)
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assign the variable value to sources and apply the Boolean function at gates to inputs.
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assign the variable value to sources and apply the Boolean function at gates to inputs.
The size of 𝐶 is the number of vertices |𝐶| = |𝑉(𝐶)| .
A circuit 𝐶 computes function 𝑓 : {0, 1}𝑛 → {0, 1} if ∀𝒙 ∈ {0, 1}𝑛 : 𝐶(𝒙) = 𝑓 (𝒙). ◀
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Boolean Circuits
For technical reasons (stay tuned . . . ), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
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The value of 𝐶, 𝐶(𝑥1 , . . . , 𝑥𝑛) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.
The size of 𝐶 is the number of vertices |𝐶| = |𝑉(𝐶)| .
A circuit 𝐶 computes function 𝑓 : {0, 1}𝑛 → {0, 1} if ∀𝒙 ∈ {0, 1}𝑛 : 𝐶(𝒙) = 𝑓 (𝒙). ◀

Definition 8.10 (Circuit complexity)
The circuit complexity H( 𝑓 ) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is the size of the
smallest Boolean circuit 𝐶 that computes 𝑓 . ◀
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Formula vs. Circuit

Parity function: 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =
𝑛Ê
𝑖=1

XOR

𝑥𝑖 =
𝑛Õ
𝑖=1

𝑥𝑖 mod 2 (odd number of 1-bits?)
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Formula vs. Circuit

Parity function: 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =
𝑛Ê
𝑖=1

XOR

𝑥𝑖 =
𝑛Õ
𝑖=1

𝑥𝑖 mod 2 (odd number of 1-bits?)

▶ By associativity, 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) = 𝑃𝑛−1(𝑥1 , . . . , 𝑥𝑛−1) ⊕ 𝑥𝑛

▶ also: 𝑎 ⊕ 𝑏 = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏)
⇝ Can built a circuit for 𝑃𝑛 using 5(𝑛 − 1) gates
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▶ also: 𝑎 ⊕ 𝑏 = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏)
⇝ Can built a circuit for 𝑃𝑛 using 5(𝑛 − 1) gates

▶ Obvious boolean formula: (over basis {∧,∨,¬})
𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =


𝑥𝑛 ∧ ¬𝑷𝒏−1(𝒙1 , . . . , 𝒙𝒏−1)

� ∨ ¬𝑥𝑛 ∧ 𝑷𝒏−1(𝒙1 , . . . , 𝒙𝒏−1)
�

⇝ 5 · 2𝑛−1 operators

▶ optimal (assuming 𝑛 = 2𝑘):
𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =


𝑃𝑛/2(𝑥1 , . . . , 𝑥𝑛/2) ∩ ¬𝑃𝑛/2(𝑥𝑛/2+1 , . . . , 𝑥𝑛)

�
∨ ¬𝑃𝑛/2(𝑥1 , . . . , 𝑥𝑛/2) ∩ 𝑃𝑛/2(𝑥𝑛/2+1 , . . . , 𝑥𝑛)

�
⇝ Θ(𝑛2) still much more than for circuits!
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Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . . )

▶ P/poly = all functions computable by polynomial-sized circuits
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Circuit Complexity Classes
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▶ P/poly = all functions computable by polynomial-sized circuits
▶ Can prove: P ⊆ P/poly

Theorem 8.11 (TM to circuit)
For 𝑓 ∈ TIME(𝑇(𝑛)) and input size 𝑛, we can compute in polytime
a circuit 𝐶 for 𝑓 on inputs of size 𝑛 of size |𝐶| = 𝑂(𝑇(𝑛)2). ◀
(Arora & Barak, Theorem 6.6)
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▶ actually P ⊊ P/poly:
circuits are non-uniform model of computation:

allows some “cheating” that we use later

different circuit for each 𝑛
⇝ has some weird properties in general (P/poly contains a version of halting problem . . . )
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(Arora & Barak, Theorem 6.6)

▶ actually P ⊊ P/poly:
circuits are non-uniform model of computation:

allows some “cheating” that we use later

different circuit for each 𝑛
⇝ has some weird properties in general (P/poly contains a version of halting problem . . . )

▶ Probably NP ̸⊆ P/poly (unless polynomial hierarchy collapses)

Circuit Lower Bounds:
▶ Can show: almost all Boolean functions 𝑓 have exponential C( 𝑓 ) (counting argument)
▶ But: Very hard to prove circuit lower bounds for concrete functions 𝑓

▶ Showing H( 𝑓 ) exponential for any 𝑓 ∈ NP would imply P ≠ NP
▶ Proven lower bounds on H( 𝑓 ) for explicit 𝑓 are typically linear in 𝑛
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Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The 𝜌-average-case hardness H𝜌

avg( 𝑓 ) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿 ) = 𝑓 (𝑿 )� < 𝜌.

(Need circuits larger than H
𝜌
avg( 𝑓 ) for confidence 𝜌.)
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�
𝐶(𝑿 ) = 𝑓 (𝑿 )� < 𝜌.

(Need circuits larger than H
𝜌
avg( 𝑓 ) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg( 𝑓 ) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀
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the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿 ) = 𝑓 (𝑿 )� < 𝜌.

(Need circuits larger than H
𝜌
avg( 𝑓 ) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg( 𝑓 ) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀

Hypothesis 8.13 (Hard functions exist)
There exists a function 𝑓 ∈ NP with Havg( 𝑓 ) = 2Ω(𝑛). !NOT PROVEN! ◀
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Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.
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avg( 𝑓 ) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg( 𝑓 ) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀

Hypothesis 8.13 (Hard functions exist)
There exists a function 𝑓 ∈ NP with Havg( 𝑓 ) = 2Ω(𝑛). !NOT PROVEN! ◀

▶ Deep result (that we skip): From existence of function with large H( 𝑓 ),
can conclude existence of function with large Havg( 𝑓 ).
(see Arora & Barak Chapter 19)

▶ 3SAT probably has exponential H( 𝑓 ) (≈ ETH) (and other candidates exist)
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Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)
A r.v. 𝑹 ∈ {0, 1}𝑚 is (𝑆, 𝜀)-pseudorandom if for every circuit 𝐶 with |𝐶| ≤ 𝑆���ℙ�

𝐶(𝑹) = 1
� − ℙ

�
𝐶(𝑼𝑚) = 1

� ��� < 𝜀 where 𝑼𝑚
D
= U({0, 1}𝑚) ◀

Pseudorandom bits are indistinguishable from truly random for any small
think: fast-running algorithm

circuit.
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Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)
A r.v. 𝑹 ∈ {0, 1}𝑚 is (𝑆, 𝜀)-pseudorandom if for every circuit 𝐶 with |𝐶| ≤ 𝑆���ℙ�

𝐶(𝑹) = 1
� − ℙ

�
𝐶(𝑼𝑚) = 1

� ��� < 𝜀 where 𝑼𝑚
D
= U({0, 1}𝑚) ◀

Pseudorandom bits are indistinguishable from truly random for any small
think: fast-running algorithm

circuit.

Definition 8.15 (Pseudorandom generator)
Let 𝑆 : ℕ≥1 → ℕ≥1.
A function 𝐺 : {0, 1}★ → {0, 1}★ computable in 2𝑛 time (𝐺 ∈ TIME(2𝑛)) is an
𝑆(ℓ )-pseudorandom generator (𝑆(ℓ )-PRG) if

(a) |𝐺(𝑧)| = 𝑆(|𝑧|) for every 𝑧 ∈ {0, 1}★
(b) ∀ℓ ∈ ℕ≥1 : 𝐺(𝑼 ℓ ) is


𝑆(ℓ )3 , 1

10
�
-pseudorandom. ◀

Seeding a generator with ℓ truly random bits yields 𝑆(ℓ ) pseudorandom bits.
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8.4 Derandomization



Pseudorandom Generator for BPP Derandomization
The Nisan-Wigderson construction shows that
the existence of any hard-on-average function
implies a strong

exponentially many pseudorandom bits(!)

pseudorandom generator.

Theorem 8.16 (Strong NW PRG)
Assume Hypothesis 8.13, i. e., 𝑓 ∈ TIME(2𝑂(𝑛)) exists with Havg( 𝑓 ) ≥ 𝑆 with 𝑆(𝑛) = 2𝛿𝑛 for a
constant 𝛿 > 0.
Then there is an 𝜀 = 𝜀(𝛿) such that there is a 2𝜀ℓ -pseudorandom generator. ◀

(We will prove this over the course of the next subsection.)
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BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀
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𝜀 lg 𝑛 so that 𝑚 ≤ 𝑆(ℓ ) = 2𝜀ℓ = 𝑛𝑐 .

2. Instead of this probabilistic TM, simulate 𝐴(𝑥 ,𝐺(𝑧)) for all possible 𝑧 ∈ {0, 1}ℓ
3. Output the majority.

The trick here is that number of possible seeds 𝑧 is 2ℓ (𝑛) = 𝑛𝑐 , hence the running time
remains polynomial and 𝐵 ∈ P!
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3 ;
here 𝑅 D= U({0, 1}𝑚) for 𝑚 = Random𝐴(𝑛) ≤ Time𝐴(𝑛) ≤ 𝑛𝑐 .
We now obtain a deterministic polytime algorithm 𝐵 as follows:

1. Replace 𝑅 by 𝐺(𝑍) for 𝑍 D= U({0, 1}ℓ ) for ℓ = ℓ (𝑛) = 𝑐
𝜀 lg 𝑛 so that 𝑚 ≤ 𝑆(ℓ ) = 2𝜀ℓ = 𝑛𝑐 .

2. Instead of this probabilistic TM, simulate 𝐴(𝑥 ,𝐺(𝑧)) for all possible 𝑧 ∈ {0, 1}ℓ
3. Output the majority.

The trick here is that number of possible seeds 𝑧 is 2ℓ (𝑛) = 𝑛𝑐 , hence the running time
remains polynomial and 𝐵 ∈ P!

It remains to show that 𝐵 accepts 𝐿.
(Intuition: 𝐴 is too fast to notice a difference of more than 1

10 between 𝑅 and 𝐺(𝑍).)
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BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .
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For sufficiently large 𝑛, |𝐶| is thus smaller than 𝑆(ℓ (𝑛))3 = 𝑛3𝑐 , so 𝐶 is a valid distinguisher
for the PRG. �



BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
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10 = 0.56 > 1

2 .
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𝑟 ↦→ 𝐴(𝑥 , 𝑟), where 𝑥 is hard-wired into the circuit 𝐶.
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3 )
We don’t have a circuit for 𝐴, just a TM;
but can convert 𝐴 using Theorem 8.11 to a circuit 𝐶 with |𝐶| = 𝑂

(Time𝐴(𝑛))2
�
= 𝑂(𝑛2𝑐).

For sufficiently large 𝑛, |𝐶| is thus smaller than 𝑆(ℓ (𝑛))3 = 𝑛3𝑐 , so 𝐶 is a valid distinguisher
for the PRG. �

Hence, the majority vote in 𝐵 is correct
(for all but a finite number of inputs, which can be tested in constant time).
⇝ 𝐿 ∈ P. ■
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Consequences
⇝ Since the existence of hard-on-average functions is rather likely,

▶ it must be assumed that randomization alone does not solve NP-hard problems;
▶ . . . and it seems that there is some heavy lifting going on in Nisan-Wigderson
⇝ Let’s see what it does!
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8.5 Nisan-Wigderson Pseudorandom Generator



Overview
▶ In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound 𝑆(𝑛) for our hard function 𝑓 ,
the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

▶ Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)
▶ many further refinements followed
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▶ This is pretty cool stuff, but also complex. ⇝ Quantitative parts ∉ exam.
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Overview
▶ In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound 𝑆(𝑛) for our hard function 𝑓 ,
the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

▶ Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)
▶ many further refinements followed

▶ This is pretty cool stuff, but also complex. ⇝ Quantitative parts ∉ exam.

Theorem 8.18 (PRG from average-case hard function)
Let 𝑆 : ℕ≥1 → ℕ≥1.
If there exists a function 𝑓 ∈ TIME(2𝑂(𝑛)) with Havg( 𝑓 )(𝑛) ≥ 𝑆(𝑛) for all 𝑛,
then there exists a 𝑆(𝛿ℓ )𝛿-pseudorandom generator for some constant 𝛿 > 0. ◀
This general result is for a refined construction and works also for weaker assumptions.
We will show the version sufficient for Theorem 8.16; see Arora & Barak Remark 20.8
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Nisan-Wigderson Generator
The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets 𝐼 ∈ I of ℓ truly random input bits into a (hard) function 𝑓 : {0, 1}𝑛 → {0, 1}

NW 𝑓
I
(𝑍) = 𝑓 (𝑍𝐼1) 𝑓 (𝑍𝐼2) . . . 𝑓 (𝑍𝐼𝑚 )

where 𝑍 D= U({0, 1}ℓ ) is the random seed and 𝑧𝐼 for 𝐼 = {𝑖1 , . . . , 𝑖𝑛} denotes (𝑧𝑖1 , . . . , 𝑧𝑖𝑛 )
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Nisan-Wigderson Generator
The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets 𝐼 ∈ I of ℓ truly random input bits into a (hard) function 𝑓 : {0, 1}𝑛 → {0, 1}

NW 𝑓
I
(𝑍) = 𝑓 (𝑍𝐼1) 𝑓 (𝑍𝐼2) . . . 𝑓 (𝑍𝐼𝑚 )

where 𝑍 D= U({0, 1}ℓ ) is the random seed and 𝑧𝐼 for 𝐼 = {𝑖1 , . . . , 𝑖𝑛} denotes (𝑧𝑖1 , . . . , 𝑧𝑖𝑛 )

A key component is a sufficiently large subset system I without too much overlap.

Definition 8.19 (Combinatorial Design)
For ℓ > 𝑛 > 𝑑, a family I = {𝐼1 , . . . , 𝐼𝑚} of 𝑚 subsets of [ℓ ] is an (ℓ , 𝑛 , 𝑑)-design if
for all 𝑗 and 𝑘 ≠ 𝑗,
▶ we have | 𝐼𝑗 | = 𝑛 and

▶ | 𝐼𝑗 ∩ 𝐼𝑘 | ≤ 𝑑. ◀

(We will eventually want to use this with 𝑚 = 2𝜀ℓ .)
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Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ ] in time 2𝑂(ℓ ). ◀
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Lemma 8.20 (NW Design)
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To show: 𝐴 succeeds. We use the probabilistic method!
Generate random 𝐼 by picking each element 𝑥 ∈ [ℓ ] independently with probability 2𝑛/ℓ .
By Chernoff:
(1) ℙ[| 𝐼| ≥ 𝑛] ≥ 0.9
(2) ℙ[| 𝐼 ∩ 𝐽 | ≥ 𝑑] ≤ 1

2 · 2−𝑑/10 for any 𝐽 ∈ I

Since |I| ≤ 2𝑑/10 and union bound on (2), ℙ[max𝐽∈I | 𝐽 ∩ 𝐼| ≥ 𝑑] ≤ 1
2 .

Hence, with probability at least 0.9 · 0.5 = 0.45, our random set 𝐼 has intersection ≤ 𝑑 with
all old sets and ≥ 𝑛 elements. Dropping elements until | 𝐼| = 𝑛 does not change that.



Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
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(2) ℙ[| 𝐼 ∩ 𝐽 | ≥ 𝑑] ≤ 1

2 · 2−𝑑/10 for any 𝐽 ∈ I

Since |I| ≤ 2𝑑/10 and union bound on (2), ℙ[max𝐽∈I | 𝐽 ∩ 𝐼| ≥ 𝑑] ≤ 1
2 .

Hence, with probability at least 0.9 · 0.5 = 0.45, our random set 𝐼 has intersection ≤ 𝑑 with
all old sets and ≥ 𝑛 elements. Dropping elements until | 𝐼| = 𝑛 does not change that.
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with probability ≥ 0.45𝑚 > 0, so some choice of sets I as claimed must exist. ■
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Unpredictable Next Bits
The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.
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The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.

Definition 8.21 (unpredictable)
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ℙ𝑋
�
𝐶(𝑌1 . . . 𝑌𝑖−1) = 𝑌𝑖

� ≤ 1
2 + 𝜀

𝑆(ℓ ) .

◀
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Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ )-pseudorandom generator. ◀
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If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ )-pseudorandom generator. ◀
Proof (Sketch):
Assume towards a contradiction that 𝐺 is not a PRG.
Then there exists a circuit 𝐶 that behaves substantively different on 𝐺(U({0, 1}ℓ ) and
U({0, 1}𝑆(ℓ )) bits: 1

10 more or less likely to output 1.
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guess correctly only with prob. ≤ 1
2 + 1

10 · 1
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𝐶 differs by 1

10 on these, so (careful analysis shows that) we cannot have all 𝑆(ℓ ) circuits 𝐵𝑖

guess correctly only with prob. ≤ 1
2 + 1
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𝑆(ℓ ) .

∃𝑖 such that 𝐵𝑖 predicts 𝑌𝑖 correctly with prob. ≥ 1
2 + 𝜀/𝑆(ℓ ),

so 𝐺 is not unpredictable.
(For full details, see Arora & Barak, Theorem 20.10) ■
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NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg( 𝑓 ) > 22𝑑. Then NW 𝑓

I


U({0, 1}ℓ )� is ( 1

10Havg( 𝑓 ), 1
10 )-pseudorandom. ◀
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By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit 𝐶 would lead to a small circuit 𝐵 for 𝑓 .
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Let 𝑆 = Havg( 𝑓 ), i. e., on inputs of size 𝑛, 𝑓 requires circuits larger than 𝑆 = 𝑆(𝑛) > 22𝑑 to be
computed with confidence ≥ 1

2 + 1
𝑆 .
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computed with confidence ≥ 1

2 + 1
𝑆 .

Towards refuting the circuit-predictability of NW, suppose for some 𝑖 ∈ [𝑚] there is a
circuit 𝐶 with |𝐶| ≤ 2𝑚 < 𝑆/2 and

ℙ𝑍
�
𝐶(𝑅[1..𝑖 − 1]) = 𝑅[𝑖]� ≥ 1

2 + 1
10𝑚 where 𝑅 = NW(𝑍) and 𝑍

D
= U({0, 1}ℓ ) (∗)
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Let 𝑆 = Havg( 𝑓 ), i. e., on inputs of size 𝑛, 𝑓 requires circuits larger than 𝑆 = 𝑆(𝑛) > 22𝑑 to be
computed with confidence ≥ 1
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𝑆 .

Towards refuting the circuit-predictability of NW, suppose for some 𝑖 ∈ [𝑚] there is a
circuit 𝐶 with |𝐶| ≤ 2𝑚 < 𝑆/2 and

ℙ𝑍
�
𝐶(𝑅[1..𝑖 − 1]) = 𝑅[𝑖]� ≥ 1

2 + 1
10𝑚 where 𝑅 = NW(𝑍) and 𝑍

D
= U({0, 1}ℓ ) (∗)

Recall that 𝑅[𝑗] = 𝑓 (𝑍𝐼𝑗 );
by renaming, assume 𝑅[𝑖] = 𝑓 (𝑍[1..𝑛]) and write 𝑍1 = 𝑍[1..𝑛] and 𝑍2 = 𝑍(𝑛..ℓ ].
⇝ ℙ𝑍

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚
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NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)
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� ≥ 1
2 + 1

10𝑚 with 𝑍 = 𝑍1𝑧2
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Since I is an (ℓ , 𝑛 , 𝑑)-design, each 𝑓 (𝑍𝐼𝑗 ) has ≤ 𝑑 bits from 𝑍1; the other 𝑛 − 𝑑 are hardcoded
bits from 𝑧2. So we can compute 𝑓 (𝑍𝐼𝑗 ) with a circuit of size 𝑑2𝑑 (CNF formula suffices).
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𝑆
.

This contradicts the fact that 𝑆 = Havg( 𝑓 ). ■
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Picking Parameters
▶ Generic algorithm:

▶ Setup: 𝑓 ∈ TIME(2𝑂(𝑛)) and 𝑆 : ℕ≥1 → ℕ≥1 with Havg( 𝑓 ) ≥ 𝑆
▶ Input: Random seed 𝑍 ∈ {0, 1}ℓ (truly random bits)
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I := (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 (algorithm from Lemma 8.20)
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(𝑍)

⇝ By Lemma 8.23, the output is (𝑆(𝑛)/10, 1
10 ) pseudorandom.
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Output NW 𝑓

I
(𝑍)

⇝ By Lemma 8.23, the output is (𝑆(𝑛)/10, 1
10 ) pseudorandom.

▶ Parameters for Theorem 8.16
▶ Assuming Hypothesis 8.13: 𝑓 exists with Havg( 𝑓 ) ≥ 𝑆 with 𝑆(𝑛) = 2𝛿𝑛 .
▶ The inequality becomes ℓ > 10𝑛2

lg 𝑆(𝑛)/10 = 100𝑛2

𝛿𝑛 = 100
𝛿 𝑛, so 𝑛 ≈ 𝛿

100ℓ .
▶ 𝑑 = lg 𝑆(𝑛)/10 = 𝛿𝑛/10 = 𝛿2

1000ℓ

▶ NW can generate 𝑚 = 2𝑑/10 = 2𝛿𝑛/100 = 2( 𝛿
100 )2ℓ pseudorandom bits
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1000ℓ

▶ NW can generate 𝑚 = 2𝑑/10 = 2𝛿𝑛/100 = 2( 𝛿
100 )2ℓ pseudorandom bits

▶ Pseudorandom against circuits of size 𝑆(𝑛)/10 = 2𝛿2ℓ/100/10 ≫
ℓ→∞

23( 𝛿
100 )2ℓ = 𝑚3

⇝ NW 𝑓
I

is a 2𝜀ℓ -pseudorandom generator with 𝜀 = (𝛿/100)2
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8.6 Summary



Overview Randomized Complexity Classes

Proven facts:

▶ P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP

▶ RP ⊆ NP

▶ NP ∪ co-NP ⊆ PP

▶ ZPP = RP ∩ co-RP

▶ NP ⊆ co-RP =⇒ NP = ZPP

Widely held belief (but not proven):

▶ P = BPP
and hence P = ZPP = RP = BPP

▶ BPP ⊊ NP ⊆ PP

Consequences

▶ don’t try to solve NP-hard problems
exactly using randomization in polytime

▶ do seek easier and faster
algorithms for problems in P!
They often exist!

▶ do seek randomized algorithms for
problems of unknown complexity status
Some exist!
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