
8 Randomized
Complexity

18 June 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-06-25 10:04

Outline

8 Randomized Complexity
8.1 Randomized Complexity Classes
8.2 Pseudorandom Generators
8.3 Excursion: Boolean Circuits
8.4 Derandomization
8.5 Nisan-Wigderson Pseudorandom Generator
8.6 Summary

The Power of Randomness
We’ve seen examples where randomized algorithms are provably more powerful . . .
but how general are such improvements?

1

The Power of Randomness
We’ve seen examples where randomized algorithms are provably more powerful . . .
but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of
randomization:
Does randomization extend the range of problems solvable by polytime algorithms?

1

The Power of Randomness
We’ve seen examples where randomized algorithms are provably more powerful . . .
but how general are such improvements?

Before we consider algorithmic design techniques, we will consider the theoretical power of
randomization:
Does randomization extend the range of problems solvable by polytime algorithms?

⇝ back to decision problems.

1

8.1 Randomized Complexity Classes

Randomization for Decision Problems
▶ Recall: P and NP consider decision problems only

⇝ equivalently: languages 𝐿 ⊆ Σ★

2

Randomization for Decision Problems
▶ Recall: P and NP consider decision problems only

⇝ equivalently: languages 𝐿 ⊆ Σ★

Can make some simplifications for algorithms:

▶ Only 3 sensible output values: 0, 1, ?

▶ Unless specified otherwise, allow unlimited #random bits,
i. e., random𝐴(𝑥) = time𝐴(𝑥) (Can’t read more than one random bit per step)

2

Randomized Complexity Classes
Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages 𝐿 with a
polytime Las Vegas algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ (In particular: always terminate!)

(b) ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2
(c) 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ? ◀

3

Randomized Complexity Classes
Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages 𝐿 with a
polytime Las Vegas algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ (In particular: always terminate!)

(b) ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2
(c) 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ? ◀

Definition 8.2 (BPP)
BPP (bounded-error probabilistic polytime) is the class of languages 𝐿 with a
polytime bounded-error Monte Carlo algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞
(b) ∃𝜀 > 0 : ℙ

�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2 + 𝜀 ◀

3

Randomized Complexity Classes
Definition 8.1 (ZPP)
ZPP (zero-error probabilistic polytime) is the class of all languages 𝐿 with a
polytime Las Vegas algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞ (In particular: always terminate!)

(b) ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2
(c) 𝐴(𝑥) ≠ [𝑥 ∈ 𝐿] implies 𝐴(𝑥) = ? ◀

Definition 8.2 (BPP)
BPP (bounded-error probabilistic polytime) is the class of languages 𝐿 with a
polytime bounded-error Monte Carlo algorithm 𝐴, i. e.,

(a) ∃𝑐 : Time𝐴(𝑛) = 𝑂(𝑛𝑐) as 𝑛 → ∞
(b) ∃𝜀 > 0 : ℙ

�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 1

2 + 𝜀 ◀

Definition 8.3 (PP)
PP (probabilistic polytime) is the class of languages 𝐿 with a polytime unbounded-error
Monte Carlo algorithm: (a) as above (b) ℙ[𝐴(𝑥) = [𝑥 ∈ 𝐿]] > 1

2 . ◀
3

Error Bounds

Remark 8.4 (Success Probability)
From the point of view of complexity classes, the success probability bounds are flexible:
▶ BPP only requires success probability 1

2 + 𝜀, but using Majority Voting, we can also
obtain any fixed success probability 𝛿 ∈ (1

2 , 1).
▶ Similarly for ZPP, we can use probability amplification on Las Vegas algorithms
⇝ Unless otherwise stated,

for BPP and ZPP algorithms 𝐴, require ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 2

3 ◀

4

Error Bounds

Remark 8.4 (Success Probability)
From the point of view of complexity classes, the success probability bounds are flexible:
▶ BPP only requires success probability 1

2 + 𝜀, but using Majority Voting, we can also
obtain any fixed success probability 𝛿 ∈ (1

2 , 1).
▶ Similarly for ZPP, we can use probability amplification on Las Vegas algorithms
⇝ Unless otherwise stated,

for BPP and ZPP algorithms 𝐴, require ℙ
�
𝐴(𝑥) = [𝑥 ∈ 𝐿]� ≥ 2

3 ◀

But recall: this is not true for unbounded errors and class PP.
In fact, we have the following result:

Theorem 8.5 (PP can simulate nondeterminism)
NP ∪ co-NP ⊆ PP. ◀

⇝ Useful algorithms must avoid unbounded errors.

4

PP can simulate nondeterminism [1]
Proof (Theorem 8.5):

5

PP can simulate nondeterminism [2]
Proof (Theorem 8.5):

■

6

One-Sided Errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [𝜙 satisfied].
(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable 𝜙 always yield 0.
. . . could this help?

7

One-Sided Errors
In many cases, errors of MC algorithm are only one-sided.

Example: (simplistic) randomized algorithm for SAT:
Guess assignment, output [𝜙 satisfied].
(Note: This is not a MC algorithm, since we cannot give a fixed error bound!)

Observation: No false positives; unsatisfiable 𝜙 always yield 0.
. . . could this help?

Definition 8.6 (One-sided error Monte Carlo algorithms)
A randomized algorithm 𝐴 for language 𝐿 is a one-sided-error Monte-Carlo (OSE-MC) algorithm
if we have

(a) ℙ[𝐴(𝑥) = 1] ≥ 1
2 for all 𝑥 ∈ 𝐿, and

(b) ℙ[𝐴(𝑥) = 0] = 1 for all 𝑥 ∉ 𝐿. ◀

⇝ OSE-MC: 𝐴(𝑥) = 1 must always be correct; 𝐴(𝑥) = 0 may be a lie

7

One-Sided Error Classes

Definition 8.7 (RP, co-RP)
The classes RP and co-RP are the sets of all languages 𝐿 with a polytime OSE-MC algorithm
for 𝐿 resp. 𝐿. ◀

8

One-Sided Error Classes

Definition 8.7 (RP, co-RP)
The classes RP and co-RP are the sets of all languages 𝐿 with a polytime OSE-MC algorithm
for 𝐿 resp. 𝐿. ◀

Theorem 8.8 (Complementation feasible → errors avoidable)
RP ∩ co-RP = ZPP. ◀

Proof:
See exercises. ■

Note the similarity to the wide open problem NP ∩ co-NP ?
= P.

For the latter, the common belief is NP ∩ co-NP ⊋ P, in sharp contrast to the randomized
classes.

8

8.2 Pseudorandom Generators

Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛

9

Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛

▶ The derandomization of 𝐴 is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

▶ In general, the exponential blowup makes this uninteresting.

▶ But: If Random𝐴(𝑛) ≤ 𝑐 · lg

= log2

(𝑛),
the derandomization of 𝐴 runs in polytime: 𝑛𝑐 · Time𝐴(𝑛)

9

Derandomization
▶ Suppose we have a BPP algorithm 𝐴, i. e., a polytime TSE-MC algorithm

⇝ Random𝐴(𝑛) bounded

⇝ There are at most 2Random𝐴(𝑛) different random-bit inputs 𝜌
and hence at most so many different computations for 𝐴 on inputs 𝑥 ∈ Σ𝑛

▶ The derandomization of 𝐴 is a deterministic algorithm that simply simulates all these
computations one after the other (and outputs the majority).

▶ In general, the exponential blowup makes this uninteresting.

▶ But: If Random𝐴(𝑛) ≤ 𝑐 · lg

= log2

(𝑛),
the derandomization of 𝐴 runs in polytime: 𝑛𝑐 · Time𝐴(𝑛)

� Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.

9

Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

10

Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/

10

Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/

▶ must somehow keep the random distribution . . .
in general not clear what “sufficiently random” would mean

⇝ Breakthrough idea in TCS: Pseudorandom Generators
▶ generate an exponential number of bits from a 𝑛 given truly random bits such that

no efficient algorithm
in a model to be specified

can distinguish them from truly random

▶ Key (Open!) Question: Do they exist?!

10

Pseudorandom Generators
▶ “Typical randomized algorithms use Ω(𝑛), not 𝑂(log 𝑛) random bits.”

But how would an algorithm actually know
whether what we give it is truly random?

https://xkcd.com/221/

▶ must somehow keep the random distribution . . .
in general not clear what “sufficiently random” would mean

⇝ Breakthrough idea in TCS: Pseudorandom Generators
▶ generate an exponential number of bits from a 𝑛 given truly random bits such that

no efficient algorithm
in a model to be specified

can distinguish them from truly random

▶ Key (Open!) Question: Do they exist?!
▶ Surprising answer: We have good evidence in favor (!)

10

8.3 Excursion: Boolean Circuits

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

11

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

11

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

The value of 𝐶, 𝐶(𝑥1 , . . . , 𝑥𝑛) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.

11

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

The value of 𝐶, 𝐶(𝑥1 , . . . , 𝑥𝑛) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.
The size of 𝐶 is the number of vertices |𝐶| = |𝑉(𝐶)| .

11

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

The value of 𝐶, 𝐶(𝑥1 , . . . , 𝑥𝑛) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.
The size of 𝐶 is the number of vertices |𝐶| = |𝑉(𝐶)| .
A circuit 𝐶 computes function 𝑓 : {0, 1}𝑛 → {0, 1} if ∀𝒙 ∈ {0, 1}𝑛 : 𝐶(𝒙) = 𝑓 (𝒙). ◀

11

Boolean Circuits
For technical reasons (stay tuned . . .), another model of computation more convenient than TM here.

Definition 8.9 (Boolean circuit)
An 𝑛-input Boolean circuit is a connected DAG 𝐶 = (𝑉 , 𝐸)
▶ with 𝑛 sources (labeled 𝑥1 , . . . , 𝑥𝑛)
▶ a single sink 𝑐 (the output)
▶ any number of gates (non-sink vertices) labeled with ∧, ∨, or ¬.
▶ All gates have in- and out-degree at most 2 (fan-in = fan-out = 2). (¬ is always unary)

The value of 𝐶, 𝐶(𝑥1 , . . . , 𝑥𝑛) for a given variable assignment is computed inductively: We
assign the variable value to sources and apply the Boolean function at gates to inputs.
The size of 𝐶 is the number of vertices |𝐶| = |𝑉(𝐶)| .
A circuit 𝐶 computes function 𝑓 : {0, 1}𝑛 → {0, 1} if ∀𝒙 ∈ {0, 1}𝑛 : 𝐶(𝒙) = 𝑓 (𝒙). ◀

Definition 8.10 (Circuit complexity)
The circuit complexity H(𝑓) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is the size of the
smallest Boolean circuit 𝐶 that computes 𝑓 . ◀

11

Formula vs. Circuit

Parity function: 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =
𝑛Ê
𝑖=1

XOR

𝑥𝑖 =
𝑛Õ
𝑖=1

𝑥𝑖 mod 2 (odd number of 1-bits?)

12

Formula vs. Circuit

Parity function: 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =
𝑛Ê
𝑖=1

XOR

𝑥𝑖 =
𝑛Õ
𝑖=1

𝑥𝑖 mod 2 (odd number of 1-bits?)

▶ By associativity, 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) = 𝑃𝑛−1(𝑥1 , . . . , 𝑥𝑛−1) ⊕ 𝑥𝑛

▶ also: 𝑎 ⊕ 𝑏 = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏)
⇝ Can built a circuit for 𝑃𝑛 using 5(𝑛 − 1) gates

12

Formula vs. Circuit

Parity function: 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =
𝑛Ê
𝑖=1

XOR

𝑥𝑖 =
𝑛Õ
𝑖=1

𝑥𝑖 mod 2 (odd number of 1-bits?)

▶ By associativity, 𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) = 𝑃𝑛−1(𝑥1 , . . . , 𝑥𝑛−1) ⊕ 𝑥𝑛

▶ also: 𝑎 ⊕ 𝑏 = (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏)
⇝ Can built a circuit for 𝑃𝑛 using 5(𝑛 − 1) gates

▶ Obvious boolean formula: (over basis {∧,∨,¬})
𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =

𝑥𝑛 ∧ ¬𝑷𝒏−1(𝒙1 , . . . , 𝒙𝒏−1)

� ∨ ¬𝑥𝑛 ∧ 𝑷𝒏−1(𝒙1 , . . . , 𝒙𝒏−1)
�

⇝ 5 · 2𝑛−1 operators

▶ optimal (assuming 𝑛 = 2𝑘):
𝑃𝑛(𝑥1 , . . . , 𝑥𝑛) =

𝑃𝑛/2(𝑥1 , . . . , 𝑥𝑛/2) ∩ ¬𝑃𝑛/2(𝑥𝑛/2+1 , . . . , 𝑥𝑛)

�
∨ ¬𝑃𝑛/2(𝑥1 , . . . , 𝑥𝑛/2) ∩ 𝑃𝑛/2(𝑥𝑛/2+1 , . . . , 𝑥𝑛)

�
⇝ Θ(𝑛2) still much more than for circuits!

12

Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . .)

▶ P/poly = all functions computable by polynomial-sized circuits

13

Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . .)

▶ P/poly = all functions computable by polynomial-sized circuits
▶ Can prove: P ⊆ P/poly

Theorem 8.11 (TM to circuit)
For 𝑓 ∈ TIME(𝑇(𝑛)) and input size 𝑛, we can compute in polytime
a circuit 𝐶 for 𝑓 on inputs of size 𝑛 of size |𝐶| = 𝑂(𝑇(𝑛)2). ◀
(Arora & Barak, Theorem 6.6)

13

Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . .)

▶ P/poly = all functions computable by polynomial-sized circuits
▶ Can prove: P ⊆ P/poly

Theorem 8.11 (TM to circuit)
For 𝑓 ∈ TIME(𝑇(𝑛)) and input size 𝑛, we can compute in polytime
a circuit 𝐶 for 𝑓 on inputs of size 𝑛 of size |𝐶| = 𝑂(𝑇(𝑛)2). ◀
(Arora & Barak, Theorem 6.6)

▶ actually P ⊊ P/poly:
circuits are non-uniform model of computation:

allows some “cheating” that we use later

different circuit for each 𝑛
⇝ has some weird properties in general (P/poly contains a version of halting problem . . .)

13

Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . .)

▶ P/poly = all functions computable by polynomial-sized circuits
▶ Can prove: P ⊆ P/poly

Theorem 8.11 (TM to circuit)
For 𝑓 ∈ TIME(𝑇(𝑛)) and input size 𝑛, we can compute in polytime
a circuit 𝐶 for 𝑓 on inputs of size 𝑛 of size |𝐶| = 𝑂(𝑇(𝑛)2). ◀
(Arora & Barak, Theorem 6.6)

▶ actually P ⊊ P/poly:
circuits are non-uniform model of computation:

allows some “cheating” that we use later

different circuit for each 𝑛
⇝ has some weird properties in general (P/poly contains a version of halting problem . . .)

▶ Probably NP ̸⊆ P/poly (unless polynomial hierarchy collapses)

13

Circuit Complexity Classes
Poly-size circuits: (somewhat analogous to P, but not quite . . .)

▶ P/poly = all functions computable by polynomial-sized circuits
▶ Can prove: P ⊆ P/poly

Theorem 8.11 (TM to circuit)
For 𝑓 ∈ TIME(𝑇(𝑛)) and input size 𝑛, we can compute in polytime
a circuit 𝐶 for 𝑓 on inputs of size 𝑛 of size |𝐶| = 𝑂(𝑇(𝑛)2). ◀
(Arora & Barak, Theorem 6.6)

▶ actually P ⊊ P/poly:
circuits are non-uniform model of computation:

allows some “cheating” that we use later

different circuit for each 𝑛
⇝ has some weird properties in general (P/poly contains a version of halting problem . . .)

▶ Probably NP ̸⊆ P/poly (unless polynomial hierarchy collapses)

Circuit Lower Bounds:
▶ Can show: almost all Boolean functions 𝑓 have exponential C(𝑓) (counting argument)
▶ But: Very hard to prove circuit lower bounds for concrete functions 𝑓

▶ Showing H(𝑓) exponential for any 𝑓 ∈ NP would imply P ≠ NP
▶ Proven lower bounds on H(𝑓) for explicit 𝑓 are typically linear in 𝑛

13

Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The 𝜌-average-case hardness H𝜌

avg(𝑓) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿) = 𝑓 (𝑿)� < 𝜌.

(Need circuits larger than H
𝜌
avg(𝑓) for confidence 𝜌.)

14

Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The 𝜌-average-case hardness H𝜌

avg(𝑓) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿) = 𝑓 (𝑿)� < 𝜌.

(Need circuits larger than H
𝜌
avg(𝑓) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg(𝑓) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀

14

Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The 𝜌-average-case hardness H𝜌

avg(𝑓) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿) = 𝑓 (𝑿)� < 𝜌.

(Need circuits larger than H
𝜌
avg(𝑓) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg(𝑓) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀

Hypothesis 8.13 (Hard functions exist)
There exists a function 𝑓 ∈ NP with Havg(𝑓) = 2Ω(𝑛). !NOT PROVEN! ◀

14

Monte Carlo Circuits
We need a somewhat peculiar, weaker form of circuit complexity, where we assume that
inputs 𝑿 ∈ {0, 1}𝑛 are chosen uniformly at random.

Definition 8.12 (Average-case hardness)
The 𝜌-average-case hardness H𝜌

avg(𝑓) of a Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is
the largest size 𝑆, such that every circuit 𝐶 with |𝐶| ≤ 𝑆 we have ℙ𝑿

�
𝐶(𝑿) = 𝑓 (𝑿)� < 𝜌.

(Need circuits larger than H
𝜌
avg(𝑓) for confidence 𝜌.)

The average-case hardness of 𝑓 then is Havg(𝑓) = max
n
𝑆 : H

1
2+ 1

𝑆
avg ≥ 𝑆

o
.

(Allow larger circuits and worse confidence until 𝑓 probabilistically computable) ◀

Hypothesis 8.13 (Hard functions exist)
There exists a function 𝑓 ∈ NP with Havg(𝑓) = 2Ω(𝑛). !NOT PROVEN! ◀

▶ Deep result (that we skip): From existence of function with large H(𝑓),
can conclude existence of function with large Havg(𝑓).
(see Arora & Barak Chapter 19)

▶ 3SAT probably has exponential H(𝑓) (≈ ETH) (and other candidates exist)
14

Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)
A r.v. 𝑹 ∈ {0, 1}𝑚 is (𝑆, 𝜀)-pseudorandom if for every circuit 𝐶 with |𝐶| ≤ 𝑆���ℙ�

𝐶(𝑹) = 1
� − ℙ

�
𝐶(𝑼𝑚) = 1

� ��� < 𝜀 where 𝑼𝑚
D
= U({0, 1}𝑚) ◀

Pseudorandom bits are indistinguishable from truly random for any small
think: fast-running algorithm

circuit.

15

Formalization Pseudorandom Generator

Definition 8.14 (Pseudorandom bits)
A r.v. 𝑹 ∈ {0, 1}𝑚 is (𝑆, 𝜀)-pseudorandom if for every circuit 𝐶 with |𝐶| ≤ 𝑆���ℙ�

𝐶(𝑹) = 1
� − ℙ

�
𝐶(𝑼𝑚) = 1

� ��� < 𝜀 where 𝑼𝑚
D
= U({0, 1}𝑚) ◀

Pseudorandom bits are indistinguishable from truly random for any small
think: fast-running algorithm

circuit.

Definition 8.15 (Pseudorandom generator)
Let 𝑆 : ℕ≥1 → ℕ≥1.
A function 𝐺 : {0, 1}★ → {0, 1}★ computable in 2𝑛 time (𝐺 ∈ TIME(2𝑛)) is an
𝑆(ℓ)-pseudorandom generator (𝑆(ℓ)-PRG) if

(a) |𝐺(𝑧)| = 𝑆(|𝑧|) for every 𝑧 ∈ {0, 1}★
(b) ∀ℓ ∈ ℕ≥1 : 𝐺(𝑼 ℓ) is

𝑆(ℓ)3 , 1

10
�
-pseudorandom. ◀

Seeding a generator with ℓ truly random bits yields 𝑆(ℓ) pseudorandom bits.

15

8.4 Derandomization

Pseudorandom Generator for BPP Derandomization
The Nisan-Wigderson construction shows that
the existence of any hard-on-average function
implies a strong

exponentially many pseudorandom bits(!)

pseudorandom generator.

Theorem 8.16 (Strong NW PRG)
Assume Hypothesis 8.13, i. e., 𝑓 ∈ TIME(2𝑂(𝑛)) exists with Havg(𝑓) ≥ 𝑆 with 𝑆(𝑛) = 2𝛿𝑛 for a
constant 𝛿 > 0.
Then there is an 𝜀 = 𝜀(𝛿) such that there is a 2𝜀ℓ -pseudorandom generator. ◀

(We will prove this over the course of the next subsection.)

16

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

17

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a 𝑆(ℓ)-PRG 𝐺 : {0, 1}ℓ → {0, 1}𝑆(ℓ) with 𝑆(ℓ) = 2𝜀ℓ .

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a 𝑆(ℓ)-PRG 𝐺 : {0, 1}ℓ → {0, 1}𝑆(ℓ) with 𝑆(ℓ) = 2𝜀ℓ .
Let 𝐿 ∈ BPP.

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a 𝑆(ℓ)-PRG 𝐺 : {0, 1}ℓ → {0, 1}𝑆(ℓ) with 𝑆(ℓ) = 2𝜀ℓ .
Let 𝐿 ∈ BPP. ⇝ ∃ algorithm𝐴with Time𝐴(𝑛) ≤ 𝑛𝑐 (polytime) andℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3 ;
here 𝑅 D= U({0, 1}𝑚) for 𝑚 = Random𝐴(𝑛) ≤ Time𝐴(𝑛) ≤ 𝑛𝑐 .

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a 𝑆(ℓ)-PRG 𝐺 : {0, 1}ℓ → {0, 1}𝑆(ℓ) with 𝑆(ℓ) = 2𝜀ℓ .
Let 𝐿 ∈ BPP. ⇝ ∃ algorithm𝐴with Time𝐴(𝑛) ≤ 𝑛𝑐 (polytime) andℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3 ;
here 𝑅 D= U({0, 1}𝑚) for 𝑚 = Random𝐴(𝑛) ≤ Time𝐴(𝑛) ≤ 𝑛𝑐 .
We now obtain a deterministic polytime algorithm 𝐵 as follows:

1. Replace 𝑅 by 𝐺(𝑍) for 𝑍 D= U({0, 1}ℓ) for ℓ = ℓ (𝑛) = 𝑐
𝜀 lg 𝑛 so that 𝑚 ≤ 𝑆(ℓ) = 2𝜀ℓ = 𝑛𝑐 .

2. Instead of this probabilistic TM, simulate 𝐴(𝑥 ,𝐺(𝑧)) for all possible 𝑧 ∈ {0, 1}ℓ
3. Output the majority.

The trick here is that number of possible seeds 𝑧 is 2ℓ (𝑛) = 𝑛𝑐 , hence the running time
remains polynomial and 𝐵 ∈ P!

BPP Derandomization

Theorem 8.17 (Hard-on-average function → BPP = P)
Hypothesis 8.13 implies BPP = P. ◀

Proof:
By Theorem 8.16, Hypothesis 8.13 implies a 𝑆(ℓ)-PRG 𝐺 : {0, 1}ℓ → {0, 1}𝑆(ℓ) with 𝑆(ℓ) = 2𝜀ℓ .
Let 𝐿 ∈ BPP. ⇝ ∃ algorithm𝐴with Time𝐴(𝑛) ≤ 𝑛𝑐 (polytime) andℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3 ;
here 𝑅 D= U({0, 1}𝑚) for 𝑚 = Random𝐴(𝑛) ≤ Time𝐴(𝑛) ≤ 𝑛𝑐 .
We now obtain a deterministic polytime algorithm 𝐵 as follows:

1. Replace 𝑅 by 𝐺(𝑍) for 𝑍 D= U({0, 1}ℓ) for ℓ = ℓ (𝑛) = 𝑐
𝜀 lg 𝑛 so that 𝑚 ≤ 𝑆(ℓ) = 2𝜀ℓ = 𝑛𝑐 .

2. Instead of this probabilistic TM, simulate 𝐴(𝑥 ,𝐺(𝑧)) for all possible 𝑧 ∈ {0, 1}ℓ
3. Output the majority.

The trick here is that number of possible seeds 𝑧 is 2ℓ (𝑛) = 𝑛𝑐 , hence the running time
remains polynomial and 𝐵 ∈ P!

It remains to show that 𝐵 accepts 𝐿.
(Intuition: 𝐴 is too fast to notice a difference of more than 1

10 between 𝑅 and 𝐺(𝑍).)
17

BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .

BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .
Then, we can build a distinguisher circuit 𝐶 for the PRG: 𝐶 simply computes the function
𝑟 ↦→ 𝐴(𝑥 , 𝑟), where 𝑥 is hard-wired into the circuit 𝐶.
(Recall that ℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3)

BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .
Then, we can build a distinguisher circuit 𝐶 for the PRG: 𝐶 simply computes the function
𝑟 ↦→ 𝐴(𝑥 , 𝑟), where 𝑥 is hard-wired into the circuit 𝐶.
(Recall that ℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3)
We don’t have a circuit for 𝐴, just a TM;
but can convert 𝐴 using Theorem 8.11 to a circuit 𝐶 with |𝐶| = 𝑂

(Time𝐴(𝑛))2
�
= 𝑂(𝑛2𝑐).

BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .
Then, we can build a distinguisher circuit 𝐶 for the PRG: 𝐶 simply computes the function
𝑟 ↦→ 𝐴(𝑥 , 𝑟), where 𝑥 is hard-wired into the circuit 𝐶.
(Recall that ℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3)
We don’t have a circuit for 𝐴, just a TM;
but can convert 𝐴 using Theorem 8.11 to a circuit 𝐶 with |𝐶| = 𝑂

(Time𝐴(𝑛))2
�
= 𝑂(𝑛2𝑐).

For sufficiently large 𝑛, |𝐶| is thus smaller than 𝑆(ℓ (𝑛))3 = 𝑛3𝑐 , so 𝐶 is a valid distinguisher
for the PRG. �

BPP Derandomization [2]
Proof (cont.):
Formally, assume towards a contradiction that there is an infinite sequence of 𝑥’s with
ℙ𝑍[𝐴(𝑥 ,𝐺(𝑍)) = 𝐿(𝑥)] < 2

3 − 1
10 = 0.56 > 1

2 .
Then, we can build a distinguisher circuit 𝐶 for the PRG: 𝐶 simply computes the function
𝑟 ↦→ 𝐴(𝑥 , 𝑟), where 𝑥 is hard-wired into the circuit 𝐶.
(Recall that ℙ𝑅[𝐴(𝑥 , 𝑅) = 𝐿(𝑥)] ≥ 2

3)
We don’t have a circuit for 𝐴, just a TM;
but can convert 𝐴 using Theorem 8.11 to a circuit 𝐶 with |𝐶| = 𝑂

(Time𝐴(𝑛))2
�
= 𝑂(𝑛2𝑐).

For sufficiently large 𝑛, |𝐶| is thus smaller than 𝑆(ℓ (𝑛))3 = 𝑛3𝑐 , so 𝐶 is a valid distinguisher
for the PRG. �

Hence, the majority vote in 𝐵 is correct
(for all but a finite number of inputs, which can be tested in constant time).
⇝ 𝐿 ∈ P. ■

18

Consequences
⇝ Since the existence of hard-on-average functions is rather likely,

▶ it must be assumed that randomization alone does not solve NP-hard problems;
▶ . . . and it seems that there is some heavy lifting going on in Nisan-Wigderson
⇝ Let’s see what it does!

19

8.5 Nisan-Wigderson Pseudorandom Generator

Overview
▶ In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound 𝑆(𝑛) for our hard function 𝑓 ,
the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

▶ Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)
▶ many further refinements followed

20

Overview
▶ In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound 𝑆(𝑛) for our hard function 𝑓 ,
the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

▶ Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)
▶ many further refinements followed

▶ This is pretty cool stuff, but also complex. ⇝ Quantitative parts ∉ exam.

20

Overview
▶ In this section, we will describe a conditional construction for pseudorandom

generators based on the unproven hard-function hypothesis (Hypothesis 8.13).

The higher the circuit lower bound 𝑆(𝑛) for our hard function 𝑓 ,
the more pseudorandom bits we can generate from a fixed seed of ℓ truly random bits.

▶ Key construction is due to Noam Nisan and Avi Wigderson (2023 Turing Award)
▶ many further refinements followed

▶ This is pretty cool stuff, but also complex. ⇝ Quantitative parts ∉ exam.

Theorem 8.18 (PRG from average-case hard function)
Let 𝑆 : ℕ≥1 → ℕ≥1.
If there exists a function 𝑓 ∈ TIME(2𝑂(𝑛)) with Havg(𝑓)(𝑛) ≥ 𝑆(𝑛) for all 𝑛,
then there exists a 𝑆(𝛿ℓ)𝛿-pseudorandom generator for some constant 𝛿 > 0. ◀
This general result is for a refined construction and works also for weaker assumptions.
We will show the version sufficient for Theorem 8.16; see Arora & Barak Remark 20.8

20

Nisan-Wigderson Generator
The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets 𝐼 ∈ I of ℓ truly random input bits into a (hard) function 𝑓 : {0, 1}𝑛 → {0, 1}

NW 𝑓
I
(𝑍) = 𝑓 (𝑍𝐼1) 𝑓 (𝑍𝐼2) . . . 𝑓 (𝑍𝐼𝑚)

where 𝑍 D= U({0, 1}ℓ) is the random seed and 𝑧𝐼 for 𝐼 = {𝑖1 , . . . , 𝑖𝑛} denotes (𝑧𝑖1 , . . . , 𝑧𝑖𝑛)

21

Nisan-Wigderson Generator
The idea of the Nisan-Wigderson (NW) generator is to feed many (partially overlapping)
subsets 𝐼 ∈ I of ℓ truly random input bits into a (hard) function 𝑓 : {0, 1}𝑛 → {0, 1}

NW 𝑓
I
(𝑍) = 𝑓 (𝑍𝐼1) 𝑓 (𝑍𝐼2) . . . 𝑓 (𝑍𝐼𝑚)

where 𝑍 D= U({0, 1}ℓ) is the random seed and 𝑧𝐼 for 𝐼 = {𝑖1 , . . . , 𝑖𝑛} denotes (𝑧𝑖1 , . . . , 𝑧𝑖𝑛)

A key component is a sufficiently large subset system I without too much overlap.

Definition 8.19 (Combinatorial Design)
For ℓ > 𝑛 > 𝑑, a family I = {𝐼1 , . . . , 𝐼𝑚} of 𝑚 subsets of [ℓ] is an (ℓ , 𝑛 , 𝑑)-design if
for all 𝑗 and 𝑘 ≠ 𝑗,
▶ we have | 𝐼𝑗 | = 𝑛 and

▶ | 𝐼𝑗 ∩ 𝐼𝑘 | ≤ 𝑑. ◀

(We will eventually want to use this with 𝑚 = 2𝜀ℓ .)

21

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀

22

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds.

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds. We use the probabilistic method!

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds. We use the probabilistic method!
Generate random 𝐼 by picking each element 𝑥 ∈ [ℓ] independently with probability 2𝑛/ℓ .

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds. We use the probabilistic method!
Generate random 𝐼 by picking each element 𝑥 ∈ [ℓ] independently with probability 2𝑛/ℓ .
By Chernoff:
(1) ℙ[| 𝐼| ≥ 𝑛] ≥ 0.9
(2) ℙ[| 𝐼 ∩ 𝐽 | ≥ 𝑑] ≤ 1

2 · 2−𝑑/10 for any 𝐽 ∈ I

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds. We use the probabilistic method!
Generate random 𝐼 by picking each element 𝑥 ∈ [ℓ] independently with probability 2𝑛/ℓ .
By Chernoff:
(1) ℙ[| 𝐼| ≥ 𝑛] ≥ 0.9
(2) ℙ[| 𝐼 ∩ 𝐽 | ≥ 𝑑] ≤ 1

2 · 2−𝑑/10 for any 𝐽 ∈ I

Since |I| ≤ 2𝑑/10 and union bound on (2), ℙ[max𝐽∈I | 𝐽 ∩ 𝐼| ≥ 𝑑] ≤ 1
2 .

Hence, with probability at least 0.9 · 0.5 = 0.45, our random set 𝐼 has intersection ≤ 𝑑 with
all old sets and ≥ 𝑛 elements. Dropping elements until | 𝐼| = 𝑛 does not change that.

Probabilistic Method for Combinatorial Designs
Lemma 8.20 (NW Design)
There is an algorithm 𝐴 that outputs on input (ℓ , 𝑛 , 𝑑) with ℓ > 𝑛 > 𝑑 and ℓ > 10𝑛2/𝑑 an
(ℓ , 𝑛 , 𝑑)-design I with |I| = 2𝑑/10 subsets of [ℓ] in time 2𝑂(ℓ). ◀
Proof:
𝐴 is a simple greedy strategy: We start with I = ∅. For 𝑚 ∈ [2𝑑/10], iterate over all 2ℓ subsets
of [ℓ] and include into I the first set 𝐼 with max𝐽∈I | 𝐽 ∩ 𝐼| ≤ 𝑑.
To show: 𝐴 succeeds. We use the probabilistic method!
Generate random 𝐼 by picking each element 𝑥 ∈ [ℓ] independently with probability 2𝑛/ℓ .
By Chernoff:
(1) ℙ[| 𝐼| ≥ 𝑛] ≥ 0.9
(2) ℙ[| 𝐼 ∩ 𝐽 | ≥ 𝑑] ≤ 1

2 · 2−𝑑/10 for any 𝐽 ∈ I

Since |I| ≤ 2𝑑/10 and union bound on (2), ℙ[max𝐽∈I | 𝐽 ∩ 𝐼| ≥ 𝑑] ≤ 1
2 .

Hence, with probability at least 0.9 · 0.5 = 0.45, our random set 𝐼 has intersection ≤ 𝑑 with
all old sets and ≥ 𝑛 elements. Dropping elements until | 𝐼| = 𝑛 does not change that.
⇝ In each step, we have probability≥ 0.45 to succeed. So picking 𝑚 random sets succeeds

with probability ≥ 0.45𝑚 > 0, so some choice of sets I as claimed must exist. ■
22

Unpredictable Next Bits
The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.

23

Unpredictable Next Bits
The second ingredient shows the (nontrivial) fact that having an unpredictable next bit
implies pseudorandomness.

Definition 8.21 (unpredictable)
Let 𝐺 : {0, 1}★ → {0, 1}★ be a polytime-computable function with |𝐺(𝑥)| = 𝑆(|𝑥|) for all
𝑥 ∈ {0, 1}★ (“stretch 𝑆”).
𝐺 is unpredictable if there is 𝜀 > 0 such that for every 𝑖 and circuit 𝐶 with |𝐶| ≤ 2𝑆(𝑛) we have
for 𝑋 D= U({0, 1}𝑛) and 𝑌 = 𝐺(𝑋)

ℙ𝑋
�
𝐶(𝑌1 . . . 𝑌𝑖−1) = 𝑌𝑖

� ≤ 1
2 + 𝜀

𝑆(ℓ) .

◀

23

Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ)-pseudorandom generator. ◀

24

Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ)-pseudorandom generator. ◀
Proof (Sketch):
Assume towards a contradiction that 𝐺 is not a PRG.
Then there exists a circuit 𝐶 that behaves substantively different on 𝐺(U({0, 1}ℓ) and
U({0, 1}𝑆(ℓ)) bits: 1

10 more or less likely to output 1.

Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ)-pseudorandom generator. ◀
Proof (Sketch):
Assume towards a contradiction that 𝐺 is not a PRG.
Then there exists a circuit 𝐶 that behaves substantively different on 𝐺(U({0, 1}ℓ) and
U({0, 1}𝑆(ℓ)) bits: 1

10 more or less likely to output 1.
For each 𝑖, we can construct a predictor circuit 𝐵𝑖 from 𝐶:
Run 𝐶 with 𝑌[1..𝑖 − 1] followed by truly random bits 𝑍[𝑖..𝑆(ℓ)];
if 𝐶 outputs 1, output 𝑍[𝑖], otherwise 1 − 𝑍[𝑖].

Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ)-pseudorandom generator. ◀
Proof (Sketch):
Assume towards a contradiction that 𝐺 is not a PRG.
Then there exists a circuit 𝐶 that behaves substantively different on 𝐺(U({0, 1}ℓ) and
U({0, 1}𝑆(ℓ)) bits: 1

10 more or less likely to output 1.
For each 𝑖, we can construct a predictor circuit 𝐵𝑖 from 𝐶:
Run 𝐶 with 𝑌[1..𝑖 − 1] followed by truly random bits 𝑍[𝑖..𝑆(ℓ)];
if 𝐶 outputs 1, output 𝑍[𝑖], otherwise 1 − 𝑍[𝑖].
Note that 𝐵0 executes 𝐶 on purely random bits, 𝐵𝑆(ℓ) on purely pseudorandom bits.
𝐶 differs by 1

10 on these, so (careful analysis shows that) we cannot have all 𝑆(ℓ) circuits 𝐵𝑖

guess correctly only with prob. ≤ 1
2 + 1

10 · 1
𝑆(ℓ) .

Unpredictable → Pseudorandom
Theorem 8.22 (Yao’s Theorem)
Let 𝑆 : ℕ≥1 → ℕ≥1 be polytime computable and 𝐺 as above with stretch 𝑆.
If 𝐺 is unpredictable, then 𝐺 is an 𝑆(ℓ)-pseudorandom generator. ◀
Proof (Sketch):
Assume towards a contradiction that 𝐺 is not a PRG.
Then there exists a circuit 𝐶 that behaves substantively different on 𝐺(U({0, 1}ℓ) and
U({0, 1}𝑆(ℓ)) bits: 1

10 more or less likely to output 1.
For each 𝑖, we can construct a predictor circuit 𝐵𝑖 from 𝐶:
Run 𝐶 with 𝑌[1..𝑖 − 1] followed by truly random bits 𝑍[𝑖..𝑆(ℓ)];
if 𝐶 outputs 1, output 𝑍[𝑖], otherwise 1 − 𝑍[𝑖].
Note that 𝐵0 executes 𝐶 on purely random bits, 𝐵𝑆(ℓ) on purely pseudorandom bits.
𝐶 differs by 1

10 on these, so (careful analysis shows that) we cannot have all 𝑆(ℓ) circuits 𝐵𝑖

guess correctly only with prob. ≤ 1
2 + 1

10 · 1
𝑆(ℓ) .

∃𝑖 such that 𝐵𝑖 predicts 𝑌𝑖 correctly with prob. ≥ 1
2 + 𝜀/𝑆(ℓ),

so 𝐺 is not unpredictable.
(For full details, see Arora & Barak, Theorem 20.10) ■

24

NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg(𝑓) > 22𝑑. Then NW 𝑓

I

U({0, 1}ℓ)� is (1

10Havg(𝑓), 1
10)-pseudorandom. ◀

25

NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg(𝑓) > 22𝑑. Then NW 𝑓

I

U({0, 1}ℓ)� is (1

10Havg(𝑓), 1
10)-pseudorandom. ◀

Proof (Sketch):
By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit 𝐶 would lead to a small circuit 𝐵 for 𝑓 .

NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg(𝑓) > 22𝑑. Then NW 𝑓

I

U({0, 1}ℓ)� is (1

10Havg(𝑓), 1
10)-pseudorandom. ◀

Proof (Sketch):
By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit 𝐶 would lead to a small circuit 𝐵 for 𝑓 .
Let 𝑆 = Havg(𝑓), i. e., on inputs of size 𝑛, 𝑓 requires circuits larger than 𝑆 = 𝑆(𝑛) > 22𝑑 to be
computed with confidence ≥ 1

2 + 1
𝑆 .

NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg(𝑓) > 22𝑑. Then NW 𝑓

I

U({0, 1}ℓ)� is (1

10Havg(𝑓), 1
10)-pseudorandom. ◀

Proof (Sketch):
By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit 𝐶 would lead to a small circuit 𝐵 for 𝑓 .
Let 𝑆 = Havg(𝑓), i. e., on inputs of size 𝑛, 𝑓 requires circuits larger than 𝑆 = 𝑆(𝑛) > 22𝑑 to be
computed with confidence ≥ 1

2 + 1
𝑆 .

Towards refuting the circuit-predictability of NW, suppose for some 𝑖 ∈ [𝑚] there is a
circuit 𝐶 with |𝐶| ≤ 2𝑚 < 𝑆/2 and

ℙ𝑍
�
𝐶(𝑅[1..𝑖 − 1]) = 𝑅[𝑖]� ≥ 1

2 + 1
10𝑚 where 𝑅 = NW(𝑍) and 𝑍

D
= U({0, 1}ℓ) (∗)

NW Pseudorandom Generator
Lemma 8.23 (NW Pseudorandom)
Let I be an (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 and 𝑓 : {0, 1}𝑛 → {0, 1} a (hard) function with
Havg(𝑓) > 22𝑑. Then NW 𝑓

I

U({0, 1}ℓ)� is (1

10Havg(𝑓), 1
10)-pseudorandom. ◀

Proof (Sketch):
By Yao’s Theorem, we only need to show that NW is unpredictable;
we will show that a predictor circuit 𝐶 would lead to a small circuit 𝐵 for 𝑓 .
Let 𝑆 = Havg(𝑓), i. e., on inputs of size 𝑛, 𝑓 requires circuits larger than 𝑆 = 𝑆(𝑛) > 22𝑑 to be
computed with confidence ≥ 1

2 + 1
𝑆 .

Towards refuting the circuit-predictability of NW, suppose for some 𝑖 ∈ [𝑚] there is a
circuit 𝐶 with |𝐶| ≤ 2𝑚 < 𝑆/2 and

ℙ𝑍
�
𝐶(𝑅[1..𝑖 − 1]) = 𝑅[𝑖]� ≥ 1

2 + 1
10𝑚 where 𝑅 = NW(𝑍) and 𝑍

D
= U({0, 1}ℓ) (∗)

Recall that 𝑅[𝑗] = 𝑓 (𝑍𝐼𝑗);
by renaming, assume 𝑅[𝑖] = 𝑓 (𝑍[1..𝑛]) and write 𝑍1 = 𝑍[1..𝑛] and 𝑍2 = 𝑍(𝑛..ℓ].
⇝ ℙ𝑍

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚
25

NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)

NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)

We apply this to event 𝐴(𝑍2 , 𝑍1) = {𝐶
𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)} and 𝑍2.

So there are 𝑛 − ℓ bits 𝑧2, so that:
⇝ ℙ𝑍1

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚 with 𝑍 = 𝑍1𝑧2

NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)

We apply this to event 𝐴(𝑍2 , 𝑍1) = {𝐶
𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)} and 𝑍2.

So there are 𝑛 − ℓ bits 𝑧2, so that:
⇝ ℙ𝑍1

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚 with 𝑍 = 𝑍1𝑧2

Since I is an (ℓ , 𝑛 , 𝑑)-design, each 𝑓 (𝑍𝐼𝑗) has ≤ 𝑑 bits from 𝑍1; the other 𝑛 − 𝑑 are hardcoded
bits from 𝑧2. So we can compute 𝑓 (𝑍𝐼𝑗) with a circuit of size 𝑑2𝑑 (CNF formula suffices).

NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)

We apply this to event 𝐴(𝑍2 , 𝑍1) = {𝐶
𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)} and 𝑍2.

So there are 𝑛 − ℓ bits 𝑧2, so that:
⇝ ℙ𝑍1

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚 with 𝑍 = 𝑍1𝑧2

Since I is an (ℓ , 𝑛 , 𝑑)-design, each 𝑓 (𝑍𝐼𝑗) has ≤ 𝑑 bits from 𝑍1; the other 𝑛 − 𝑑 are hardcoded
bits from 𝑧2. So we can compute 𝑓 (𝑍𝐼𝑗) with a circuit of size 𝑑2𝑑 (CNF formula suffices).

Putting all 𝑖 − 1 ≤ 𝑚 = 2𝑑/10 of these circuits and 𝐶 together, we obtain a circuit 𝐵 of size
2𝑑/10 · 𝑑2𝑑 + 𝑆/2 < 𝑆, with

ℙ𝑍1

�
𝐵(𝑍1) = 𝑓 (𝑍1)

� ≥ 1
2 + 1

10 · 2𝑑/10 >
1
2 + 1

𝑆
.

NW Pseudorandom Generator [2]
Proof (cont):
Averaging Principle: For event 𝐴 = 𝐴(𝑋 ,𝑌) holds ∃𝑥 : ℙ𝑌[𝐴(𝑥 ,𝑌)] ≥ ℙ𝑋 ,𝑌[𝐴(𝑋 ,𝑌)]
(effectively the probabilistic method on event probabilities)

We apply this to event 𝐴(𝑍2 , 𝑍1) = {𝐶
𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)} and 𝑍2.

So there are 𝑛 − ℓ bits 𝑧2, so that:
⇝ ℙ𝑍1

�
𝐶

𝑓 (𝑍𝐼1) . . . 𝑓 (𝑍𝐼𝑖−1)

�
= 𝑓 (𝑍1)

� ≥ 1
2 + 1

10𝑚 with 𝑍 = 𝑍1𝑧2

Since I is an (ℓ , 𝑛 , 𝑑)-design, each 𝑓 (𝑍𝐼𝑗) has ≤ 𝑑 bits from 𝑍1; the other 𝑛 − 𝑑 are hardcoded
bits from 𝑧2. So we can compute 𝑓 (𝑍𝐼𝑗) with a circuit of size 𝑑2𝑑 (CNF formula suffices).

Putting all 𝑖 − 1 ≤ 𝑚 = 2𝑑/10 of these circuits and 𝐶 together, we obtain a circuit 𝐵 of size
2𝑑/10 · 𝑑2𝑑 + 𝑆/2 < 𝑆, with

ℙ𝑍1

�
𝐵(𝑍1) = 𝑓 (𝑍1)

� ≥ 1
2 + 1

10 · 2𝑑/10 >
1
2 + 1

𝑆
.

This contradicts the fact that 𝑆 = Havg(𝑓). ■

26

Picking Parameters
▶ Generic algorithm:

▶ Setup: 𝑓 ∈ TIME(2𝑂(𝑛)) and 𝑆 : ℕ≥1 → ℕ≥1 with Havg(𝑓) ≥ 𝑆
▶ Input: Random seed 𝑍 ∈ {0, 1}ℓ (truly random bits)

27

Picking Parameters
▶ Generic algorithm:

▶ Setup: 𝑓 ∈ TIME(2𝑂(𝑛)) and 𝑆 : ℕ≥1 → ℕ≥1 with Havg(𝑓) ≥ 𝑆
▶ Input: Random seed 𝑍 ∈ {0, 1}ℓ (truly random bits)

▶ Algorithm: 𝑛 := max
�
𝑛 : 10𝑛2

lg 𝑆(𝑛)/10
< ℓ

�
𝑑 := lg 𝑆(𝑛)/10
I := (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 (algorithm from Lemma 8.20)
Output NW 𝑓

I
(𝑍)

⇝ By Lemma 8.23, the output is (𝑆(𝑛)/10, 1
10) pseudorandom.

27

Picking Parameters
▶ Generic algorithm:

▶ Setup: 𝑓 ∈ TIME(2𝑂(𝑛)) and 𝑆 : ℕ≥1 → ℕ≥1 with Havg(𝑓) ≥ 𝑆
▶ Input: Random seed 𝑍 ∈ {0, 1}ℓ (truly random bits)

▶ Algorithm: 𝑛 := max
�
𝑛 : 10𝑛2

lg 𝑆(𝑛)/10
< ℓ

�
𝑑 := lg 𝑆(𝑛)/10
I := (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 (algorithm from Lemma 8.20)
Output NW 𝑓

I
(𝑍)

⇝ By Lemma 8.23, the output is (𝑆(𝑛)/10, 1
10) pseudorandom.

▶ Parameters for Theorem 8.16
▶ Assuming Hypothesis 8.13: 𝑓 exists with Havg(𝑓) ≥ 𝑆 with 𝑆(𝑛) = 2𝛿𝑛 .
▶ The inequality becomes ℓ > 10𝑛2

lg 𝑆(𝑛)/10 = 100𝑛2

𝛿𝑛 = 100
𝛿 𝑛, so 𝑛 ≈ 𝛿

100ℓ .
▶ 𝑑 = lg 𝑆(𝑛)/10 = 𝛿𝑛/10 = 𝛿2

1000ℓ

▶ NW can generate 𝑚 = 2𝑑/10 = 2𝛿𝑛/100 = 2(𝛿
100)2ℓ pseudorandom bits

27

Picking Parameters
▶ Generic algorithm:

▶ Setup: 𝑓 ∈ TIME(2𝑂(𝑛)) and 𝑆 : ℕ≥1 → ℕ≥1 with Havg(𝑓) ≥ 𝑆
▶ Input: Random seed 𝑍 ∈ {0, 1}ℓ (truly random bits)

▶ Algorithm: 𝑛 := max
�
𝑛 : 10𝑛2

lg 𝑆(𝑛)/10
< ℓ

�
𝑑 := lg 𝑆(𝑛)/10
I := (ℓ , 𝑛 , 𝑑)-design with 𝑚 = |I| = 2𝑑/10 (algorithm from Lemma 8.20)
Output NW 𝑓

I
(𝑍)

⇝ By Lemma 8.23, the output is (𝑆(𝑛)/10, 1
10) pseudorandom.

▶ Parameters for Theorem 8.16
▶ Assuming Hypothesis 8.13: 𝑓 exists with Havg(𝑓) ≥ 𝑆 with 𝑆(𝑛) = 2𝛿𝑛 .
▶ The inequality becomes ℓ > 10𝑛2

lg 𝑆(𝑛)/10 = 100𝑛2

𝛿𝑛 = 100
𝛿 𝑛, so 𝑛 ≈ 𝛿

100ℓ .
▶ 𝑑 = lg 𝑆(𝑛)/10 = 𝛿𝑛/10 = 𝛿2

1000ℓ

▶ NW can generate 𝑚 = 2𝑑/10 = 2𝛿𝑛/100 = 2(𝛿
100)2ℓ pseudorandom bits

▶ Pseudorandom against circuits of size 𝑆(𝑛)/10 = 2𝛿2ℓ/100/10 ≫
ℓ→∞

23(𝛿
100)2ℓ = 𝑚3

⇝ NW 𝑓
I

is a 2𝜀ℓ -pseudorandom generator with 𝜀 = (𝛿/100)2
27

8.6 Summary

Overview Randomized Complexity Classes

Proven facts:

▶ P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP

▶ RP ⊆ NP

▶ NP ∪ co-NP ⊆ PP

▶ ZPP = RP ∩ co-RP

▶ NP ⊆ co-RP =⇒ NP = ZPP

Widely held belief (but not proven):

▶ P = BPP
and hence P = ZPP = RP = BPP

▶ BPP ⊊ NP ⊆ PP

Consequences

▶ don’t try to solve NP-hard problems
exactly using randomization in polytime

▶ do seek easier and faster
algorithms for problems in P!
They often exist!

▶ do seek randomized algorithms for
problems of unknown complexity status
Some exist!

28

