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10.1 Motivation and Definitions



Recap: Optimization Problems, NPO
Recall general optimization problem U € NPO:
» each instance x has non-empty set of feasible solutions M (x)
> objective function cost assigns value cost(y) to all candidate solutions y € M(x)

» can check in polytime

» whether x is a valid instance
» whether y € M(x)

» compute cost(y) € Q
—



Recap: Optimization Problems, NPO
Recall general optimization problem U € NPO:
» each instance x has non-empty set of feasible solutions M (x)
> objective function cost assigns value cost(y) to all candidate solutions y € M(x)

» can check in polytime

» whether x is a valid instance
» whether y € M(x)
» compute cost(y) € Q

For each U, consider two variants: min or max
» optimization problem: output y € M(x) s.t. cost(y) = goal e pi(x)cost(y”’)

» evaluation problem: output goal, ¢y .\cost(y)



Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get,
maybe “close-to-optimal” suffices?
A “consistent” with problem

Y
A heuristic is an algorithm A that always computes a feasible solution A(x) € M(x),
but we may not have any guarantees about cost(A(x)).

(Sometimes that’s all we have....)
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Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get,

maybe “close-to-optimal” suffices?
A “consistent” with problem

Y
A heuristic is an algorithm A that always computes a feasible solution A(x) € M(x),
but we may not have any guarantees about cost(A(x)).

(Sometimes that’s all we have....)

Our goal: Prove guarantees about worst possible cost(A(x)).
Problem: optimal objective function value depends on x,
so how to define “good enough”?

Relate cost(A(x)) to OPT = goalyeM(x)cost(y). ~~ approximation algorithm



Approximation Algorithms

Definition 10.1 (Approximation Ratio)

Let U = (X, X0, L, Ly, M, cost, goal) be an optimization problem. For every x € L; we denote
its optimal objective value by OPT = OPTy(x) = goal, _py()cost(y).
Let further A be an algorithm consistent with U. AG> e M

R

tH(A
The approximation ratio Ra(x) of A on x is defined as Ra(x) = (D) (x)).
OPTy(x)

Note: For minimization problems, R4 > 1; for maximization problems R4 < 1



Approximation Algorithms

Definition 10.1 (Approximation Ratio)
Let U = (X, X0, L, Ly, M, cost, goal) be an optimization problem. For every x € L; we denote
its optimal objective value by OPT = OPTy(x) = goalyeM(x)cost(y).

Let further A be an algorithm consistent with L.
— . o cost(A(x))
The approximation ratio Ra(x) of A on x is defined as Ra(x) = ———. <
OPTU (x)

Note: For minimization problems, R4 > 1; for maximization problems R4 < 1

Definition 10.2 (Approximation Algorithm)
An algorithm A consistent with an optimization problem U = (X;, X0, L, L1, M, cost, goal) is
called a c-approximation (algorithm) for U if

» goal = minand Vx € L; : Ra(x) < ¢;

» goal = maxand Vx € L; : Ra(x) > c.
R,



10.2 Vertex Cover and Matchings



Example: Vertex Cover

Recall the VERTEXCOVER optimization problem.
CisaVCiff{u,v} € E:{u,v}NC %0
goal = min

How can we vouch for a VC C to be (close to) optimal?
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Example: Vertex Cover o

Recall the VERTEXCOVER optimization problem. e = S
CisaVCiff{u,v} € E:{u,v}NC %0 \
goal = min — o

How can we vouch for a VC C to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)

Given graph G = (V,E), a set M C E is a matching (in G) if (V, M) has max-degree 1.
—_— Ndisjoint pairs of vertices %Q

M is (C-) maximal (a.k.a. saturated) if no superset of M is a matching.

M is a maximum matching is there is no matching of strictly larger cardinality in G.

M is a perfect matching if |M| = [V /2.



Example: Vertex Cover

Recall the VERTEXCOVER optimization problem.
CisaVCiff{u,v} € E:{u,v}NC %0

goal = min

How can we vouch for a VC C to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching)
Given graph G = (V,E), a set M C E is a matching (in G) if (V, M) has max-degree 1.

disjoint pairs of vertices
M is (C-) maximal (a.k.a. saturated) if no superset of M is a matching.

M is a maximum matching is there is no matching of strictly larger cardinality in G.
M is a perfect matching if |M| = [V /2.

Note:

» C-maximal matchings easy to find via greedy algorithm.

» Maximum matchings are much more complicated, but also computable in polytime
(Edmonds’s “Blossom algorithm”)



Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].
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Let{v,w} € M C E. ~ C has to contain v or w (or both).



Matching — Vertex Cover

Lemma 10.4 (VC > M)
If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.
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Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.

1 procedure matchingVertexCoverApprox(G = (V, E))
2 // greedy maximal matching

3 M =0

4 for e € E // arbitrary order

5 if M U {e} is a matching

6 M = M U {e}

7 return U {u,v}

{u,0}eM




Matching — Vertex Cover

Lemma 10.4 (VC > M)

If M is a matching and C is a vertex cover in G, then |C| > |M].

Proof:
Let {v,w} € M C E. ~ C has to contain v or w (or both).
Since all | M| matching edges are disjoint, C must cover them by > |M]| distinct endpoint.

procedure matchingVertexCoverApprox(G = (V, E))

1
2 // greedy maximal matching
s M:=0 ot o oo adge
4 for e € E // arbitrary order e L
5 if M U {e} is a matching
&G—
6 M = M U {e} o
= C o
7 return U {u, v} P
{u,0}eM 6—0
. . (2) 2-sppv-¢ 1! Z )Ml
Theorem 10.5 (Matching is 2-approx for Vertex Cover) TR
. . ) ) 1A= 21k 6T
matchingVertexCoverApprox is a 2-approximation for VERTEXCOVER.
oPT % M)



Can we do better?

Maybe do smarter analysis?



Can we do better?

Maybe do smarter analysis?

A tight example for “VC > M": K,, ,




Can we do better?

Maybe do smarter analysis?
A tight example for “VC > M”: K,, ,
£70 cows ‘cm’&‘

Assuming the unique games conjecture, no polytime (2 — ¢) approx for VC.

Simple matching-based approximation worst-case optimal . . .



10.3 The Drosophila of Approximation: Set Cover



(Weighted) Set Cover

Definition 10.6 (SETCOVER) /T ;i\
Given: anumber 1,8 = {S1,..., Sk} of k subsets of U = [n], j'
\ \Q

and a cost function ¢ : S — N.

—_—

Solutions: C C [k]| with J;ce Si = U s / (
Cost: ;e c(Si) pa
Goal: min

» cardinality version a.k.a. UNWEIGHTEDSETCOVER has cost ¢(S) = |&# 1

» UNWEIGHTEDSETCOVER generalizes VERTEXCOVER:
For VERTEXCOVER instances, the sets S; are the sets of edges incident at a vertex v
~ additional property that each e € U occurs in exactly 2 sets S;

» general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs



(Weighted) Set Cover

Definition 10.6 (SETCOVER)

Given: anumber 1,8 = {S1,..., Sk} of k subsets of U = [n],
and a cost function ¢ : S — N.

Solutions: € C [k] with ;ce Si = U

Cost: Yice c(Si)

Goal: min

» cardinality version a.k.a. UNWEIGHTEDSETCOVER has cost ¢(S) = |S|

» UNWEIGHTEDSETCOVER generalizes VERTEXCOVER:

For VERTEXCOVER instances, the sets S; are the sets of edges incident at a vertex v
~ additional property that each e € U occurs in exactly 2 sets S;

» general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs

We will use SETCOVER to illustrate various techniques for approximation algorithms.



Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2 C:=0; C:=0

3 // For analysis: i := 1 _
OS: = -}

4 while C # [1] Vasseon ¢

5 i* ;= argmin ﬂ
i€[n] ‘Si \ C‘
6 C:= CuU{i*}
7 C:=CUS;
8 // For analysis only:
c(Siv)
’ 74 = 50
10 //for e € Si» \ C set price(e) = a;
11 Ni=1i+1

12 return C




Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

Lemma 10.7 (Price Lemma)

1 procedure greedySetCover(1, S, ¢) . .
P e Leteq, e, ..., e, the order, in which greedySetCover

2 C:=0; C:=0

s //Foranalysis: i := 1 covers the elements of U.
s while C # [n] - Then forall j € {1,...,n} we have
. G
5 7 arglr?[lﬂ [S:\ C] o) < OPT
6 e = eu{i} prieete) = i1
7 C:=CUS; 4—
8 // For analysis only: Proof:
o c(Si) Consider time when the jth element ¢; is covered.
: /i = s :
=
10 //for e € Si» \ C set price(e) = a;
11 Ni=1i+1

12 return C




Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2
]
4

C:=0; C:=0
// For analysis: i := 1
while C # [n]
i* := argmin 76(&)
ie[n] |Si \ C|
C:= CuU{i*}
C:=CUS;
// For analysis only:
c(Si+)
T Ye
//for e € Si» \ C set price(e) = a;
Ni=1i+1
return C

Lemma 10.7 (Price Lemma)
Leteq, e, ..., e, the order, in which greedySetCover
covers the elements of U.
Then forall j € {1,...,n} we have
price(ej) < _OPT .
j n—j+1

Proof:
Consider time when the jth element ¢ is covered.

ICl=n- (j — 1) elements uncovered (for c=Uu\Q).



Greedy Algorithm

Arguably simplest approach: Greedily pick set with current best cost-per-new-item ratio.

1 procedure greedySetCover(, S, c)

2
]
4

C:=0; C:=0
// For analysis: i := 1
while C # [n]
i* := argmin 76(&)
ie[n] |Si \ C|
C:= CuU{i*}
C:=CUS;
// For analysis only:
c(Si+)
T Ye
//for e € Si» \ C set price(e) = a;
Ni=1i+1
return C

in €%, but not (yet) in C

Lemma 10.7 (Price Lemma)
Leteq, e, ..., e, the order, in which greedySetCover
covers the elements of U.
Then forall j € {1,...,n} we have
price(ej) < _OPT .
j n—j+1

Proof:
Consider time when the jth element ¢ is covered.
IC| =n - (j-1) elemeEts uncovered (for C = U \ O).
Optimal SC C* covers C with cost < OPT
- 35 . S8 OPT - OPT
/7 [Si+\ C| |C| n-j+1
N————

> price(e;)



Greedy Set Cover Analysis 6.57..

]—{M = dhv\ s K/+ (1)
Theorem 10.8 (greedySetCover approx)

greedySetCover is an H,-approximation for WEIGHTEDSETCOVER.
| et

Proof:

@ = > c(S)

ieC

n
Z price(e;)
j=1




Greedy Set Cover Analysis

Theorem 10.8 (greedySetCover approx)

greedySetCover is an H,-approximation for WEIGHTEDSETCOVER.

Proof:
c(C) = C(S) Zprzce(e])
ic
< HO—I.DT = OPTZl = H,-OPT
[Lemma 10.7] n—j+1 i 1

1



Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

10



Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is tight for greedySetCover in the worst case
even on WEIGHTED VERTEXCOVER instances:

» Consider star graph where leaves cost %, ﬁ, ..., 1, and middle vertex costs 1 + «.

> greedySetCover picks all leaves ~» H,

l
> OPT=1+e¢ : 1 [
2 O
chiz/ st/,L \K
¢
caclov 5 - Ve {
{ -~
feo b= o

l
ery

10



Greedy Worst Case

H, ~Innis...not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is tight for greedySetCover in the worst case
even on WEIGHTED VERTEXCOVER instances:

» Consider star graph where leaves cost %, ﬁ, ..., 1, and middle vertex costs 1 + «.
> greedySetCover picks all leaves ~» H,

More complicated constructions: (log 1)-approx even for (UNWEIGHTED) VERTEXCOVER.

10



10.4 The Layering Technique for Set Cover



Size-proportional cost functions

Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?
Larger sets “should” be more costly.

11



Size-proportional cost functions
Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?

Larger sets “should” be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function c is called size proportional if there is a constant p so that c(S;) = p|S|.
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Size-proportional cost functions

Greedy failed on “unfair” costs for sets ... what if costs are “nicer”?
Larger sets “should” be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function c is called size proportional if there is a constant p so that c(S;) = p|S|.

Definition 10.10 (Frequency)

The frequency f, of an element e € [1] is the number of sets in which it occurs:

fe=Hj:ee€ Sj}|'
The (maximal) frequency of a SETCOVER instance iﬁ = max, fe.

Note: (WEIGHTED)VERTEXCOVER instance ~-» f =2

11



Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.
Proof:

k
e®) = Y,e(s) = pYlsi

k
=il i=1



Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.
Proof:

k k

8 = D) = pYISl = pd fe < pY.f
i1 i=1

i ecl ecl



Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)
For a size proportional weight function ¢ we have c¢(8) < f - OPT.

Proof: size-prop. ~ OPT>p-n

k k
8 = YeS) = pYISil = pYfe < PS ¢ foort
i=1

i=1 ecl ecl
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Size-proportional indeed easier

Lemma 10.11 (size-proportionality — trivial f-approx)

For a size proportional weight function ¢ we have c¢(8) < f - OPT.
R

Proof: size-prop. ~» OPT>p-n

k k
8 = D) = pYISil = pY fe < pY.f L foer
i=1

i=1 ecl ecl

Taking all sets gives f-approx, so certainly true for greedySetCover.

But probably not too many problem instances are that simple . ..

12



Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
2 o= min{@ ij € [k]}
n IS

co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

Co = {j € [k]: c1(5)) =0}

3
4
5
6 Uo = Ujee, Sj // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={S€{S1,....S} | SnUy #0}
12 C1 := layeringSetCover(U, 81,@)
13 return Cy U G

c(S) s (S + <, (5)

13



Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_feS)
2 p::mmmtje[k]
j
co(Si) = p - |Sil // size-prop. part
c1(Sq) = (5)—60(5)//20

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)
13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.
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Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
C[e(S))
2 p::mmmtje[k]
]
co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/ Car s
~» f-approx by Lemma 10.11 )

/
oy w::L»:cL{(f fag (/UACR

§= ¢



Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_[e(S) .
2 p::mmmtje[k]
j
3 co(Si) := p - |Sil // size-prop. part
4 c1(Si) == c(Si) —co(Si) /= 0
s €= {jelkl:als) =0}
6 Uo = Ujee, S;j // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).



Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
_[e(S) .
2 p::mmmtje[k]
]
3 co(Si) := p - |Sil // size-prop. part
4 c1(Si) == c(Si) —co(Si) /= 0
s o= {jelk]als) =0}
6 Uo = Ujee, Sj // covered by size-prop.
7
8
9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)

13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).
Let C* be optimal set cover w.r.t. ¢

c(G¥) = obT



Layering Algorithm
Idea: Split cost function into sum of
» size-proportional part ¢y and

» a some residue ¢

1 procedure layeringSetCover(U, 8, c)
C[e(S))
2 p::mmmtje[k]
]
co(Si) := p - |Sil // size-prop. part
c1(Si) := ¢(Si) —co(Si) //= 0

3
4
5 €o = {j € [k] : c1(Sj) = 0}

6 Uo = Ujee, Sj // covered by size-prop.
7

8

9

ifUp==U
return Gy
else
10 Uy = U\ Ug // rest of universe
1 81 :={Se{S1,..., Sk} | SNl # 0}
12 C1 := layeringSetCover(U1, 81, c1)
13 return Cy U G

Theorem 10.12 (layering f-approx)

layeringSetCover is f-approx. for SETCOVER.

Proof:
Show by induction over recursive calls that
(a) computes cover (b) of cost < f - OPT.

Basis: Uy =U
All of U covered by size-prop. part/
~» f-approx by Lemma 10.11

Inductive step:
IH: C; covers Uj atcost c1(C1) < f - OPT(Uy, 81, c1).

Let C* be optimal set cover w.r.t. ¢ ;
S22 jan’f,

Lemma 10.11: € = €y U €y is f-approx w.r.t. cg.
~ () < fe€) (0

13



Layering Algorithm [2]

Proof (cont.):
Define €] = {ieC:S;e8}



Layering Algorithm [2]

Proof (cont.):
Deﬁne@iz{ie@*:siesl} < . U
S. oobl ce G \C Y o
€] is a set cover for U; — =L = ¢ ’
~ c1(€) < fOPT(UY,81,c1) < fra1(€) ()
IH Q ~

orT (U ,Si‘ci) < q (O:)

<



Layering Algorithm [2]

Proof (cont.):
Define €] = {ieC:S;e8}
(i’; is a set cover for Uj

~ ¢1(Cy) = OPT(Uy,81,c1) < f-a(€)) ()

c(C)

co(€) +c1(€)
co(€) + c1(Cq)

ieC~c1=0

(o),§<1>f (o€ + ea(€)

IA

f+(co(€) +c1(€)
foe€©)
c

oPT

— (€ < f-col€)

()

14



Layering Algorithm [2]
Proof (cont.):
Define €] = {ieC:S;e8}

€] is a set cover for U
~ c1(C1) 3 OPT(Uy,81,¢1) < f-ea(€]) (1)

c(€) co(€) +c1(€)

co(€) + c1(Cq)

Cl=0

(o>,(1)f‘ (co(C) +c1(€}))

< f . (Co(e*) TP Cl(e*))
= feo(@)

$=>1

i€ Co

IN

Note: For VERTEXCOVER, this yields again a 2-approximation.
~+ Same as using maximal matching

But the layering algorithm can handle arbitrary vertex costs (WEIGHTEDVERTEXCOVER)!

14



10.5 Applications of Set Cover



Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

S i {Ll,\] = Wy
Goal: min Lde-ger )

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.

15



Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

Goal: min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.
»> Motivation: DNA assembly (sequencing from many shorter “reads”)

» General problem is NP-complete
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Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet X, set of strings W = {wy, ..., w,} C LF

Feasible Instances: superstrings s of S, i.e., s contains w; as substring for 1 < i < n.
Cost: |s]

Goal: min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.
»> Motivation: DNA assembly (sequencing from many shorter “reads”)

» General problem is NP-complete

Here: Reduce this problem to SETCOVER!

15



Shortest Superstring by Set Cover

Construct all pairwise superstrings: overlap w; and w; by exactly { characters (if possible)
Lo )\—/_/ﬁ
et
e e
| ——
0ijf = w,-[O..Iw,-I—(J) cWj valid iff wj[O..Z) = ZU,‘[|?U,'|—€..|ZU,'|)

M = {(7,',]-,5 2i,jeul,le [0..min{|wl—|,|wj|}]}

6"\Jré

~~ Set Cover instance:

» Universe: [n] ~> try to cover all words in W with superstring . ..
» Subsets: S={S;:meWUM} ... by combining pairwise superstrings.
where S, = {k e [n] : 3i,j: wr =n[i..j)}
» Cost function: c¢(S;) = || ot ocwons @5 submbics fw w
e 77
.,
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Shortest Superstring by Set Cover

Construct all pairwise superstrings: overlap w; and w; by exactly { characters (if possible)

0ijf = w,-[O..lw,-l—(?) cWj valid iff wj[O..Z) = ZU,‘[|"(U,'|—Z..|ZUI'|)
M = {ai,j,g 2i,jeul,le [0..min{|wi|,|wj|}]}

~~ Set Cover instance:

» Universe: [n] ~> try to cover all words in W with superstring . ..

» Subsets: S={S;:meWUM} ... by combining pairwise superstrings.
where S, = {k e [n] : 3i,j: wr =n[i..j)}
» Cost function: ¢(S;) = |7

Given set-cover solution {Sy,, ..., Sz, }
~ superstring s = 71y ... Ttk (in any order)

16



Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER

instance. Let further OPT resp. OPTsc be the optimal objective value of W resp. (1, S, c).
Then OPT < OPTsc < 2-OPT.
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Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPTsc be the optimal objective value of W resp. (1, S, c).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.
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Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPT'sc be the optimal objective value of W resp. (1, S, ¢).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.

Proof (Lemma 10.15):
» “OPT < OPTsc”
It suffices to show that s = 71 ... 7y is a valid superstring.
By definition, every w; must be contained in some 7ty as a substring.



Shortest Superstring by Set Cover — Analysis

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let W be an instance for SHORTESTSUPERSTRING and (12, S, ¢) the corresponding SETCOVER
instance. Let further OPT resp. OPT'sc be the optimal objective value of W resp. (1, S, ¢).
Then OPT < OPTsc < 2-OPT.

Corollary 10.16 (2H,, approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a
2H,-approximation for the shortest superstring problem.

Proof (Lemma 10.15):
» “OPT < OPTsc”
It suffices to show that s = 71 ... 7y is a valid superstring.
By definition, every w; must be contained in some 7ty as a substring.

w“ 7 L/—/—’\/{
> “OPTsc < 2-OPT =
OPT = |s”| for a shortest superstring s* for W. e

Without loss of generality, suppose s* contains w1, ..., w, in this order.
—t
17



Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > ;1 : first occurrence of w; does not overlap Wi, }.

] s°




Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > i;_; : first occurrence of w; does not overlap w;, , }.
Group j starts with w;; and ends with w;; ;1
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Shortest Superstring by Set Cover — Analysis [2]

Proof:

Define groups: i1 = 1; i; = min{i > ;1 : first occurrence of w; does not overlap Wi, }.

Group j starts with w;; and ends with w;; ;1
~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Groups can overlap (so concatenation of os longer than s*).

But group j and j + 2 cannot overlap!
~ |k £ 2lst| = 2- OPT.
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Shortest Superstring by Set Cover — Analysis [2]

Proof:
Define groups: i1 = 1; i; = min{i > i;_; : first occurrence of w; does not overlap w;, , }.

Group j starts with w;; and ends with w;; ;1
~~ overlap of two strings ~~ 7j = 0j;i;,,-1,4

Groups can overlap (so concatenation of os longer than s*).

But group j and j + 2 cannot overlap!
~ |k £ 2lst| = 2- OPT.

(Note: Better approximation algorithms for SHORTESTSUPERSTRING possible via different
techniques.)
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10.6 (F)PTAS: Arbitrarily Good Approximations



Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!
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Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 (F)PTAS)
Let U = (X, X0, L, L, M, cost, min) an optimization problem. Foras D pelyeocnl

£ ’F‘MA{(C)

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

e xP
Note: PTAS could have running time O(n° - 22! ) or so (akin to £t running time)

ale™)
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Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations;
but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let U = (X, X0, L, L, M, cost, min) an optimization problem.

An algorithm A = A (x) with input (¢, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every constant ¢ € Q, the algorithm A, is a (1 + ¢)-approximation for U with running
time polynomial in |x|.

If the running time of A, (x) is bounded by a polynomial in x| and £7!, A is called a

fully polynomial-time approximation scheme (FPTAS) for U.

Note: PTAS could have running time O(n° - 22]“) or so (akin to fpt running time)

FPTAS much stronger . . . but do they even exist for any NP-hard problems? Yes!

19



Plenomial DP Reprise

Recall 0/1-KnapPsack: Given: items 1, ..., n with weights w1, ..
Feasible solutions: subset of items with total weight < b

Goal: maximize total value

., wy, and values v1,...,0y;

Approximation Idea: Work with rounded values (depending on ¢)

20



Pseudopolynomial DP Reprise

Recall 0/1-KNaPsack: Given: items 1, ..., n with weights wy, ..., w, and values vy, . ..

Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b

~» n-bentries ~» total time O(n - b - log(MaxInt(v ¢ <l

~ good if weights are small, but we want to round values

7 Ony
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Pseudopolynomial DP Reprise

Recall 0/1-KNapPsack: Given: items 1, ..., n with weights w1, ..., w, and values vy, ..., vy;
Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b
~> 1 -bentries ~ total time O(n - b - log(MaxInt(v)))
~ good if weights are small, but we want to round values

» actually, DP also works with values as index!

[Assumption: wWi,..., Wy, V1,...,0y € N] v

» DP table W[n’, v] = min weight from items 1, ..., n’ with value =0

e
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Pseudopolynomial DP Reprise

Recall 0/1-KNapPsack: Given: items 1, ..., n with weights w1, ..., w, and values vy, ..., vy;
Feasible solutions: subset of items with total weight < b
Goal: maximize total value

Approximation Idea: Work with rounded values (depending on ¢)

In Unit 3, we solved Knapsack
» using a DP table V[n’, '] = max value from items 1..n" and total weight b” < b
~> 1 -bentries ~ total time O(n - b - log(MaxInt(v)))
~ good if weights are small, but we want to round values

» actually, DP also works with values as index!

[Assumption: wWi,..., Wy, V1,...,0y € N]

» DP table W[n’, v] = min weight from items 1, ..., n’ with value = v

min{W[n'—l,v], Wn' —1,0—0,] +wn/} ifo, <o
W[I’l/, Z)] = (+ initial values)
W[n' —1,0] otherwise

~ 1 -nV entries for V = maxv; ~» total time O(n? -V - log(MaxInt(w)))

-
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FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €) ( (<) U iaat

2

&

4

5]

V = max;=1, ,0;
K:=¢eV/n
o= || //roundedv ! st K

DPKnapsack is pseudopolynomial DP algorithm
return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.
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1 procedure knapsackFPTAS(w, v, b, €)
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4 @ = [%J // rounded v
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Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof:
First consider running time; dominated by DPKnapsack.
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FPTAS for Knapsack

Convenience Assumption: any item fits in the knapsack alone, i.e., w; < b

1 procedure knapsackFPTAS(w, v, b, €)
2 Vo= maXi=1 .,

3 K:=¢eV/n

4 D = [%J // rounded v

5

DPKnapsack is pseudopolynomial DP algorithm
return DPKnapsack(w, 7, b)

with running time O(n? - V - log(MaxInt(w)))

Theorem 10.18
approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof:
First consider running time; dominated by DPKnapsack.

O(nzf/log(Maxlnt(w))) < On*V|x]) < O(n2|x|%)

IA

O(n’lx]e™) < O(x|*e™)

It remains to show that total value of I = DPKnapsack(w, 9, b)is v(I) > (1 —¢)- OPT
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FPTAS for Knapsack [2]

Proof (cont.):
Let I* be an optimal solution, v(I*) = Z v; = OPT
iel”
For each i € [n], we have by definition [vi -K < K-9; < v (*)].

w1 < [x¥l¢ x

1 procedure knapsackFPTAS(w, v, b, ¢)
2 V = maxj=1,.. n v

3 K :=¢eV/n

4 7= [%J // rounded v

5 return DPKnapsack(w, 9, b)




FPTAS for Knapsack [2]

Proof (cont.):

Let I* be an optimal solution, v(I*) = Z v; = OPT
iel”
For each i € [n], we have by definition [vi -K < K-9; < v (*)].

D
FPKnapsack returns optimal solution for rounded values ~» o(I) > 9(I*) (o)

Moreover, OPT > V by our assumption that each item fits into knapsack. (V)



FPTAS for Knapsack [2]

Proof (cont.):
Let I* be an optimal solution, v(I*) = Z v; = OPT

iel*

For each i € [n], we have by definition [vi -K < K-9; < v (*)].

FPKnapsack returns optimal solution for rounded values ~» o(I) > 9(I*) (o)
Moreover, OPT > V by our assumption that each item fits into knapsack. (V)
We now have

o) > K-8(I) > K-5(I") > o(I')-nK = OPT—¢V > (l—¢)-OPT
) () 5~ : W)

1 procedure knapsackFPTAS(w, v, b, ¢)
2 V = max;-q,.
3 K :=¢eV/n
4
5

= [%J // rounded v
return DPKnapsack(w, 9, b)
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FPTAS asks for much

Theorem 10.19 (FPTAS — FPT and pseudopolynomial)
1. Ue€FPTAS = p-U€FPT

2. U € FPTAS and cost(u, x) < p(MaxInt(x)) for some polynomial p
= 3 pseudopolynomial algorithm for L.
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10.8 Randomized Approximations



Randomized Approximation Guarantees

Definition 10.23 (Randomized 6-approx.)

Let U = (X, X0, L, L, M, cost, max) an optimization problem. For 6 > 1 a randomized
algorithm A is called randomized 6-approximation algorithm for U, if
iy o i ledeilid

> P[A(x) e M(x)] = 1, (always feasible) and
» P[Ra(x) < 0] > % (typically within 0)
forall x € L;.

Definition 10.24 (6-expected approx.)
Let U = (X, X0, L, Ly, M, cost, max) an optimization problem. For 6 > 1 a randomized
algorithm A is called (randomized) 6-expected approximation algorithm for U, if
> P[A(x) e M(x)] = 1 (always feasible) and
[E[cost(A(x))]
OPTu(x)
forall x € L;.

<6 (expected within 0)

(Minimization problems similar.)
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