

Prof. Dr. Sebastian Wild

Outline

11 LP-Based Approximation

- 11.1 (Integer) Linear Optimization Recap
- 11.2 LP Relaxations & Rounding
- 11.3 Randomized Rounding
- 11.4 LP Duality
- 11.5 Vertex Cover and Matching Revisited
- 11.6 Set Cover Duality & Dual Fitting
- 11.7 The Primal-Dual Schema

11.1 (Integer) Linear Optimization Recap

LPs in Standard Form

Definition 11.1 (LP)

A linear program (LP) in *standard form* with *n variables* and *m constraints* is characterized by a matrix $A \in \mathbb{Z}^{m \times n}$, a vector $b \in \mathbb{Z}^m$, and a vector $c \in \mathbb{Z}^n$ and is written as

min
$$c^T x$$
 min $\sum_{j=1}^n c_j \cdot x_j$
s.t. $Ax \ge b$ s.t. $\sum_{j=1}^n a_{ij} \cdot x_j \ge b_i$ for all $i \in [m]$
 $x \ge 0$ $x_j \ge 0$ for all $j \in [n]$

(Inequalities on vectors apply componentwise.)

Any vector $x \in \mathbb{R}^n$ with $Ax \ge b$ and $x \ge 0$ is called a *feasible solution* for the LP, and c^Tx is its objective value. An *optimal solution* is a feasible vector x^* with **min**imal objective value.

Remark 11.2 (Rational coefficients)

We can in general allow $A \in \mathbb{Q}^{m \times x}$, $b \in \mathbb{Q}^m$ and $c \in \mathbb{Q}^n$; by multiplying constraints and scaling objective function with the common denominator we obtain an equivalent LP.

1

Example LP

min
$$7x_1 + x_2 + 5x_3$$

s.t. $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

 \rightsquigarrow Optimal solution $x^* = (1.75, 0, 2.75)$ with $c^T x^* = 26$.

Example LP

min
$$7x_1 + x_2 + 5x_3$$

s. t. $x_1 - x_2 + 3x_3 \ge 10$
 $5x_1 + 2x_2 - x_3 \ge 6$
 $x_1, x_2, x_3 \ge 0$

 \rightarrow Optimal solution $x^* = (1.75, 0, 2.75)$ with $c^T x^* = 26$.

Extreme point: feasible point that is *not* a convex combination of two distinct feasible solutions.

Remark 11.3 (Facts on LPs)

- **1.** More general versions of LP possible:
 - = constraints, unrestricted variables, max instead of min . . .
 - → can all be transformed into equivalent one in standard form.
- **2.** LP can be *infeasible* (no solution), *unbounded* (no optimal solution) or *finite*.
- 3. If LP has optimal solution, there is an optimal extreme point → finite problem!
- **4.** Optimal solutions can be computed in polytime (ellipsoid method).

Integer Linear Program in Standard Form

Definition 11.4 (ILP)

An *integer linear program* in standard form is an LP with the additional integrality constraints $x_j \in \mathbb{N}_0$:

$$\min c^T x$$
s.t. $Ax \ge b$

$$x \in \mathbb{N}_0^n$$

Integer Linear Program in Standard Form

Definition 11.4 (ILP)

An *integer linear program* in standard form is an LP with the additional integrality constraints $x_j \in \mathbb{N}_0$:

$$\min c^T x$$
s.t. $Ax \ge b$

$$x \in \mathbb{N}_0^n$$

Remark 11.5 (Facts on ILPs)

- 1. Generalized versions can again be transformed into standard form.
- 2. Decision version of the problem NP-complete.

3

11.2 LP Relaxations & Rounding

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on *OPT*!

- A natural idea to obtain approximately optimal solutions for NPO problems:
- **1.** Formulate problem as ILP (*I*)
- **2.** Drop integrality constraints from $(I) \rightsquigarrow LP(P)$
- Obtain optimal fractional solution x* for (P)
 Cost of x* is bound for OPT!

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on *OPT*!

- → A natural idea to obtain approximately optimal solutions for NPO problems:
- **1.** Formulate problem as ILP (*I*)
- **2.** Drop integrality constraints from $(I) \rightsquigarrow LP(P)$
- Obtain optimal fractional solution x* for (P)
 Cost of x* is bound for OPT!
- **4.** ...? Somehow get back to feasible solution for (I)

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on *OPT*!

- A natural idea to obtain approximately optimal solutions for NPO problems:
- **1.** Formulate problem as ILP (*I*)
- **2.** Drop integrality constraints from $(I) \rightsquigarrow LP(P)$
- **3.** Obtain optimal fractional solution x^* for (P) Cost of x^* is bound for OPT!
- **4.** ...? Somehow get back to feasible solution for (I)

Simplest version: *Round* to nearest integer!

tricky bit: how to make feasible

Since ILPs are NP-complete, any NP problem can be written as an ILP

well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on *OPT*!

- → A natural idea to obtain approximately optimal solutions for NPO problems:
- **1.** Formulate problem as ILP (*I*)
- **2.** Drop integrality constraints from $(I) \rightsquigarrow LP(P)$
- 3. Obtain optimal fractional solution x^* for (P) Cost of x^* is bound for OPT!
- **4.** ...? Somehow get back to feasible solution for (I)

Simplest version: *Round* to nearest integer!

Note: Integrality gap of (I)LP is key barrier in this approach

The Set Cover ILP
$$S = (S_1, ..., S_k)$$

Idea $x_i = 1$ iff S_i in cover.

Notation: For $e \in U = [n]$ set $V(e) = \{j : e \in S_j\}$.

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$
 (I)
$$x \in \mathbb{N}_0^k$$

The Set Cover ILP

Idea $x_j = 1$ iff S_j in cover.

Notation: For $e \in U = [n]$ set $V(e) = \{j : e \in S_j\}$.

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$
 (I)
$$x \in \mathbb{N}_0^k$$

Observation: Any optimal solution fulfills $x \in \{0, 1\}^k$

The Set Cover ILP

Idea $x_j = 1$ iff S_j in cover.

Notation: For $e \in U = [n]$ set $V(e) = \{j : e \in S_j\}$.

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$
 (I)
$$x \in \mathbb{N}_0^k$$

Observation: Any optimal solution fulfills $x \in \{0, 1\}^k$

$$\min \sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$

$$x > 0$$
(P)

LP Relaxation: replace $x \in \mathbb{N}_0^k$ by $x \ge 0$. \rightarrow efficiently solvable, but might get fractional solutions x^* .

The Set Cover ILP

Idea $x_j = 1$ iff S_j in cover.

Notation: For $e \in U = [n]$ set $V(e) = \{j : e \in S_j\}$.

min
$$\sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$
 (I)
$$x \in \mathbb{N}_0^k$$

$$\min \sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$

$$x \ge 0$$
(P)

Observation: Any optimal solution fulfills $x \in \{0, 1\}^k$

LP Relaxation: replace $x \in \mathbb{N}_0^k$ by $x \ge 0$. \rightsquigarrow efficiently solvable, but might get fractional solutions x^* .

Write $OPT_{(I)}$ resp. $OPT_{(P)}$ for the optimal objective value \rightsquigarrow $OPT_{(I)}$ $\mbox{\ \ \ }\ OPT_{(P)}$

For rounding to yield feasible integral solution, must round conservatively.

For rounding to yield feasible integral solution, must round conservatively.

```
1 procedure frequencyCutoffSetCover(n,S,c)
2   f := global frequency of S
3   x^* := optimal solution of relaxed set cover LP.
4   \mathcal{C} := \emptyset
5   \mathbf{for} \ j := 1, \dots, k
6   \mathbf{if} \ x_j^* \ge 1/f \ \mathbf{then} \ \mathbf{add} \ j \ \mathbf{to} \ \mathcal{C}
7   \mathbf{return} \ \mathcal{C}
```

For rounding to yield feasible integral solution, must round conservatively.

```
1 procedure frequencyCutoffSetCover(n,S,c)
2 f := \text{global} frequency of S
3 x^* := \text{optimal} solution of relaxed set cover LP.
4 \mathcal{C} := \emptyset
5 \text{for } j := 1, \dots, k
6 \text{if } x_j^* \ge 1/f \text{ then } \text{add } j \text{ to } \mathcal{C}
7 \text{return } \mathcal{C}
```

Theorem 11.6

frequencyCutoffSetCover is an f-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for WeightedVertex Sever.

For rounding to yield feasible integral solution, must round conservatively.

```
procedure frequencyCutoffSetCover(n,S,c)
      f := global frequency of S
       x^* := \text{optimal solution of relaxed set cover LP}.
       \mathcal{C} := \emptyset
     for j := 1, ..., k
           if x_i^* \ge 1/f then add j to \mathbb{C}
       return C
7
```

Proof:

(1) \mathcal{C} is a set cover

Let $e \in U$ be arbitrary. Since x^* is feasible, we have $\sum_{j \in V(e)} x_j^* \ge 1$. $\min_{k \ge 1} \sum_{i=1}^k c(S_i) \cdot x_j$

Theorem 11.6

frequencyCutoffSetCover is an *f*-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for WEIGHTED VERTEX COVER.

$$\sum_{j \in V(e)} x_j^* \ge 1.$$

$$\min \sum_{j=1}^{k} c(S_j) \cdot x_j$$
s. t.
$$\sum_{j \in V(e)} x_j \ge 1 \quad \forall e \in U$$

$$x \ge 0$$
(P)

For rounding to yield feasible integral solution, must round conservatively.

```
1 procedure frequencyCutoffSetCover(n,S,c)
2 f := \text{global} frequency of S
3 x^* := \text{optimal} solution of relaxed set cover LP.
4 \mathcal{C} := \emptyset
5 \text{for } j := 1, \dots, k
6 \text{if } x_j^* \ge 1/f \text{ then add } j \text{ to } \mathcal{C}
7 \text{return } \mathcal{C}
```

Theorem 11.6

frequencyCutoffSetCover is an f-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for WeightedVertexCover.

Proof:

(1) C is a set cover

Let $e \in U$ be arbitrary. Since x^* is feasible, we have $\sum x_j^* \ge 1$.

$$|V(e)| = f_e \le f$$

For rounding to yield feasible integral solution, must round conservatively.

```
procedure frequencyCutoffSetCover(n,S,c)
      f := global frequency of S
      x^* := optimal solution of relaxed set cover LP.
      \mathcal{C} := \emptyset
     for j := 1, ..., k
           if x_i^* \ge 1/f then add j to \mathbb{C}
       return C
```

Theorem 11.6

frequencyCutoffSetCover is an *f*-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for WEIGHTED VERTEX COVER.

(1) \mathcal{C} is a set cover

Let $e \in U$ be arbitrary. Since x^* is feasible, we have $\sum_{i=1}^{n} x_i^* \ge 1$.

 $|V(e)| = f_e \le f \quad \leadsto \quad \text{one } x_j^* \text{ with } j \in V(e) \text{ must be } x_j^* \ge 1/f.$

For rounding to yield feasible integral solution, must round conservatively.

```
1 procedure frequencyCutoffSetCover(n,S,c)
2 f := global frequency of S
3 x^* := optimal solution of relaxed set cover LP.
4 \mathcal{C} := \emptyset
5 for j := 1, \ldots, k
6 if x_j^* \ge 1/f then add j to \mathcal{C}
7 return \mathcal{C}
```

Theorem 11.6

frequencyCutoffSetCover is an f-approximation for SetCover.

Corollary 11.7

frequencyCutoffSetCover is a 2-approximation for WeightedVertexCover.

Proof:

(1) C is a set cover

Let $e \in U$ be arbitrary. Since x^* is feasible, we have $\sum_{j \in V(e)} x_j^* \ge 1$.

 $|V(e)| = f_e \le f \quad \leadsto \quad \text{one } x_j^* \text{ with } j \in V(e) \text{ must be } x_j^* \ge 1/f.$ $\Rightarrow \quad j \in \mathbb{C} \text{ and } e \text{ is covered.}$

```
Proof (cont.): 

(2) f-approximation. \xrightarrow{\text{min-problem}} x^* optimal for (P) \iff c^T x^* = OPT_{(P)} \stackrel{\checkmark}{\leq} OPT_{(I)}. For every j \in \mathcal{C}, x_j^* \geq 1/f.
```

```
Proof (cont.):
```

(2) f-approximation.

$$c^{T}(P) = c^{T}(P)$$
 $c^{T}(P) = c^{T}(P)$ $c^{T}(P) = c^{T}(P)$. For every $j \in C$, $x_{j}^{*} \geq 1/f$.

$$\leadsto$$
 $c(\mathcal{C}) = \sum_{j \in \mathcal{C}} c(S_j)$

```
Proof (cont.):
                                                                                            min-problem
(2) f-approximation.
(2) f-approximation.

x^* optimal for (P) \iff c^T x^* = OPT_{(P)} \leq OPT_{(I)}. For every j \in \mathcal{C} \setminus x_j^* \geq 1/f.

\begin{array}{rcl}
 & c(\mathcal{C}) & = & \sum_{j \in \mathcal{C}} c(S_j) \\
 & \leq & \sum_{j \in \mathcal{C}} f \cdot x_j^* \cdot c(S_j) \\
 & = & f \cdot \sum_{j \in \mathcal{C}} k_j^* \cdot c(S_j)
\end{array}
```

```
Proof (cont.):
```

(2) f-approximation. x^* optimal for $(P) \iff c^T x^* = OPT_{(P)} \stackrel{\text{min-problem}}{\leq} OPT_{(I)}$. For every $j \in \mathcal{C}$, $x_i^* \geq 1/f$.

Proof (cont.): min-problem (2) *f*-approximation. x^* optimal for $(P) \iff c^T x^* = OPT_{(P)} \stackrel{\checkmark}{\leq} OPT_{(I)}$. For every $j \in \mathcal{C}$, $x_i^* \geq 1/f$. \leadsto $c(\mathcal{C}) = \sum_{j \in \mathcal{C}} c(S_j)$ $\leq \sum_{j \in \mathcal{C}} f \cdot x_j^* \cdot c(S_j)$ $= f \cdot \sum_{j \in \mathcal{C}} x_j^* \cdot c(S_j)$ $\leq f \cdot \sum_{i=1}^{n} x_j^* \cdot c(S_j)$ $= f \cdot OPT_{(P)}$

Simple Rounding – Analysis is tight

In the worst case, the above threshold method cannot be better than an f-approximation.

Simple Rounding – Analysis is tight

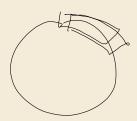
In the worst case, the above threshold method cannot be better than an f-approximation.

Consider the "Fully Symmetric instance:"

```
Suppose f \mid n

U = [0..n) with S_j = \{j, j+1, ..., j+f-1\} \mod n, for all j \in [0..n)

All sets of equal cost, c(S_j) = 1
```



Simple Rounding – Analysis is tight

In the worst case, the above threshold method cannot be better than an f-approximation.

Consider the "Fully Symmetric instance:"

11.3 Randomized Rounding

Fractions as probabilities

Another intuitive use of fractional solutions $x_j^* \in (0,1)$: include S_j with probability x_j^* in \mathbb{C} .

Fractions as probabilities

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_j with probability x_i^* in \mathcal{C} .

$$\longrightarrow \mathbb{E}[c(\mathcal{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$$
 (!)

Another intuitive use of fractional solutions $x_i^* \in (0, 1)$: include S_j with probability x_i^* in \mathbb{C} .

$$\leadsto \mathbb{E}[c(\mathbb{C})] = \sum_{j=1}^{k} x_j^* \cdot c(S_j) = OPT_{(P)}$$
 (!)

Too good to be true?

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_j with probability x_i^* in \mathcal{C} .

$$\rightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_j with probability x_i^* in \mathbb{C} .

$$\rightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If e occurs in f_e sets, we have

$$\mathbb{P}[e \text{ covered}] = 1 - \mathbb{P}\left[\bigcap_{j \in V(e)} S_j \notin \mathbb{C}\right] = 1 - \prod_{j \in V(e)} \left(1 - x_j^*\right)$$

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_i with probability x_i^* in \mathbb{C} .

$$\rightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If
$$e$$
 occurs in f_e sets, we have
$$\mathbb{P}[e \text{ covered}] = 1 - \mathbb{P}\left[\bigcap_{j \in V(e)} S_j \notin \mathbb{C}\right] = 1 - \prod_{j \in V(e)} \left(1 - x_j^*\right) \geq 1 - \left(1 - \frac{1}{f_e}\right)^{f_e} \geq 1 - \frac{1}{e}$$

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_j with probability x_i^* in \mathbb{C} .

$$\rightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If e occurs in f_e sets, we have

$$\mathbb{P}[e \text{ covered}] = 1 - \mathbb{P}\left[\bigcap_{j \in V(e)} S_j \notin \mathcal{C}\right] = 1 - \prod_{j \in V(e)} \left(1 - x_j^*\right) \geq 1 - \left(1 - \frac{1}{f_e}\right)^{f_e} \geq 1 - \frac{1}{e}$$

 \leadsto Coupon collector with n coupons \leadsto $\approx H_n$ repetitions suffice (in expectation)

Assuming we keep trying and collect all sets ever chosen

Another intuitive use of fractional solutions $x_i^* \in (0,1)$: include S_j with probability x_i^* in \mathcal{C} .

$$\rightarrow$$
 $\mathbb{E}[c(\mathfrak{C})] = \sum_{j=1}^{k} x_{j}^{*} \cdot c(S_{j}) = OPT_{(P)}$ (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If e occurs in f_e sets, we have

$$\mathbb{P}[e \text{ covered}] = 1 - \mathbb{P}\left[\bigcap_{j \in V(e)} S_j \notin \mathcal{C}\right] = 1 - \prod_{j \in V(e)} \left(1 - x_j^*\right) \ge 1 - \left(1 - \frac{1}{f_e}\right)^{f_e} \ge 1 - \frac{1}{e}$$

 \sim Coupon collector with n coupons \sim $\approx H_n$ repetitions suffice (in expectation)

Assuming we keep trying and collect all sets ever chosen

Curiously, H_n is also approx. ratio of greedy . . .

But randomized rounding is general & tweakable.

Randomized Rounding

```
procedure randomizedRoundingSet(n, S, c, \mathcal{C})

x^* := \text{optimal solution of relaxed set cover LP.}

for i := 1, \dots, r

\mathcal{C}_i := \emptyset

for j := 1, \dots, k

b := \text{coin flip with prob } x^*_j

if b == 1 then \mathcal{C}_i := \mathcal{C}_i \cup \{j\}

return \mathcal{C} := \bigcup_{i=1}^r \mathcal{C}_i
```

Randomized Rounding

```
1 procedure randomizedRoundingSet(n, S, c, r)
2 x^* := optimal solution of relaxed set cover LP.
3 for i := 1, \ldots, r
4 \mathcal{C}_i := \emptyset
5 for j := 1, \ldots, k
6 b := \operatorname{coin} \operatorname{flip} \operatorname{with} \operatorname{prob} x_j^*
7 if b == 1 then \mathcal{C}_i := \mathcal{C}_i \cup \{j\}
8 return \mathcal{C} := \bigcup_{i=1}^r \mathcal{C}_i
```

safely above CC's H_n

For simplicity, always set $r = \lceil \ln(4n) \rceil$

Lemma 11.8

randomizedRoundingSet computes a feasible set-cover with probability $\geq \frac{3}{4}$.

Proof:

Recall from calculation above that for $e \in U$ and a single iteration of the outer loop:

$$\mathbb{P}[e \text{ not covered by } \mathcal{C}_i] \leq \left(1 - \frac{1}{f_e}\right)^{f_e} \leq \frac{1}{e}$$

Randomized Rounding

```
procedure randomizedRoundingSet(n, S, c, r)

x^* := \text{optimal solution of relaxed set cover LP.}

for i := 1, \dots, r

\mathcal{C}_i := \emptyset

for j := 1, \dots, k

b := \text{coin flip with prob } x_j^*

if b == 1 then \mathcal{C}_i := \mathcal{C}_i \cup \{j\}

return \mathcal{C} := \bigcup_{i=1}^r \mathcal{C}_i
```

safely above CC's H_n

For simplicity, always set $r = \lceil \ln(4n) \rceil$

Lemma 11.8

randomizedRoundingSet computes a feasible set-cover with probability $\geq \frac{3}{4}$.

Proof:

Recall from calculation above that for $e \in U$ and a single iteration of the outer loop:

$$\mathbb{P}[e \text{ not covered by } \mathcal{C}_i] \leq \left(1 - \frac{1}{f_e}\right)^{f_e} \leq \frac{1}{e}$$

$$\longrightarrow \mathbb{P}[e \text{ not covered by } \mathcal{C}] = \prod_{i=1}^r \mathbb{P}[e \text{ not covered by } \mathcal{C}_i] \leq \left(\frac{1}{e}\right)^r$$

With the union bound over all n elements and $r = \ln(4n)$, we obtain $\mathbb{P}[\mathcal{C} \text{ not a set cover}] \leq ne^{-r} = \frac{1}{4}$.

Randomized Rounding - Analysis

Lemma 11.9 (Expected quality)

Let \mathcal{C} by computed by randomizedRoundingSet with r repetitions.

The *expected* cost are $\mathbb{E}[c(\mathcal{C})] \leq r \cdot OPT_{(P)}$.

⋖

Randomized Rounding - Analysis

Lemma 11.9 (Expected quality)

Let $\mathbb C$ by computed by randomized RoundingSet with r repetitions.

The *expected* cost are $\mathbb{E}[c(\mathcal{C})] \leq r \cdot OPT_{(P)}$.

 \rightarrow For $r = \ln(4n)$ we have by Markov's inequality: $\mathbb{P}\left[c(\mathcal{C}) \ge 4\ln(4n) \cdot OPT_{(P)}\right] \le \frac{1}{4}$

11

Randomized Rounding - Analysis

Lemma 11.9 (Expected quality)

Let \mathcal{C} by computed by randomizedRoundingSet with r repetitions.

The *expected* cost are $\mathbb{E}[c(\mathcal{C})] \leq r \cdot OPT_{(P)}$.

 \rightarrow For $r = \ln(4n)$ we have by Markov's inequality: $\mathbb{P}\left[c(\mathbb{C}) \ge 4\ln(4n) \cdot OPT_{(P)}\right] \le \frac{1}{4}$

Proof:

We choose
$$\mathcal{C} = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_r$$
.

For the cost we get

$$\mathbb{E}[c(\mathfrak{C})] \leq \mathbb{E}\left[\sum_{i=1}^{r} c(\mathfrak{C}_i)\right] = \sum_{i=1}^{r} \mathbb{E}[c(\mathfrak{C}_i)] = r \cdot OPT_{(P)}$$

So far, randomizedRoundingSet might return infeasible solution. *\mathcal{f}\$

So far, randomizedRoundingSet might return infeasible solution. \(\mathbf{f} \) But that's easy to fix!

```
1 procedure randomizedRoundingSetCover(n, S, c)
2 \mathbb{C} = randomizedRoundingSet(n, S, c, \lceil \ln(4n) \rceil)
3 if \mathbb{C} is a set cover
4 return \mathbb{C}
5 else
6 return S
```

Theorem 11.10 (randomizedRoundingSetCover randomized approx)

 $randomized Rounding Set Cover \ is \ a \ randomized \ \underline{4 \ln(4n)} \text{-} approximation \ for \ Set Cover.$

So far, randomizedRoundingSet might return infeasible solution. • But that's easy to fix!

```
procedure randomizedRoundingSetCover(n, S, c)

C = \text{randomizedRoundingSet}(n, S, c, \lceil \ln(4n) \rceil)

if C is a set cover

return C

else

return S
```

Theorem 11.10 (randomizedRoundingSetCover randomized approx)

 $randomized Rounding Set Cover \ is \ a \ randomized \ 4\ln(4n) - approximation \ for \ Set Cover.$

Proof:

```
\mathbb{P}[\mathcal{C} \text{ not SC } \lor \ c(\mathcal{C}) \ > \ 4 \ln(4n) \cdot OPT_{(P)}] \ \leq \ \mathbb{P}[\mathcal{C} \text{ not SC}] \ + \ \mathbb{P}[c(\mathcal{C}) \ > \ 4 \ln(4n) \cdot OPT_{(P)}]
```

So far, randomizedRoundingSet might return infeasible solution. \(\mathbf{f} \) But that's easy to fix!

```
procedure randomizedRoundingSetCover(n, S, c)

C = \text{randomizedRoundingSet}(n, S, c, \lceil \ln(4n) \rceil)

if C is a set cover

return C

else

return S
```

Theorem 11.10 (randomizedRoundingSetCover randomized approx)

 $randomized Rounding Set Cover \ is \ a \ randomized \ 4 \ln(4n) - approximation \ for \ Set Cover.$

Proof:

$$\begin{split} \mathbb{P}[\mathcal{C} \text{ not SC } \lor \ c(\mathcal{C}) \ > \ 4 \ln(4n) \cdot OPT_{(P)}] & \leq \ \mathbb{P}[\mathcal{C} \text{ not SC}] \ + \ \mathbb{P}[c(\mathcal{C}) \ > \ 4 \ln(4n) \cdot OPT_{(P)}] \\ & \leq \ \underset{\text{Lemma 11.8, Lemma 11.9}}{\leq} \ \frac{1}{4} \ + \ \frac{1}{4} \\ & = \ \frac{1}{2}. \end{split}$$

LPs for Approximation

Suppose we consider a minimization NPO problem.

Recall: Key use of LP relaxation for approximation: Get lower bound for OPT.

LPs for Approximation

Suppose we consider a minimization NPO problem.

Recall: Key use of LP relaxation for approximation: Get lower bound for OPT.

There's another powerful technique from linear optimization that can do that: the *dual problem*!

Bounding optimal values of LPs

Starting with an original ("primal") LP, how can we bound on its optimal objective value?

min
$$7x_1 + x_2 + 5x_3$$

s.t. $y_i \cdot (x_1 - x_2 + 3x_3) \ge 10 \, y_i$ (a)
 $y_2 \cdot (5x_1 + 2x_2 - x_3) \ge 6 \, y_2$ (b)
 $x_1, x_2, x_3 \ge 0$

Optimal solution: $x^* = (1.75, 0, 2.75)$ with $c^T x^* = 26$.

goal, law. bound
$$7x_1 + x_2 + 5x_3$$
 $7x_1 + x_2 + 5x_3 \ge x_1 - x_2 + 7x_3 \ge 10$
 $7x_1 + x_2 + 5x_3 \ne 5x_1 + 2x_2 - x_3 \ge 6$
 $7x_1 + x_2 + 5x_3 \ge 6x_1 + x_2 + 2x_3 \ge 16$

arh

Dual

max
$$10y_1 + 6y_2$$
 $y_1 + 5y_2 \le 7$
 $-y_1 + 2y_2 \le 1$
 $y_1 - y_2 \le 5$
 $y_1 - y_2 \le 5$
 $y_1 + y_2 \ge 0$

Dual LPs

min
$$c^T x$$
 max $b^T y$
s. t. $Ax \ge b$ (P) s. t. $A^T y \le c$ (D)
 $x \ge 0$ $y \ge 0$

Generalizations:

- ▶ *i*th constraint in primal with $\ge' \iff y_i \ge 0$
- *i*th constraint in primal with '=' \iff y_i unconstrained

Lemma 11.11 (Weak Duality)

If x and y are *feasible* solutions for the primal resp. dual LP, it holds that $c^Tx \ge b^Ty$.

Dual LPs

min
$$c^T x$$
 max $b^T y$
s.t. $Ax \ge b$ (P) s.t. $A^T y \le c$ (D)
 $x \ge 0$ $y \ge 0$

Generalizations:

- ▶ *i*th constraint in primal with $' \trianglerighteq ' \iff y_i \ge 0$
- ▶ *i*th constraint in primal with $' \neq ' \iff y_i$ unconstrained

Lemma 11.11 (Weak Duality)

If x and y are feasible solutions for the primal resp. dual LP, it holds that $c^Tx \ge b^Ty$.

Proof:

Dual constraint
$$A^T y \le c$$
 implies $c^T \ge (A^T y)^T = y^T A$.

Dual constraint
$$A^T y \le c$$
 implies $c^T \ngeq (A^T y)^T = y^T A$.
 $\Rightarrow c^T x \trianglerighteq (y^T A) x = y^T (Ax) \trianglerighteq y^T b = b^T y$

Duality Theory

Indeed, one can show by a closer study that the optimal objective values *always coincide*.

Theorem 11.12 (Strong duality)

The primal LP has a finite optimal objective if and only if the dual has. If x^* resp. y^* are two optimal solutions to the primal resp. dual LP then $c^Tx^* = b^Ty^*$ holds.

Duality Theory

Indeed, one can show by a closer study that the optimal objective values *always coincide*.

Theorem 11.12 (Strong duality)

The primal LP has a finite optimal objective if and only if the dual has. If x^* resp. y^* are two optimal solutions to the primal resp. dual LP then $c^Tx^* = b^Ty^*$ holds.

Theorem 11.13 (Complementary Slackness Conditions (CSC))

Let *x* and *y* be feasible solutions to the primal and dual LP.

The pair (x, y) is optimal *if and only if*

1.
$$\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le m} a_{i,j} \cdot y_i = c_j$$
 and

2.
$$\forall i \in [m] : y_i = 0 \lor \sum_{1 < i < n} a_{i,i} \cdot x_i = b_i.$$

4

Duality Theory

Indeed, one can show by a closer study that the optimal objective values *always coincide*.

Theorem 11.12 (Strong duality)

The primal LP has a finite optimal objective if and only if the dual has. If x^* resp. y^* are two optimal solutions to the primal resp. dual LP then $c^Tx^* = b^Ty^*$ holds.

Theorem 11.13 (Complementary Slackness Conditions (CSC))

Let *x* and *y* be feasible solutions to the primal and dual LP.

The pair (x, y) is optimal *if and only if*

- **1.** $\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le m} a_{i,j} \cdot y_i = c_j \text{ and }$
- **2.** $\forall i \in [m] : y_i = 0 \lor \sum_{1 \le j \le n} a_{i,j} \cdot x_j = b_i$.

Remark 11.14

- Strong duality implies that the LP threshold decision problem is in NP ∩ co-NP: Yes-certificate: feasible solution; No-certificate: feasible solution for the dual. (We know it actually lies in P)
- **2.** For ILPs, we only get weak duality.

11.5 Vertex Cover and Matching Revisited

Vertex Cover & Maximum Matching

Vertex Cover

$$\min \sum_{v \in V} x_v$$
s. t. $x_v + x_w \ge 1 \quad \forall vw \in E$

$$x_v \in \{0, 1\} \quad \forall v \in V$$

→ Consider the LP relaxations

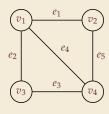
Maximum Matching

$$\max \sum_{e \in E} y_e$$
s.t.
$$\sum_{vw \in E} y_{vw} \le 1 \quad \forall v \in V$$

$$y_e \in \{0, 1\} \qquad \forall e \in E$$

Vertex Cover & Maximum Matching – Example

Graph G



Minimum Vertex Cover

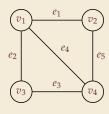
min
$$x_1 + x_2 + x_3 + x_4$$

s. t. $x_1 + x_2 \ge 1$
 $x_1 + x_3 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_1 + x_4 \ge 1$
 $x_2 + x_4 \ge 1$
 $x_1 , x_2 , x_3 , x_4 \ge 0$

Maximum Matching

Vertex Cover & Maximum Matching - Example

Graph G



Minimum Vertex Cover

min
$$x_1 + x_2 + x_3 + x_4$$

s.t. $x_1 + x_2 \ge 1$
 $x_1 + x_3 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_1 + x_4 \ge 1$
 $x_2 + x_4 \ge 1$
 $x_1 + x_2 + x_4 \ge 1$

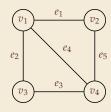
$$\vec{A} \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{pmatrix}$$

Maximum Matching

$$\mathbb{A}^{\pm} \left(\begin{array}{ccccc} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{array} \right)$$

Vertex Cover & Maximum Matching – Example

Graph G



Minimum Vertex Cover

min
$$x_1 + x_2 + x_3 + x_4$$

s.t. $x_1 + x_2 \ge 1$
 $x_1 + x_3 \ge 1$
 $x_3 + x_4 \ge 1$
 $x_1 + x_4 \ge 1$
 $x_2 + x_4 \ge 1$
 $x_1 + x_2 + x_4 \ge 0$

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)$$

Maximum Matching

incidence matrix of G!

Vertex Cover & Maximum Matching – Dual Problems

Problems are *dual!*

 \rightsquigarrow Our earlier lemma "VC \geq M" is just weak duality (on the ILPs)

Vertex Cover & Maximum Matching – Dual Problems

Problems are dual!

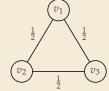
- \rightarrow Our earlier lemma "VC \geq M" is just weak duality (on the ILPs)
- → Can generally try to build approximation algorithm by constructing pair of primally/dually feasible solutions

Vertex Cover & Maximum Matching – Dual Problems

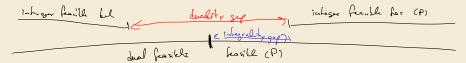
Problems are dual!

- \rightarrow Our earlier lemma "VC \geq M" is just weak duality (on the ILPs)
- → Can generally try to build approximation algorithm by constructing pair of primally/dually feasible solutions

Note: Dual **LPs** have **equal** optimal objective value; For dual **ILPs**, can have a *duality gap*



→ For VertexCover/MaximumMatching, duality gap is 2.



Bipartite Graphs

Except for bipartite graphs!

Bipartite graph: $V(G) = L \dot{\cup} R$, $E(G) \subset L \times R$

Bipartite Graphs

Except for bipartite graphs!

Bipartite graph: $V(G) = L \dot{\cup} R$, $E(G) \subset L \times R$

Known:

every square submatrix has determinant 0, 1, or -1

- ▶ incidence matrix *A* of bipartite *G* is a *totally unimodular (TU)* matrix
- ▶ *A* TU \leadsto LPs min{ $c^Tx : Ax \ge b, x \ge 0$ } and max{ $b^Ty : A^Ty \le c, y \ge 0$ } with integral *b* and *c* have **integral** optimal solutions x^* and y^*
- → No integrality gap and no duality gap!

Bipartite Graphs

Except for bipartite graphs!

Bipartite graph: $V(G) = L \dot{\cup} R$, $E(G) \subset L \times R$

Known:

every square submatrix has determinant 0, 1, or -1

- ightharpoonup incidence matrix A of bipartite G is a *totally unimodular (TU)* matrix
- ► A TU \leadsto LPs min{ $c^Tx : Ax \ge b, x \ge 0$ } and max{ $b^Ty : A^Ty \le c, y \ge 0$ } with integral b and c have **integral** optimal solutions x^* and y^*
- → No integrality gap and no duality gap!

Here, also easy to see directly:

- ▶ Maximum matching in bipartite graph must have one side (*L* or *R*) completely matched
- → Taking all of these vertices must be a VC

11.6 Set Cover Duality & Dual Fitting

Dual Fitting

Dual fitting uses (I)LPs for a minimization problem as follows:

min cTX 5(Ax 35 (I) xeM'

- ightharpoonup Simple algorithm maintains primally feasible and **integral** x.
- ▶ In the analysis, we show that $c^T x$, the cost of x, is at most the cost of an implicitly computed (nonintegral) dual y. However, y is not in general dually feasible.
- ▶ By *scaling* y down by a factor $\delta > 1$, we obtain a feasible dual solution: y/δ .

Set Cover LP and its dual

Recall: Input: $S = (S_1, ..., S_k)$ over universe U; define $V(e) = \{j : e \in S_j\}$.

$$\min \sum_{j=1}^{k} c(S_{j}) \cdot x_{j} \qquad \max \sum_{e \in U} y_{e}$$

$$\text{s.t.} \sum_{j \in V(e)} x_{j} \geq 1 \quad \forall e \in U \qquad \text{s.t.} \sum_{e \in S_{j}} y_{e} \leq c(S_{j}) \quad \forall j \in [k]$$

$$x \geq 0 \qquad \qquad y \geq 0$$

Intuition:

Pack as much (y_e) of good e as possible, so that for group S_j its capacity $c(S_j)$ is not exceeded.

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
           // For analysis: i := 1
           while C \neq [n]
                 i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
                  \mathcal{C} := \mathcal{C} \cup \{i^*\}
           C := C \cup S_{i^*}
            // For analysis only:
                 //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
          // For analysis: i := 1
           while C \neq [n]
                i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
            \mathcal{C} := \mathcal{C} \cup \{i^*\}
         C := C \cup S_{i^*}
          // For analysis only:
                //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

Consider the dual constraint for
$$S$$

$$\sum_{e \in S_i} y_e \le c(S_i). \quad \text{Write } \ell = |S_i|.$$

$$\max \sum_{e \in U} y_e$$
s.t.
$$\sum_{e \in S_j} y_e \le c(S_j) \quad \forall j \in [k]$$

$$y \ge 0$$

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
           // For analysis: i := 1
           while C \neq [n]
                 i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
                  \mathcal{C} := \mathcal{C} \cup \{i^*\}
            C := C \cup S_{i^*}
             // For analysis only:
                 //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

$$\sum_{e \in S_j} y_e \le c(S_j). \quad \text{Write } \ell = |S_j|.$$

Let e_1, \ldots, e_n be elements in order as covered by algorithm.

When e_i covered, S_j contains $\geq \ell - (i-1)$ *uncovered* elements.

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
           // For analysis: i := 1
           while C \neq [n]
                 i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
                  \mathcal{C} := \mathcal{C} \cup \{i^*\}
           C := C \cup S_{i^*}
            // For analysis only:
                 //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

$$\sum_{e \in S_j} y_e \le c(S_j). \qquad \text{Write } \ell = |S_j|.$$

Let e_1, \ldots, e_n be elements in order as covered by algorithm.

When e_i covered, S_j contains $\geq \ell - (i-1)$ uncovered elements.

$$\leadsto$$
 S_j covers e_i at price $\leq \frac{c(S_j)}{\ell - i + 1}$ per element.

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
           // For analysis: i := 1
           while C \neq [n]
                 i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
                  \mathcal{C} := \mathcal{C} \cup \{i^*\}
           C := C \cup S_{i^*}
            // For analysis only:
                 //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

$$\sum_{e \in S_j} y_e \le c(S_j). \qquad \text{Write } \ell = |S_j|.$$

Let e_1, \ldots, e_n be elements in order as covered by algorithm.

When e_i covered, S_j contains $\geq \ell - (i-1)$ uncovered elements.

$$\Rightarrow$$
 S_j covers e_i at price $\leq \frac{c(S_j)}{\ell - i + 1}$ per element.
 \Rightarrow $price(e_i) \leq \frac{c(S_j)}{\ell - i + 1}$

Recall greedySetCover from Unit 10:

```
procedure greedySetCover(n, S, c)
           \mathcal{C} := \emptyset; C := \emptyset
           // For analysis: i := 1
           while C \neq [n]
                 i^* := \arg\min_{i \in [n]} \frac{c(S_i)}{|S_i \setminus C|}
                  \mathcal{C} := \mathcal{C} \cup \{i^*\}
           C := C \cup S_{i^*}
            // For analysis only:
                 //\alpha_i := \frac{c(S_{i^*})}{|S_{i^*} \setminus C|}
                 // for e \in S_{i^*} \setminus C set price(e) := \alpha_i
10
                 //i := i + 1
11
           return C
12
```

Lemma 11.15

 $y_e = price(e)/H_n$ is dually feasible.

Proof:

price(e) essentially dual variable, but not directly feasible. (Recall $\sum_{e \in U} price(e) = c(\mathcal{C})$).

Consider the dual constraint for S_i :

$$\sum_{e \in S_j} y_e \le c(S_j). \qquad \text{Write } \ell = |S_j|.$$

Let e_1, \ldots, e_n be elements in order as covered by algorithm.

When e_i covered, S_j contains $\geq \ell - (i-1)$ *uncovered* elements.

$$\Rightarrow S_j \text{ covers } e_i \text{ at price} \leq \frac{c(S_j)}{\ell - i + 1} \text{ per element.}$$

$$\Rightarrow price(e_i) \leq \frac{c(S_j)}{\ell - i + 1} \Rightarrow y_{e_i} \leq \underbrace{1}_{H_n} \underbrace{c(S_j)}_{\ell - i + 1}$$

Proof (cont.):

Consider dual constraint for S_j :

$$\sum_{e \in S_j} y_e = \sum_{m=1}^{\ell} y_{e_{i_m}}$$

$$S_j = \left\langle e_{c_1}, \dots, e_{c_{\ell}} \right\rangle$$

$$\Leftrightarrow c(\mathcal{C}) \leq H_n \cdot OPT_{(D)} = H_n \cdot OPT_{(P)}.$$

Also note: actually suffices to scale by H_{ℓ} for $\ell = \max |S_j|$.

Proof (cont.):

Consider dual constraint for S_i :

$$\sum_{e \in S_{j}} y_{e} = \sum_{m=1}^{\ell} y_{e_{i_{m}}} \leq \frac{c(S_{j})}{H_{n}} \sum_{m=1}^{\ell} \frac{1}{m}$$

$$y_{e_{i}} \leq \left(\frac{1}{H_{n}}\right)^{\ell-i+1} c(S_{j}) = H_{n} \cdot OPT_{(P)}.$$

$$\Leftrightarrow c(\mathcal{C}) \leq H_{n} \cdot OPT_{(D)} = H_{n} \cdot OPT_{(P)}.$$

Also note: actually suffices to scale by H_{ℓ} for $\ell = \max |S_j|$.

Proof (cont.):

Consider dual constraint for
$$S_i$$
:

Consider dual constraint for
$$S_j$$
:
$$\sum_{e \in S_j} y_e = \sum_{m=1}^{\ell} y_{e_{i_m}} \leq \frac{c(S_j)}{H_n} \sum_{m=1}^{\ell} \frac{1}{m} = \underbrace{\frac{H_{\ell}}{H_n}}_{\leq \ell} c(S_j) \leq c(S_j)$$

24

Proof (cont.):

Consider dual constraint for S_i :

Consider dual constraint for
$$S_j$$
:
$$\sum_{e \in S_j} y_e = \sum_{m=1}^{\ell} y_{e_{i_m}} \le \frac{c(S_j)}{H_n} \sum_{m=1}^{\ell} \frac{1}{m} = \frac{H_{\ell}}{H_n} c(S_j) \le c(S_j)$$

$$= \sum_{e \in S_j} \frac{y_{e_{i_m}}}{H_n} = \sum_{m=1}^{\ell} \frac{1}{m} = \sum_{m=1}^{\ell}$$

$$\rightsquigarrow$$
 $c(\mathcal{C}) \leq H_n \cdot OPT_{(D)} = H_n \cdot OPT_{(P)}.$

Proof (cont.):

Consider dual constraint for S_i :

$$\sum_{e \in S_j} y_e = \sum_{m=1}^{\ell} y_{e_{i_m}} \le \frac{c(S_j)}{H_n} \sum_{m=1}^{\ell} \frac{1}{m} = \frac{H_{\ell}}{H_n} c(S_j) \le c(S_j)$$

$$\rightsquigarrow c(\mathcal{C}) \leq H_n \cdot OPT_{(D)} = H_n \cdot OPT_{(P)}.$$

Also note: actually suffices to scale by H_{ℓ} for $\ell = \max |S_i|$.

24

Previous result shows that integrality gap $\frac{OPT}{OPT_{(P)}} \leq H_n$.

Can we give a lower bound?

Previous result shows that integrality gap $\frac{OPT}{OPT_{(P)}} \leq H_n$.

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)

For the set cover ILP and its relaxation holds

$$\frac{OPT}{OPT_{(P)}} \ge \frac{\log_2(n+1)}{2\frac{n}{n+1}} \sim \frac{1}{2\ln 2}H_n \approx 0.721H_n$$

→ not possible to improve worst case using LP tricks alone

Proof:

We construct a concrete example family.

Given $n = 2^{\ell} - 1$ for $\ell \in \mathbb{N}_{\geq 1} \iff U = [1..2^{\ell})$ all ℓ -bit binary numbers (except 0)

Previous result shows that integrality gap $\frac{OPT}{OPT_{(P)}} \leq H_n$.

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)

For the set cover ILP and its relaxation holds

$$\frac{OPT}{OPT_{(P)}} \geq \frac{\log_2(n+1)}{2\frac{n}{n+1}} \sim \frac{1}{2\ln 2}H_n \approx 0.721H_n$$

→ not possible to improve worst case using LP tricks alone

Proof:

We construct a concrete example family.

Given $n = 2^{\ell} - 1$ for $\ell \in \mathbb{N}_{\geq 1} \iff U = [1..2^{\ell})$ all ℓ -bit binary numbers (except 0)

View $i \in U$ as binary vector $i \in \{0, 1\}^{\ell}$ using binary digits of number i.

Set
$$S_j = \{i \in U : i^T j \equiv 1 \pmod{2}\}$$
 for $j = \emptyset, \dots, n \not\in 1$; $c(S_j) = 1$

Proof (cont.):

Can show: $|S_j| = \frac{n+1}{2}$ and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell-1$ digits of i; for last p where $j_p=1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Proof (cont.):

Can show:
$$|S_j| = \frac{n+1}{2}$$
 and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell-1$ digits of i; for last p where $j_p=1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Setting all $x_j = \frac{2}{n+1}$ is primally feasible for set cover LP (fractional set cover)

$$OPT_{(P)} \leq n \cdot \frac{2}{n+1} \sim 2.$$

primal contract

 $X_5 > 1$
 $X_6 > 1$
 $X_6 > 1$

Proof (cont.):

Can show: $|S_j| = \frac{n+1}{2}$ and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell-1$ digits of i; for last p where $j_p=1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Setting all $x_j = \frac{2}{n+1}$ is primally feasible for set cover LP (fractional set cover)

 $\rightsquigarrow OPT_{(P)} \leq n \cdot \frac{2}{n+1} \sim 2.$

However, integral set cover needs ℓ sets.

Suppose not, let i_1, \ldots, i_k yield cover with $k < \ell$.

$$A = \begin{pmatrix} -i_1 - \\ \vdots \\ -i_k - \end{pmatrix} \text{ is } k \times \ell \text{ matrix}$$

 \rightarrow rank of *A* is $\leq k$

Proof (cont.):

Can show: $|S_i| = \frac{n+1}{2}$ and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell - 1$ digits of i; for last p where $j_p = 1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Setting all $x_i = \frac{2}{n+1}$ is primally feasible for set cover LP (fractional set cover) $\rightsquigarrow OPT_{(P)} \leq n \cdot \frac{2}{n+1} \sim 2.$

However, integral set cover needs ℓ sets.

Suppose not, let i_1, \ldots, i_k yield cover with $k < \ell$.

$$A = \begin{pmatrix} -i_1 - \\ \vdots \\ -i_k - \end{pmatrix} \text{ is } k \times \ell \text{ matrix}$$

 $ightharpoonup \operatorname{rank}$ of A is $\leq k$ $\mathbb{F}_{\mathbf{z}}$ $ightharpoonup \operatorname{nullspace}$ of $A \neq \{0\}$ $ightharpoonup \exists j : Aj \equiv 0$

Proof (cont.):

Can show:
$$|S_j| = \frac{n+1}{2}$$
 and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell - 1$ digits of i; for last p where $j_p = 1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Setting all
$$x_j = \frac{2}{n+1}$$
 is primally feasible for set cover LP (fractional set cover) $\rightarrow OPT_{(P)} \le n \cdot \frac{2}{n+1} \sim 2$.

However, integral set cover needs ℓ sets.

Suppose not, let i_1, \ldots, i_k yield cover with $k < \ell$.

$$A = \begin{pmatrix} -i_1 - \\ \vdots \\ -i_k - \end{pmatrix} \text{ is } k \times \ell \text{ matrix}$$

$$\rightsquigarrow$$
 rank of *A* is $\leq k$

$$\rightarrow$$
 nullspace of $A \neq \{0\} \rightarrow \exists j : Aj \equiv 0$

$$\rightarrow j \notin S_{i_1}, \ldots, S_{i_k}$$
 SC.

Proof (cont.):

Can show: $|S_j| = \frac{n+1}{2}$ and $|V(i)| = \frac{n+1}{2}$

Given j, can arbitrarily fill $\ell - 1$ digits of i; for last p where $j_p = 1$, exactly one choice for i_p makes $i^T j \equiv 1$.

Setting all $x_j = \frac{2}{n+1}$ is primally feasible for set cover LP (fractional set cover) $\rightarrow OPT_{(P)} \le n \cdot \frac{2}{n+1} \sim 2$.

However, integral set cover needs ℓ sets.

Suppose not, let i_1, \ldots, i_k yield cover with $k < \ell$.

$$A = \begin{pmatrix} -i_1 - \\ \vdots \\ -i_k - \end{pmatrix} \text{ is } k \times \ell \text{ matrix}$$

- \rightsquigarrow rank of *A* is $\leq k$
- \rightarrow nullspace of $A \neq \{0\} \rightarrow \exists j : Aj \equiv 0$
- $\rightarrow j \notin S_{i_1}, \ldots, S_{i_k}$ SC.

$$OPT \ \geq \ \ell \ = \ \lg(n+1).$$

11.7 The Primal-Dual Schema

The Primal-Dual Schema

So far:

- ▶ ad hoc methods, a posteriori justified by LP arguments
- rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

The Primal-Dual Schema

So far:

- ▶ ad hoc methods, a posteriori justified by LP arguments
- ► rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

Idea: Use complementary slackness conditions to guide us On ILPs, need suitably *relaxed CSC*

- ightharpoonup maintain (x, y) throughout that satisfy relaxed CSC
- ► *x* is always integral, but initially **not** primal feasible
- ▶ *y* is dual feasible, but not integral
- ► To make *x* "more feasible" modify it
- → let CSCs guides adjustment to *y*

The Primal-Dual Schema

So far:

- ad hoc methods, a posteriori justified by LP arguments
- ► rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

Idea: Use complementary slackness conditions to guide us On ILPs, need suitably *relaxed CSC*

- ightharpoonup maintain (x, y) throughout that satisfy relaxed CSC
- \triangleright *x* is always integral, but initially **not** primal feasible
- ▶ *y* is dual feasible, but not integral
- ► To make *x* "more feasible" modify it
- → let CSCs guides adjustment to *y*
- \rightsquigarrow self-certifying algorithm: y gives bound on OPT, so proofs approx. ratio for x

Relaxed CSCs

Recall: LP Complementary Slackness Conditions:

1.
$$\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le m} a_{i,j} y_i = c_j \text{ and }$$

2.
$$\forall i \in [m] : y_i = 0 \lor \sum_{1 \le j \le n}^{1 \le i \le m} a_{i,j} x_j = b_i.$$

Relaxed CSCs

Recall: LP Complementary Slackness Conditions:

1.
$$\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le m} a_{i,j} y_i = c_j \text{ and }$$

2.
$$\forall i \in [m] : y_i = 0 \lor \sum_{1 \le j \le n}^{1 \le j \le m} a_{i,j} x_j = b_i.$$

(α, β) -Relaxed CSCs: With $\alpha \ge 1$ and $\beta \ge 1$

1.
$$\forall j \in [n] : x_j = 0 \lor \frac{c_j}{\alpha} \le \sum_{1 \le i \le m} a_{i,j} y_i \le c_j$$
 and

2.
$$\forall i \in [m] : y_i = 0 \lor b_i \leq \sum_{1 \leq j \leq n} a_{i,j} x_j \leq \beta \cdot b_i$$
.

Relaxed CSCs

Recall: LP Complementary Slackness Conditions:

1.
$$\forall j \in [n] : x_j = 0 \lor \sum_{1 \le i \le n} a_{i,j} y_i = c_j$$
 and

2.
$$\forall i \in [m] : y_i = 0 \lor \sum_{1 \le i \le n}^{n} a_{i,j} x_j = b_i.$$

(α, β) -Relaxed CSCs: With $\alpha \ge 1$ and $\beta \ge 1$

1.
$$\forall j \in [n] : x_j = 0 \lor \frac{c_j}{\alpha} \le \sum_{1 \le i \le m} a_{i,j} y_i \le c_j$$
 and

2.
$$\forall i \in [m] : y_i = 0 \lor b_i \le \sum_{1 \le i \le n} a_{i,j} x_j \le \beta \cdot b_i$$
.

Lemma 11.17 (Relaxed CSC duality)

If x and y and primal resp. dual feasible and satisfy the (α, β) -relaxed CSCs then $c^T x \leq \alpha \beta \cdot b^T y$

Proof:

Compute
$$\underline{c}^T x \leq \alpha (A^T y)^T x = \alpha y^T (Ax) \leq \alpha y^T \beta b = \alpha \beta \cdot b^T y$$
.

storm, duality ctx = bly weak duality ctx > bly

CSC for Set Cover

Complementary Slackness Conditions for Set Cover

$$x_{j} = 0 \quad \forall \sum_{e \in S_{j}} y_{i}^{e} = c(S_{j}) \qquad \forall j \in [k]$$

$$y_{e} = 0 \quad \forall \sum_{j \in V(e)} x_{j} = 1 \qquad \forall e \in U$$

Problem: In general only simultaneously fulfilled by fractional solutions

CSC for Set Cover

Complementary Slackness Conditions for Set Cover

$$x_j = 0 \quad \lor \quad \sum_{u \in S_j} y_u = c(S_j) \qquad \forall j \in [k]$$

 $y_e = 0 \quad \lor \quad \sum_{j \in V(e)} x_j = 1 \qquad \forall e \in U$

Problem: In general only simultaneously fulfilled by fractional solutions

$$y_e = 0 \quad \bigvee \sum_{j \in V(e)} x_j \leq f \qquad \forall e \in U$$

i. e., every element at most f times \rightsquigarrow trivially fulfilled . . .

Primal Dual Set Cover

```
1 procedure primalDualSetCover(n,S,c)
2 f := \text{global frequency}
3 x := 0; y := 0; T := [n]
4 while T \neq \emptyset
5 Choose e \in T arbitrarily
6 Increase y_e until CSC holds for one more set S_j
7 for all S_j with \sum_{e \in S_j} y_e = c(S_j)
8 T = T \setminus S_j
9 x_j = 1 \text{ // fix } S_j \text{ for solution}
10 return \mathfrak{C} := \{j \in [k] : x_j = 1\}
```

```
Primal Set Cover LP

LP

\lim_{j \in I} \sum_{i=1}^{k} c(S_{j}) \cdot x_{j} \qquad \lim_{i \in I} \sum_{e \in I} y_{e}

\lim_{j \in I} \sum_{i \in V(e)} x_{j} \ge 1 \quad \forall e \in U \qquad \sup_{e \in S_{j}} y_{e} \le c(S_{j}) \quad \forall j \in [k]

\lim_{j \in V(e)} x \ge 0

(\alpha, \beta) \cdot \text{Relaxed CSCs: With } \alpha \ge 1 \text{ and } \beta \ge 1

1. \quad \forall j \in [n] : x_{j} = 0 \quad \lor \frac{c_{j}}{\alpha} \le \sum a_{i,j} y_{i} \le c_{j} \text{ and } C \le 1
```

2. $\forall i \in [m] : y_i = 0 \lor b_i \le \sum_{1 \le i \le m} a_{i,j} x_j \le \beta \cdot b_i$.

Theorem 11.18

primalDualSetCover is an f-approximation for SetCover.

Proof:

The algorithm only terminates once \mathcal{C} is a set cover $\ \leadsto \ x$ primal feasible.

Primal Dual Set Cover

```
1 procedure primalDualSetCover(n,S,c)
2 f:= global frequency
3 x:=0; y:=0; T:=[n]
4 while T\neq\emptyset
5 Choose e\in T arbitrarily
6 Increase y_e until CSC holds for one more set S_j
7 for all S_j with \sum_{e\in S_j}y_e=c(S_j)
8 T=T\setminus S_j
9 x_j=1/f ix S_j for solution
10 return \mathcal{C}:=\{j\in [k]:x_j=1\}
```

```
Primal Set Cover LP  \begin{aligned} & \text{Dual Set Cover LP} \\ & \text{min } \sum_{j=1}^k c(S_j) \cdot x_j \end{aligned} & \text{Set Cover LP} \\ & \text{s. t. } \sum_{j \in V(e)} x_j \geq 1 \quad \forall e \in U \end{aligned} & \text{s. t. } \sum_{e \in S_j} y_e \leq c(S_j) \quad \forall j \in [k] \\ & \text{s. t. } \sum_{j \in V(e)} x_j \geq 0 \end{aligned}
```

Theorem 11.18

primalDualSetCover is an f-approximation for SetCover.

Proof:

The algorithm only terminates once \mathcal{C} is a set cover \rightsquigarrow x primal feasible.

For
$$j$$
 with $x_j = 1$, must have $\sum_{e \in S_j} y_e = c(S_j)$ (CSC1) (was true when x_j set to 1, not modified later)

Primal Dual Set Cover

```
1 procedure primalDualSetCover(n,S,c)
2   f := \text{global frequency}
3   x := 0; y := 0; T := [n]
4   while T \neq \emptyset
5   Choose e \in T arbitrarily
6   Increase y_e until CSC holds for one more set S_j
7   for all S_j with \sum_{e \in S_j} y_e = c(S_j)
8   T = T \setminus S_j
9   x_j = 1 \text{ // fix } S_j \text{ for solution}
10   return \mathcal{C} := \{j \in [k] : x_j = 1\}
```

```
Primal Set Cover LP  \begin{aligned} & \text{Dual Set Cover LP} \\ & \min & \sum_{j=1}^k c(S_j) \cdot x_j \end{aligned} & \text{Dual Set Cover LP} \\ & \text{s. t.} & \sum_{j \in V(e)} x_j \geq 1 \quad \forall e \in U \end{aligned} & \text{s. t.} & \sum_{e \in S_j} y_e \leq c(S_j) \quad \forall j \in [k] \\ & x \geq 0 \end{aligned}
```

Theorem 11.18

primalDualSetCover is an f-approximation for SetCover.

y feosible invaricently

Proof:

The algorithm only terminates once \mathcal{C} is a set cover \rightsquigarrow x primal feasible.

For j with $x_j = 1$, must have $\sum_{e \in S_j} y_e = c(S_j)$ (CSC1) (was true when x_j set to 1, not modified later)

$$(x, y)$$
 satisfies $(1, f)$ -relaxed CSCs \leadsto $c(\mathcal{C}) = c^T x \le 1 \cdot f \cdot b^T y \le f \cdot OPT$

Summary

LP-based Approximation design patterns

- deterministic rounding
- ► randomized rounding
- ▶ dual fitting
- ▶ primal-dual schema