'S627 (Summer 2025)
_Universiti

Randomized
Complexity

18 June 2025

Prof. Dr. Sebastian Wild



Outline

8 Randomized Complexity

8.1
8.2
8.3
8.4
8.5
8.6

Randomized Complexity Classes
Pseudorandom Generators

Excursion: Boolean Circuits
Derandomization

Nisan-Wigderson Pseudorandom Generator

Summary



The Power of Randomness

We’ve seen examples where randomized algorithms are provably more powerful . ..
but how general are such improvements?



The Power of Randomness

We've seen examples where randomized algorithms are provably more powerful . ..
but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of
randomization:

Does randomization extend the range of problems solvable by polytime algorithms?



The Power of Randomness

We've seen examples where randomized algorithms are provably more powerful . ..
but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of
randomization:

Does randomization extend the range of problems solvable by polytime algorithms?

~+ back to decision problems.



8.1 Randomized Complexity Classes



Randomization for Decision Problems

» Recall: Pand NP consider decision problems only

~ equivalently: languages L C ©*



Randomization for Decision Problems

» Recall: Pand NP consider decision problems only

~ equivalently: languages L C ©*

Can make some simplifications for algorithms:
»> Only 3 sensible output values: 0, 1, [ ?

» Unless specified otherwise, allow unlimited #random bits,
i.e., randomp (x) = timex (x) (Can’t read more than one random bit per step)

< DLAA"\‘/J

N



Randomized Complexity Classes

Definition 8.1 (ZPP)

ZPP (zero-error probabilistic polytime) is the class of all languages L with a
polytime Las Vegas algorithm A, i.e.,
(@) dc : Timea(n) = O(n)asn —
(b) P[A(x)=[xeL]] > 1
(c) A(x) # [x € L] implies A(x) = [?

(In particular: always terminate!)



Randomized Complexity Classes

Definition 8.1 (ZPP)

ZPP (zero-error probabilistic polytime) is the class of all languages L with a

polytime Las Vegas algorithm A, i.e.,
(@) dc : Timea(n) = O(n)asn —
(b) P[A(x)=[xeL]] > 1
(c) A(x) # [x € L] implies A(x) = [?

(In particular: always terminate!)

Definition 8.2 (BPP)

BPP (bounded-error probabilistic polytime) is the class of languages L with a
polytime bounded-error Monte Carlo algorithm A4, i.e.,

(@ Jc : Timea(n) = O(nc)asn — oo
(b) Ie >0 : P[A(x)=[xeL]] = L+¢

Uxe ¥



Randomized Complexity Classes

Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages L with a
polytime Las Vegas algorithm A, i.e.,

(@) dc : Timea(n) = O(n)asn — (In particular: always terminate!)

(b) P[A(x)=[xeL]] > 1

(c) A(x) # [x € L] implies A(x) = [?

Definition 8.2 (BPP)
BPP (bounded-error probabilistic polytime) is the class of languages L with a
polytime bounded-error Monte Carlo algorithm A, i.e.,

(@) dc : Timea(n) = O(nc)asn — co

(b) Je >0 : P[A(x)=[xeL]] = I+e

Definition 8.3 (PP)
PP (probabilistic polytime) is the class of languages L with a polytime unbounded-error

Monte Carlo algorithm: (a) asabove (b) P[A(x)=[x€L]] > %



Error Bounds

Remark 8.4 (Success Probability)
From the point of view of complexity classes, the success probability bounds are flexible:
» BPP only requires success probability 1 + ¢, but using Majority Voting, we can also
obtain any fixed success probability 6 € (3, 1).
» Similarly for ZPP, we can use probability amplification on Las Vegas algorithms

~~ Unless otherwise stated,

for BPP and ZPP algorithms A, require P [A(x) =[xe€ L]] > %]




Error Bounds

Remark 8.4 (Success Probability)
From the point of view of complexity classes, the success probability bounds are flexible:

> BPP only requires success probability 3 + ¢, but using Majority Voting, we can also
obtain any fixed success probability 6 € (3, 1).

» Similarly for ZPP, we can use probability amplification on Las Vegas algorithms

~~ Unless otherwise stated,

for BPP and ZPP algorithms A, require P [A(x) =[xe€ L]] > %]

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result:

Theorem 8.5 (PP can simulate nondeterminism)
NP U co-NP C PP.

~ Useful algorithms must avoid unbounded errors.



PP can simulate nondeterminism [1]

Proof (Theorem 8.5):
e ﬁﬁwcy) ol Qo> s paﬁyL“uA pre pre =L)—Pv‘(3

G\‘\P@JA % Lé N\D( o Qass  GIR Y\e&ualﬁ'cy/‘ L SF SAT (Np'cempljk)

-2 Sh(&u\ o show  SAT e TP (TAUT is furNP'—caM/f,éﬂ‘

o oorlss s(wjﬁo’(‘y

Given vbovead oo MC olse A Soc SAT Soc  co NP = pﬁ)

(poly ki)

S iven kP Dg ﬁxmg“/\ w oves e vantalles

A(“f} - (i’) szol& =N [va‘pvru\jy\ V‘CMACLGUA a\@r\suwi \/] ;X',,\)(L,\ f3§o\’j
(L T‘c:w(éluw éh\;] (D(L‘r\

Czy ({ V=1 Coeobpd 4 00

A (
Cé') O“QLE/ML\ ou\((w{ g(f)) Pi é" —_— K = O(k}

e s 2
2



PP can simulate nondeterminism [2]

Proof (Theorem 8.5): Founioy (R poQy brmes 4

cormechens . PLAC) = Tp s\ 5 L

- QQGS{NT _} ;‘\\, QS‘I?{SVW* g&l fk,u,kz,)
(

lP[ s&tp 2) Sucuuu&n\ z EZ ‘.M&L\WA,A.,\

PLAG) =0] = PLV(s) =) PL3G =0
f ( < {
R e A R e l> < =
< z j (l 5 ke 2

o @& SAT PLV(e) = 1) = o

PLAC =10 = 1. Pl ~4) = p < 3
= PL A =Te D 54



One-Sided Errors

In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [¢ satisfied].

(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ¢ always yield 0.
... could this help?



One-Sided Errors

In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [¢ satisfied].

(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable ¢ always yield 0.
... could this help?
s, TSE-MC

Definition 8.6 (One-sided error Monte Carlo algorithms)
A randomized algorithm A for language L is a one-sided-error Monte-Carlo (OSE-MC) algorithm
if we have

(@ P[A(x)=1] > % forall x € L, and

(b) P[A(x)=0]=1forallx ¢ L.

~ [OSE-MC: A(x) = 1 must always be correct; A(x) = 0 may be a lie]




One-Sided Error Classes

Definition 8.7 (RP, co-RP)

The Classes_RP and co-RP are the sets of all languages L with a polytime OSE-MC algorithm
for L resp. L.



One-Sided Error Classes

Definition 8.7 (RP, co-RP)
The classes RP and co-RP are the sets of all languages L with a polytime OSE-MC algorithm
for L resp. L. <

Theorem 8.8 (Complementation feasible — errors avoidable)
RP N co-RP = ZPP. <

Proof:

See exercises. [ |
P

Note the similarity to the wide open problem NP N co-NP Zp
For the latter, the common belief is NP N co-NP O P, in sharp contrast to the randomized
classes.



8.2 Pseudorandom Generators

Co"\\/‘{ML\nOMc‘Q AJLQ\V\.’(\-m-\ (FMSrqw MM-S>

Pméor%é@b‘_

b o b nlie
frohon of secd

aaaé ‘:D\é = GULPL (1-“\¢> s&a\z\"xt’\‘c&ﬁ &.\45

Ser s AQWHS\



Derandomization

> Suppose we have a BPP algorithm 4, i. e., a polytime TSE-MC algorithm
~ Randomy(n) bounded

~~ There are at most 2874°4(") different random-bit inputs p
and hence at most so many different computations for A on inputs x € X"



Derandomization

>

~

Suppose we have a BPP algorithm A, i. e, a polytime TSE-MC algorithm
Random 4 (n) bounded

There are at mpst 284" different random-bit inputs p
and hence at mos y different computations for A on inputs x € X"

The derandomization of A is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

In general, the exponential blowup makes this uninteresting.
= cos . ¢
¢10g2 2 s _ (5«> B .
But: If Randoma(n) < c -1g(n), (2 -V
the derandomization of A runs in polytime: n° - Timea(n)




Derandomization

> Suppose we have a BPP algorithm 4, i.e., a polytime TSE-MC algorithm
~ Randomy(n) bounded
~~ There are at most 2874°4(") different random-bit inputs p

and hence at most so many different computations for A on inputs x € X"

» The derandomization of A is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

» In general, the exponential blowup makes this uninteresting.
= log,

v
» But: If Randomy(n) < c -1g(n),
the derandomization of A runs in polytime: n° - Timea(n)

¥ Typical randomized algorithms use Q(1), not O(log 1) random bits.



Pseudorandom Generators

» “Typical randomized algorithms use Q(n), not O(log n) random bits.”

10



Pseudorandom Generators

» “Typical randomized algorithms use ()(n), not O(log n) random bits.”

f
(

>eh But how would an algorithm actually know

—

whether what we give it is truly random?

int getRondomNymber ()

return 4. # chosen by fair dice roll
// quaranteed to be random.

https://xkcd.com/221/

10



Pseudorandom Generators

» “Typical randomized algorithms use ()(n), not O(log n) random bits.”

== )
JW' But how would an a.algo.rlfchm actually know int. ogtRandomNunber ()
whether what we give it is truly random?

return 4. # chosen by fair dice roll
// quaranteed to be random.

https://xkcd.com/221/

» must somehow keep the random distribution . ..
in general not clear what “sufficiently random” would mean
~ Breakthrough idea in TCS: Pseudorandom Generators

» generate an exponential number of bits from a n given truly random bits such that
no efficient algorithm can distinguish them from truly random

in a model to be specified

»> Key (Open!) Question: Do they exist?!



Pseudorandom Generators

» “Typical randomized algorithms use ()(n), not O(log n) random bits.”

== )
JW' But how would an a.algo.rlfchm actually know int. ogtRandomNunber ()
whether what we give it is truly random?

return 4. # chosen by fair dice roll
// quaranteed to be random.

https://xkcd.com/221/

» must somehow keep the random distribution . ..
in general not clear what “sufficiently random” would mean

~ Breakthrough idea in TCS: Pseudorandom Generators

» generate an exponential number of bits from a n given truly random bits such that
no efficient algorithm can distinguish them from truly random

in a model to be specified

»> Key (Open!) Question: Do they exist?!

» Surprising answer: We have good evidence in favor (!)



8.3 Excursion: Boolean Circuits



Boolean Circuits

For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.

11



Boolean Circuits

For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An n-input Boolean circuit is a connected DAG C = (V, E)
» with n sources (labeled x1, ..., x;)
> asingle sink c (the output)
> any number of gafes (non-sink vertices) labeled with A, v, or -

> All gates have in- and out-degree at most 2 (ﬂm—in = fan-out = 2). (— is always unary)
T;/Nm‘[f/f \
D o
5

—

(~ —)

11



Boolean Circuits

For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.
Definition 8.9 (Boolean circuit)
An n-input Boolean circuit is a connected DAG C = (V, E)

» with n sources (labeled x1, ..., x;)

> asingle sink c (the output)

> any number of gafes (non-sink vertices) labeled with A, V, or —.

> All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (— is always unary)

The value of C, C(xy, ..., x,) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.

11



Boolean Circuits

For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.
Definition 8.9 (Boolean circuit)
An n-input Boolean circuit is a connected DAG C = (V, E)

» with n sources (labeled x1, ..., x;)

> asingle sink c (the output)

> any number of gafes (non-sink vertices) labeled with A, V, or —.

> All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (— is always unary)

The value of C, C(xy, ..., x,) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.

The size of C is the number of vertices |C| = |V(C)|.

11



Boolean Circuits
For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.
Definition 8.9 (Boolean circuit)
An n-input Boolean circuit is a connected DAG C = (V, E)
» with n sources (labeled x1, ..., x;)
> asingle sink c (the output)
> any number of gafes (non-sink vertices) labeled with A, V, or —.
> All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (— is always unary)

The value of C, C(xy, ..., x,) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.

The size of C is the number of vertices |C| = |V(C)|.
A circuit C computes function f : {0,1}" — {0,1}if Vx € {0,1}" : C(x) = f(x).

11



Boolean Circuits
For technical reasons (stay tuned . .. ), another model of computation more convenient than TM here.
Definition 8.9 (Boolean circuit)
An n-input Boolean circuit is a connected DAG C = (V, E)
» with n sources (labeled x1, ..., x;)
> asingle sink c (the output)
> any number of gafes (non-sink vertices) labeled with A, V, or —.
» All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (— is always unary)

The value of C, C(xy, ..., x,) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.

The size of C is the number of vertices |C| = |V(C)|.
A circuit C computes function f : {0,1}" — {0,1}if Vx € {0,1}" : C(x) = f(x).

Definition 8.10 (Circuit complexity)

The circuit complexity H(f) of a Boolean function f : {0,1}" — {0, 1} is the size of the
smallest Boolean circuit C that computes f.

11



Formula vs. Circuit
” }(OR

n
Parity function: Py(x1,...,x,) = @ % = Z x; mod 2 (odd number of 1-bits?)
i=1 i=1



Formula vs. Circuit

XOR
noy

n
Parity function: Py(x1,...,x,) = @ % = Z x; mod 2
i=1 i=1
» By associativity, P, (x1,...,%,) = Pu—1(x1, ..., Xn-1) ® Xy

» also: a®b = (aA-b)V(-aAb)

~~ Can built a circuit for P, using 5(n — 1) gates

(odd number of 1-bits?)

12



Formula vs. Circuit

n }(OR n
Parity function: Py(x1,...,x,) = @ % = Z x; mod 2 (odd number of 1-bits?)
i=1 i=1

» By associativity, P, (x1,...,%,) = Pu—1(x1, ..., Xn-1) ® Xy

» also:a® b =(aA-b)V(-aAb) (xl@xlg X—;}@D(xL‘@xK@ ,(G>

~~ Can built a circuit for P, using 5(n — 1) gates

» Obvious boolean formula: (over basis {A, V, —})
Pu(x1,...,x,) = (xn A =Py_q1(x1,... 9xn—1)) v (_‘xn A Py_q(x1,-.. axn—l))

~~ 52171 gperators

> optimal (assuming n = 2F):
Pu(x1,...,%,) = (Pn/z(XL e rxn/Z) N _‘Pn/Z(xn/2+1/ cee rxn))
v (ﬁpn/Z(xll e /xn/Z) N Pn/Z(xn/2+1/ cee /xn))

~ O(n?) still much more than for circuits!

12



Circuit Complexity Classes

Poly-size circuits: (somewhat analogous to P, but not quite .. .)

» P/noly = all functions computable by M/sﬁaich‘ctﬁts/

TM Cann Q—GLNC:/J :IWanLt erauv‘L

Foi

<

QQ\“\A 12

Y3 Ca

Co mw’wkj -C( loat”

0,,:1 \CM\ :O(hd>

13



Circuit Complexity Classes

Poly-size circuits: (somewhat analogous to P, but not quite .. .)
> P/noly = all functions computable by polynomial-sized circuits
» Can prove: P C P/l

Theorem 8.11 (TM to circuit)

For f € TIME(T (1)) and input size 1, we can compute in polytime
a circuit C for f on inputs of size 1 of size |C| = O(T(1)?).

(Arora & Barak, Theorem 6.6)

&M ien TT)“/L ’é\ Size GQ‘ dr‘un\\#

13



Circuit Complexity Classes

Poly-size circuits: (somewhat analogous to P, but not quite .. .)
> P/noly = all functions computable by polynomial-sized circuits
» Can prove: P C P/l

Theorem 8.11 (TM to circuit)
For f € TIME(T (1)) and input size 1, we can compute in polytime
a circuit C for f on inputs of size 1 of size |C| = O(T(1)?).
(Arora & Barak, Theorem 6.6)
allows some “cheating” that we use later

> actually P C P/pory:
circuits are non-uniform model of computation: different circuit for each n

~ has some weird properties in general (P, contains a version of halting problem ..

am g L € ZJM-V\(»[NB c P/{,ugv

2

13



Circuit Complexity Classes

Poly-size circuits: (somewhat analogous to P, but not quite .. .)
> P/noly = all functions computable by polynomial-sized circuits
» Can prove: P C P/l

Theorem 8.11 (TM to circuit)
For f € TIME(T (1)) and input size 1, we can compute in polytime
a circuit C for f on inputs of size 1 of size |C| = O(T(1)?).
(Arora & Barak, Theorem 6.6)
allows some “cheating” that we use later

> actually P C P/pory:
circuits are non-uniform model of computation: different circuit for each n

~ has some weird properties in general (P, contains a version of halting problem ..

> Probably NP g P/poly (unless polynomial hierarchy collapses)

2

13



Circuit Complexity Classes

Poly-size circuits: (somewhat analogous to P, but not quite .. .)
> P/noly = all functions computable by polynomial-sized circuits
» Can prove: P C P/l
Theorem 8.11 (TM to circuit)
For f € TIME(T (1)) and input size 1, we can compute in polytime
a circuit C for f on inputs of size 1 of size |C| = O(T(1)?).

(Arora & Barak, Theorem 6.6)
allows some “cheating” that we use later

> actually P C P/pory:
circuits are non-uniform model of computation: different circuit for each n
~~ has some weird properties in general (P/jo)y contains a version of halting problem ... .)

> Probably NP g P/poly (unless polynomial hierarchy collapses)

Circuit Lower Bounds: . £ NP
» Can show: almost all Boolean functions f have exponential C(f) (counting argument)
» But: Very hard to prove circuit lower bounds for concrete functions f
» Showing JH(f) exponential for any f € NP would imply P # NP

» Proven lower bounds on H(f) for explicit f are typically linear in 1
13



"Monte Carlo Circuits

We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs X € {0, 1}" are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The p-average-case hardness Hgvg( f) of a Boolean function f : {0,1}" — {0, 1} is

the largest size S, such that every circuit C with |C| < S we have Px [C(X) = f(X)] < p.
(Need circuits larger than J—CZ’UK( f) for confidence p.)

14



Monte Carlo Circuits

We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs X € {0,1}" are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The p-average-case hardness Hgvg( f) of a Boolean function f : {0,1}" — {0, 1} is
the largest size S, such that every circuit C with |C| < S we have Px [C(X) = f(X)] < p.
(Need circuits larger than J—CZ’UK( f) for confidence p.)
1,1
The average-case hardness of f then is Hue(f) = max{S : ﬁfjvgs > S}.

(Allow larger circuits and worse confidence until f probabilistically computable)

14



Monte Carlo Circuits

We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs X € {0,1}" are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The p-average-case hardness :H;;g( f) of a Boolean function f : {0,1}" — {0, 1} is
the largest size S, such that every circuit C with |C| < S we have Px [C(X) = f(X)] < p.
(Need circuits larger than J—Cgvg( f) for confidence p.)
1,1
The average-case hardness of f then is Hupe(f) = max{S : 9{[,2”;5 > S}.

(Allow larger circuits and worse confidence until f probabilistically computable)

Hypothesis 8.13 (Hard functions exist)
There exists a function f € NP with F(,(f) = 290", INOT PROVEN!

14



Monte Carlo Circuits

We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs X € {0,1}" are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The p-average-case hardness :H;;g( f) of a Boolean function f : {0,1}" — {0, 1} is
the largest size S, such that every circuit C with |C| < S we have Px [C(X) = f(X)] < p.
(Need circuits larger than J—Cﬁvg( f) for confidence p.)
1,1
The average-case hardness of f then is Hupe(f) = max{S : %HZUZ,S > S}.

(Allow larger circuits and worse confidence until f probabilistically computable)

Hypothesis 8.13 (Hard functions exist)
There exists a function f € NP with F(,(f) = 290", INOT PROVEN!

> Deep result (that we skip): From existence of function with large J((f), )
can conclude existence of function with large Hag(})-
(see Arora & Barak Chapter 19)

» 3SAT probably has exponential H(f) (=~ ETH) (and other candidates exist)

14



Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)
Arv. R €{0,1}"is (S, e)-pseudorandom if for every circuit C with |C| < S

=1

‘P[Q(R):l] - P[C(Um):/l]| < e where U, 2U{0,1)™)

Pseudorandom bits are indistinguishable from truly random for any small circuit.

think: fast-running algorithm

15



Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)

Arv. R €{0,1}"is (S, e)-pseudorandom if for every circuit C with |C| < S
/—— —_—m—— —

Plc® =1] - Pl =1]| < ¢ where U, 2 u(o,1}")

Pseudorandom bits are indistinguishable from truly random for any small circuit.
think: fast-running algorithm

Definition 8.15 (Pseudorandom generator)
Let S : Ns; — Nsq.
A functim@: {0,1}* — {0, 1}* computable in 2" time (G € TIME(2")) is an
S(€)-pseudorandom generator (S(¢)-PRG) if -

(@) |G(z)| = S(|z|) for every z € {0, 1}*

(b) VYl e Ny : G(Uy)is (S(¢), f—o)—pseudorandom.

Seeding a generator with ¢ truly random bits yields S(¢) pseudorandom bits.

15



8.4 Derandomization



Pseudorandom Generator for BPP Derandomization

The Nisan-Wigderson construction shows that
the existence of any hard-on-average function
implies a strong pseudorandom generator.

exponentially many pseudorandom bits(!)

Theorem 8.16 (Strong NW PRG)

Assume Hypothesis 8.13, i.e., f € TIME(29")) exists with Hyue(f) > S with S(n) = 2%" for a
constant 6 > 0. - —
Then there is an € = ¢(0) such that there is eﬂpseudorandom generator.

(We will prove this over the course of the next subsection.)

16



BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.

17



BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.

Proof:

By Theorem 8.16, Hypothesis 8.13 implies a 5(£)-PRG G : {0, 1}/ — {0,1}°) with 5(¢) = 2¢¢. -




BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.
Proof:

By Theorem 8.16, Hypothesis 8.13 implies a 5(£)-PRG G : {0, 1}/ — {0,1}°) with 5(¢) = 2¢¢. -
LetL € BPP.



BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.

Proof:

By Theorem 8.16, Hypothesis 8.13 implies a S(¢)-PRG G : {0, 1} — {0, 1}° with S(¢) = 2¢¢. E

P
LetL € BPP. ~ Elalgo;ithmAwith Timea(n) < n® (polytime) and Pr[A(x, R) = L(x)] >
here R 2 U({0,1}™) for m = Randoma(n) < Timea(n) < nC.

3

2o =
7



BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a S(¢)-PRG G : {0, 1} — {0, 1}° with S(¢) = 2¢¢.
LetL € {BPP. ~~ Falgorithm A with Time(n) < n¢ (polytime) and Pr[A(x, R) = L(x)] > %;
here R 2 U({0,1}™) for m = Randoma(n) < Timea(n) < nC.
We now obtain a deterministic polytime algorithm B as follows:
1. Replace R by G(Z) for Z 2 U{0,1}") for ¢ @0 that m < S(¢) = 2¢¢ = n®.
2. Instead of this probabilistic TM, simulate A(x, G(z)) for all possible z € {0, 1}
3. Output the majority.

The trick here is that number of possible seeds z is 200 = ¢ hence the running time
remains polynomial and B € P!



BPP Derandomization

Theorem 8.17 (Hard-on-average function - BPP = P)
Hypothesis 8.13 implies BPP = P.

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a S(¢)-PRG G : {0, 1} — {0, 1}° with S(¢) = 2¢¢.

LetL € BPP. ~» ZFalgorithm A with Time4(n) < n° (polytime) and Pr[A(x, R) = L(x)] > %;
here R 2 U({0,1}™) for m = Randoma(n) < Timea(n) < n°.
We now obtain a deterministic polytime algorithm B as follows:
1. Replace R by G(Z) for Z 2 U{0,1}Y) for £ = t(n) = < lgn so thatm < S(f) = 2t = e,
2. Instead of this probabilistic TM, simulate A(x, G(z)) for all possible z € {0, 1}
3. Output the majority.
The trick here is that number of possible seeds z is 200 = ¢ hence the running time

remains polynomial and B € P!

It remains to show that B accepts L.
(Intuition: A is too fast to notice a difference of more than % between R and G(Z).)

17



BPP Derandomization [2]
Proof (cont.): RBEA# L6 o wecjorly vabe omvoos
Formally, assume towards a contradiction that there is an infinite sequence of x’s with
Pz[A(x,G(Z)) = L(x)] < 5 — 55 = 0.56 > 1.

Y&

-



BPP Derandomization [2]

Proof (cont.):

Formally, assume towards a contradiction that there is an infinite sequence of x’s with
Pz[A(x,G(Z)) = L(x)] < 5 — 55 = 0.56 > 1.

Then, we can build a distinguisher circuit C for the PRG: C simply computes the function

r +— A(x, ), where x is hard-wired into the circuit C.
(Recall that Pr[A(x,R) = L(x)] > %)

1
Definition 8.14 (Pseudorandom bits) £= lo
Arv. R € {0,1}" is (S, €)-pseudorandom if for every circuit C with |C| < §

|ple@) =1] - Plc@)]

<e  where U, 2u{0,1}")

I bits are indistinguishable from truly random for any small circuit.

think: fast-running algorithm
Definition 8.15 (Pseudorandom generator)
LetS: N> — N>jp.

A functior@: {0,1}* — {0, 1}* computable in 2" time (G € TIME(2")) is an
S(0)-pseudorandom generator (S(¢)-PRG) if
@) |G(z)| = S(z|) for every z € {0,1}*
(b) Ve e Ny 1 G(Uy)is (S(0)°, &5)-pseudorandom.

Seeding a generator with { truly random bits yields S(¢) pseudorandom bits.



BPP Derandomization [2]

Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of x’s with

Pz[A(x,G(Z)) = L(x)] < 3 - & = 0.56 > 1.

Then, we can build a distinguisher circuit C for the PRG: C simply computes the function
r +— A(x, ), where x is hard-wired into the circuit C.

(Recall that Pr[A(x,R) = L(x)] > %)

We don't have a circuit for A, just a TM;

but can convert A using Theorem 8.11 to a circuit C with |C| = O((Timea(n))?*) = O(n*).



BPP Derandomization [2]

Proof (cont.):

Formally, assume towards a contradiction that there is an infinite sequence of x’s with
Pz[A(x,G(Z)) = L(x)] < 5 — 55 = 0.56 > 1.

Then, we can build a distinguisher circuit C for the PRG: C simply computes the function
r +— A(x, ), where x is hard-wired into the circuit C.

(Recall that Pr[A(x,R) = L(x)] > %)

We don't have a circuit for A, just a TM;

but can convert A using Theorem 8.11 to a circuit C with |C| = O((Timea(n))?*) = O(n*).

For sufficiently large 7, |C| is thus smaller than S({(n))®> = n°¢, so C is a valid distinguisher
for the PRG. ¥

Definition 8.14 (Pseudorandom bits)
Arv. R € {0,1}" is (S, ¢)-pseudorandom if for every circuit C with |C| < S

[Ple® =1] - plc@]| < ¢ where U 2 u(o,u™)

Pseudorandom bits are indistinguishable from truly random for any small circuit.

Definition 8.15 (Pseudorandom generator)
Let S : N> — Nop.

A function(G) {0,1}* — {0,1}* computable in 2" time (G € TIME(2")) is an
S(¢)-pseudorandom generator (S(€)-PRG)if ~ ~ T
(@) |G(z)| = S(|z]) for every z € {0,1}*
(b) V£ €Noy = G(UY)is (S(E)*, 75)-pseudorandom.

Seeding a generator with € truly random bits yields S(£) pseudorandom bits.



BPP Derandomization [2]

Proof (cont.):

Formally, assume towards a contradiction that there is an infinite sequence of x’s with
Pz[A(x,G(Z)) = L(x)] < 5 — 55 = 0.56 > 1.

Then, we can build a distinguisher circuit C for the PRG: C simply computes the function
r +— A(x, ), where x is hard-wired into the circuit C.

(Recall that Pr[A(x,R) = L(x)] > %)

We don't have a circuit for A, just a TM;

but can convert A using Theorem 8.11 to a circuit C with |C| = O((Timea(n))?*) = O(n*).

For sufficiently large 7, |C| is thus smaller than S({(n))®> = n°¢, so C is a valid distinguisher
for the PRG. ¥

Hence, the majority vote in B is correct
(for all but a finite number of inputs, which can be tested in constant time).
~ LeP.

18



Consequences

~ Since the existence of hard-on-average functions is rather likely,
» it must be assumed that randomization alone does not solve NP-hard problems;
> ...and it seems that there is some heavy lifting going on in Nisan-Wigderson

~~ Let’s see what it does!

19



8.5 Nisan-Wigderson Pseudorandom Generator



Overview
» In this section, we will describe a conditional construction for pseudorandom
generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound S(n) for our hard function f,
the more pseudorandom bits we can generate from a fixed seed of { truly random bits.

» Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)

» many further refinements followed

20



Overview

» In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound S(n) for our hard function f,
the more pseudorandom bits we can generate from a fixed seed of { truly random bits.

» Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)

» many further refinements followed

» This is pretty cool stuff, but also complex. ~~ Quantitative parts ¢ exam.

20



Overview

» In this section, we will describe a conditional construction for pseudorandom
generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound S(n) for our hard function f, /]
bits.

the more pseudorandom bits we can generate from a fixed seed of { truly random

» Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)

» many further refinements followed

» This is pretty cool stuff, but also complex. ~~ Quantitative parts ¢ exam.

Theorem 8.18 (PRG from average-case hard function)

Let S :N>; — N>

If there exists a function f € TIME(2°"")) with Havg(f)(n) = S(n) for all n,
then there exists a S(6¢)°-pseudorandom generator for some constant 6 > 0.

This general result is for a refined construction and works also for weaker assumptions.

We will show the version sufficient for Theorem 8.16; see Arora & Barak Remark 20.8

20



Nisan-Wigderson Generator

The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets [ e@)f ¢ truly random input bits into a (hard) function f : {0,1}" — {0, 1}

NW(Z) = f(Zu)f(Zn)..f(Zs,)
where Z 2 U({0, 1}!) is the random seed and z; for I = {i1,

...,in} denotes (z;,, ..., zi,)

21



Nisan-Wigderson Generator

The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets I € J of ¢ truly random input bits into a (hard) function f : {0,1}" — {0, 1}

NW/(2Z) = FZi)f(Zs)...f(Z,)

where Z 2 U({0, 1}!) is the random seed and z; for I = {i1,...,i,} denotes (ziy, -, 2i,)

A key component is a sufficiently large subset system J without too much overlap.

Definition 8.19 (Combinatorial Design)
Fo )afamily J = {I;, ..., [,,} of m subsets of [{]is an (¢, n, d)-design if
forattfand k # j,

» we have |[;| = n and

—————

> |Ijﬁlk| S_LZ.

(We will eventually want to use this with m = 2¢.)
_—

21



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20" -
Hze Z

A

22



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"
LOE s

Proof:

A is a simple greedy strategy: We start with J = (. For m € [24/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeg [J N 1| < d.



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)
There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"

Proof:
A is a simple greedy strategy: We start with J = (. For m € [24/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeg [J N 1| < d.

To show: A succeeds.



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"

Proof:

A is a simple greedy strategy: We start with J = 0. For m € [27/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeg [J N 1| < d.

To show: A succeeds. We use the probabilistic method!



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"

Proof:

A is a simple greedy strategy: We start with J = 0. For m € [27/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeqs |J N 1| < d.

To show: A succeeds. We use the probabilistic method!
Generate random I by picking each element x € [¢] independently with probability 27 /¢.



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an

(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20" -

Proof:

A is a simple greedy strategy: We start with J = (. For m € [24/10], iterate over all 2/ subsets

of [¢] and include into J the first set I with maxjeg [J N 1| < d.

To show: A succeeds. We use the probabilistic method!

Generate random I by picking each element x € [¢] independently with probability 27 /¢.
— i A S

By Chernoff:

O PI| = n] = 09

@P[IN]| =d] < % 27410 for any ] € J

ElxV: 2



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"

Proof:

A is a simple greedy strategy: We start with J = 0. For m € [27/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeqs |J N 1| < d.

To show: A succeeds. We use the probabilistic method!
Generate random I by picking each element x € [¢] independently with probability 27 /¢.

Lol
By Chernoff: | i
M PI 2 n] = 09 UU‘; Plray>d) < (1l 52
@QPIIN]|>d] < 3-274/forany ] € J < q i

Since || < 24/1° and union bound on (2), P[maxjes |[J N 1| > d] < %
Hence, with probability at least 0.9 - 0.5 = 0.45, our random set [ has intersection < d with
all old sets and > # elements. Dropping elements until |I| = 7 does not change that.



Probabilistic Method for Combinatorial Designs

Lemma 8.20 (NW Design)

There is an algorithm A that outputs on input (¢, 7, d) with £ > n > d and ¢ > 10n?/d an
(¢,n,d)-design J with || = 29/10 subsets of [¢] in time 20"

Proof:
A is a simple greedy strategy: We start with J = (. For m € [24/10], iterate over all 2/ subsets
of [¢] and include into J the first set I with maxjeg [J N 1| < d.

To show: A succeeds. We use the probabilistic method!
Generate random I by picking each element x € [¢] independently with probability 27 /¢.

By Chernoff:

O PI| = n] = 09

@P[IN]| =d] < % 27410 for any ] € J

Since || < 24/1° and union bound on (2), P[maxjes |[J N 1| > d] < %

Hence, with probability at least 0.9 - 0.5 = 0.45, our random set [ has intersection < d with
all old sets and > # elements. Dropping elements until |I| = 7 does not change that.

~ Ineach step, we have probability > 0.45 to succeed. So picking m random sets succeeds
with probability > 0.45" > 0, so some choice of sets J as claimed must exist.

22



Unpredictable Next Bits

The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.

—, Y54 MR

___Jjul
A

N
ok

23



Unpredictable Next Bits

The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.

Definition 8.21 (unpredictable) 4¢g°“') £ o= S

Let G : {0,1}* — {0, 1}* be a pebztimne-computable function with |G(x)| = S(|x]|) for all

x € {0,1}* (“stretch S”). -

G is unpredictable if there is ¢ > 0 such that for every i and circuit C with |C| < 25(n) we have
for X 2U({0,1}") and Y = G(X) -

&

1
Px[C(Vi... Y1) =Yi] < 27 50"

23



Unpredictable — Pseudorandom

Theorem 8.22 (Yao’s Theorem)

Let S : N>1 — N1 be polytime computable and G as above with stretch S.
If G is unpredictable, then G is an S(¢)-pseudorandom generator.

24



Unpredictable — Pseudorandom

Theorem 8.22 (Yao’s Theorem)

Let S : N>1 — N1 be polytime computable and G as above with stretch S.
If G is unpredictable, then G is an S(¢)-pseudorandom generator.

Proof (Sketch):

Assume towards a contradiction that G is not a PRG.

Then there exists a circuit C that behaves substantively different on G(U({0,1}) and
U0, 1}5Y) bits: %0 more or less likely to output 1. I

¥
"

: \ﬂam:ﬂ/ﬂcm‘q 5

o



N

A,
Theorem 8.22 (Yao’s Theorem) o C
Let S : N>1 — N1 be polytime computable and G as above with stretch S. TR
If G is unpredictable, then G is an S(¢)-pseudorandom generator.

Proof (Sketch):

Assume towards a contradiction that G is not a PRG.

Then there exists a circuit C that behaves substantively different on G(U({0,1}) and
U0, 1}5Y) bits: %0 more or less likely to output 1.

For each i, we can construct a predictor circuit B; from C:

Run C with Y[1..7 — 1] followed by truly random bits Z[i..S(¢)];

if C outputs 1, output Z[i], otherwise 1 — Z[i]. m redicble) g e

Let G : {0,1}* — {0, 1}* be a polytime-computable function with [G(x)| = S(|]) for all
x € {0, 1}* (“stretch S”).

Unpredictable — Pseudorandom @ y \

<

(= o [:S(EB

G is unpredictable if there is ¢ > 0 such that for every i and circuit C with |C| < 25(1) we have

B{ { L/[,I ) E‘[’xs for X 2 U({0,1}") and Y = G(X) o
o

Px[C(Yi...Yi)=Y] < 350"



Unpredictable — Pseudorandom d.= \ PCelrer a3 27e. st )= 4

Theorem 8.22 (Yao’s Theorem) ~ Plcly . e-) 2L s =4 {
Let S : N>1 — N1 be polytime computable and G as above with stretch S.
If G is unpredictable, then G is an S(¢)-pseudorandom generator.

Proof (Sketch):

Assume towards a contradiction that G is not a PRG.

Then there exists a circuit C that behaves substantively different on G(U({0,1}) and
U0, 1}5Y) bits: %0 more or less likely to output 1.

For each i, we can construct a predictor circuit B; from C:

Run C with Y[1..7 — 1] followed by truly random bits Z[i..S(¢)];

if C outputs 1, output Z[i], otherwise 1 — Z[i].
Note that By executes C on purely random bits, B on purely pseudorandom bits.
C differs by % on these, so (careful analysis shows that) we cannot have all S(¢) circuits B;

guess correctly only with prob. < § + {; - %

d o
ik

= = S(e)




Unpredictable — Pseudorandom

Theorem 8.22 (Yao’s Theorem)
Let S : N>1 — N1 be polytime computable and G as above with stretch S.
If G is unpredictable, then G is an S(¢)-pseudorandom generator.

Proof (Sketch):

Assume towards a contradiction that G is not a PRG.

Then there exists a circuit C that behaves substantively different on G(U({0,1}) and
U0, 1}5Y) bits: %0 more or less likely to output 1.

For each i, we can construct a predictor circuit B; from C:

Run C with Y[1..7 — 1] followed by truly random bits Z[i..S(¢)];

if C outputs 1, output Z[i], otherwise 1 — Z[i].

Note that By executes C on purely random bits, B on purely pseudorandom bits.
C differs by % on these, so (careful analysis shows that) we cannot have all S(¢) circuits B;
1

guess correctly only with prob. < § + {; - 50"

Ji such that B; predicts Y; correctly with prob. > 1 + ¢/5(¢),
so G is not unpredictable.
(For full details, see Arora & Barak, Theorem 20.10)

24



NW Pseudorandom Generator

Lemma 8.23 (NW Pseudorandom)
Let I be an (¢, n, d)-design with m = || = 2¢/1% and f : {0,1}" — {0, 1} a (hard) function with
Haog(f) > 2%%. Then NW/; (U({0,1}9)) is (5 Haug(f), 15)-pseudorandom. <

25



NW Pseudorandom Generator

Lemma 8.23 (NW Pseudorandom)

Let I be an (¢, n, d)-design with m = || = 2¢/1% and f : {0,1}" — {0, 1} a (hard) function with
Hang(f) > 229, Then NW/ (U({0, 1}1)) is (5 Fag(f), )-pseudorandom.

Proof (Sketch):

By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit C would lead to a small circuit B for f.



NW Pseudorandom Generator

Lemma 8.23 (NW Pseudorandom)
Let I be an (¢, n, d)-design with m = || = 2¢/1% and f : {0,1}" — {0, 1} a (hard) function with
Hang(f) > 229, Then NW/ (U({0, 1}1)) is (5 Fag(f), )-pseudorandom.

Proof (Sketch):
By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit C would lead to a small circuit B for f.

Let S = Huu(f), i. €., on inputs of size 1, f requires circuits larger than S = S(1) > 22? to be

computed with confidence > 5 + <.



[T

ble function with |G(x)| = §(||) for all

Definition 8.21 (unpredictable) ¢cg°)

NW Pseudorandom Generator L U

> 0 such that for every i and circuit C with |C| < 25(1) we have
0,1}")and Y = G(X) -

Lemma 8.23 (NW Pseudorandom) Pxlc0n Yo=Yl < F+ g

Let I be an (¢, n, d)-design with m = || = 2¢/1% and f : {0,1}" — {0, 1} a (hard) function with
Hang(f) > 229, Then NW/ (U({0, 1}1)) is (5 Fag(f), )-pseudorandom.

Proof (Sketch):

By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit C would lead to a small circuit B for f.

@
for X 2U({

Let S = Hug(f), i. €., on inputs of size 1, f requires circuits larger than S = S(11) > 2°/ to be

computed with confidence > 5 + <. |
Assor bounds o coleodicbar, dul At 72 predictable .
- , suppose for some i € [m] there is a

circuit C with |C| < 2m < §/2 and

Py [C(R[l..i -1]) = R[i]] > % + ﬁ where R=NW(Z) and Z Z U{0,1}% (»



NW Pseudorandom Generator

Lemma 8.23 (NW Pseudorandom)
Let I be an (¢, n, d)-design with m = || = 2¢/1% and f : {0,1}" — {0, 1} a (hard) function with
Haog(f) > 2%%. Then NWg (U({0,1}9)) is (55 Haug(f), 15)-pseudorandom.

(157 mg(f ), jp)-pseudorandom.

Proof (Sketch):

By Yao’s Theorem, we only need to show that NW is unpredictable;

we will show that a predictor circuit C would lead to a small circuit B for f.

Let S = Hug(f), i. €., on inputs of size 1, f requires circuits larger than S = S(11) > 2°/ to be
computed with confidence > 5 + <.

Towards refuting the circuit-predictability of NW, suppose for some i € [m] there is a
circuit C with |C| < 2m < §/2 and

—_—

Py [C(R[l..i -1]) = R[i]] > % + ﬁ where R=NW(Z) and Z Z U{0,1}% (»

Recall that R[j] = f(Z;,) L) 2, 2,
by renaming, assume R[i] = f(Z[1..n]) and write Z; = Z[1..n] and Z, = Z(n..{].

~ Pz[C(f(Zn).. f(Zl,l)) fzy)] = 1 101m

25



NW Pseudorandom Generator [2] " ]
Ey., ULk
V\BL aﬂo»‘f}Ll'n‘—& o X ,V ("“—“i
\ el b .‘m&«f-) "
Averaging Principle: For event A = A(X,Y) holds 3x : Py[A(x,Y)] > Px y[A(X,Y)]

(effectively the probabilistic method on event probabilities)
P =

Proof (cont):



NW Pseudorandom Generator [2]

Proof (cont):
Averaging Principle: For event A = A(X,Y) holds 3x : Py[A(x,Y)] > Px y[A(X,Y)]

(effectively the probabilistic method on event probabilities)

We apply this to event A(Z5, Z1) {C(f(Z;l . f(Zr. 1)) f(Z1)} and Z>.
So there are n — ¢ bits z», so that:

e le [lez 1) f(Zl)J + —m with Z =712



NW Pseudorandom Generator [2]

Proof (cont):
Averaging Principle: For event A = A(X,Y) holds 3x : Py[A(x,Y)] > Px y[A(X,Y)]

(effectively the probabilistic method on event probabilities)

We apply this to event A(Z5, Z1) {C(f(Z;l . f(Zr. 1)) f(Z1)} and Z>.
So there are n — ¢ bits z», so that:

~ PL[CfZ1). - fZ) = fZ)] 2 5+ 00—  with  Z=Zim

Since Jis an (¢, n, d)-design, each f(Z},) has < d bits from Z;; the other 1 — d are hardcoded
bits from z,. So we can compute f(Z I; ) with a circuit of size d2¢ (CNF formula suffices).

202 Pall
JEE



NW Pseudorandom Generator [2]

Proof (cont):
Averaging Principle: For event A = A(X,Y) holds 3x : Py[A(x,Y)] > Px y[A(X,Y)]

(effectively the probabilistic method on event probabilities)

We apply this to event A(Z5, Z1) {C(f(Z;l . f(Zr. 1)) f(Z1)} and Z>.
So there are n — ¢ bits z», so that:
1 .
~ [FDZ1 lC(f(Z[l) f Z[[ 1) f(Zl)J =z = + W with Z =712y
Since Jis an (¢, n, d)-design, each f(Z;,) has S d bits from Z1; the other n — d are hardcoded
bits from z,. So we can compute f(Z 1/) with a circuit of size d24 (CNF formula suffices).

Putting all i — 1 < m = 2%/10 of these circuits and C together, we obtain a circuit B of size
24/10 . g2d 4 5 /2 < S, with

1 1 1 1
Pz [B(Z1) = f(Z1)] 2 2 0200 7 275

\—/g_/

+



NW Pseudorandom Generator [2]

Proof (cont):
Averaging Principle: For event A = A(X,Y) holds 3x : Py[A(x,Y)] > Px y[A(X,Y)]

(effectively the probabilistic method on event probabilities)

We apply this to event A(Z5, Z1) {C(f(Z;l . f(Zr. 1)) f(Z1)} and Z>.
So there are n — ¢ bits z», so that:
1 .
~ [FDZ1 lC(f(Z[l) f Z[[ 1) f(Zl)J =z = + W with Z =712y
Since Jis an (¢, n, d)-design, each f(Z;,) has S d bits from Z1; the other n — d are hardcoded
bits from z,. So we can compute f(Z 1/) with a circuit of size d24 (CNF formula suffices).

Putting all i — 1 < m = 2%/10 of these circuits and C together, we obtain a circuit B of size
24/10 . g2d 4 /2 < S, with

Pz [B(Zl) =f(Z1)] > 1-|- ; N

1
2 10.24/10 2 +

I
3
This contradicts the fact that S = Fy(f).

26



Picking Parameters

> Generic algorithm:

> Setup: f e TIME(29™)and S : N»1 — Ny with Havg(f) = S
» Input: Random seed Z € {0, 1}¢ (truly random bits)

27



Picking Parameters

> Generic algorithm:

> Setup: f e TIME(29™)and S : N»1 — Ny with Havg(f) = S
» Input: Random seed Z € {0, 1}¢ (truly random bits)

» Algorithm: 7 := max{n : % </
& S “1gS(n)/10

d :=1gS(n)/10
J = (¢, n,d)-design with m = |J| = 24/10 (algorithm from Lemma 8.20)
Output NW/ (2)

~» By Lemma 8.23, the output is (5(1)/10, %) pseudorandom.

27



Picking Parameters

> Generic algorithm:
> Setup: f € TIME(2P™) and S : Ns1 — Nsq with Havg(f) 2 S
> Input: Random seed Z € {0, 1}’ (truly random bits)
» Algorithm: 1 := max{n : lgsls% < é}
d :=1gS(n)/10
J = (¢, n,d)-design with m = |J| = 24/10 (algorithm from Lemma 8.20)
Output NW/ (2) -
~» By Lemma 8.23, the output is (5(1)/10, %) pseudorandom.
» Parameters for Theorem 8.16
> Assuming IEM& f exists with Hype(f) = S with

10n%2  _ 100n% _ 100 L
= 51, s0n ~ 155¢.

» The inequality becomes ¢ > TES(n)/i0 = on

2
> d=1g5(n)/10 :jn//;gzlgm[ £
> NW can generate m = 24/10 = 201/100 = 3(55 ¥ pseudorandom bits

27



Picking Parameters

> Generic algorithm:
> Setup: f € TIME(2P™) and S : Ns1 — Nsq with Havg(f) = S
» Input: Random seed Z € {0, 1}¢ (truly random bits)
» Algorithm: 1 := max{n : lg;?% < é}
d :=1gS(n)/10
= (¢, n,d)-design with m = |J| = 24/10 (algorithm from Lemma 8.20)
Output NW/ (2)
~» By Lemma 8.23, the output is (5(1)/10, ]0) pseudorandom. (S(M] i > ~pov

» Parameters for Theorem 8.16
»> Assuming Hypothesis 8.13: f exists with J{,wg( f) = S with|S(n) = 29",

: : 10n> _ _ 100n* _ 100 )
» The inequality becomes ¢ > lgS(n)/lO = 5= = 5 n,son = g5l

=1gS(n)/10 = 6n/10 = 1000[
2d/10 — 2671/100 —

0 2
» NW can generate m = 210 ) pseudorandom bits

» Pseudorandom against circuits of size S(1)/10 = 2‘52‘}/100/10 > 2300 = 3

—00 —_

~ NW; is a 2¢¢ -pseudorandom generator with & = (5/100)?

27



8.6 Summary



Overview Randomized Complexity Classes

Proven facts: Consequences
» P C ZPP C RP C BPP/C PP » don’t try to solve NP-hard problems
exactly using randomization in polytime

» RP C NP
» do seek easier and faster

L
> PUEe? S 7P algorithms for problems in P!

» ZPP = RPN co-RP They often exist!
> NP C co-RP = NP =ZPP » do seek randomized algorithms for
problems of unknown complexity status
Widely held belief (but not proven): Some exist!

» P = BPP
and hence P = ZPP = RP = BPP

> BPP C NP C PP

28



