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Uses of Randomness
▶ Since it is likely that BPP = P, we focus on the more fine-grained benefits of

randomization:
▶ simpler algorithms (with same performance)
▶ improving performance (but not jumping from exponential to polytime)
▶ improved robustness

▶ Here: Collection of examples illustrating different techniques
▶ fingerprinting / hashing
▶ exploiting abundance of witnesses
▶ random sampling
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9.1 Hashing – Balls Into Bins



Fingerprinting / Hashing
▶ Often have elements from huge universe 𝑈 = [0..𝑢) of possible values,

but only deal with few actual items 𝑥1 , . . . , 𝑥𝑛 at one time.
Think: 𝑛 ≪ 𝑢

▶ Fingerprinting can help to be more efficient in this case
▶ fingerprints from [0..𝑚)
▶ 𝑚 ≪ 𝑢

▶ Hash Function ℎ : 𝑈 → [0..𝑚)
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Fingerprinting / Hashing
▶ Often have elements from huge universe 𝑈 = [0..𝑢) of possible values,

but only deal with few actual items 𝑥1 , . . . , 𝑥𝑛 at one time.
Think: 𝑛 ≪ 𝑢

▶ Fingerprinting can help to be more efficient in this case
▶ fingerprints from [0..𝑚)
▶ 𝑚 ≪ 𝑢

▶ Hash Function ℎ : 𝑈 → [0..𝑚)
▶ Classic Example: hash tables and Bloom filters
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Uniform – Universal – Perfect
Randomness is essential for hashing to make any sense! Three very different uses

1. uniform hashing assumption: (optimistic, often roughly right in practice!)
How good is hashing if input is “as nicely random” as possible?
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Uniform – Universal – Perfect
Randomness is essential for hashing to make any sense! Three very different uses

1. uniform hashing assumption: (optimistic, often roughly right in practice!)
How good is hashing if input is “as nicely random” as possible?

2. Since fixed ℎ is prone to “algorithmic complexity attacks” (worst case inputs)
⇝ universal hashing: pick ℎ at random from class 𝐻 of suitable

universal class of hash functions

functions

3. For given keys, can construct collision-free hash function
⇝ perfect hashing
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Uniform Hashing – Balls into Bins

Uniform Hashing Assumption:
When 𝑛 elements 𝑥1 , . . . , 𝑥𝑛 are inserted,
for their hash sequence ℎ(𝑥1), . . . , ℎ(𝑥𝑛),
all 𝑚𝑛 possible values are equally likely.

⇝ behavior of data structure completely
independent of 𝑥1 , . . . , 𝑥𝑛 !
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Uniform Hashing – Balls into Bins

Uniform Hashing Assumption:
When 𝑛 elements 𝑥1 , . . . , 𝑥𝑛 are inserted,
for their hash sequence ℎ(𝑥1), . . . , ℎ(𝑥𝑛),
all 𝑚𝑛 possible values are equally likely.

⇝ behavior of data structure completely
independent of 𝑥1 , . . . , 𝑥𝑛 !

⇝ might as well forget data!

Balls into bins model (a.k.a. balanced allocations)

▶ throw 𝑛 balls into 𝑚 bins Literature usually swaps 𝑛 and 𝑚!

▶ each ball picks bin i. i.d. uniformly at random

▶ classic abstract model to study randomized algorithms
▶ For hashing, effectively the best imaginable case

tends to be a bit optimistic!
▶ but: data in applications often not far from this
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A Paradox?
▶ 𝑋𝑖 : Number of balls in bin 𝑖:

⇝ 𝑋1
D= · · · D= 𝑋𝑚

D= Bin(𝑛 , 1
𝑚 )

⇝ All 𝑋𝑖 concentrated around expectation 𝑛
𝑚 (Chernoff!)
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D= · · · D= 𝑋𝑚

D= Bin(𝑛 , 1
𝑚 )

⇝ All 𝑋𝑖 concentrated around expectation 𝑛
𝑚 (Chernoff

actually, just shows 𝑋𝑖 = 𝑛/𝑚 ± 𝒏0.501

!)
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Birthday Paradox
▶ Let’s consider a different question to approach this . . .

▶ Birthday ‘Paradox’:
How many people does it take to likely have two people with the same birthday?
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⇝ Only for 𝑛 = Θ(√𝑚) nontrivial probability

▶ ℙ[max𝑋𝑗 ≤ 1] = 1
2 for 𝑛 ≈

p
2𝑚 ln(2), so for 𝑚 = 365 days, need 𝑛 ≈ 22.49 people
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⇝ Only for 𝑛 = Θ(√𝑚) nontrivial probability

▶ ℙ[max𝑋𝑗 ≤ 1] = 1
2 for 𝑛 ≈

p
2𝑚 ln(2), so for 𝑚 = 365 days, need 𝑛 ≈ 22.49 people

⇝ Can’t expect to see all bins close to expected occupancy.
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Fullest Bin

Theorem 9.1
If we throw 𝑛 balls into 𝑛 bins, then w.h.p., the fullest bin has 𝑂

�
log 𝑛

log log 𝑛

�
balls. ◀

Proof:
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Fullest Bin [2]
Proof (cont.):

■
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Fullest Bin – Consequences
▶ Closer analysis shows for 𝑛 = 𝛼𝑚, constant 𝛼 (“load factor”),

max𝑋𝑗 =
ln 𝑛

ln(ln(𝑛)/𝛼) ·
�
1 + 𝑜(1)� w.h.p.
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3. Expected costs aren’t fully informative for hashing;
(big difference between expected average case and expected worst case)
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▶ Closer analysis shows for 𝑛 = 𝛼𝑚, constant 𝛼 (“load factor”),

max𝑋𝑗 =
ln 𝑛

ln(ln(𝑛)/𝛼) ·
�
1 + 𝑜(1)� w.h.p.

What can we learn from this?
1. Under uniform hashing assumption, even worst case of chaining hashing cost beats BST.

2. . . . but not by much.

3. Expected costs aren’t fully informative for hashing;
(big difference between expected average case and expected worst case)

Biggest caveat: uniform hashing assumption!
⇝ . . . we’ll come back to that

▶ Cool trick: Power of 2 choices
Assume two candidate bins per ball (hash functions), take less loaded bin

⇝ max𝑋𝑗 = ln ln 𝑛/ln 2 ± 𝑂(1) (!) analysis more technical; details in Mitzenmacher & Upfal
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Coupon Collector
▶ Balls into bins nicely models other situations worth memorizing

▶ Coupon Collector Problem:
How many (wrapped) packs do I need to buy to get all collectibles?
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▶ Balls into bins nicely models other situations worth memorizing

▶ Coupon Collector Problem:
How many (wrapped) packs do I need to buy to get all collectibles?
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▶ 𝔼[𝑆] =
𝑚Õ
𝑖=1

𝔼[𝑆𝑖] = 𝑚
𝑚Õ
𝑖=1

1
𝑖

= 𝑚𝐻𝑚 = 𝑚 ln𝑚 ± 𝑂(𝑚)

▶ Can similarly show Var[𝑆] = Θ(𝑚2)
(since 𝑆𝑖 are independent, stdev is linear + using Var[𝑆𝑖] = 1 − 𝑝𝑖

𝑝2
𝑖

)

⇝ 𝜎[𝑆] = Θ(𝑚) = 𝑜(𝔼[𝑆]), so 𝑆 converges in probability to 𝔼[𝑆] (Chebyshev)

10



9.2 Universal Hashing



Randomized Hashing
▶ Balls-into-bins model is worryingly optimistic.

▶ Assumes that chosen bins 𝐵1 , . . . , 𝐵𝑛 ∈ [𝑚] are mutually independent.
⇝ Assumes both that input is not adversarial and that hash functions work well.
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▶ if we were to uniformly choose from 𝑚𝑛 possibilities

we’d need to store lg(𝑚𝑛) = 𝑛 lg𝑚 bits just for ℎ
▶ (even if we did so, how to efficiently evaluate ℎ then is unclear)
� too expensive
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▶ if we were to uniformly choose from 𝑚𝑛 possibilities

we’d need to store lg(𝑚𝑛) = 𝑛 lg𝑚 bits just for ℎ
▶ (even if we did so, how to efficiently evaluate ℎ then is unclear)
� too expensive

⇝ Pick ℎ at random, but from a smaller class H of “convenient” functions
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Universal Hashing
What’s a convenient class?

Definition 9.2 (Universal Family)
Let H be a set of hash functions from 𝑈 to [𝑚] and |𝑈 | ≥ 𝑚.
Assume ℎ ∈ H is chosen uniformly at random.

(a) Then H is called a universal if
∀𝑥1 , 𝑥2 ∈ 𝑈 : 𝑥1 ≠ 𝑥2 =⇒ ℙ

�
ℎ(𝑥1) = ℎ(𝑥2)

� ≤ 1
𝑚
.

(b) H is called strongly universal or pairwise independent if

∀𝑥1 , 𝑥2 ∈ 𝑈 , 𝑦1 , 𝑦2 ∈ 𝑅 : 𝑥1 ≠ 𝑥2 =⇒ ℙ
�
ℎ(𝑥1) = 𝑦1 ∧ ℎ(𝑥2) = 𝑦2

� ≤ 1
𝑚2 . ◀
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Let H be a set of hash functions from 𝑈 to [𝑚] and |𝑈 | ≥ 𝑚.
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(a) Then H is called a universal if
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ℎ(𝑥1) = ℎ(𝑥2)
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𝑚
.

(b) H is called strongly universal or pairwise independent if

∀𝑥1 , 𝑥2 ∈ 𝑈 , 𝑦1 , 𝑦2 ∈ 𝑅 : 𝑥1 ≠ 𝑥2 =⇒ ℙ
�
ℎ(𝑥1) = 𝑦1 ∧ ℎ(𝑥2) = 𝑦2

� ≤ 1
𝑚2 . ◀

▶ strong universal implies universal

▶ In the following, always assume (uniformly) random ℎ ∈ H.

▶ by contrast, 𝑥1 , . . . , 𝑥𝑛 may be chosen adversarially (but all distinct) from [𝑢]
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Examples of universal families

ℎ𝑎𝑏(𝑥) =
�
𝑎 · 𝑥 + 𝑏 mod 𝑝

�
mod 𝑚 𝑝 prime, 𝑝 ≥ 𝑚

ℎ𝑎(𝑥) =
�
𝑎 · 𝑥 mod 2𝑘

�
div 2𝑘−ℓ 𝑢 = 2𝑘 , 𝑚 = 2ℓ

▶ H1 =
�
ℎ𝑎𝑏 : 𝑎 ∈ [1..𝑝), 𝑏 ∈ [0..𝑝)	 is universal

▶ H0 =
�
ℎ𝑎𝑏 : 𝑎 ∈ [0..𝑝), 𝑏 ∈ [0..𝑝)	 is strongly universal

▶ H2 =
�
ℎ𝑎 : 𝑎 ∈ [1..2𝑘), 𝑎 odd

	
is universal
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How good is universal hashing?

Theorem 9.3
Assign 𝑥1 , . . . , 𝑥𝑛 ∈ [𝑢] to bins ℎ(𝑥𝑖) ∈ [𝑚] using hash function ℎ, uniformly chosen from a
universal family of hash functions H.
Let 𝑋𝑗 be the load of bin 𝑗 ∈ [𝑚].
Then ℙ

�
max𝑋𝑗 ≥

√
2 · 𝑛√

𝑚

�
≤ 1

2 . ◀

Proof:
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How good is universal hashing [2]
Proof:

■
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So, how good is universal hashing?
▶ For 𝑛 = 𝑚, fullest bin ≤ √

2𝑛

▶ Much worse than Θ(log 𝑛/log log 𝑛)!
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So, how good is universal hashing?
▶ For 𝑛 = 𝑚, fullest bin ≤ √

2𝑛

▶ Much worse than Θ(log 𝑛/log log 𝑛)!
▶ Note that we only proved an upper bound, however

▶ bound is tight in the worst case
(if all we know is pairwise independence of hash values)
⇝ exercises

▶ for practical choices like H0, H1, H2 better bounds are proven
(close to 𝑂(𝑛1/3) instead of 𝑂(𝑛1/2))
but still far worse than uniform hashing
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9.3 Perfect Hashing



Perfect Hashing: Random Sampling
A hash function ℎ : [𝑢] → [𝑚] is called
▶ perfect for a set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑖 ≠ 𝑗 implies ℎ(𝑥𝑖) ≠ ℎ(𝑥𝑗)
▶ minimal for set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑚 = 𝑛

Perfect Hashing

▶ only possible for 𝑛 ≤ 𝑚

▶ stringent requirement ⇝ here focus on static X
▶ carefully chosen variants with partial rebuilding allow insertion and deletion

in 𝑂(1) amortized expected time

17



Perfect Hashing: Random Sampling
A hash function ℎ : [𝑢] → [𝑚] is called
▶ perfect for a set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑖 ≠ 𝑗 implies ℎ(𝑥𝑖) ≠ ℎ(𝑥𝑗)
▶ minimal for set X = {𝑥1 , . . . , 𝑥𝑛} ⊂ [𝑢] if 𝑚 = 𝑛

Perfect Hashing

▶ only possible for 𝑛 ≤ 𝑚

▶ stringent requirement ⇝ here focus on static X
▶ carefully chosen variants with partial rebuilding allow insertion and deletion

in 𝑂(1) amortized expected time

▶ further requirements
1. Hash function must be fast to evaluate (ideally 𝑂(1) time)
2. Hash function must be small to store (ideally 𝑂(𝑛) space)
3. should be fast to compute given X (ideally 𝑂(𝑛) time)
4. Have small 𝑚 (ideally 𝑚 = Θ(𝑛))
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Perfect Hashing: Simple, but space inefficient
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Perfect Hashing: Two-tier solution
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9.4 Primality Testing



Abundance of Witnesses
▶ Suppose 𝐿 ∈ NP and all of the following are true:

▶ alleged certificate must be easy to check
trivially in polytime; often very fast

▶ for 𝑥 ∈ 𝐿, there are many certificates that show 𝑥 ∈ 𝐿
not generally true, but sometimes!

⇝ Conceivable that a randomized algorithm succeeds:
▶ Guess a random certificate string
▶ Check if it decides the problem
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Primality Testing
Testing if a given number 𝑛 is prime is one of the oldest algorithmic questions.

Trivial approach: test for all (primes) 𝑝 ≤ √
𝑛 whether 𝑝 | 𝑛

1 procedure sieveOfEratosthenes(𝑛):
2 isPrime[2..𝑛] := true
3 for 𝑖 := 2, 3, . . . , ⌊√𝑛⌋
4 if isPrime[𝑖]
5 for 𝑗 = 𝑖 , 𝑖 + 1, 𝑖 + 2, . . . , ⌊𝑛/𝑖⌋
6 isPrime[𝑖 · 𝑗] := false
7 return {𝑝 ∈ [2..𝑛] : isPrime[𝑝]}
8

9 procedure isPrimeTrivial(𝑛):
10 𝑃 :=sieveOfEratosthenes(⌊√𝑛⌋)
11 return ∀𝑝 ∈ 𝑃 : 𝑝 ∤ 𝑛
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10 𝑃 :=sieveOfEratosthenes(⌊√𝑛⌋)
11 return ∀𝑝 ∈ 𝑃 : 𝑝 ∤ 𝑛

Running time:
▶ dominated by sieving primes up to 𝑚 = ⌊√𝑛⌋
▶ 𝑇(𝑚) ≤ 𝑚 +

Õ
𝑝≤𝑚

𝑝 prime

𝑚
𝑝

≤ 𝑚 + 𝑚
𝑚Õ
𝑝=1

1
𝑝

⇝ 𝑇(𝑚) = 𝑂(𝑚 log𝑚)
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Trivial approach: test for all (primes) 𝑝 ≤ √
𝑛 whether 𝑝 | 𝑛
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2 isPrime[2..𝑛] := true
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6 isPrime[𝑖 · 𝑗] := false
7 return {𝑝 ∈ [2..𝑛] : isPrime[𝑝]}
8

9 procedure isPrimeTrivial(𝑛):
10 𝑃 :=sieveOfEratosthenes(⌊√𝑛⌋)
11 return ∀𝑝 ∈ 𝑃 : 𝑝 ∤ 𝑛

Running time:
▶ dominated by sieving primes up to 𝑚 = ⌊√𝑛⌋
▶ 𝑇(𝑚) ≤ 𝑚 +

Õ
𝑝≤𝑚

𝑝 prime

𝑚
𝑝

≤ 𝑚 + 𝑚
𝑚Õ
𝑝=1

1
𝑝

⇝ 𝑇(𝑚) = 𝑂(𝑚 log𝑚)
▶ closer analysis: actually 𝑇(𝑚) = 𝑂(𝑚 log log𝑚)

Space:
√
𝑛 bits
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Complexity of Primality Testing and Factorization
▶ Primes:

▶ Given: Integer 𝑛 in binary encoding
▶ Goal: Check if 𝑛 is a prime number

▶ IntegerFactorization:
▶ Given: Integer 𝑛 in binary encoding
▶ Goal: Find nontrivial factors 𝑛 = 𝑚1 · 𝑚2, 2 ≤ 𝑚1 ,𝑚2 < 𝑛 or determine “𝑛 prime”
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▶ 𝑛 encoded in binary ⇝ Sieve of Eratosthenes is pseudopolynomial
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Complexity of Primality Testing and Factorization
▶ Primes:

▶ Given: Integer 𝑛 in binary encoding
▶ Goal: Check if 𝑛 is a prime number

▶ IntegerFactorization:
▶ Given: Integer 𝑛 in binary encoding
▶ Goal: Find nontrivial factors 𝑛 = 𝑚1 · 𝑚2, 2 ≤ 𝑚1 ,𝑚2 < 𝑛 or determine “𝑛 prime”

▶ If 𝑛 is composite, a factorization is a certificate for non-primality ⇝ Primes ∈ co-NP
▶ 𝑛 encoded in binary ⇝ Sieve of Eratosthenes is pseudopolynomial

▶ we will show Primes ∈ co-RP ⊂ BPP

▶ Major theoretical breakthrough: Primes ∈ P Agrawal, Kayal, and Saxena (2004)

▶ This is not known for IntegerFactorization
▶ Indeed much of classic cryptography (RSA) builds on factoring being intractable
▶ Shor’s algorithm can factor integers on a (theoretical) quantum computer in polytime!

(not clear whether or when this is a practical concern)
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Does Primes have abundance of witnesses?
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Primality Testing: Fermat’s Little Theorem

Theorem 9.4 (Fermat’s Little Theorem)
For 𝑝 a prime and 𝑎 ∈ [1..𝑝 − 1] holds

𝑎𝑝−1 ≡ 1 (mod 𝑝) ◀
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Primality Testing: Second Attempt

Theorem 9.5 (Euler’s Criterion)
Let 𝑝 > 2 an odd number.

𝑝 prime ⇐⇒ ∀𝑎 ∈ ℤ𝑝 \ {0} : 𝑎
𝑝−1

2 mod 𝑝 ∈ {1,−1} ◀
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Primality Testing: Second Attempt

Theorem 9.5 (Euler’s Criterion)
Let 𝑝 > 2 an odd number.

𝑝 prime ⇐⇒ ∀𝑎 ∈ ℤ𝑝 \ {0} : 𝑎
𝑝−1

2 mod 𝑝 ∈ {1,−1} ◀

Theorem 9.6 (Number of Witnesses)
For every odd 𝑛 ∈ ℕ, (𝑛 − 1)/2 odd, we have:

1. If 𝑛 is prime then 𝑎(𝑛−1)/2 mod 𝑛 ∈ {1, 𝑛 − 1}, for all 𝑎 ∈ {1, . . . , 𝑛 − 1}.

2. If 𝑛 is not prime then 𝑎(𝑛−1)/2 mod 𝑛 ∉ {1, 𝑛 − 1} for at least half of the elements in
{1, . . . , 𝑛 − 1}. ◀
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Simple Solovay-Strassen Primality Test
Input: an odd number 𝑛 with (𝑛 − 1)/2 odd.

1. Choose a random 𝑎 ∈ {1, 2, . . . , 𝑛 − 1}.
2. Compute 𝐴 := 𝑎(𝑛−1)/2 mod 𝑛.
3. If 𝐴 ∈ {1, 𝑛 − 1} then output “𝑛 probably prime” (reject);
4. otherwise output “𝑛 not prime” (accept).
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Simple Solovay-Strassen Primality Test
Input: an odd number 𝑛 with (𝑛 − 1)/2 odd.

1. Choose a random 𝑎 ∈ {1, 2, . . . , 𝑛 − 1}.
2. Compute 𝐴 := 𝑎(𝑛−1)/2 mod 𝑛.
3. If 𝐴 ∈ {1, 𝑛 − 1} then output “𝑛 probably prime” (reject);
4. otherwise output “𝑛 not prime” (accept).

Theorem 9.7 (Correctness)
The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect
composite numbers 𝑛 with 𝑛 mod 4 = 3. ◀
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Simple Solovay-Strassen Primality Test
Input: an odd number 𝑛 with (𝑛 − 1)/2 odd.

1. Choose a random 𝑎 ∈ {1, 2, . . . , 𝑛 − 1}.
2. Compute 𝐴 := 𝑎(𝑛−1)/2 mod 𝑛.
3. If 𝐴 ∈ {1, 𝑛 − 1} then output “𝑛 probably prime” (reject);
4. otherwise output “𝑛 not prime” (accept).

Theorem 9.7 (Correctness)
The simple Solovay-Strassen algorithm is a polynomial OSE-MC algorithm to detect
composite numbers 𝑛 with 𝑛 mod 4 = 3. ◀

Corollary 9.8
For positive integers 𝑛 with 𝑛 mod 4 = 3 the simple Solovay-Strassen algorithm provides a
polynomial TSE-MC algorithm to detect prime numbers. ◀
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Sampling Primes
RandomPrime(ℓ , 𝑘) Input: ℓ , 𝑘 ∈ ℕ, ℓ ≥ 3.

1. Set 𝑋 ≔ “not found yet”; 𝐼 ≔ 0;
2. while 𝑋 = “not found yet” and 𝐼 < 2ℓ 2 do

▶ generate random bit string 𝑎1 , 𝑎2 , . . . , 𝑎ℓ−2 and

▶ compute 𝑛 ≔ 2ℓ−1 +
ℓ−2Õ
𝑖=1

𝑎𝑖 · 2𝑖 + 1

// This way 𝑛 becomes a random, odd number of length ℓ
▶ Realize 𝑘 independent runs of Solovay-Strassen-algorithm on 𝑛;
▶ if at least one output says “𝑛 ∉ PRIMES” then 𝐼 ≔ 𝐼 + 1

else 𝑋 ≔“PN found”; output 𝑛;

3. if 𝐼 = 2 · ℓ 2 then output ”no PN found”.
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9.5 Schöning’s Satisfiability



Random Sampling
If a solution is tricky to construct in a target fashion,
but many solutions are known to exist, random sampling can help.

Generate random object according to simple procedure until solution found.

We’ve seen ideas of random sampling in perfect hashing.

Now: Use more aggressive sampling to find rare objects.
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Warmup: 2SAT
Famously, 3SAT is NP-complete.
2SAT: Given CNF formula 𝜑 with ≤ 2 literals per clause; is 𝜑 satisfiable?
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⇝ Represent formula as implication graph:
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▶ edges = all implications equivalent to some clause
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⇝ Represent formula as implication graph:
▶ vertices = literals in 𝜑

▶ edges = all implications equivalent to some clause

⇝ Can show: 𝜑 satisfiable ⇐⇒ no SCC
strongly connected component

contains both 𝑥𝑖 and ¬𝑥𝑖
▶ SCCs computable in linear time

▶ indeed, if no strong component contains contradiction, topological sort of components
allows to read off satisfying assignment
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Warmup: 2SAT
Famously, 3SAT is NP-complete.
2SAT: Given CNF formula 𝜑 with ≤ 2 literals per clause; is 𝜑 satisfiable?

By contrast, 2SAT ∈ 𝑃

Idea: Any clause (ℓ1 ∨ ℓ2) is equivalent to the implications ¬ℓ1 → ℓ2 and ¬ℓ2 → ℓ1
⇝ Represent formula as implication graph:
▶ vertices = literals in 𝜑

▶ edges = all implications equivalent to some clause

⇝ Can show: 𝜑 satisfiable ⇐⇒ no SCC
strongly connected component

contains both 𝑥𝑖 and ¬𝑥𝑖
▶ SCCs computable in linear time

▶ indeed, if no strong component contains contradiction, topological sort of components
allows to read off satisfying assignment

⇝ Basically, a solved problem . . . we will use it for demonstration purposes only

31



Warmup: A randomized 2SAT algorithm
1 procedure localSearch2SAT(𝜑, confidence):
2 𝑘 := number of variables in 𝜙
3 Choose assignment 𝛼 ∈ {0, 1}𝑘 uniformly at random.
4 for 𝑗 = 1, . . . , confidence · 2𝑘2

5 if 𝛼 fulfills 𝜑 return 𝛼 // satisfiable!
6 Arbitrarily choose clause 𝐶 = ℓ1 ∨ ℓ2 not satisfied under 𝛼.
7 Choose ℓ from {ℓ1 , ℓ2} uniformly at random.
8 𝛼 = assignment obtained by negating ℓ .
9 return PROBABLY_NOT_SATISFIABLE
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Warmup: A randomized 2SAT algorithm
1 procedure localSearch2SAT(𝜑, confidence):
2 𝑘 := number of variables in 𝜙
3 Choose assignment 𝛼 ∈ {0, 1}𝑘 uniformly at random.
4 for 𝑗 = 1, . . . , confidence · 2𝑘2

5 if 𝛼 fulfills 𝜑 return 𝛼 // satisfiable!
6 Arbitrarily choose clause 𝐶 = ℓ1 ∨ ℓ2 not satisfied under 𝛼.
7 Choose ℓ from {ℓ1 , ℓ2} uniformly at random.
8 𝛼 = assignment obtained by negating ℓ .
9 return PROBABLY_NOT_SATISFIABLE

Theorem 9.10 (localSearch2SAT is OSE-MC for 2SAT)
Let 𝜑 be a 2SAT formula.

1. If 𝜑 is unsatisfiable, localSearch2SAT always returns PROBABLY_NOT_SATISFIABLE.

2. If 𝜑 is satisfiable, localSearch2SAT returns satisfying assignment with probability at
least 1 − 2−confidence.

◀
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