

Prof. Dr. Sebastian Wild

CS627 (Summer 2025) Philipps-Universität Marburg version 2025-07-09 09:59

Outline

10 Approximation Algorithms

- **10.1** Motivation and Definitions
- 10.2 Vertex Cover and Matchings
- 10.3 The Drosophila of Approximation: Set Cover
- 10.4 The Layering Technique for Set Cover
- 10.5 Applications of Set Cover
- 10.6 (F)PTAS: Arbitrarily Good Approximations
- 10.7 Christofides's Algorithm
- **10.8 Randomized Approximations**

10.1 Motivation and Definitions

Recap: Optimization Problems, NPO

Recall general optimization problem $U \in NPO$:

- each instance x has non-empty set of *feasible solutions* M(x)
- objective function *cost* assigns value *cost*(y) to all candidate solutions $y \in M(x)$
- can check in polytime
 - whether x is a valid instance
 - whether $y \in M(x)$
 - compute $cost(y) \in \mathbb{Q}$

Recap: Optimization Problems, NPO

Recall general optimization problem $U \in NPO$:

- each instance x has non-empty set of *feasible solutions* M(x)
- objective function *cost* assigns value *cost*(y) to all candidate solutions $y \in M(x)$
- can check in polytime
 - whether x is a valid instance
 - whether $y \in M(x)$
 - compute $cost(y) \in \mathbb{Q}$

For each *U*, consider two variants:

min or max

- *optimization problem:* output $y \in M(x)$ s.t. $cost(y) = goal_{y' \in M(x)}cost(y')$
- *evaluation problem:* output $goal_{y \in M(x)}cost(y)$

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get, maybe *"close-to-optimal"* suffices?

A *heuristic* is an algorithm A that always computes a feasible solution $A(x) \in M(x)$, but we may not have any guarantees about cost(A(x)).

(Sometimes that's all we have \dots)

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get, maybe *"close-to-optimal"* suffices?

A *heuristic* is an algorithm A that always computes a feasible solution $A(x) \in M(x)$, but we may not have any guarantees about cost(A(x)).

(Sometimes that's all we have \dots)

Our goal: Prove guarantees about worst possible *cost*(*A*(*x*)). Problem: optimal objective function value depends on *x*, so how to define *"good enough"*?

Perfect is the enemy of good

Optimal solutions are great, but if they are too expensive to get, maybe *"close-to-optimal"* suffices?

A *heuristic* is an algorithm A that always computes a feasible solution $A(x) \in M(x)$, but we may not have any guarantees about cost(A(x)).

```
(Sometimes that's all we have \dots)
```

Our goal: Prove guarantees about worst possible *cost*(*A*(*x*)). Problem: optimal objective function value depends on *x*, so how to define *"good enough"*?

Relate cost(A(x)) to **OPT** = $goal_{y \in M(x)}cost(y)$. \rightsquigarrow *approximation algorithm*

Approximation Algorithms

Definition 10.1 (Approximation Ratio)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem. For every $x \in L_I$ we denote its *optimal objective value* by $OPT = OPT_U(x) = goal_{y \in M(x)} cost(y)$. Let further A be an algorithm consistent with U. Age $e^{M(x)}$ The *approximation ratio* $R_A(x)$ of A on x is defined as $R_A(x) = \frac{cost(A(x))}{OPT_U(x)}$.

Note: For minimization problems, $R_A \ge 1$; for maximization problems $R_A \le 1$

Approximation Algorithms

Definition 10.1 (Approximation Ratio)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ be an optimization problem. For every $x \in L_I$ we denote its *optimal objective value* by $OPT = OPT_U(x) = goal_{y \in M(x)}cost(y)$.

Let further *A* be an algorithm consistent with *U*.

The *approximation ratio* $R_A(x)$ of A on x is defined as $R_A(x) = \frac{cost(A(x))}{OPT_U(x)}$.

Note: For minimization problems, $R_A \ge 1$; for maximization problems $R_A \le 1$

Definition 10.2 (Approximation Algorithm)

An algorithm *A* consistent with an optimization problem $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, goal)$ is called a *c-approximation (algorithm) for U* if

• goal = min and $\forall x \in L_I : R_A(x) \leq c$;

• goal = max and $\forall x \in L_I : R_A(x) \ge c$.

-

-

10.2 Vertex Cover and Matchings

Example: Vertex Cover

Recall the VERTEXCOVER optimization problem. *C* is a VC iff $\{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$ *goal* = min How can we vouch for a VC *C* to be (close to) optimal?

Example: Vertex Cover

Recall the VERTEXCOVER optimization problem. *C* is a VC iff $\{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$ *goal* = min How can we vouch for a VC *C* to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching) Given graph G = (V, E), a set $M \subseteq E$ is a *matching* (in G) if (V, M) has max-degree 1. \land \land disjoint pairs of vertices M is $(\subseteq$ -) *maximal* (a.k.a. *saturated*) if no superset of M is a matching. M is a *maximum matching* is there is no matching of strictly larger cardinality in G. M is a *perfect matching* if |M| = |V|/2.

Example: Vertex Cover

Recall the VERTEXCOVER optimization problem. *C* is a VC iff $\{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$ *goal* = min How can we vouch for a VC *C* to be (close to) optimal?

Definition 10.3 ((Maximal/Maximum/Perfect) Matching) Given graph G = (V, E), a set $M \subseteq E$ is a *matching* (in G) if (V, M) has max-degree 1. \uparrow disjoint pairs of vertices M is (\subseteq -) *maximal* (a.k.a. *saturated*) if no superset of M is a matching. M is a *maximum matching* is there is no matching of strictly larger cardinality in G. M is a *perfect matching* if |M| = |V|/2.

Note:

► ⊆-maximal matchings easy to find via greedy algorithm.

 Maximum matchings are much more complicated, but also computable in polytime (Edmonds's "Blossom algorithm") -

Lemma 10.4 (VC \ge M)

If *M* is a matching and *C* is a vertex cover in *G*, then $|C| \ge |M|$.

◄

Lemma 10.4 (VC ≥ M)

If *M* is a matching and *C* is a vertex cover in *G*, then $|C| \ge |M|$.

Proof: Let $\{v, w\} \in M \subseteq E$. \rightsquigarrow *C* has to contain v or w (or both). -

Lemma 10.4 (VC ≥ M)

If *M* is a matching and *C* is a vertex cover in *G*, then $|C| \ge |M|$.

Proof: Let $\{v, w\} \in M \subseteq E$. \rightsquigarrow *C* has to contain *v* or *w* (or both). Since all |M| matching edges are disjoint, *C* must cover them by $\geq |M|$ distinct endpoint.

Lemma 10.4 (VC ≥ M)

If *M* is a matching and *C* is a vertex cover in *G*, then $|C| \ge |M|$.

Proof:

Let $\{v, w\} \in M \subseteq E$. \rightsquigarrow *C* has to contain *v* or *w* (or both).

Since all |M| matching edges are disjoint, *C* must cover them by $\geq |M|$ distinct endpoint.

```
1 procedure matchingVertexCoverApprox(G = (V, E))

2 // greedy maximal matching

3 M := \emptyset

4 for e \in E // arbitrary order

5 if M \cup \{e\} is a matching

6 M := M \cup \{e\}

7 return \bigcup_{\{u,v\} \in M} \{u,v\}
```

-

Lemma 10.4 (VC ≥ M)

If *M* is a matching and *C* is a vertex cover in *G*, then $|C| \ge |M|$.

Proof:

Let $\{v, w\} \in M \subseteq E$. \rightsquigarrow *C* has to contain *v* or *w* (or both). Since all |M| matching edges are disjoint, *C* must cover them by $\geq |M|$ distinct endpoint.

procedure matchingVertexCoverApprox(G = (V, E)) 2 // greedy maximal matching $M := \emptyset$ **for** $e \in E$ // arbitrary order **if** $M \cup \{e\}$ is a matching $M := M \cup \{e\}$ **return** $\bigcup_{\{u,v\} \in M} \{u,v\} = C$

Theorem 10.5 (Matching is 2-approx for Vertex Cover) matchingVertexCoverApprox is a 2-approximation for VERTEXCOVER. (2) C is VC oftherwise some edge concerned(2) 2-oppoint 1Cl = 2IM1 OPT = IM

Can we do better?

Maybe do smarter analysis?

Can we do better?

Maybe do smarter analysis?

A tight example for "VC \geq M": $K_{n,n}$

Can we do better?

Maybe do smarter analysis?

A tight example for "VC \geq M": $K_{n,n}$

ETO constant

Assuming the *unique games conjecture*, no polytime $(2 - \varepsilon)$ approx for VC. Simple matching-based approximation worst-case optimal . . .

10.3 The Drosophila of Approximation: Set Cover

(Weighted) Set Cover

Definition 10.6 (SetCover)

Given: a number $n, S = \{S_1, \dots, S_k\}$ of k subsets of U = [n], and a cost function $c : S \to \mathbb{N}$. **Solutions:** $\mathcal{C} \subseteq [k]$ with $\bigcup_{i \in \mathcal{C}} S_i = U$ **Cost:** $\sum_{i \in \mathcal{C}} \overline{c(S_i)}$ **Goal:** min

► cardinality version a.k.a. UNWEIGHTEDSETCOVER has cost $c(S) = \Join 1$

► UNWEIGHTEDSETCOVER generalizes VERTEXCOVER: For VERTEXCOVER instances, the sets S_i are the sets of edges incident at a vertex v \rightarrow additional property that each $e \in U$ occurs in **exactly** 2 sets S_i

general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs

(Weighted) Set Cover

Definition 10.6 (SetCover)

Given: a number $n, S = \{S_1, \dots, S_k\}$ of k subsets of U = [n], and a cost function $c : S \to \mathbb{N}$. **Solutions:** $C \subseteq [k]$ with $\bigcup_{i \in C} S_i = U$ **Cost:** $\sum_{i \in C} c(S_i)$ **Goal:** min

• *cardinality version* a.k.a. UNWEIGHTEDSETCOVER has cost c(S) = |S|

► UNWEIGHTEDSETCOVER generalizes VERTEXCOVER: For VERTEXCOVER instances, the sets S_i are the sets of edges incident at a vertex v \rightarrow additional property that each $e \in U$ occurs in **exactly** 2 sets S_i

general UNWEIGHTEDSETCOVER = Vertex Cover on hypergraphs

We will use SETCOVER to illustrate various techniques for approximation algorithms.

-

Arguably simplest approach: Greedily pick set with current best *cost-per-new-item* ratio.

Arguably simplest approach: Greedily pick set with current best *cost-per-new-item* ratio.

Lemma 10.7 (Price Lemma)

Let $e_1, e_2, ..., e_n$ the order, in which greedySetCover covers the elements of *U*. Then for all $j \in \{1, ..., n\}$ we have

$$price(e_j) \leq \frac{OPI}{n-j+1}.$$

Proof:

Consider time when the *j*th element e_j is covered.

Arguably simplest approach: Greedily pick set with current best *cost-per-new-item* ratio.

procedure greedySetCover(n, S, c) $\mathcal{C} := \emptyset; C := \emptyset$ 2 // For analysis: i := 13 while $C \neq [n]$ 4 $i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}$ 5 $\mathcal{C} := \mathcal{C} \cup \{i^*\}$ 6 $C := C \cup S_{i^*}$ 7 // For analysis only: 8 $//\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}$ 9 *// for* $e \in S_{i^*} \setminus C$ set $price(e) := \alpha_i$ 10 //i := i + 111 return C 12

Lemma 10.7 (Price Lemma)

Let e_1, e_2, \ldots, e_n the order, in which greedySetCover covers the elements of *U*. Then for all $j \in \{1, \ldots, n\}$ we have

$$price(e_j) \leq \frac{OPT}{n-j+1}.$$

Proof:

Consider time when the *j*th element e_j is covered. $|\overline{C}| = n - (j - 1)$ elements uncovered (for $\overline{C} = U \setminus C$).

Arguably simplest approach: Greedily pick set with current best *cost-per-new-item* ratio.

in C*, bu

procedure greedySetCover(*n*, *S*, *c*) $\mathcal{C} := \emptyset; C := \emptyset$ 2 // For analysis: i := 13 while $C \neq [n]$ 4 $i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}$ 5 $\mathcal{C} := \mathcal{C} \cup \{i^*\}$ 6 $C := C \cup S_{i^*}$ 7 // For analysis only: 8 $//\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}$ 9 *// for* $e \in S_{i^*} \setminus C$ set $price(e) := \alpha_i$ 10 //i := i + 111 return C

Lemma 10.7 (Price Lemma)

Let e_1, e_2, \ldots, e_n the order, in which greedySetCover covers the elements of *U*. Then for all $j \in \{1, \ldots, n\}$ we have

 $price(e_j) \leq \frac{OPT}{n-j+1}.$

Proof: Consider time when the *j*th element e_j is covered.

 $|\overline{C}| = n - (j - 1)$ elements uncovered (for $\overline{C} = U \setminus C$). Optimal SC \mathbb{C}^* covers \overline{C} with cost $\leq OPT$

$$- \longrightarrow \exists S_{i^*} : \underbrace{\frac{c(S_{i^*})}{|S_{i^*} \setminus C|}}_{> \operatorname{price}(e_i)} \leq \frac{OPT}{|\overline{C}|} \leq \frac{OPT}{n-j+1}$$

Arbitrarily order sets in C^* , assign prices to uncovered element. If all prices were > $OPT/|\overline{C}|$, covering \overline{C} would cost > OPT.

Greedy Set Cover Analysis

$$H_n = lnn + r + o(1)$$

Theorem 10.8 (greedySetCover approx) greedySetCover is an *H_n*-approximation for WEIGHTEDSETCOVER.

Proof:

$$c(\mathcal{C}) = \sum_{i \in \mathcal{C}} c(S_i) = \sum_{j=1}^n price(e_j)$$

Greedy Set Cover Analysis

Theorem 10.8 (greedySetCover approx) greedySetCover is an *H_n*-approximation for WeightedSetCover.

Proof:

$$c(\mathcal{C}) = \sum_{i \in \mathcal{C}} c(S_i) = \sum_{j=1}^n price(e_j)$$

Lemma 10.7]
$$\leq \sum_{j=1}^n \frac{OPT}{n-j+1} = OPT \sum_{i=1}^n \frac{1}{n} = H_n \cdot OPT$$

-

Greedy Worst Case

 $H_n \sim \ln n$ is ... not amazing. (Guarantee becomes worse with growing input size)

Greedy Worst Case

 $H_n \sim \ln n$ is ... not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is **tight** for greedySetCover in the worst case even on WEIGHTED**VERTEXCOVER** instances:

• Consider star graph where leaves $\cot \frac{1}{n}, \frac{1}{n-1}, \ldots, 1$, and middle vertex $\cot 1 + \varepsilon$.

Greedy Worst Case

 $H_n \sim \ln n$ is . . . not amazing. (Guarantee becomes worse with growing input size)

Unfortunately, bound is **tight** for greedySetCover in the worst case even on WEIGHTED**VERTEXCOVER** instances:

- Consider star graph where leaves $\cot \frac{1}{n}, \frac{1}{n-1}, \dots, 1$, and middle vertex $\cot 1 + \varepsilon$.
- greedySetCover picks all leaves \rightsquigarrow H_n

More complicated constructions: $\Omega(\log n)$ -approx even for (UNWEIGHTED)VERTEXCOVER.

10.4 The Layering Technique for Set Cover

Size-proportional cost functions

Greedy failed on "unfair" costs for sets . . . what if costs are "nicer"? Larger sets "should" be more costly.
Size-proportional cost functions

Greedy failed on "unfair" costs for sets . . . what if costs are "nicer"? Larger sets "should" be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function *c* is called *size proportional* if there is a constant *p* so that $c(S_i) = p|S_i|$.

Size-proportional cost functions

Greedy failed on "unfair" costs for sets . . . what if costs are "nicer"? Larger sets "should" be more costly.

Definition 10.9 (Size-proportional cost function)

A cost function *c* is called *size proportional* if there is a constant *p* so that $c(S_i) = p|S_i|$.

Definition 10.10 (Frequency)

The *frequency* f_e of an element $e \in [n]$ is the number of sets in which it occurs: $f_e = |\{j : e \in S_j\}|.$ The (maximal) *frequency* of a SETCOVER instance is $f = \max_e f_e.$ Note: (WEIGHTED)VERTEXCOVER instance $\rightarrow f = 2$

Lemma 10.11 (size-proportionality \rightarrow **trivial** *f***-approx)** For a size proportional weight function *c* we have $c(S) \leq f \cdot OPT$.

-

Proof:

$$c(S) = \sum_{i=1}^{k} c(S_i) = p \sum_{i=1}^{k} |S_i|$$

Lemma 10.11 (size-proportionality \rightarrow **trivial** *f***-approx)** For a size proportional weight function *c* we have $c(\mathfrak{S}) \leq f \cdot OPT$.

Proof:

$$c(S) = \sum_{i=1}^{k} c(S_i) = p \sum_{i=1}^{k} |S_i| = p \sum_{e \in U} f_e \le p \sum_{e \in U} f$$

-

10

Lemma 10.11 (size-proportionality \rightarrow **trivial** *f***-approx)** For a size proportional weight function *c* we have $c(\mathfrak{S}) \leq f \cdot OPT$.

Proof:

$$c(S) = \sum_{i=1}^{k} c(S_i) = p \sum_{i=1}^{k} |S_i| = p \sum_{e \in U} f_e \leq p \sum_{e \in U} f \leq f \cdot OPT$$

Lemma 10.11 (size-proportionality \rightarrow **trivial** *f***-approx)** For a size proportional weight function *c* we have $c(S) \leq f \cdot OPT$.

Proof: $c(S) = \sum_{i=1}^{k} c(S_i) = p \sum_{i=1}^{k} |S_i| = p \sum_{e \in U} f_e \leq p \sum_{e \in U} f \leq f \cdot OPT$

Taking *all* sets gives *f*-approx, so certainly true for greedySetCover. But probably not too many problem instances are that simple . . .

Idea: Split cost function into sum of

- ▶ size-proportional part *c*⁰ and
- a some residue c1

$$(S_{i}) = C_{o}(S_{i}) + C_{i}(S_{i})$$

$$(S_{i}) = C_{o}(S_{i}) + C_{i}(S_{i})$$

$$(S_{i}) = C_{o}(S_{i})$$

С

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) // \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i$ // covered by size-prop. 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $S_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $\mathcal{C}_0 \cup \mathcal{C}_1$ 13

Idea: Split cost function into sum of

- ▶ size-proportional part *c*⁰ and
- a some residue c1

Theorem 10.12 (layering *f*-approx)

layeringSetCover is *f*-approx. for SetCover.

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) / \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i // covered by size-prop.$ 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $\mathcal{S}_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $C_0 \cup C_1$ 13

Idea: Split cost function into sum of

▶ size-proportional part *c*⁰ and

a some residue c₁

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) / \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i // covered by size-prop.$ 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $\mathcal{S}_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $\mathcal{C}_0 \cup \mathcal{C}_1$ 13

Theorem 10.12 (layering *f*-approx)

layeringSetCover is *f*-approx. for SETCOVER.

Proof:

Show by induction over recursive calls that (a) computes cover (b) of cost $\leq f \cdot OPT$.

Basis: $U_0 = U$ All of *U* covered by size-prop. part/ (a) \checkmark \rightsquigarrow *f*-approx by Lemma 10.11 (b)

on restricted instance

Idea: Split cost function into sum of

- ▶ size-proportional part *c*⁰ and
- a some residue c1

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) / \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i // covered by size-prop.$ 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $\mathcal{S}_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $\mathcal{C}_0 \cup \mathcal{C}_1$ 13

Theorem 10.12 (layering *f*-approx)

layeringSetCover is *f*-approx. for SetCover.

Proof: Show by induction over recursive calls that (a) computes cover (b) of $cost \le f \cdot OPT$. **Basis:** $U_0 = U$ All of U covered by size-prop. part/ $\rightsquigarrow f$ -approx by Lemma 10.11

Inductive step:

IH: \mathcal{C}_1 covers U_1 at cost $c_1(\mathcal{C}_1) \leq f \cdot OPT(U_1, \mathcal{S}_1, c_1)$.

Idea: Split cost function into sum of

- ▶ size-proportional part *c*⁰ and
- a some residue c1

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) / \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i // covered by size-prop.$ 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $\mathcal{S}_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $\mathcal{C}_0 \cup \mathcal{C}_1$ 13

Theorem 10.12 (layering *f*-approx)

layeringSetCover is *f*-approx. for SETCOVER.

Proof: Show by induction over recursive calls that (a) computes cover (b) of cost $\leq f \cdot OPT$.

Basis: $U_0 = U$ All of *U* covered by size-prop. part/ $\rightarrow f$ -approx by Lemma 10.11

Inductive step:

IH: \mathcal{C}_1 covers U_1 at cost $c_1(\mathcal{C}_1) \leq f \cdot OPT(U_1, \mathcal{S}_1, c_1)$. Let \mathcal{C}^* be **optimal** set cover w.r.t. c

Idea: Split cost function into sum of

- size-proportional part c₀ and
- ▶ a some residue *c*¹

procedure layeringSetCover(U, S, c) $p := \min\left\{\frac{c(S_j)}{|S_j|} : j \in [k]\right\}$ 2 $c_0(S_i) := p \cdot |S_i| // size-prop. part$ 3 $c_1(S_i) := c(S_i) - c_0(S_i) / \ge 0$ 4 $\mathcal{C}_0 := \{ j \in [k] : c_1(S_j) = 0 \}$ 5 $U_0 := \bigcup_{i \in \mathcal{C}_0} S_i // covered by size-prop.$ 6 **if** $U_0 == U$ 7 return Co 8 else 9 $U_1 := U \setminus U_0 // rest of universe$ 10 $\mathcal{S}_1 := \left\{ S \in \{S_1, \dots, S_k\} \mid S \cap U_1 \neq \emptyset \right\}$ 11 $\mathcal{C}_1 := \text{layeringSetCover}(U_1, \mathcal{S}_1, c_1)$ 12 return $\mathcal{C}_0 \cup \mathcal{C}_1$ 13

Theorem 10.12 (layering *f*-approx)

layeringSetCover is *f*-approx. for SetCover.

Proof:

Show by induction over recursive calls that (a) computes cover (b) of cost $\leq f \cdot OPT$.

Basis: $U_0 = U$ All of *U* covered by size-prop. part/ $\rightarrow f$ -approx by Lemma 10.11

Inductive step:

IH: C_1 covers U_1 at cost $c_1(C_1) \leq f \cdot OPT(U_1, S_1, c_1)$. Let C^* be **optimal** set cover w.r.t. c

Lemma 10.11: $\mathcal{C} = \mathcal{C}_0 \cup \mathcal{C}_1$ is *f*-approx w.r.t. \dot{c}_0 .

 $\rightsquigarrow c_0(\mathcal{C}) \le f \cdot c_0(\mathcal{C}^*)$ (0)

Proof (cont.):		
Define $\mathcal{C}_1^* = \{i \in \mathcal{C}^* : S_i \in \mathcal{S}_1\}$		

- :

Proof (cont.):
Define
$$C_1^* = \{i \in C^* : S_i \in S_1\}$$

 C_1^* is a set cover for U_1 all S_c with $c \in G^* \setminus G_1^*$ of V_o
 $\sim c_1(C_1) \leq f \circ OPT(U_1, S_1, c_1) \leq f \circ c_1(C_1^*)$ (1)
 $\circ PT(U_1, S_1, c_1) \leq c_1(G_1^*)$

Proof (cont.): Define $\mathcal{C}_1^* = \{i \in \mathcal{C}^* : S_i \in S_1\}$ \mathcal{C}_1^* is a set cover for U_1 $\rightsquigarrow c_1(\mathcal{C}_1) \leq OPT(U_1, \mathcal{S}_1, c_1) \leq f \cdot c_1(\mathcal{C}_1^*)$ (1) $c(\mathcal{C}) = c_0(\mathcal{C}) + c_1(\mathcal{C})$ $\rightsquigarrow c_0(\mathcal{C}) \le f \cdot c_0(\mathcal{C}^*)$ (0) $\stackrel{=}{\uparrow} c_0(\mathcal{C}) + c_1(\mathcal{C}_1)$ $i \in \mathcal{C}_0 \rightsquigarrow c_1 = 0$ $\leq_{(0),(1)} f \cdot \left(c_0(\mathcal{C}^*) + c_1(\mathcal{C}_1^*) \right)$ $\leq f \cdot (c_0(\mathcal{C}^*) + c_1(\mathcal{C}^*))$ $= f \cdot c(\mathcal{C}^*)$ 10 OPT

.

۲

Proof (cont.): Define $\mathcal{C}_1^* = \{i \in \mathcal{C}^* : S_i \in S_1\}$ \mathcal{C}_1^* is a set cover for U_1 $\rightsquigarrow c_1(\mathcal{C}_1) \leq OPT(U_1, \mathcal{S}_1, c_1) \leq f \cdot c_1(\mathcal{C}_1^*)$ (1) $c(\mathcal{C}) = c_0(\mathcal{C}) + c_1(\mathcal{C})$ $= c_0(\mathcal{C}) + c_1(\mathcal{C}_1)$ $i \in \mathcal{C}_0 \rightsquigarrow c_1 = 0$ $\leq f \cdot \left(c_0(\mathcal{C}^*) + c_1(\mathcal{C}_1^*)\right)$ $\leq f \cdot (c_0(\mathcal{C}^*) + c_1(\mathcal{C}^*))$ $= f \cdot c(\mathcal{C}^*)$

Note: For VERTEXCOVER, this yields again a 2-approximation.

 \rightsquigarrow Same as using maximal matching

But the layering algorithm can handle arbitrary vertex costs (WEIGHTEDVERTEXCOVER)!

10.5 Applications of Set Cover

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet Σ , set of strings $W = \{w_1, \dots, w_n\} \subseteq \Sigma^+$ **Feasible Instances:** *superstrings s* of *S*, i. e., *s* contains w_i as substring for $1 \le i \le n$. **Cost:** |s| **Goal:** min $S [j_i \dots j_i^+ (\omega, i)] = \omega_i$

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.

◄

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet Σ , set of strings $W = \{w_1, \ldots, w_n\} \subseteq \Sigma^+$ **Feasible Instances:** *superstrings s* of *S*, i. e., *s* contains w_i as substring for $1 \le i \le n$. **Cost:** |s|**Goal:** min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.

- ▶ Motivation: DNA assembly (sequencing from many shorter "reads")
- General problem is NP-complete

◄

Shortest Superstrings

Definition 10.13 (SHORTESTSUPERSTRING)

Given: alphabet Σ , set of strings $W = \{w_1, \ldots, w_n\} \subseteq \Sigma^+$ **Feasible Instances:** *superstrings s* of *S*, i. e., *s* contains w_i as substring for $1 \le i \le n$. **Cost:** |s|**Goal:** min

Remark 10.14

Without-loss-of-generality assumption: no string is a substring of another.

- ▶ Motivation: DNA assembly (sequencing from many shorter "reads")
- General problem is NP-complete

Here: Reduce this problem to SETCOVER!

-

Shortest Superstring by Set Cover

Construct *all pairwise* superstrings: overlap w_i and w_j by exactly ℓ characters (if possible)

~ Set Cover instance:

• Cost function: $c(S_{\pi}) = |\pi|$

- Universe: $[n] \longrightarrow$ try to *cover* all words in W with superstring ...
- ► Subsets: $S = \{S_{\pi} : \pi \in W \cup M\}$... by combining pairwise superstrings. where $S_{\pi} = \{k \in [n] : \exists i, j : w_k = \pi[i..j)\}$

Shortest Superstring by Set Cover

Construct *all pairwise* superstrings: overlap w_i and w_j by exactly ℓ characters (if possible)

$$\begin{aligned} \sigma_{i,j,\ell} &= w_i[0..|w_i| - \ell) \cdot w_j \text{ valid iff } w_j[0..\ell) = w_i[|w_i| - \ell..|w_i|) \\ M &= \left\{ \sigma_{i,j,\ell} : i, j \in [u], \ell \in \left[0.. \min\{|w_i|, |w_j|\} \right] \right\} \end{aligned}$$

→ Set Cover instance:

- Universe: $[n] \longrightarrow$ try to *cover* all words in *W* with superstring . . .
- ► Subsets: $S = \{S_{\pi} : \pi \in W \cup M\}$... by combining pairwise superstrings. where $S_{\pi} = \{k \in [n] : \exists i, j : w_k = \pi[i..j)\}$
- Cost function: $c(S_{\pi}) = |\pi|$

Given set-cover solution $\{S_{\pi_1}, \ldots, S_{\pi_k}\}$ \rightsquigarrow superstring $s = \pi_1 \ldots \pi_k$ (in any order)

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let *W* be an instance for SHORTESTSUPERSTRING and (n, S, c) the corresponding SETCOVER instance. Let further *OPT* resp. *OPT*_{SC} be the optimal objective value of *W* resp. (n, S, c). Then *OPT* \leq *OPT*_{SC} \leq 2 \cdot *OPT*.

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let *W* be an instance for SHORTESTSUPERSTRING and (n, S, c) the corresponding SETCOVER instance. Let further *OPT* resp. *OPT*_{SC} be the optimal objective value of *W* resp. (n, S, c). Then *OPT* \leq *OPT*_{SC} \leq 2 \cdot *OPT*.

Corollary 10.16 (2*H_n* approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a $2H_n$ -approximation for the shortest superstring problem.

-

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let *W* be an instance for SHORTESTSUPERSTRING and (n, S, c) the corresponding SETCOVER instance. Let further *OPT* resp. *OPT*_{SC} be the optimal objective value of *W* resp. (n, S, c). Then *OPT* \leq *OPT*_{SC} \leq 2 \cdot *OPT*.

-

Corollary 10.16 (2*H_n* approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a $2H_n$ -approximation for the shortest superstring problem.

Proof (Lemma 10.15):

• " $OPT \leq OPT_{SC}$ "

It suffices to show that $s = \pi_1 \dots \pi_k$ is a valid superstring.

By definition, every w_i must be contained in some π_k as a substring.

Lemma 10.15 (Pairwise superstrings yield 2-SC-approx)

Let *W* be an instance for SHORTESTSUPERSTRING and (n, S, c) the corresponding SETCOVER instance. Let further *OPT* resp. *OPT*_{SC} be the optimal objective value of *W* resp. (n, S, c). Then *OPT* \leq *OPT*_{SC} \leq 2 \cdot *OPT*.

Corollary 10.16 (2*H_n* approximation for superstring)

By solving the transformed set cover instance with greedySetCover, we obtain a $2H_n$ -approximation for the shortest superstring problem.

Proof (Lemma 10.15):

Without loss of generality, suppose s^* contains w_1, \ldots, w_n *in this order*.

Proof:

Define groups: $i_1 = 1$; $i_j = \min\{i > i_{j-1} : \text{first occurrence of } w_i \text{ does not overlap } w_{i_{j-1}}\}$.

Proof:

Define groups: $i_1 = 1$; $i_j = \min\{i > i_{j-1} : \text{first occurrence of } w_i \text{ does not overlap } w_{i_{j-1}}\}$.

Group *j* starts with w_{i_j} and ends with $w_{i_{j+1}-1}$

$$\rightsquigarrow$$
 overlap of two strings $\rightsquigarrow \pi_j = \sigma_{i_j, i_{j+1}-1, \ell}$

Proof:

Define groups: $i_1 = 1$; $i_j = \min\{i > i_{j-1} : \text{first occurrence of } w_i \text{ does not overlap } w_{i_{j-1}}\}$.

Group *j* starts with w_{i_j} and ends with $w_{i_{j+1}-1}$

 \rightsquigarrow overlap of two strings $\rightsquigarrow \pi_j = \sigma_{i_j, i_{j+1}-1, \ell_j}$

Groups can overlap (so concatenation of σ s longer than s^*).

Proof:

Define groups: $i_1 = 1$; $i_j = \min\{i > i_{j-1} : \text{first occurrence of } w_i \text{ does not overlap } w_{i_{j-1}}\}$.

Group *j* starts with w_{i_j} and ends with $w_{i_{j+1}-1}$

 \rightsquigarrow overlap of two strings $\rightsquigarrow \pi_j = \sigma_{i_j, i_{j+1}-1, \ell_j}$

Groups can overlap (so concatenation of σ s longer than s^*).

But group *j* and j + 2 cannot overlap! $\rightarrow |\pi_1 \dots \pi_k| \le 2|s^*| = 2 \cdot OPT.$.

Proof:

Define groups: $i_1 = 1$; $i_j = \min\{i > i_{j-1} : \text{first occurrence of } w_i \text{ does not overlap } w_{i_{j-1}}\}$.

Group *j* starts with w_{i_j} and ends with $w_{i_{j+1}-1}$

 \rightsquigarrow overlap of two strings $\rightsquigarrow \pi_j = \sigma_{i_j, i_{j+1}-1, \ell_j}$

Groups can overlap (so concatenation of σ s longer than s^*).

But group *j* and j + 2 cannot overlap! $\rightarrow |\pi_1 \dots \pi_k| \le 2|s^*| = 2 \cdot OPT.$

(Note: Better approximation algorithms for ShortestSuperstring possible via different techniques.)

10.6 (F)PTAS: Arbitrarily Good Approximations

The problems so far had a barrier to arbitrarily good approximations; but sometimes we can achieve the latter!

The problems so far had a barrier to arbitrarily good approximations; but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let $U = (\Sigma_L, \Sigma_O, L, L_L, M, cost, \min)$ an optimization problem.

E to Time A. (C)

XP

FPTAS & polynomial

An algorithm $A = A_{\varepsilon}(x)$ with input (ε, x) is called polynomial-time approximation scheme (PTAS) for U,

if for every *constant* $\varepsilon \in \mathbb{Q}_{>0}$, the algorithm A_{ε} is a $(1 + \varepsilon)$ -approximation for U with running time polynomial in |x|.

If the running time of $A_{\varepsilon}(x)$ is bounded by a polynomial in |x| and ε^{-1} , A is called a fully polynomial-time approximation scheme (FPTAS) for U.

Note: PTAS could have running time $O(n^c \cdot 2^{2^{1/\epsilon}})$ or so (akin to fot running time)

$$\int \left(N^{2^{1/\epsilon}} \right)$$

The problems so far had a barrier to arbitrarily good approximations; but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, min)$ an optimization problem.

An algorithm $A = A_{\varepsilon}(x)$ with input (ε, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every *constant* $\varepsilon \in \mathbb{Q}_{>0}$, the algorithm A_{ε} is a $(1 + \varepsilon)$ -approximation for U with running time polynomial in |x|.

If the running time of $A_{\varepsilon}(x)$ is bounded by a polynomial in |x| and ε^{-1} , A is called a *fully polynomial-time approximation scheme* (FPTAS) for U.

Note: PTAS could have running time $O(n^c \cdot 2^{2^{1/\epsilon}})$ or so (akin to fpt running time) FPTAS much stronger

The problems so far had a barrier to arbitrarily good approximations; but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, min)$ an optimization problem.

An algorithm $A = A_{\varepsilon}(x)$ with input (ε, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every *constant* $\varepsilon \in \mathbb{Q}_{>0}$, the algorithm A_{ε} is a $(1 + \varepsilon)$ -approximation for U with running time polynomial in |x|.

If the running time of $A_{\varepsilon}(x)$ is bounded by a polynomial in |x| and ε^{-1} , A is called a *fully polynomial-time approximation scheme* (FPTAS) for U.

Note: PTAS could have running time $O(n^c \cdot 2^{2^{1/\epsilon}})$ or so (akin to fpt running time) FPTAS much stronger ... but do they even exist for any NP-hard problems?
Approximation Schemes

The problems so far had a barrier to arbitrarily good approximations; but sometimes we can achieve the latter!

Definition 10.17 ((F)PTAS)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, \min)$ an optimization problem.

An algorithm $A = A_{\varepsilon}(x)$ with input (ε, x) is called

polynomial-time approximation scheme (PTAS) for U,

if for every *constant* $\varepsilon \in \mathbb{Q}_{>0}$, the algorithm A_{ε} is a $(1 + \varepsilon)$ -approximation for U with running time polynomial in |x|.

If the running time of $A_{\varepsilon}(x)$ is bounded by a polynomial in |x| and ε^{-1} , A is called a *fully polynomial-time approximation scheme* (FPTAS) for U.

Note: PTAS could have running time $O(n^c \cdot 2^{2^{1/\epsilon}})$ or so (akin to fpt running time) FPTAS much stronger ... but do they even exist for any NP-hard problems? Yes!

Recall **0/1-KNAPSACK:** Given: items 1, ..., *n* with *weights* $w_1, ..., w_n$ and *values* $v_1, ..., v_n$; Feasible solutions: subset of items with total weight $\leq b$ Goal: maximize total value

Approximation Idea: Work with *rounded* values (depending on ε)

Recall **0/1-KNAPSACK**: Given: items 1, ..., *n* with *weights* $w_1, ..., w_n$ and *values* $v_1, ..., v_n$; **Feasible solutions**: subset of items with total weight $\leq b$ **Goal:** maximize total value

Approximation Idea: Work with *rounded* values (depending on ε)

In Unit 3, we solved Knapsack

- ▶ using a DP table $V[n', b'] = \max$ value from items 1..n' and total weight $b' \le b$
- $\rightarrow n \cdot b$ entries $\rightarrow total time O(n \cdot b \cdot \log(MaxInt(v)))) \in |x|$

→ good if *weights* are small, but we want to round *values*

Recall **0/1-KNAPSACK**: Given: items 1, ..., *n* with *weights* $w_1, ..., w_n$ and *values* $v_1, ..., v_n$; **Feasible solutions**: subset of items with total weight $\leq b$ **Goal**: maximize total value

Approximation Idea: Work with *rounded* values (depending on ε)

In Unit 3, we solved Knapsack

- ▶ using a DP table $V[n', b'] = \max$ value from items 1..n' and total weight $b' \le b$
- \rightsquigarrow $n \cdot b$ entries \rightsquigarrow total time $O(n \cdot b \cdot \log(MaxInt(v)))$
- → good if *weights* are small, but we want to round *values*
- actually, DP also works with values as index!

Assumption: $w_1, \ldots, w_n, v_1, \ldots, v_n \in \mathbb{N}$

• DP table W[n', v] = min weight from items 1, ..., n' with value = v

Recall **0/1-KNAPSACK**: Given: items 1, ..., *n* with *weights* $w_1, ..., w_n$ and *values* $v_1, ..., v_n$; **Feasible solutions**: subset of items with total weight $\leq b$ **Goal**: maximize total value

Approximation Idea: Work with *rounded* values (depending on ε)

In Unit 3, we solved Knapsack

- ▶ using a DP table $V[n', b'] = \max$ value from items 1..n' and total weight $b' \le b$
- \rightsquigarrow $n \cdot b$ entries \rightsquigarrow total time $O(n \cdot b \cdot \log(MaxInt(v)))$

→ good if *weights* are small, but we want to round *values*

actually, DP also works with values as index!

Assumption: $w_1, \ldots, w_n, v_1, \ldots, v_n \in \mathbb{N}$

• DP table W[n', v] = min weight from items 1, ..., n' with value = v

$$W[n',v] = \begin{cases} \min \left\{ W[n'-1,v], \frac{W[n'-1,v-v_{n'}] + w_{n'}}{W[n'-1,v]} & \text{if } v_{n'} < v \\ W[n'-1,v] & \text{otherwise} \end{cases} \right.$$
(+ initial values)

Recall **0/1-KNAPSACK:** Given: items 1, ..., n with *weights* $w_1, ..., w_n$ and *values* $v_1, ..., v_n$; **Feasible solutions:** subset of items with total weight $\leq b$ **Goal:** maximize total value

Approximation Idea: Work with *rounded* values (depending on ε)

In Unit 3, we solved Knapsack

И

- ▶ using a DP table $V[n', b'] = \max$ value from items 1..n' and total weight $b' \le b$
- \rightsquigarrow $n \cdot b$ entries \rightsquigarrow total time $O(n \cdot b \cdot \log(MaxInt(v)))$

→ good if *weights* are small, but we want to round *values*

actually, DP also works with values as index!

Assumption: $w_1, \ldots, w_n, v_1, \ldots, v_n \in \mathbb{N}$

• DP table W[n', v] = min weight from items 1, ..., n' with value = v

$$V[n',v] = \begin{cases} \min \{ W[n'-1,v], W[n'-1,v-v_{n'}] + w_{n'} \} & \text{if } v_{n'} < v \\ W[n'-1,v] & \text{otherwise} \end{cases}$$

(+ initial values)

 $\rightsquigarrow n \cdot nV$ entries for $V = \max v_i \iff \text{total time } O(n^2 \cdot V \cdot \log(MaxInt(w)))$

Convenience Assumption: any item fits in the knapsack alone, i. e., $w_i \le b$

1 **procedure** knapsackFPTAS(
$$w, v, b, \varepsilon$$
)
2 $V := \max_{i=1,...,n} v_i$
3 $K := \varepsilon V/n$
4 $\tilde{v} := \lfloor \frac{v}{K} \rfloor$ // rounded $v \omega' \omega' \downarrow K$

return DPKnapsack(w, \tilde{v}, b)

(1-5)-oppor

DPKnapsack is pseudopolynomial DP algorithm with running time $O(n^2 \cdot V \cdot \log(MaxInt(w)))$

Theorem 10.18

5

approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Convenience Assumption: any item fits in the knapsack alone, i. e., $w_i \leq b$

DPKnapsack is pseudopolynomial DP algorithm with running time $O(n^2 \cdot V \cdot \log(MaxInt(w)))$

-

Theorem 10.18

approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof: First consider running time; dominated by DPKnapsack.

Convenience Assumption: any item fits in the knapsack alone, i. e., $w_i \leq b$

¹ **procedure** knapsackFPTAS(w, v, b, ε)

- $_{2} \qquad V := \max_{i=1,\dots,n} v_{i}$
- $K := \varepsilon V/n$

4
$$\tilde{v} := \left\lfloor \frac{v}{K} \right\rfloor // rounded v$$

⁵ **return** DPKnapsack(w, \tilde{v}, b)

DPKnapsack is pseudopolynomial DP algorithm with running time $O(n^2 \cdot V \cdot \log(MaxInt(w)))$

Theorem 10.18

approxKnapsack is an FPTAS for 0/1-KNAPSACK.

-

Proof:

First consider running time; dominated by DPKnapsack.

$$O(n^{2}\tilde{V} \underbrace{\log(MaxInt(w))}) \leq O(n^{2}\tilde{V}|x|) \leq O\left(n^{2}|x|\frac{V}{K}\right) \leq O\left(n^{3}|x|\varepsilon^{-1}\right) \leq O\left(|x|^{4}\varepsilon^{-1}\right)$$

Convenience Assumption: any item fits in the knapsack alone, i. e., $w_i \leq b$

1**procedure** knapsackFPTAS(w, v, b, ε)2 $V := \max_{i=1,...,n} v_i$ 3 $K := \varepsilon V/n$ 4 $\tilde{v} := \lfloor \frac{v}{K} \rfloor // rounded v$ 5**return** DPKnapsack(w, \tilde{v}, b)DPKnapsack is pseudopolynomial DP algorithm
with running time $O(n^2 \cdot V \cdot \log(MaxInt(w)))$

Theorem 10.18

approxKnapsack is an FPTAS for 0/1-KNAPSACK.

Proof:

First consider running time; dominated by DPKnapsack.

$$O(n^2 \tilde{V} \log(MaxInt(w))) \leq O(n^2 \tilde{V}|x|) \leq O\left(n^2 |x| \frac{V}{K}\right) \leq O\left(n^3 |x| \varepsilon^{-1}\right) \leq O\left(|x|^4 \varepsilon^{-1}\right)$$

It remains to show that total value of $I = DPKnapsack(w, \tilde{v}, b)$ is $v(I) \ge (1 - \varepsilon) \cdot OPT$

FPTAS for Knapsack [2]

Proof (cont.):

Let
$$I^*$$
 be an optimal solution, $v(I^*) = \sum_{i \in I^*} v_i = OPT$
For each $i \in [n]$, we have by definition $v_i - K < K \cdot \tilde{v}_i \le v_i$ (*)

procedure knapsackFPTAS(w, v, b, ε) $V := \max_{i=1,...,n} v_i$ $K := \varepsilon V/n$ $\tilde{v} := \lfloor \frac{v}{K} \rfloor$ // rounded v**return** DPKnapsack(w, \tilde{v}, b)

FPTAS for Knapsack [2]

Proof (cont.):

Let
$$I^*$$
 be an optimal solution, $v(I^*) = \sum_{i \in I^*} v_i = OPT$
For each $i \in [n]$, we have by definition $v_i - K < K \cdot \tilde{v}_i \le v_i$ (*).
PKnapsack returns *optimal* solution for rounded values $\rightsquigarrow \tilde{v}(I) \ge \tilde{v}(I^*)$ (*o*)
Moreover, $OPT \ge V$ by our assumption that each item fits into knapsack. (V)

(0)

FPTAS for Knapsack [2]

Proof (cont.):

Let
$$I^*$$
 be an optimal solution, $v(I^*) = \sum_{i \in I^*} v_i = OPT$
For each $i \in [n]$, we have by definition $v_i - K < K \cdot \tilde{v}_i \le v_i$ (*).

FPKnapsack returns *optimal* solution for rounded values $\rightsquigarrow \tilde{v}(I) \ge \tilde{v}(I^*)$ (*o*) Moreover, $OPT \ge V$ by our assumption that each item fits into knapsack. (*V*)

We now have $v(I) \geq K \cdot \tilde{v}(I) \geq K \cdot \tilde{v}(I^*) \geq v(I^*) - nK = OPT - \varepsilon V \geq (1 - \varepsilon) \cdot OPT$

- 1 **procedure** knapsackFPTAS(w, v, b, ε)
- $_2 \qquad V := \max_{i=1,\dots,n} v_i$
- $K := \varepsilon V/n$
- 4 $\tilde{v} := \left\lfloor \frac{v}{K} \right\rfloor // rounded v$
- ⁵ **return** DPKnapsack(w, \tilde{v}, b)

FPTAS asks for much

Theorem 10.19 (FPTAS → FPT and pseudopolynomial)

- **1.** $U \in \mathsf{FPTAS} \implies p \cdot U \in \mathsf{FPT}$
- **2.** $U \in \text{FPTAS}$ and cost(u, x) < p(MaxInt(x)) for some polynomial p
 - \implies \exists pseudopolynomial algorithm for *U*.

10.8 Randomized Approximations

Randomized Approximation Guarantees

Definition 10.23 (Randomized δ -approx.)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, \max)$ an optimization problem. For $\delta > 1$ a randomized algorithm *A* is called *randomized* δ *-approximation algorithm for U*, if

- ▶ $\mathbb{P}[A(x) \in M(x)] = 1$, (always feasible) and
- $\mathbb{P}[R_A(x) \le \delta] \ge \frac{1}{2}$ (typically within δ)

for all $x \in L_I$.

Definition 10.24 (δ -expected approx.)

Let $U = (\Sigma_I, \Sigma_O, L, L_I, M, cost, max)$ an optimization problem. For $\delta > 1$ a randomized algorithm *A* is called *(randomized)* δ *-expected approximation algorithm for U*, if

▶ $\mathbb{P}[A(x) \in M(x)] = 1$ (always feasible) and

•
$$\frac{\mathbb{E}[cost(A(x))]}{OPT_U(x)} \le \delta$$
 (expected within δ)

for all $x \in L_I$.

(Minimization problems similar.)

-