CS627 (Summer 2025)
ipps-Universita

Approximation
Algorithms

8 July 2025

Prof. Dr. Sebastian Wild

Outline

10 Approximation Algorithms

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Motivation and Definitions

Vertex Cover and Matchings

The Drosophila of Approximation: Set Cover
The Layering Technique for Set Cover
Applications of Set Cover

(F)PTAS: Arbitrarily Good Approximations
Christofides’s Algorithm

Randomized Approximations

10.1 Motivation and Definitions

Recap: Optimization Problems, NPO
Recall general optimization problem U € NPO:
» each instance x has non-empty set of feasible solutions M (x)
> objective function cost assigns value cost(y) to all candidate solutions y € M(x)

» can check in polytime

» whether x is a valid instance
» whether y € M(x)

» compute cost(y) € Q
—

Recap: Optimization Problems, NPO
Recall general optimization problem U € NPO:
» each instance x has non-empty set of feasible solutions M (x)
> objective function cost assigns value cost(y) to all candidate solutions y € M(x)

» can check in polytime

» whether x is a valid instance
» whether y € M(x)
» compute cost(y) € Q

For each U, consider two variants: min or max
» optimization problem: output y € M(x) s.t. cost(y) = goal e pi(x)cost(y”’)

» evaluation problem: output goal, ¢y .\cost(y)

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get,
maybe “close-to-optimal” suffices?
A “consistent” with problem

Y
A heuristic is an algorithm A that always computes a feasible solution A(x) € M(x),
but we may not have any guarantees about cost(A(x)).

(Sometimes that’s all we have....)

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get,
maybe “close-to-optimal” suffices?
A “consistent” with problem
v
A heuristic is an algorithm A that always computes a feasible solution A(x) € M(x),
but we may not have any guarantees about cost(A(x)).

(Sometimes that’s all we have....)
Our goal: Prove guarantees about worst possible cost(A(x)).

Problem: optimal objective function value depends on x,
so how to define “good enough”?

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get,

maybe “close-to-optimal” suffices?
A “consistent” with problem

Y
A heuristic is an algorithm A that always computes a feasible solution A(x) € M(x),
but we may not have any guarantees about cost(A(x)).

(Sometimes that’s all we have....)

Our goal: Prove guarantees about worst possible cost(A(x)).
Problem: optimal objective function value depends on x,
so how to define “good enough”?

Relate cost(A(x)) to OPT = goalyeM(x)cost(y). ~~ approximation algorithm

Approximation Algorithms

Definition 10.1 (Approximation Ratio)

Let U = (X, X0, L, Ly, M, cost, goal) be an optimization problem. For every x € L; we denote
its optimal objective value by OPT = OPTy(x) = goal, _py()cost(y).
Let further A be an algorithm consistent with U. AG> e M

R

tH(A
The approximation ratio Ra(x) of A on x is defined as Ra(x) = (D) (x)).
OPTy(x)

Note: For minimization problems, R4 > 1; for maximization problems R4 < 1

Approximation Algorithms

Definition 10.1 (Approximation Ratio)
Let U = (X, X0, L, Ly, M, cost, goal) be an optimization problem. For every x € L; we denote
its optimal objective value by OPT = OPTy(x) = goalyeM(x)cost(y).

Let further A be an algorithm consistent with L.
— . o cost(A(x))
The approximation ratio Ra(x) of A on x is defined as Ra(x) = ———. <
OPTU (x)

Note: For minimization problems, R4 > 1; for maximization problems R4 < 1

Definition 10.2 (Approximation Algorithm)
An algorithm A consistent with an optimization problem U = (X;, X0, L, L1, M, cost, goal) is
called a c-approximation (algorithm) for U if

» goal = minand Vx € L; : Ra(x) < ¢;

» goal = maxand Vx € L; : Ra(x) > c.
R,

10.2 Vertex Cover and Matchings

Example: Vertex Cover

Recall the VERTEXCOVER optimization problem.
CisaVCiff{u,v} € E:{u,v}NC %0
goal = min

How can we vouch for a VC C to be (close to) optimal?

NEAA (<3 o Y LQ Q@M b@wfl @7?7 [,

Example: Vertex Cover o

Recall the VERTEXCOVER optimization problem. e = S
CisaVCiff{u,v} € E:{u,v}NC %0 \
goal = min — o

How can we vouch for a VC C to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)

Given graph G = (V,E), a set M C E is a matching (in G) if (V, M) has max-degree 1.
—_— Ndisjoint pairs of vertices %Q

M is (C-) maximal (a.k.a. saturated) if no superset of M is a matching.

M is a maximum matching is there is no matching of strictly larger cardinality in G.

M is a perfect matching if |M| = [V /2.

Example: Vertex Cover

Recall the VERTEXCOVER optimization problem.
CisaVCiff{u,v} € E:{u,v}NC %0

goal = min

How can we vouch for a VC C to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)
Given graph G = (V,E), a set M C E is a matching (in G) if (V, M) has max-degree 1.

disjoint pairs of vertices
M is (C-) maximal (a.k.a. saturated) if no superset of M is a matching.

M is a maximum matching is there is no matching of strictly larger cardinality in G.
M is a perfect matching if |M| = [V /2.

Note:

» C-maximal matchings easy to find via greedy algorithm.

» Maximum matchings are much more complicated, but also computable in polytime
(Edmonds’s “Blossom algorithm”)

Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].

Matching — Vertex Cover

Lemma 10.4 (VC > M)
If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:

Let{v,w} € M C E. ~ C has to contain v or w (or both).

Matching — Vertex Cover

Lemma 10.4 (VC > M)
If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.

/

(o7

Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.

1 procedure matchingVertexCoverApprox(G = (V, E))
2 // greedy maximal matching

3 M =0

4 for e € E // arbitrary order

5 if M U {e} is a matching

6 M = M U {e}

7 return U {u,v}

{u,0}eM

Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.

procedure matchingVertexCoverApprox(G = (V, E))

1
2 // greedy maximal matching
s M:=0 ot o oo adge
4 for e € E // arbitrary order e L
5 if M U {e} is a matching
&G—
6 M = M U {e} o
= C o
7 return U {u, v} P
{u,0}eM 6—0
. . (2) 2-sppv-¢ 1! Z)Ml
Theorem 10.5 (Matching is 2-approx for Vertex Cover) TR
. .)) 1A= 21k 6T
matchingVertexCoverApprox is a 2-approximation for VERTEXCOVER.
oPT % M)

Can we do better?

Maybe do smarter analysis?

Can we do better?

Maybe do smarter analysis?

A tight example for “VC > M": K,, ,

Can we do better?

Maybe do smarter analysis?
A tight example for “VC > M”: K,, ,
£70 cows ‘cm’&‘

Assuming the unique games conjecture, no polytime (2 — ¢) approx for VC.

Simple matching-based approximation worst-case optimal . . .

10.3 The Drosophila of Approximation: Set Cover

(Weighted) Set Cover

Definition 10.6 (SETCOVER) /T ;i\
Given: anumber 1,8 = {S1,..., Sk} of k subsets of U = [n], j'
\ \Q

and a cost function ¢ : S — N.

—_—

Solutions: C C [k]| with J;ce Si = U s / (
Cost: ;e c(Si) pa
Goal: min

» cardinality version a.k.a. UNWEIGHTEDSETCOVER has cost ¢(S) = |&# 1

» UNWEIGHTEDSETCOVER generalizes VERTEXCOVER:
For VERTEXCOVER instances, the sets S; are the sets of edges incident at a vertex v
~ additional property that each e € U occurs in exactly 2 sets S;

» general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs

(Weighted) Set Cover

Definition 10.6 (SETCOVER)

Given: anumber 1,8 = {S1,..., Sk} of k subsets of U = [n],
and a cost function ¢ : S — N.

Solutions: € C [k] with ;ce Si = U

Cost: Yice c(Si)

Goal: min

» cardinality version a.k.a. UNWEIGHTEDSETCOVER has cost ¢(S) = |S|

» UNWEIGHTEDSETCOVER generalizes VERTEXCOVER:

For VERTEXCOVER instances, the sets S; are the sets of edges incident at a vertex v
~ additional property that each e € U occurs in exactly 2 sets S;

» general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs

We will use SETCOVER to illustrate various techniques for approximation algorithms.

Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2 C:=0; C:=0

3 // For analysis: i := 1 _
OS: = -}

4 while C # [1] Vasseon ¢

5 i* ;= argmin ﬂ
i€[n] ‘Si \ C‘
6 C:= CuU{i*}
7 C:=CUS;
8 // For analysis only:
c(Siv)
’ 74 = 50
10 //for e € Si» \ C set price(e) = a;
11 Ni=1i+1

12 return C

Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

Lemma 10.7 (Price Lemma)

1 procedure greedySetCover(1, S, ¢) . .
P e Leteq, e, ..., e, the order, in which greedySetCover

2 C:=0; C:=0

s //Foranalysis: i := 1 covers the elements of U.
s while C # [n] - Then forall j € {1,...,n} we have
. G
5 7 arglr?[lﬂ [S:\ C] o) < OPT
6 e = eu{i} prieete) = i1
7 C:=CUS; 4—
8 // For analysis only: Proof:
o c(Si) Consider time when the jth element ¢; is covered.
: /i = s :
=
10 //for e € Si» \ C set price(e) = a;
11 Ni=1i+1

12 return C

Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2
]
4

C:=0; C:=0
// For analysis: i := 1
while C # [n]
i* := argmin 76(&)
ie[n] |Si \ C|
C:= CuU{i*}
C:=CUS;
// For analysis only:
c(Si+)
T Ye
//for e € Si» \ C set price(e) = a;
Ni=1i+1
return C

Lemma 10.7 (Price Lemma)
Leteq, e, ..., e, the order, in which greedySetCover
covers the elements of U.
Then forall j € {1,...,n} we have
price(ej) < _OPT .
j n—j+1

Proof:
Consider time when the jth element ¢ is covered.

ICl=n- (j — 1) elements uncovered (for c=Uu\Q).

Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2
]
4

C:=0; C:=0
// For analysis: i := 1
while C # [n]
i* := argmin 76(&)
ie[n] |Si \ C|
C:= CuU{i*}
C:=CUS;
// For analysis only:
c(Si+)
T Ye
//for e € Si» \ C set price(e) = a;
Ni=1i+1
return C

in €%, but not (yet) in C

Lemma 10.7 (Price Lemma)
Leteq, e, ..., e, the order, in which greedySetCover
covers the elements of U.
Then forall j € {1,...,n} we have
price(ej) < _OPT .
j n—j+1

Proof:
Consider time when the jth element ¢ is covered.
IC| =n - (j-1) elemeEts uncovered (for C = U \ O).
Optimal SC C* covers C with cost < OPT
- 35 . S8 OPT - OPT
/7 [Si+\ C| |C| n-j+1
N————

> price(e;)

Greedy Set Cover Analysis 6.57..

]—{M = dhv\ s K/+ (1)
Theorem 10.8 (greedySetCover approx)

greedySetCover is an H,-approximation for WEIGHTEDSETCOVER.
| et

Proof:

@ = > c(S)

ieC

n
Z price(e;)
j=1

Greedy Set Cover Analysis

Theorem 10.8 (greedySetCover approx)

greedySetCover is an H,-approximation for WEIGHTEDSETCOVER.

Proof:
c(C) = C(S) Zprzce(e])
ic
< HO—I.DT = OPTZl = H,-OPT
[Lemma 10.7] n—j+1 i 1

1

Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

10

Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is tight for greedySetCover in the worst case
even on WEIGHTED VERTEXCOVER instances:

» Consider star graph where leaves cost %, ﬁ, ..., 1, and middle vertex costs 1 + «.

> greedySetCover picks all leaves ~» H,

l
> OPT=1+e¢ : 1 [
2 O
chiz/ st/,L \K
¢
caclov 5 - Ve {
{ -~
feo b= o

l
ery

10

Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is tight for greedySetCover in the worst case
even on WEIGHTED VERTEXCOVER instances:

» Consider star graph where leaves cost %, ﬁ, ..., 1, and middle vertex costs 1 + «.
> greedySetCover picks all leaves ~» H,

More complicated constructions: (log 1)-approx even for (UNWEIGHTED) VERTEXCOVER.

10

10.4 The Layering Technique for Set Cover

Size-proportional cost functions

Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?
Larger sets “should” be more costly.

11

Size-proportional cost functions
Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?

Larger sets “should” be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function c is called size proportional if there is a constant p so that c(S;) = p|S|.

11

Size-proportional cost functions

Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?
Larger sets “should” be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function c is called size proportional if there is a constant p so that c(S;) = p|S|.

Definition 10.10 (Frequency)

The frequency f, of an element e € [1] is the number of sets in which it occurs:

fe=Hj:ee€ Sj}|'
The (maximal) frequency of a SETCOVER instance iﬁ = max, fe.

Note: (WEIGHTED)VERTEXCOVER instance ~-» f =2

11

Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.
Proof:

k
e®) = Y,e(s) = pYlsi

k
=il i=1

Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.
Proof:

k k

8 = D) = pYISl = pd fe < pY.f
i1 i=1

i ecl ecl

Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.

Proof: size-prop. ~ OPT>p-n

k k
8 = YeS) = pYISil = pYfe < PS ¢ foort
i=1

i=1 ecl ecl

12

Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)

For a size proportional weight function ¢ we have c¢(8) < f - OPT.
R

Proof: size-prop. ~» OPT>p-n

k k
8 = D) = pYISil = pY fe < pY.f L foer
i=1

i=1 ecl ecl

Taking all sets gives f-approx, so certainly true for greedySetCover.

But probably not too many problem instances are that simple . ..

12

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
2 o= min{@ ij € [k]}
n IS

co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

Co = {j € [k]: c1(5)) =0}

3
4
5
6 Uo = Ujee, Sj // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={S€{S1,....S} | SnUy #0}
12 C1 := layeringSetCover(U, 81,@)
13 return Cy U G

c(S) s (S + <, (5)

13

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_feS)
2 p::mmmtje[k]
j
co(Si) = p - |Sil // size-prop. part
c1(Sq) = (5)—60(5)//20

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)
13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

13

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
C[e(S))
2 p::mmmtje[k]
]
co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/ Car s
~» f-approx by Lemma 10.11)

/
oy w::L»:cL{(f fag (/UACR

§= ¢

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_[e(S) .
2 p::mmmtje[k]
j
3 co(Si) := p - |Sil // size-prop. part
4 c1(Si) == c(Si) —co(Si) /= 0
s €= {jelkl:als) =0}
6 Uo = Ujee, S;j // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_[e(S) .
2 p::mmmtje[k]
]
3 co(Si) := p - |Sil // size-prop. part
4 c1(Si) == c(Si) —co(Si) /= 0
s o= {jelk]als) =0}
6 Uo = Ujee, Sj // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).
Let C* be optimal set cover w.r.t. ¢

c(G¥) = obT

Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
C[e(S))
2 p::mmmtje[k]
]
co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)
13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).

Let C* be optimal set cover w.r.t. ¢ ;
S22 jan’f,

Lemma 10.11: € = €y U €y is f-approx w.r.t. cg.
~ () < fe€) (0

13

Layering Algorithm [2]

Proof (cont.):
Define €] = {ieC:S;e8}

Layering Algorithm [2]

Proof (cont.):
Deﬁne@iz{ie@*:siesl} < . U
S. oobl ce G \C Y o
€] is a set cover for U; — =L = ¢ ’
~ c1(€) < fOPT(UY,81,c1) < fra1(€) ()
IH Q ~

orT (U ,Si‘ci) < q (O:)

<

Layering Algorithm [2]

Proof (cont.):
Define €] = {ieC:S;e8}
(i’; is a set cover for Uj

~ ¢1(Cy) = OPT(Uy,81,c1) < f-a(€)) ()

c(C)

co(€) +c1(€)
co(€) + c1(Cq)

ieC~c1=0

(o),§<1>f (o€ + ea(€)

IA

f+(co(€) +c1(€)
foe€©)
c

oPT

— (€ < f-col€)

()

14

Layering Algorithm [2]
Proof (cont.):
Define €] = {ieC:S;e8}

€] is a set cover for U
~ c1(C1) 3 OPT(Uy,81,¢1) < f-ea(€]) (1)

c(€) co(€) +c1(€)

co(€) + c1(Cq)

Cl=0

(o>,(1)f‘ (co(C) +c1(€}))

< f . (Co(e*) TP Cl(e*))
= feo(@)

$=>1

i€ Co

IN

Note: For VERTEXCOVER, this yields again a 2-approximation.
~+ Same as using maximal matching

But the layering algorithm can handle arbitrary vertex costs (WEIGHTEDVERTEXCOVER)!

14

10.5 Applications of Set Cover

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

S i {Ll,\] = Wy
Goal: min Lde-ger)

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.

15

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

Goal: min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.
»> Motivation: DNA assembly (sequencing from many shorter “reads”)

» General problem is NP-complete

15

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

Goal: min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.
»> Motivation: DNA assembly (sequencing from many shorter “reads”)

» General problem is NP-complete

Here: Reduce this problem to SETCOVER!

15

Shortest Superstring by Set Cover

Construct all pairwise superstrings: overlap w; and w; by exactly { characters (if possible)
Lo)\—/_/ﬁ
et
e e
| ——
0ijf = w,-[O..Iw,-I—(J) cWj valid iff wj[O..Z) = ZU,‘[|?U,'|—€..|ZU,'|)

M = {(7,',]-,5 2i,jeul,le [0..min{|wl—|,|wj|}]}

6"\Jré

~~ Set Cover instance:

» Universe: [n] ~> try to cover all words in W with superstring . ..
» Subsets: S={S;:meWUM} ... by combining pairwise superstrings.
where S, = {k e [n] : 3i,j: wr =n[i..j)}
» Cost function: c¢(S;) = || ot ocwons @5 submbics fw w
e 77
.,

16

Shortest Superstring by Set Cover

Construct all pairwise superstrings: overlap w; and w; by exactly { characters (if possible)

0ijf = w,-[O..lw,-l—(?) cWj valid iff wj[O..Z) = ZU,‘[|"(U,'|—Z..|ZUI'|)
M = {ai,j,g 2i,jeul,le [0..min{|wi|,|wj|}]}

~~ Set Cover instance:

» Universe: [n] ~> try to cover all words in W with superstring . ..

» Subsets: S={S;:meWUM} ... by combining pairwise superstrings.
where S, = {k e [n] : 3i,j: wr =n[i..j)}
» Cost function: ¢(S;) = |7

Given set-cover solution {Sy,, ..., Sz, }
~ superstring s = 71y ... Ttk (in any order)

16

Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER

instance. Let further OPT resp. OPTsc be the optimal objective value of W resp. (1, S, c).
Then OPT < OPTsc < 2-OPT.

17

Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPTsc be the optimal objective value of W resp. (1, S, c).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.

17

Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPT'sc be the optimal objective value of W resp. (1, S, ¢).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.

Proof (Lemma 10.15):
» “OPT < OPTsc”
It suffices to show that s = 71 ... 7y is a valid superstring.
By definition, every w; must be contained in some 7ty as a substring.

Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPT'sc be the optimal objective value of W resp. (1, S, ¢).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.

Proof (Lemma 10.15):
» “OPT < OPTsc”
It suffices to show that s = 71 ... 7y is a valid superstring.
By definition, every w; must be contained in some 7ty as a substring.

w“ 7 L/—/—’\/{
> “OPTsc < 2-OPT =
OPT = |s”| for a shortest superstring s* for W. e

Without loss of generality, suppose s* contains w1, ..., w, in this order.
—t
17

Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > ;1 : first occurrence of w; does not overlap Wi, }.

] s°

Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > i;_; : first occurrence of w; does not overlap w;, , }.
Group j starts with w;; and ends with w;; ;1

~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Shortest Superstring by Set Cover — Analysis [2]

Proof:

Define groups: i1 = 1; i; = min{i > i;_; : first occurrence of w; does not overlap w;, , }
Group j starts with w; ; and ends with w; il

~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Groups can overlap (so concatenation of os longer than s*).

Shortest Superstring by Set Cover — Analysis [2]

Proof:

Define groups: i1 = 1; i; = min{i > ;1 : first occurrence of w; does not overlap Wi, }.

Group j starts with w;; and ends with w;; ;1
~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Groups can overlap (so concatenation of os longer than s*).

But group j and j + 2 cannot overlap!
~ |k £ 2lst| = 2- OPT.

18

Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > i;_; : first occurrence of w; does not overlap w;, , }.

Group j starts with w;; and ends with w;; ;1
~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Groups can overlap (so concatenation of os longer than s*).

But group j and j + 2 cannot overlap!
~ |k £ 2lst| = 2- OPT.

(Note: Better approximation algorithms for SHORTESTSUPERSTRING possible via different
techniques.)

18

10.6 (F)PTAS: Arbitrarily Good Approximations

Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

19

Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 (F)PTAS)
Let U = (X, X0, L, L, M, cost, min) an optimization problem. Foras D pelyeocnl

£ ’F‘MA{(C)

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

e xP
Note: PTAS could have running time O(n° - 22!) or so (akin to £t running time)

ale™)

19

Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let U = (X, X0, L, L, M, cost, min) an optimization problem.

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

Note: PTAS could have running time O(n° - 22]“) or so (akin to fpt running time)

FPTAS much stronger

19

Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let U = (X, X0, L, L, M, cost, min) an optimization problem.

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

Note: PTAS could have running time O(n° - 22]“) or so (akin to fpt running time)

FPTAS much stronger . . . but do they even exist for any NP-hard problems?

19

Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let U = (X, X0, L, L, M, cost, min) an optimization problem.

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

Note: PTAS could have running time O(n° - 22]“) or so (akin to fpt running time)

FPTAS much stronger . . . but do they even exist for any NP-hard problems? Yes!

19

Plenomial DP Reprise

Recall 0/1-KnapPsack: Given: items 1, ..., n with weights w1, ..
Feasible solutions: subset of items with total weight < b

Goal: maximize total value

., wy, and values v1,...,0y;

Approximation Idea: Work with rounded values (depending on ¢)

20

Pseudopolynomial DP Reprise

Recall 0/1-KNaPsack: Given: items 1, ..., n with weights wy, ..., w, and values vy, . ..

Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b

~» n-bentries ~» total time O(n - b - log(MaxInt(v ¢ <l

~ good if weights are small, but we want to round values

7 Ony

20

Pseudopolynomial DP Reprise

Recall 0/1-KNapPsack: Given: items 1, ..., n with weights w1, ..., w, and values vy, ..., vy;
Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b
~> 1 -bentries ~ total time O(n - b - log(MaxInt(v)))
~ good if weights are small, but we want to round values

» actually, DP also works with values as index!

[Assumption: wWi,..., Wy, V1,...,0y € N] v

» DP table W[n’, v] = min weight from items 1, ..., n’ with value =0

e

20

Pseudopolynomial DP Reprise

Recall 0/1-KNapPsack: Given: items 1, ..., n with weights w1, ..., w, and values vy, ..., vy;
Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b
~> 1 -bentries ~ total time O(n - b - log(MaxInt(v)))
~ good if weights are small, but we want to round values

» actually, DP also works with values as index!

[Assumption: wWi,..., Wy, V1,...,0y € N]

» DP table W[n’, v] = min weight from items 1, ..., n’ with value = v
min{W[n'—l,v], Wln' —1,0 —v,] +wn/} if v,y <o
W[I’l/, Z)] = —_— (+ initial values)
W[n' —1,0] otherwise

20

Pseudopolynomial DP Reprise

Recall 0/1-KNapPsack: Given: items 1, ..., n with weights w1, ..., w, and values vy, ..., vy;
Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b
~> 1 -bentries ~ total time O(n - b - log(MaxInt(v)))
~ good if weights are small, but we want to round values

» actually, DP also works with values as index!

[Assumption: wWi,..., Wy, V1,...,0y € N]

» DP table W[n’, v] = min weight from items 1, ..., n’ with value = v

min{W[n'—l,v], Wn' —1,0—0,] +wn/} ifo, <o
W[I’l/, Z)] = (+ initial values)
W[n' —1,0] otherwise

~ 1 -nV entries for V = maxv; ~» total time O(n? -V - log(MaxInt(w)))

-
20

FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €) ((<) U iaat

2

&

4

5]

V = max;=1, ,0;
K:=¢eV/n
o= || //roundedv ! st K

DPKnapsack is pseudopolynomial DP algorithm
return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

21

FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €)
2 V = maxj=1,..n Vi

3 K :=¢eV/n

4 @ = [%J // rounded v

DPKnapsack is pseudopolynomial DP algorithm
5 return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof:
First consider running time; dominated by DPKnapsack.

FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €)
2 Vo= maXi=1 .,

3 K :=¢eV/n

4 D = [%J // rounded v

5

DPKnapsack is pseudopolynomial DP algorithm
return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Ve was T
Proof:
First consider running time; dominated by DPKnapsack.

O(n?V log(MaxInt(w))) < O(nVlx|) < o(#m%) < O(nxle™) < O(xl*e™)

FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €)
2 Vo= maXi=1 .,

3 K:=¢eV/n

4 D = [%J // rounded v

5

DPKnapsack is pseudopolynomial DP algorithm
return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof:
First consider running time; dominated by DPKnapsack.

O(nzf/log(Maxlnt(w))) < On*V|x]) < O(n2|x|%)

IA

O(n’lx]e™) < O(x|*e™)

It remains to show that total value of I = DPKnapsack(w, 9, b)is v(I) > (1 —¢)- OPT

21

FPTAS for Knapsack [2]

Proof (cont.):
Let I* be an optimal solution, v(I*) = Z v; = OPT
iel”
For each i € [n], we have by definition [vi -K < K-9; < v (*)].

w1 < [x¥l¢ x

1 procedure knapsackFPTAS(w, v, b, ¢)
2 V = maxj=1,.. n v

3 K :=¢eV/n

4 7= [%J // rounded v

5 return DPKnapsack(w, 9, b)

FPTAS for Knapsack [2]

Proof (cont.):

Let I* be an optimal solution, v(I*) = Z v; = OPT
iel”
For each i € [n], we have by definition [vi -K < K-9; < v (*)].

D
FPKnapsack returns optimal solution for rounded values ~» o(I) > 9(I*) (o)

Moreover, OPT > V by our assumption that each item fits into knapsack. (V)

FPTAS for Knapsack [2]

Proof (cont.):
Let I* be an optimal solution, v(I*) = Z v; = OPT

iel*

For each i € [n], we have by definition [vi -K < K-9; < v (*)].

FPKnapsack returns optimal solution for rounded values ~» o(I) > 9(I*) (o)
Moreover, OPT > V by our assumption that each item fits into knapsack. (V)
We now have

o) > K-8(I) > K-5(I") > o(I')-nK = OPT—¢V > (l—¢)-OPT
) () 5~ : W)

1 procedure knapsackFPTAS(w, v, b, ¢)
2 V = max;-q,.
3 K :=¢eV/n
4
5

= [%J // rounded v
return DPKnapsack(w, 9, b)

22

FPTAS asks for much

Theorem 10.19 (FPTAS — FPT and pseudopolynomial)
1. Ue€FPTAS = p-U€FPT

2. U € FPTAS and cost(u, x) < p(MaxInt(x)) for some polynomial p
= 3 pseudopolynomial algorithm for L.

23

10.8 Randomized Approximations

Randomized Approximation Guarantees

Definition 10.23 (Randomized 6-approx.)

Let U = (X, X0, L, L, M, cost, max) an optimization problem. For 6 > 1 a randomized
algorithm A is called randomized 6-approximation algorithm for U, if
iy o i ledeilid

> P[A(x) e M(x)] = 1, (always feasible) and
» P[Ra(x) < 0] > % (typically within 0)
forall x € L;.

Definition 10.24 (6-expected approx.)
Let U = (X, X0, L, Ly, M, cost, max) an optimization problem. For 6 > 1 a randomized
algorithm A is called (randomized) 6-expected approximation algorithm for U, if
> P[A(x) e M(x)] = 1 (always feasible) and
[E[cost(A(x))]
OPTu(x)
forall x € L;.

<6 (expected within 0)

(Minimization problems similar.)

27

