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10.1 Motivation and Definitions



Recap: Optimization Problems, NPO
Recall general optimization problem 𝑈 ∈ NPO:

▶ each instance 𝑥 has non-empty set of feasible solutions 𝑀(𝑥)
▶ objective function cost assigns value cost(𝑦) to all candidate solutions 𝑦 ∈ 𝑀(𝑥)
▶ can check in polytime

▶ whether 𝑥 is a valid instance
▶ whether 𝑦 ∈ 𝑀(𝑥)
▶ compute cost(𝑦) ∈ ℚ
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Recap: Optimization Problems, NPO
Recall general optimization problem 𝑈 ∈ NPO:

▶ each instance 𝑥 has non-empty set of feasible solutions 𝑀(𝑥)
▶ objective function cost assigns value cost(𝑦) to all candidate solutions 𝑦 ∈ 𝑀(𝑥)
▶ can check in polytime

▶ whether 𝑥 is a valid instance
▶ whether 𝑦 ∈ 𝑀(𝑥)
▶ compute cost(𝑦) ∈ ℚ

For each 𝑈 , consider two variants:

▶ optimization problem: output 𝑦 ∈ 𝑀(𝑥) s.t. cost(𝑦) = goal

min or max

𝑦′∈𝑀(𝑥)cost(𝑦′)
▶ evaluation problem: output goal𝑦∈𝑀(𝑥)cost(𝑦)
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Perfect is the enemy of good
Optimal solutions are great, but if they are too expensive to get,
maybe “close-to-optimal” suffices?

A heuristic is an algorithm 𝐴 that always

𝐴 “consistent” with problem

computes a feasible solution 𝐴(𝑥) ∈ 𝑀(𝑥),
but we may not have any guarantees about cost(𝐴(𝑥)).

(Sometimes that’s all we have . . . )
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Our goal: Prove guarantees about worst possible cost(𝐴(𝑥)).
Problem: optimal objective function value depends on 𝑥,

so how to define “good enough”?
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Perfect is the enemy of good
Optimal solutions are great, but if they are too expensive to get,
maybe “close-to-optimal” suffices?

A heuristic is an algorithm 𝐴 that always

𝐴 “consistent” with problem

computes a feasible solution 𝐴(𝑥) ∈ 𝑀(𝑥),
but we may not have any guarantees about cost(𝐴(𝑥)).

(Sometimes that’s all we have . . . )

Our goal: Prove guarantees about worst possible cost(𝐴(𝑥)).
Problem: optimal objective function value depends on 𝑥,

so how to define “good enough”?

Relate cost(𝐴(𝑥)) to OPT = goal𝑦∈𝑀(𝑥)cost(𝑦). ⇝ approximation algorithm
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Approximation Algorithms

Definition 10.1 (Approximation Ratio)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost, goal) be an optimization problem. For every 𝑥 ∈ 𝐿𝐼 we denote
its optimal objective value by OPT = OPT𝑈 (𝑥) = goal𝑦∈𝑀(𝑥)cost(𝑦).
Let further 𝐴 be an algorithm consistent with 𝑈 .

The approximation ratio 𝑹𝑨(𝒙) of 𝑨 on 𝒙 is defined as 𝑅𝐴(𝑥) =
cost(𝐴(𝑥))
OPT𝑈 (𝑥) . ◀

Note: For minimization problems, 𝑅𝐴 ≥ 1; for maximization problems 𝑅𝐴 ≤ 1
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Approximation Algorithms

Definition 10.1 (Approximation Ratio)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost, goal) be an optimization problem. For every 𝑥 ∈ 𝐿𝐼 we denote
its optimal objective value by OPT = OPT𝑈 (𝑥) = goal𝑦∈𝑀(𝑥)cost(𝑦).
Let further 𝐴 be an algorithm consistent with 𝑈 .

The approximation ratio 𝑹𝑨(𝒙) of 𝑨 on 𝒙 is defined as 𝑅𝐴(𝑥) =
cost(𝐴(𝑥))
OPT𝑈 (𝑥) . ◀

Note: For minimization problems, 𝑅𝐴 ≥ 1; for maximization problems 𝑅𝐴 ≤ 1

Definition 10.2 (Approximation Algorithm)
An algorithm 𝐴 consistent with an optimization problem 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost, goal) is
called a 𝒄-approximation (algorithm) for 𝑼 if

▶ goal = min and ∀𝑥 ∈ 𝐿𝐼 : 𝑅𝐴(𝑥) ≤ 𝑐;

▶ goal = max and ∀𝑥 ∈ 𝐿𝐼 : 𝑅𝐴(𝑥) ≥ 𝑐.
◀
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10.2 Vertex Cover and Matchings



Example: Vertex Cover
Recall the VertexCover optimization problem.
𝐶 is a VC iff {𝑢 , 𝑣} ∈ 𝐸 : {𝑢 , 𝑣} ∩ 𝐶 ≠ ∅
goal = min
How can we vouch for a VC 𝐶 to be (close to) optimal?
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Example: Vertex Cover
Recall the VertexCover optimization problem.
𝐶 is a VC iff {𝑢 , 𝑣} ∈ 𝐸 : {𝑢 , 𝑣} ∩ 𝐶 ≠ ∅
goal = min
How can we vouch for a VC 𝐶 to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)
Given graph 𝐺 = (𝑉 , 𝐸), a set 𝑀 ⊆ 𝐸 is a matching

disjoint pairs of vertices

(in 𝐺) if (𝑉 ,𝑀) has max-degree 1.

𝑀 is (⊆-) maximal (a.k.a. saturated) if no superset of 𝑀 is a matching.
𝑀 is a maximum matching is there is no matching of strictly larger cardinality in 𝐺.
𝑀 is a perfect matching if |𝑀| = |𝑉 |/2. ◀
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Example: Vertex Cover
Recall the VertexCover optimization problem.
𝐶 is a VC iff {𝑢 , 𝑣} ∈ 𝐸 : {𝑢 , 𝑣} ∩ 𝐶 ≠ ∅
goal = min
How can we vouch for a VC 𝐶 to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)
Given graph 𝐺 = (𝑉 , 𝐸), a set 𝑀 ⊆ 𝐸 is a matching

disjoint pairs of vertices

(in 𝐺) if (𝑉 ,𝑀) has max-degree 1.

𝑀 is (⊆-) maximal (a.k.a. saturated) if no superset of 𝑀 is a matching.
𝑀 is a maximum matching is there is no matching of strictly larger cardinality in 𝐺.
𝑀 is a perfect matching if |𝑀| = |𝑉 |/2. ◀

Note:
▶ ⊆-maximal matchings easy to find via greedy algorithm.

▶ Maximum matchings are much more complicated, but also computable in polytime
(Edmonds’s “Blossom algorithm”)
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Matching → Vertex Cover

Lemma 10.4 (VC ≥ M)
If 𝑀 is a matching and 𝐶 is a vertex cover in 𝐺, then |𝐶| ≥ |𝑀| . ◀
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Matching → Vertex Cover

Lemma 10.4 (VC ≥ M)
If 𝑀 is a matching and 𝐶 is a vertex cover in 𝐺, then |𝐶| ≥ |𝑀| . ◀

Proof:
Let {𝑣 ,𝑤} ∈ 𝑀 ⊆ 𝐸. ⇝ 𝐶 has to contain 𝑣 or 𝑤 (or both).

■
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Matching → Vertex Cover

Lemma 10.4 (VC ≥ M)
If 𝑀 is a matching and 𝐶 is a vertex cover in 𝐺, then |𝐶| ≥ |𝑀| . ◀

Proof:
Let {𝑣 ,𝑤} ∈ 𝑀 ⊆ 𝐸. ⇝ 𝐶 has to contain 𝑣 or 𝑤 (or both).
Since all |𝑀| matching edges are disjoint, 𝐶 must cover them by ≥ |𝑀| distinct endpoint.

■

1 procedure matchingVertexCoverApprox(𝐺 = (𝑉 , 𝐸))
2 // greedy maximal matching
3 𝑀 := ∅
4 for 𝑒 ∈ 𝐸 // arbitrary order
5 if 𝑀 ∪ {𝑒} is a matching
6 𝑀 := 𝑀 ∪ {𝑒}
7 return

Ø
{𝑢 ,𝑣}∈𝑀

{𝑢 , 𝑣}

5



Matching → Vertex Cover

Lemma 10.4 (VC ≥ M)
If 𝑀 is a matching and 𝐶 is a vertex cover in 𝐺, then |𝐶| ≥ |𝑀| . ◀

Proof:
Let {𝑣 ,𝑤} ∈ 𝑀 ⊆ 𝐸. ⇝ 𝐶 has to contain 𝑣 or 𝑤 (or both).
Since all |𝑀| matching edges are disjoint, 𝐶 must cover them by ≥ |𝑀| distinct endpoint.

■

1 procedure matchingVertexCoverApprox(𝐺 = (𝑉 , 𝐸))
2 // greedy maximal matching
3 𝑀 := ∅
4 for 𝑒 ∈ 𝐸 // arbitrary order
5 if 𝑀 ∪ {𝑒} is a matching
6 𝑀 := 𝑀 ∪ {𝑒}
7 return

Ø
{𝑢 ,𝑣}∈𝑀

{𝑢 , 𝑣}

Theorem 10.5 (Matching is 2-approx for Vertex Cover)
matchingVertexCoverApprox is a 2-approximation for VertexCover. ◀
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Can we do better?
Maybe do smarter analysis?
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A tight example for “VC ≥ M”: 𝐾𝑛 ,𝑛
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Can we do better?
Maybe do smarter analysis?

A tight example for “VC ≥ M”: 𝐾𝑛 ,𝑛

Assuming the unique games conjecture, no polytime (2 − 𝜀) approx for VC.

Simple matching-based approximation worst-case optimal . . .
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10.3 The Drosophila of Approximation: Set Cover



(Weighted) Set Cover

Definition 10.6 (SetCover)
Given: a number 𝑛, S = {𝑆1 , . . . , 𝑆𝑘} of 𝑘 subsets of 𝑈 = [𝑛],

and a cost function 𝑐 : 𝑆 → ℕ.
Solutions: C ⊆ [𝑘] with

Ð
𝑖∈C 𝑆𝑖 = 𝑈

Cost:
Í

𝑖∈C 𝑐(𝑆𝑖)
Goal: min ◀

▶ cardinality version a.k.a. UnweightedSetCover has cost 𝑐(𝑆) = |𝑆|
▶ UnweightedSetCover generalizes VertexCover:

For VertexCover instances, the sets 𝑆𝑖 are the sets of edges incident at a vertex 𝑣
⇝ additional property that each 𝑒 ∈ 𝑈 occurs in exactly 2 sets 𝑆𝑖

▶ general UnweightedSetCover = Vertex Cover on hypergraphs
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(Weighted) Set Cover

Definition 10.6 (SetCover)
Given: a number 𝑛, S = {𝑆1 , . . . , 𝑆𝑘} of 𝑘 subsets of 𝑈 = [𝑛],

and a cost function 𝑐 : 𝑆 → ℕ.
Solutions: C ⊆ [𝑘] with

Ð
𝑖∈C 𝑆𝑖 = 𝑈

Cost:
Í

𝑖∈C 𝑐(𝑆𝑖)
Goal: min ◀

▶ cardinality version a.k.a. UnweightedSetCover has cost 𝑐(𝑆) = |𝑆|
▶ UnweightedSetCover generalizes VertexCover:

For VertexCover instances, the sets 𝑆𝑖 are the sets of edges incident at a vertex 𝑣
⇝ additional property that each 𝑒 ∈ 𝑈 occurs in exactly 2 sets 𝑆𝑖

▶ general UnweightedSetCover = Vertex Cover on hypergraphs

We will use SetCover to illustrate various techniques for approximation algorithms.
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Greedy Algorithm
Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗ )
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C
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Greedy Algorithm
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10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 10.7 (Price Lemma)
Let 𝑒1 , 𝑒2 , . . . , 𝑒𝑛 the order, in which greedySetCover
covers the elements of 𝑈 .
Then for all 𝑗 ∈ {1, . . . , 𝑛} we have

price(𝑒𝑗) ≤ OPT
𝑛 − 𝑗 + 1 . ◀

Proof:
Consider time when the 𝑗th element 𝑒𝑗 is covered.
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Greedy Algorithm
Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min
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8 // For analysis only:
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10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 10.7 (Price Lemma)
Let 𝑒1 , 𝑒2 , . . . , 𝑒𝑛 the order, in which greedySetCover
covers the elements of 𝑈 .
Then for all 𝑗 ∈ {1, . . . , 𝑛} we have

price(𝑒𝑗) ≤ OPT
𝑛 − 𝑗 + 1 . ◀

Proof:
Consider time when the 𝑗th element 𝑒𝑗 is covered.
|𝐶| = 𝑛 − (𝑗 − 1) elements uncovered (for 𝐶 = 𝑈 \ 𝐶).
Optimal SC C∗ covers 𝐶 with cost ≤ OPT

⇝ ∃𝑆𝑖∗

in C∗, but not (yet) in C

: 𝑐(𝑆𝑖∗ )
|𝑆𝑖∗ \ 𝐶||    {z    }
≥ price(𝑒𝑗 )

≤ OPT
|𝐶|

≤ OPT
𝑛 − 𝑗 + 1 .

Arbitrarily order sets in C∗ , assign prices to uncovered elements.
If all prices were > OPT/|𝐶| , covering 𝐶 would cost > OPT. � ■
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Greedy Set Cover Analysis

Theorem 10.8 (greedySetCover approx)
greedySetCover is an 𝐻𝑛-approximation for WeightedSetCover. ◀

Proof:

𝑐(C) =
Õ
𝑖∈C

𝑐(𝑆𝑖) =
𝑛Õ
𝑗=1

price(𝑒𝑗)



Greedy Set Cover Analysis

Theorem 10.8 (greedySetCover approx)
greedySetCover is an 𝐻𝑛-approximation for WeightedSetCover. ◀

Proof:

𝑐(C) =
Õ
𝑖∈C

𝑐(𝑆𝑖) =
𝑛Õ
𝑗=1

price(𝑒𝑗)

≤
[Lemma 10.7]

𝑛Õ
𝑗=1

OPT
𝑛 − 𝑗 + 1 = OPT

𝑛Õ
𝑖=1

1
𝑛

= 𝐻𝑛 · OPT ■

9



Greedy Worst Case
𝐻𝑛 ∼ ln 𝑛 is . . . not amazing. (Guarantee becomes worse with growing input size)
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Unfortunately, bound is tight for greedySetCover in the worst case
even on WeightedVertexCover instances:

▶ Consider star graph where leaves cost 1
𝑛 ,

1
𝑛−1 , . . . , 1, and middle vertex costs 1 + 𝜀.

▶ greedySetCover picks all leaves ⇝ 𝐻𝑛

▶ OPT = 1 + 𝜀
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Greedy Worst Case
𝐻𝑛 ∼ ln 𝑛 is . . . not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is tight for greedySetCover in the worst case
even on WeightedVertexCover instances:

▶ Consider star graph where leaves cost 1
𝑛 ,

1
𝑛−1 , . . . , 1, and middle vertex costs 1 + 𝜀.

▶ greedySetCover picks all leaves ⇝ 𝐻𝑛

▶ OPT = 1 + 𝜀

More complicated constructions: Ω(log 𝑛)-approx even for (Unweighted)VertexCover.
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10.4 The Layering Technique for Set Cover



Size-proportional cost functions
Greedy failed on “unfair” costs for sets . . . what if costs are “nicer”?
Larger sets “should” be more costly.
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Size-proportional cost functions
Greedy failed on “unfair” costs for sets . . . what if costs are “nicer”?
Larger sets “should” be more costly.

Definition 10.9 (Size-proportional cost function)
A cost function 𝑐 is called size proportional if there is a constant 𝑝 so that 𝑐(𝑆𝑖) = 𝑝|𝑆𝑖 | . ◀

Definition 10.10 (Frequency)
The frequency 𝑓𝑒 of an element 𝑒 ∈ [𝑛] is the number of sets in which it occurs:
𝑓𝑒 = |{ 𝑗 : 𝑒 ∈ 𝑆𝑗}| .
The (maximal) frequency of a SetCover instance is 𝑓 = max𝑒 𝑓𝑒 . ◀

Note: (Weighted)VertexCover instance ⇝ 𝑓 = 2
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Size-proportional indeed easier

Lemma 10.11 (size-proportionality → trivial 𝒇 -approx)
For a size proportional weight function 𝑐 we have 𝑐(S) ≤ 𝑓 · OPT. ◀

Proof:

𝑐(S) =
𝑘Õ

𝑖=1
𝑐(𝑆𝑖) = 𝑝

𝑘Õ
𝑖=1

|𝑆𝑖 |
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Õ
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Õ
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𝑓



Size-proportional indeed easier

Lemma 10.11 (size-proportionality → trivial 𝒇 -approx)
For a size proportional weight function 𝑐 we have 𝑐(S) ≤ 𝑓 · OPT. ◀

Proof:

𝑐(S) =
𝑘Õ

𝑖=1
𝑐(𝑆𝑖) = 𝑝

𝑘Õ
𝑖=1

|𝑆𝑖 | = 𝑝
Õ
𝑒∈𝑈

𝑓𝑒 ≤ 𝑝
Õ
𝑒∈𝑈

𝑓 ≤
size-prop. ⇝ OPT ≥ 𝑝 · 𝑛

𝑓 · OPT ■
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For a size proportional weight function 𝑐 we have 𝑐(S) ≤ 𝑓 · OPT. ◀

Proof:

𝑐(S) =
𝑘Õ

𝑖=1
𝑐(𝑆𝑖) = 𝑝

𝑘Õ
𝑖=1

|𝑆𝑖 | = 𝑝
Õ
𝑒∈𝑈

𝑓𝑒 ≤ 𝑝
Õ
𝑒∈𝑈

𝑓 ≤
size-prop. ⇝ OPT ≥ 𝑝 · 𝑛

𝑓 · OPT ■

Taking all sets gives 𝑓 -approx, so certainly true for greedySetCover.

But probably not too many problem instances are that simple . . .
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Layering Algorithm
Idea: Split cost function into sum of

▶ size-proportional part 𝑐0 and
▶ a some residue 𝑐1

1 procedure layeringSetCover(𝑈 , S, 𝑐)

2 𝑝 := min
�
𝑐(𝑆𝑗)
|𝑆𝑗 | : 𝑗 ∈ [𝑘]

�
3 𝑐0(𝑆𝑖) := 𝑝 · |𝑆𝑖 | // size-prop. part
4 𝑐1(𝑆𝑖) := 𝑐(𝑆𝑖) − 𝑐0(𝑆𝑖) // ≥ 0
5 C0 :=

�
𝑗 ∈ [𝑘] : 𝑐1(𝑆𝑗) = 0

	
6 𝑈0 :=

Ð
𝑗∈C0 𝑆𝑗 // covered by size-prop.

7 if 𝑈0 == 𝑈
8 return C0
9 else

10 𝑈1 := 𝑈 \𝑈0 // rest of universe
11 S1 :=

�
𝑆 ∈ {𝑆1 , . . . , 𝑆𝑘} | 𝑆 ∩𝑈1 ≠ ∅	

12 C1 := layeringSetCover(𝑈1, S1, 𝑐1)
13 return C0 ∪ C1
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IH: C1 covers 𝑈1 at cost 𝑐1(C1) ≤ 𝑓 · OPT(𝑈1 , S1 , 𝑐1).
Let C∗ be optimal set cover w.r.t. 𝑐

Lemma 10.11: C = C0 ∪ C1 is 𝑓 -approx w.r.t. 𝑐0.
⇝ 𝑐0(C) ≤ 𝑓 · 𝑐0(C∗) (0)
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Layering Algorithm [2]
Proof (cont.):
Define C∗1 = {𝑖 ∈ C∗ : 𝑆𝑖 ∈ S1}



Layering Algorithm [2]
Proof (cont.):
Define C∗1 = {𝑖 ∈ C∗ : 𝑆𝑖 ∈ S1}
C∗1 is a set cover for 𝑈1
⇝ 𝑐1(C1) ≤

𝐼𝐻
OPT(𝑈1 , S1 , 𝑐1) ≤ 𝑓 · 𝑐1(C∗1) (1)



Layering Algorithm [2]
Proof (cont.):
Define C∗1 = {𝑖 ∈ C∗ : 𝑆𝑖 ∈ S1}
C∗1 is a set cover for 𝑈1
⇝ 𝑐1(C1) ≤

𝐼𝐻
OPT(𝑈1 , S1 , 𝑐1) ≤ 𝑓 · 𝑐1(C∗1) (1)

𝑐(C) = 𝑐0(C) + 𝑐1(C)
=

𝑖 ∈ C0 ⇝ 𝑐1 = 0

𝑐0(C) + 𝑐1(C1)

≤
(0), (1)

𝑓 · �𝑐0(C∗) + 𝑐1(C∗1)
�

≤ 𝑓 · �𝑐0(C∗) + 𝑐1(C∗)
�

= 𝑓 · 𝑐(C∗) ■
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Layering Algorithm [2]
Proof (cont.):
Define C∗1 = {𝑖 ∈ C∗ : 𝑆𝑖 ∈ S1}
C∗1 is a set cover for 𝑈1
⇝ 𝑐1(C1) ≤

𝐼𝐻
OPT(𝑈1 , S1 , 𝑐1) ≤ 𝑓 · 𝑐1(C∗1) (1)

𝑐(C) = 𝑐0(C) + 𝑐1(C)
=

𝑖 ∈ C0 ⇝ 𝑐1 = 0

𝑐0(C) + 𝑐1(C1)

≤
(0), (1)

𝑓 · �𝑐0(C∗) + 𝑐1(C∗1)
�

≤ 𝑓 · �𝑐0(C∗) + 𝑐1(C∗)
�

= 𝑓 · 𝑐(C∗) ■

Note: For VertexCover, this yields again a 2-approximation.
⇝ Same as using maximal matching

But the layering algorithm can handle arbitrary vertex costs (WeightedVertexCover)!
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10.5 Applications of Set Cover



Shortest Superstrings

Definition 10.13 (ShortestSuperstring)
Given: alphabet Σ, set of strings 𝑊 = {𝑤1 , . . . ,𝑤𝑛} ⊆ Σ+

Feasible Instances: superstrings 𝑠 of 𝑆, i. e., 𝑠 contains 𝑤𝑖 as substring for 1 ≤ 𝑖 ≤ 𝑛.
Cost: |𝑠|
Goal: min ◀

Remark 10.14
Without-loss-of-generality assumption: no string is a substring of another. ◀
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▶ Motivation: DNA assembly (sequencing from many shorter “reads”)

▶ General problem is NP-complete
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Shortest Superstrings

Definition 10.13 (ShortestSuperstring)
Given: alphabet Σ, set of strings 𝑊 = {𝑤1 , . . . ,𝑤𝑛} ⊆ Σ+

Feasible Instances: superstrings 𝑠 of 𝑆, i. e., 𝑠 contains 𝑤𝑖 as substring for 1 ≤ 𝑖 ≤ 𝑛.
Cost: |𝑠|
Goal: min ◀

Remark 10.14
Without-loss-of-generality assumption: no string is a substring of another. ◀

▶ Motivation: DNA assembly (sequencing from many shorter “reads”)

▶ General problem is NP-complete

Here: Reduce this problem to SetCover!
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Shortest Superstring by Set Cover
Construct all pairwise superstrings: overlap 𝑤𝑖 and 𝑤𝑗 by exactly ℓ characters (if possible)

𝜎𝑖 , 𝑗 ,ℓ = 𝑤𝑖[0..|𝑤𝑖 |−ℓ ) · 𝑤𝑗 valid iff 𝑤𝑗[0..ℓ ) = 𝑤𝑖[|𝑤𝑖 |−ℓ ..|𝑤𝑖 |)
𝑀 =

�
𝜎𝑖 , 𝑗 ,ℓ : 𝑖 , 𝑗 ∈ [𝑢], ℓ ∈ �

0..min{|𝑤𝑖 | , |𝑤𝑗 |}
�	

⇝ Set Cover instance:

▶ Universe: [𝑛] ⇝ try to cover all words in 𝑊 with superstring . . .
▶ Subsets: 𝑆 = {𝑆𝜋 : 𝜋 ∈ 𝑊 ∪ 𝑀} . . . by combining pairwise superstrings.

where 𝑆𝜋 = {𝑘 ∈ [𝑛] : ∃𝑖 , 𝑗 : 𝑤𝑘 = 𝜋[𝑖.. 𝑗)}
▶ Cost function: 𝑐(𝑆𝜋) = |𝜋|
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Shortest Superstring by Set Cover
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▶ Subsets: 𝑆 = {𝑆𝜋 : 𝜋 ∈ 𝑊 ∪ 𝑀} . . . by combining pairwise superstrings.

where 𝑆𝜋 = {𝑘 ∈ [𝑛] : ∃𝑖 , 𝑗 : 𝑤𝑘 = 𝜋[𝑖.. 𝑗)}
▶ Cost function: 𝑐(𝑆𝜋) = |𝜋|

Given set-cover solution {𝑆𝜋1 , . . . , 𝑆𝜋𝑘 }
⇝ superstring 𝑠 = 𝜋1 . . .𝜋𝑘 (in any order)
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Shortest Superstring by Set Cover – Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)
Let 𝑊 be an instance for ShortestSuperstring and (𝑛 , 𝑆, 𝑐) the corresponding SetCover
instance. Let further OPT resp. OPTSC be the optimal objective value of 𝑊 resp. (𝑛 , 𝑆, 𝑐).
Then OPT ≤ OPTSC ≤ 2 · OPT. ◀
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Then OPT ≤ OPTSC ≤ 2 · OPT. ◀

Corollary 10.16 (2𝑯𝒏 approximation for superstring)
By solving the transformed set cover instance with greedySetCover, we obtain a
2𝐻𝑛-approximation for the shortest superstring problem. ◀
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It suffices to show that 𝑠 = 𝜋1 . . .𝜋𝑘 is a valid superstring.
By definition, every 𝑤𝑖 must be contained in some 𝜋𝑘 as a substring.
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2𝐻𝑛-approximation for the shortest superstring problem. ◀

Proof (Lemma 10.15):
▶ “OPT ≤ OPTSC”

It suffices to show that 𝑠 = 𝜋1 . . .𝜋𝑘 is a valid superstring.
By definition, every 𝑤𝑖 must be contained in some 𝜋𝑘 as a substring.

▶ “OPTSC ≤ 2 · OPT”
OPT = |𝑠∗| for a shortest superstring 𝑠∗ for 𝑊 .
Without loss of generality, suppose 𝑠∗ contains 𝑤1 , . . . ,𝑤𝑛 in this order.
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Shortest Superstring by Set Cover – Analysis [2]
Proof:
Define groups: 𝑖1 = 1; 𝑖 𝑗 = min{𝑖 > 𝑖 𝑗−1 : first occurrence of 𝑤𝑖 does not overlap 𝑤𝑖𝑗−1}.
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Group 𝑗 starts with 𝑤𝑖𝑗 and ends with 𝑤𝑖𝑗+1−1
⇝ overlap of two strings ⇝ 𝜋 𝑗 = 𝜎𝑖 𝑗 ,𝑖 𝑗+1−1,ℓ𝑗
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⇝ overlap of two strings ⇝ 𝜋 𝑗 = 𝜎𝑖 𝑗 ,𝑖 𝑗+1−1,ℓ𝑗

Groups can overlap (so concatenation of 𝜎s longer than 𝑠∗).

But group 𝑗 and 𝑗 + 2 cannot overlap!
⇝ |𝜋1 . . .𝜋𝑘 | ≤ 2|𝑠∗| = 2 · OPT. ■
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Shortest Superstring by Set Cover – Analysis [2]
Proof:
Define groups: 𝑖1 = 1; 𝑖 𝑗 = min{𝑖 > 𝑖 𝑗−1 : first occurrence of 𝑤𝑖 does not overlap 𝑤𝑖𝑗−1}.

Group 𝑗 starts with 𝑤𝑖𝑗 and ends with 𝑤𝑖𝑗+1−1
⇝ overlap of two strings ⇝ 𝜋 𝑗 = 𝜎𝑖 𝑗 ,𝑖 𝑗+1−1,ℓ𝑗

Groups can overlap (so concatenation of 𝜎s longer than 𝑠∗).

But group 𝑗 and 𝑗 + 2 cannot overlap!
⇝ |𝜋1 . . .𝜋𝑘 | ≤ 2|𝑠∗| = 2 · OPT. ■

(Note: Better approximation algorithms for ShortestSuperstring possible via different
techniques.)
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10.6 (F)PTAS: Arbitrarily Good Approximations



Approximation Schemes
The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!
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Note: PTAS could have running time 𝑂(𝑛𝑐 · 221/𝜀 ) or so (akin to fpt running time)

19



Approximation Schemes
The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost,min) an optimization problem.
An algorithm 𝐴 = 𝐴𝜀(𝑥) with input (𝜀, 𝑥) is called
polynomial-time approximation scheme (PTAS) for 𝑈 ,
if for every constant 𝜀 ∈ ℚ>0, the algorithm 𝐴𝜀 is a (1 + 𝜀)-approximation for 𝑈 with running
time polynomial in |𝑥| .
If the running time of 𝐴𝜀(𝑥) is bounded by a polynomial in |𝑥| and 𝜺−1, 𝐴 is called a
fully polynomial-time approximation scheme (FPTAS) for 𝑈 . ◀

Note: PTAS could have running time 𝑂(𝑛𝑐 · 221/𝜀 ) or so (akin to fpt running time)

FPTAS much stronger

19



Approximation Schemes
The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost,min) an optimization problem.
An algorithm 𝐴 = 𝐴𝜀(𝑥) with input (𝜀, 𝑥) is called
polynomial-time approximation scheme (PTAS) for 𝑈 ,
if for every constant 𝜀 ∈ ℚ>0, the algorithm 𝐴𝜀 is a (1 + 𝜀)-approximation for 𝑈 with running
time polynomial in |𝑥| .
If the running time of 𝐴𝜀(𝑥) is bounded by a polynomial in |𝑥| and 𝜺−1, 𝐴 is called a
fully polynomial-time approximation scheme (FPTAS) for 𝑈 . ◀

Note: PTAS could have running time 𝑂(𝑛𝑐 · 221/𝜀 ) or so (akin to fpt running time)

FPTAS much stronger . . . but do they even exist for any NP-hard problems?

19



Approximation Schemes
The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost,min) an optimization problem.
An algorithm 𝐴 = 𝐴𝜀(𝑥) with input (𝜀, 𝑥) is called
polynomial-time approximation scheme (PTAS) for 𝑈 ,
if for every constant 𝜀 ∈ ℚ>0, the algorithm 𝐴𝜀 is a (1 + 𝜀)-approximation for 𝑈 with running
time polynomial in |𝑥| .
If the running time of 𝐴𝜀(𝑥) is bounded by a polynomial in |𝑥| and 𝜺−1, 𝐴 is called a
fully polynomial-time approximation scheme (FPTAS) for 𝑈 . ◀

Note: PTAS could have running time 𝑂(𝑛𝑐 · 221/𝜀 ) or so (akin to fpt running time)

FPTAS much stronger . . . but do they even exist for any NP-hard problems? Yes!
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Pseudopolynomial DP Reprise
Recall 0/1-Knapsack: Given: items 1, . . . , 𝑛 with weights 𝑤1 , . . . ,𝑤𝑛 and values 𝑣1 , . . . , 𝑣𝑛 ;

Feasible solutions: subset of items with total weight ≤ 𝑏
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on 𝜀)
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In Unit 3, we solved Knapsack
▶ using a DP table 𝑉[𝑛′, 𝑏′] = max value from items 1..𝑛′ and total weight 𝑏′ ≤ 𝑏
⇝ 𝑛 · 𝑏 entries ⇝ total time 𝑂(𝑛 · 𝑏 · log(MaxInt(𝑣)))
⇝ good if weights are small, but we want to round values
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Assumption: 𝑤1 , . . . ,𝑤𝑛 , 𝑣1 , . . . , 𝑣𝑛 ∈ ℕ

▶ DP table 𝑊[𝑛′, 𝑣] = min weight from items 1, . . . , 𝑛′ with value = 𝑣
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min
n
𝑊[𝑛′ − 1, 𝑣], 𝑊[𝑛′ − 1, 𝑣 − 𝑣𝑛′] + 𝑤𝑛′

o
if 𝑣𝑛′ < 𝑣

𝑊[𝑛′ − 1, 𝑣] otherwise
(+ initial values)
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⇝ 𝑛 · 𝑛𝑉 entries for 𝑉 = max 𝑣𝑖 ⇝ total time 𝑂(𝑛2 · 𝑉 · log(MaxInt(𝑤)))
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FPTAS for Knapsack
Convenience Assumption: any item fits in the knapsack alone, i. e., 𝑤𝑖 ≤ 𝑏

1 procedure knapsackFPTAS(𝑤, 𝑣, 𝑏, 𝜀)
2 𝑉 := max𝑖=1,...,𝑛 𝑣𝑖
3 𝐾 := 𝜀𝑉/𝑛
4 �̃� :=

� 𝑣
𝐾

�
// rounded 𝑣

5 return DPKnapsack(𝑤, �̃�, 𝑏)
DPKnapsack is pseudopolynomial DP algorithm
with running time 𝑂(𝑛2 · 𝑉 · log(MaxInt(𝑤)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-Knapsack. ◀
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First consider running time; dominated by DPKnapsack.
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�|𝑥|4𝜀−1�

It remains to show that total value of 𝐼 = DPKnapsack(𝑤, �̃�, 𝑏) is 𝑣(𝐼) ≥ (1 − 𝜀) · OPT
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FPTAS for Knapsack [2]
Proof (cont.):
Let 𝐼∗ be an optimal solution, 𝑣(𝐼∗) =

Õ
𝑖∈𝐼∗

𝑣𝑖 = OPT

For each 𝑖 ∈ [𝑛], we have by definition 𝑣𝑖 − 𝐾 < 𝐾 · �̃�𝑖 ≤ 𝑣𝑖 (∗) .



FPTAS for Knapsack [2]
Proof (cont.):
Let 𝐼∗ be an optimal solution, 𝑣(𝐼∗) =

Õ
𝑖∈𝐼∗

𝑣𝑖 = OPT

For each 𝑖 ∈ [𝑛], we have by definition 𝑣𝑖 − 𝐾 < 𝐾 · �̃�𝑖 ≤ 𝑣𝑖 (∗) .

FPKnapsack returns optimal solution for rounded values ⇝ �̃�(𝐼) ≥ �̃�(𝐼∗) (𝑜)
Moreover, OPT ≥ 𝑉 by our assumption that each item fits into knapsack. (𝑉)



FPTAS for Knapsack [2]
Proof (cont.):
Let 𝐼∗ be an optimal solution, 𝑣(𝐼∗) =

Õ
𝑖∈𝐼∗

𝑣𝑖 = OPT

For each 𝑖 ∈ [𝑛], we have by definition 𝑣𝑖 − 𝐾 < 𝐾 · �̃�𝑖 ≤ 𝑣𝑖 (∗) .

FPKnapsack returns optimal solution for rounded values ⇝ �̃�(𝐼) ≥ �̃�(𝐼∗) (𝑜)
Moreover, OPT ≥ 𝑉 by our assumption that each item fits into knapsack. (𝑉)
We now have
𝑣(𝐼) ≥

(∗)
𝐾 · �̃�(𝐼) ≥

(𝑜)
𝐾 · �̃�(𝐼∗) ≥

(∗)
𝑣(𝐼∗) − 𝑛𝐾 = OPT − 𝜀𝑉 ≥

(𝑉)
(1 − 𝜀) · OPT

■
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FPTAS asks for much

Theorem 10.19 (FPTAS → FPT and pseudopolynomial)
1. 𝑈 ∈ FPTAS =⇒ 𝑝-𝑈 ∈ FPT

2. 𝑈 ∈ FPTAS and cost(𝑢 , 𝑥) < 𝑝
�
MaxInt(𝑥)� for some polynomial 𝑝

=⇒ ∃ pseudopolynomial algorithm for 𝑈 .
◀

23



10.8 Randomized Approximations



Randomized Approximation Guarantees

Definition 10.23 (Randomized 𝜹-approx.)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost,max) an optimization problem. For 𝛿 > 1 a randomized
algorithm 𝐴 is called randomized 𝛿-approximation algorithm for 𝑈 , if
▶ ℙ[𝐴(𝑥) ∈ 𝑀(𝑥)] = 1, (always feasible) and
▶ ℙ[𝑅𝐴(𝑥) ≤ 𝛿] ≥ 1

2 (typically within 𝛿)
for all 𝑥 ∈ 𝐿𝐼 . ◀

Definition 10.24 (𝜹-expected approx.)
Let 𝑈 = (Σ𝐼 ,Σ𝑂 , 𝐿, 𝐿𝐼 ,𝑀 , cost,max) an optimization problem. For 𝛿 > 1 a randomized
algorithm 𝐴 is called (randomized) 𝛿-expected approximation algorithm for 𝑈 , if
▶ ℙ[𝐴(𝑥) ∈ 𝑀(𝑥)] = 1 (always feasible) and

▶ 𝔼[cost(𝐴(𝑥))]
OPT𝑈 (𝑥) ≤ 𝛿 (expected within 𝛿)

for all 𝑥 ∈ 𝐿𝐼 . ◀

(Minimization problems similar.)
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