
11 LP-Based
Approximation

15 July 2025

Prof. Dr. Sebastian Wild
CS627 (Summer 2025)
Philipps-Universität Marburg

version 2025-07-15 23:09

Outline

11 LP-Based Approximation
11.1 (Integer) Linear Optimization Recap
11.2 LP Relaxations & Rounding
11.3 Randomized Rounding
11.4 LP Duality
11.5 Vertex Cover and Matching Revisited
11.6 Set Cover Duality & Dual Fitting
11.7 The Primal-Dual Schema

11.1 (Integer) Linear Optimization Recap

LPs in Standard Form

Definition 11.1 (LP)
A linear program (LP) in standard form with 𝑛 variables and 𝑚 constraints is characterized by a
matrix 𝑨 ∈ ℤ𝑚×𝑛 , a vector 𝒃 ∈ ℤ𝑚 , and a vector 𝒄 ∈ ℤ𝑛 and is written as

min 𝒄𝑇𝒙 min
Í𝑛

𝑗=1 𝑐𝑗 · 𝑥𝑗
s. t. 𝑨𝒙 ≥ 𝒃 s. t.

Í𝑛
𝑗=1 𝑎𝑖𝑗 · 𝑥𝑗 ≥ 𝑏𝑖 for all 𝑖 ∈ [𝑚]

𝒙 ≥ 0 𝑥𝑗 ≥ 0 for all 𝑗 ∈ [𝑛]

(Inequalities on vectors apply componentwise.)
Any vector 𝑥 ∈ ℝ𝑛 with 𝐴𝑥 ≥ 𝑏 and 𝑥 ≥ 0 is called a feasible solution for the LP, and 𝑐𝑇𝑥 is its
objective value. An optimal solution is a feasible vector 𝑥∗ with minimal objective value. ◀

Remark 11.2 (Rational coefficients)
We can in general allow 𝐴 ∈ ℚ𝑚×𝑥 , 𝑏 ∈ ℚ𝑚 and 𝑐 ∈ ℚ𝑛 ; by multiplying constraints and
scaling objective function with the common denominator we obtain an equivalent LP. ◀

1

Example LP
min 7𝑥1 + 𝑥2 + 5𝑥3

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10
5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

⇝ Optimal solution 𝑥∗ = (1.75, 0, 2.75) with 𝑐𝑇𝑥∗ = 26.

2

Example LP
min 7𝑥1 + 𝑥2 + 5𝑥3

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10
5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6
𝑥1 , 𝑥2 , 𝑥3 ≥ 0

⇝ Optimal solution 𝑥∗ = (1.75, 0, 2.75) with 𝑐𝑇𝑥∗ = 26.

Extreme point: feasible point that is not a convex combination of two distinct feasible solutions.

Remark 11.3 (Facts on LPs)
1. More general versions of LP possible:

= constraints, unrestricted variables, max instead of min . . .
⇝ can all be transformed into equivalent one in standard form.

2. LP can be infeasible (no solution), unbounded (no optimal solution) or finite.

3. If LP has optimal solution, there is an optimal extreme point ⇝ finite problem!

4. Optimal solutions can be computed in polytime (ellipsoid method).
◀ 2

Integer Linear Program in Standard Form

Definition 11.4 (ILP)
An integer linear program in standard form is an LP with the additional integrality constraints
𝑥𝑗 ∈ ℕ0:

min 𝒄𝑇𝑥

s. t. 𝑨𝒙 ≥ 𝒃

𝒙 ∈ ℕ𝒏
0 ◀

3

Integer Linear Program in Standard Form

Definition 11.4 (ILP)
An integer linear program in standard form is an LP with the additional integrality constraints
𝑥𝑗 ∈ ℕ0:

min 𝒄𝑇𝑥

s. t. 𝑨𝒙 ≥ 𝒃

𝒙 ∈ ℕ𝒏
0 ◀

Remark 11.5 (Facts on ILPs)
1. Generalized versions can again be transformed into standard form.

2. Decision version of the problem NP-complete.
◀

3

11.2 LP Relaxations & Rounding

LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP
well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

4

LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP
well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

⇝ A natural idea to obtain approximately optimal solutions for NPO problems:

1. Formulate problem as ILP (𝐼)
2. Drop integrality constraints from (𝐼) ⇝ LP (𝑃)
3. Obtain optimal fractional solution 𝒙∗ for (𝑃)

Cost of 𝒙∗ is bound for OPT!

4

LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP
well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

⇝ A natural idea to obtain approximately optimal solutions for NPO problems:

1. Formulate problem as ILP (𝐼)
2. Drop integrality constraints from (𝐼) ⇝ LP (𝑃)
3. Obtain optimal fractional solution 𝒙∗ for (𝑃)

Cost of 𝒙∗ is bound for OPT!

4. . . . ? Somehow get back to feasible solution for (𝐼)

4

LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP
well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

⇝ A natural idea to obtain approximately optimal solutions for NPO problems:

1. Formulate problem as ILP (𝐼)
2. Drop integrality constraints from (𝐼) ⇝ LP (𝑃)
3. Obtain optimal fractional solution 𝒙∗ for (𝑃)

Cost of 𝒙∗ is bound for OPT!

4. . . . ? Somehow get back to feasible solution for (𝐼)
Simplest version: Round

tricky bit: how to make feasible

to nearest integer!

4

LP Relaxation Approximations
Since ILPs are NP-complete, any NP problem can be written as an ILP
well, for decision versions . . . but often very natural to write optimization problems as ILP

Hard part of approximation: Get a bound on OPT!

⇝ A natural idea to obtain approximately optimal solutions for NPO problems:

1. Formulate problem as ILP (𝐼)
2. Drop integrality constraints from (𝐼) ⇝ LP (𝑃)
3. Obtain optimal fractional solution 𝒙∗ for (𝑃)

Cost of 𝒙∗ is bound for OPT!

4. . . . ? Somehow get back to feasible solution for (𝐼)
Simplest version: Round

tricky bit: how to make feasible

to nearest integer!

Note: Integrality gap of (I)LP is key barrier in this approach
4

Set Cover as ILP
The Set Cover ILP
Idea 𝑥𝑗 = 1 iff 𝑆𝑗 in cover.
Notation: For 𝑒 ∈ 𝑈 = [𝑛] set 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆𝑗}.

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (I)

𝑥 ∈ ℕ𝑘
0

5

Set Cover as ILP
The Set Cover ILP
Idea 𝑥𝑗 = 1 iff 𝑆𝑗 in cover.
Notation: For 𝑒 ∈ 𝑈 = [𝑛] set 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆𝑗}.

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (I)

𝑥 ∈ ℕ𝑘
0

Observation: Any optimal solution
fulfills 𝑥 ∈ {0, 1}𝑘

5

Set Cover as ILP
The Set Cover ILP
Idea 𝑥𝑗 = 1 iff 𝑆𝑗 in cover.
Notation: For 𝑒 ∈ 𝑈 = [𝑛] set 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆𝑗}.

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (I)

𝑥 ∈ ℕ𝑘
0

Observation: Any optimal solution
fulfills 𝑥 ∈ {0, 1}𝑘

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (P)

𝑥 ≥ 0

LP Relaxation: replace 𝑥 ∈ ℕ𝑘
0 by 𝑥 ≥ 0.

⇝ efficiently solvable, but might get
fractional solutions 𝑥∗.

5

Set Cover as ILP
The Set Cover ILP
Idea 𝑥𝑗 = 1 iff 𝑆𝑗 in cover.
Notation: For 𝑒 ∈ 𝑈 = [𝑛] set 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆𝑗}.

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (I)

𝑥 ∈ ℕ𝑘
0

Observation: Any optimal solution
fulfills 𝑥 ∈ {0, 1}𝑘

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈 (P)

𝑥 ≥ 0

LP Relaxation: replace 𝑥 ∈ ℕ𝑘
0 by 𝑥 ≥ 0.

⇝ efficiently solvable, but might get
fractional solutions 𝑥∗.

Write OPT(𝐼) resp. OPT(𝑃) for the optimal objective value ⇝ OPT(𝐼) ≤ OPT(𝑃)
5

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

6

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

6

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an
𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a
2-approximation for
WeightedVertexCover. ◀

6

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an
𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a
2-approximation for
WeightedVertexCover. ◀

Proof:
(1) C is a set cover
Let 𝑒 ∈ 𝑈 be arbitrary. Since 𝑥∗ is feasible, we have

Õ
𝑗∈𝑉(𝑒)

𝑥∗𝑗 ≥ 1.

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an
𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a
2-approximation for
WeightedVertexCover. ◀

Proof:
(1) C is a set cover
Let 𝑒 ∈ 𝑈 be arbitrary. Since 𝑥∗ is feasible, we have

Õ
𝑗∈𝑉(𝑒)

𝑥∗𝑗 ≥ 1.

|𝑉(𝑒)| = 𝑓𝑒 ≤ 𝑓

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an
𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a
2-approximation for
WeightedVertexCover. ◀

Proof:
(1) C is a set cover
Let 𝑒 ∈ 𝑈 be arbitrary. Since 𝑥∗ is feasible, we have

Õ
𝑗∈𝑉(𝑒)

𝑥∗𝑗 ≥ 1.

|𝑉(𝑒)| = 𝑓𝑒 ≤ 𝑓 ⇝ one 𝑥∗𝑗 with 𝑗 ∈ 𝑉(𝑒) must be 𝑥∗𝑗 ≥ 1/ 𝑓 .

Simple Rounding
For rounding to yield feasible integral solution, must round conservatively.

1 procedure frequencyCutoffSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency of 𝑆
3 𝑥∗ := optimal solution of relaxed set cover LP.
4 C := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 if 𝑥∗𝑗 ≥ 1/ 𝑓 then add 𝑗 to C

7 return C

Theorem 11.6
frequencyCutoffSetCover is an
𝑓 -approximation for SetCover. ◀

Corollary 11.7
frequencyCutoffSetCover is a
2-approximation for
WeightedVertexCover. ◀

Proof:
(1) C is a set cover
Let 𝑒 ∈ 𝑈 be arbitrary. Since 𝑥∗ is feasible, we have

Õ
𝑗∈𝑉(𝑒)

𝑥∗𝑗 ≥ 1.

|𝑉(𝑒)| = 𝑓𝑒 ≤ 𝑓 ⇝ one 𝑥∗𝑗 with 𝑗 ∈ 𝑉(𝑒) must be 𝑥∗𝑗 ≥ 1/ 𝑓 .
⇝ 𝑗 ∈ C and 𝑒 is covered.

6

Simple Rounding [2]
Proof (cont.):
(2) 𝑓 -approximation.
𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤

min-problem

OPT(𝐼). For every 𝑗 ∈ C, 𝑥∗𝑗 ≥ 1/ 𝑓 .

Simple Rounding [2]
Proof (cont.):
(2) 𝑓 -approximation.
𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤

min-problem

OPT(𝐼). For every 𝑗 ∈ C, 𝑥∗𝑗 ≥ 1/ 𝑓 .

⇝ 𝑐(C) =
Õ
𝑗∈C

𝑐(𝑆𝑗)

Simple Rounding [2]
Proof (cont.):
(2) 𝑓 -approximation.
𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤

min-problem

OPT(𝐼). For every 𝑗 ∈ C, 𝑥∗𝑗 ≥ 1/ 𝑓 .

⇝ 𝑐(C) =
Õ
𝑗∈C

𝑐(𝑆𝑗)

≤
Õ
𝑗∈C

𝑓 · 𝑥∗𝑗 · 𝑐(𝑆𝑗)

= 𝑓 ·
Õ
𝑗∈C

𝑥∗𝑗 · 𝑐(𝑆𝑗)

Simple Rounding [2]
Proof (cont.):
(2) 𝑓 -approximation.
𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤

min-problem

OPT(𝐼). For every 𝑗 ∈ C, 𝑥∗𝑗 ≥ 1/ 𝑓 .

⇝ 𝑐(C) =
Õ
𝑗∈C

𝑐(𝑆𝑗)

≤
Õ
𝑗∈C

𝑓 · 𝑥∗𝑗 · 𝑐(𝑆𝑗)

= 𝑓 ·
Õ
𝑗∈C

𝑥∗𝑗 · 𝑐(𝑆𝑗)

≤ 𝑓 ·
Õ
𝑗∈[𝒌]

𝑥∗𝑗 · 𝑐(𝑆𝑗)

= 𝑓 · OPT(𝑃)

Simple Rounding [2]
Proof (cont.):
(2) 𝑓 -approximation.
𝑥∗ optimal for (𝑃) ⇝ 𝑐𝑇𝑥∗ = OPT(𝑃) ≤

min-problem

OPT(𝐼). For every 𝑗 ∈ C, 𝑥∗𝑗 ≥ 1/ 𝑓 .

⇝ 𝑐(C) =
Õ
𝑗∈C

𝑐(𝑆𝑗)

≤
Õ
𝑗∈C

𝑓 · 𝑥∗𝑗 · 𝑐(𝑆𝑗)

= 𝑓 ·
Õ
𝑗∈C

𝑥∗𝑗 · 𝑐(𝑆𝑗)

≤ 𝑓 ·
Õ
𝑗∈[𝒌]

𝑥∗𝑗 · 𝑐(𝑆𝑗)

= 𝑓 · OPT(𝑃)
≤ 𝑓 · OPT(𝐼) ■

7

Simple Rounding – Analysis is tight
In the worst case, the above threshold method cannot be better than an 𝑓 -approximation.

8

Simple Rounding – Analysis is tight
In the worst case, the above threshold method cannot be better than an 𝑓 -approximation.

Consider the “Fully Symmetric instance:”
Suppose 𝑓 | 𝑛
𝑈 = [0..𝑛) with 𝑆𝑗 = { 𝑗 , 𝑗 + 1, . . . , 𝑗 + 𝑓 − 1} mod 𝑛, for all 𝑗 ∈ [0..𝑛)
All sets of equal cost, 𝑐(𝑆𝑗) = 1

8

Simple Rounding – Analysis is tight
In the worst case, the above threshold method cannot be better than an 𝑓 -approximation.

Consider the “Fully Symmetric instance:”
Suppose 𝑓 | 𝑛
𝑈 = [0..𝑛) with 𝑆𝑗 = { 𝑗 , 𝑗 + 1, . . . , 𝑗 + 𝑓 − 1} mod 𝑛, for all 𝑗 ∈ [0..𝑛)
All sets of equal cost, 𝑐(𝑆𝑗) = 1

⇝ 𝑛/ 𝑓 sets suffice;
but 𝑥∗ = (1

𝑓 , . . . ,
1
𝑓) is optimal for (𝑃) ⇝ frequencyCutoffSetCover outputs C = [0..𝑛)

8

11.3 Randomized Rounding

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true?

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If 𝑒 occurs in 𝑓𝑒 sets, we have

ℙ[𝑒 covered] = 1 − ℙ

" Ù
𝑗∈𝑉(𝑒)

𝑆𝑗 ∉ C

#
= 1 −

Ö
𝑗∈𝑉(𝑒)

�
1 − 𝑥∗𝑗

�

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If 𝑒 occurs in 𝑓𝑒 sets, we have

ℙ[𝑒 covered] = 1 − ℙ

" Ù
𝑗∈𝑉(𝑒)

𝑆𝑗 ∉ C

#
= 1 −

Ö
𝑗∈𝑉(𝑒)

�
1 − 𝑥∗𝑗

�
≥ 1 −

�
1 − 1

𝑓𝑒

� 𝑓𝑒
≥ 1 − 1

𝑒

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If 𝑒 occurs in 𝑓𝑒 sets, we have

ℙ[𝑒 covered] = 1 − ℙ

" Ù
𝑗∈𝑉(𝑒)

𝑆𝑗 ∉ C

#
= 1 −

Ö
𝑗∈𝑉(𝑒)

�
1 − 𝑥∗𝑗

�
≥ 1 −

�
1 − 1

𝑓𝑒

� 𝑓𝑒
≥ 1 − 1

𝑒

⇝ Coupon collector
Assuming we keep trying and collect all sets ever chosen

with 𝑛 coupons ⇝ ≈ 𝐻𝑛 repetitions suffice (in expectation)

9

Fractions as probabilities
Another intuitive use of fractional solutions 𝑥∗𝑗 ∈ (0, 1): include 𝑆𝑗 with probability 𝑥∗𝑗 in C.

⇝ 𝔼[𝑐(C)] =
𝑘Õ
𝑗=1

𝑥∗𝑗 · 𝑐(𝑆𝑗) = OPT(𝑃) (!)

Too good to be true? Yeah, mostly not a feasible solution.

But the idea can often be rescued.

Intuition: If 𝑒 occurs in 𝑓𝑒 sets, we have

ℙ[𝑒 covered] = 1 − ℙ

" Ù
𝑗∈𝑉(𝑒)

𝑆𝑗 ∉ C

#
= 1 −

Ö
𝑗∈𝑉(𝑒)

�
1 − 𝑥∗𝑗

�
≥ 1 −

�
1 − 1

𝑓𝑒

� 𝑓𝑒
≥ 1 − 1

𝑒

⇝ Coupon collector
Assuming we keep trying and collect all sets ever chosen

with 𝑛 coupons ⇝ ≈ 𝐻𝑛 repetitions suffice (in expectation)

Curiously, 𝐻𝑛 is also approx. ratio of greedy . . .
But randomized rounding is general & tweakable.

9

Randomized Rounding

1 procedure randomizedRoundingSet(𝑛, 𝑆, 𝑐, 𝑟)
2 𝑥∗ := optimal solution of relaxed set cover LP.
3 for 𝑖 := 1, . . . , 𝑟
4 C𝑖 := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 𝑏 := coin flip with prob 𝑥∗𝑗
7 if 𝑏 == 1 then C𝑖 := C𝑖 ∪ { 𝑗}
8 return C :=

Ð𝑟
𝑖=1 C𝑖

10

Randomized Rounding

1 procedure randomizedRoundingSet(𝑛, 𝑆, 𝑐, 𝑟)
2 𝑥∗ := optimal solution of relaxed set cover LP.
3 for 𝑖 := 1, . . . , 𝑟
4 C𝑖 := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 𝑏 := coin flip with prob 𝑥∗𝑗
7 if 𝑏 == 1 then C𝑖 := C𝑖 ∪ { 𝑗}
8 return C :=

Ð𝑟
𝑖=1 C𝑖

For simplicity, always set 𝑟 = ⌈ln
safely above CC’s 𝐻𝑛

(4𝑛)⌉
Lemma 11.8
randomizedRoundingSet computes a
feasible set-cover with probability ≥ 3

4 . ◀

Proof:
Recall from calculation above that for 𝑒 ∈ 𝑈 and a single iteration of the outer loop:

ℙ[𝑒 not covered by C𝑖] ≤
�
1 − 1

𝑓𝑒

� 𝑓𝑒
≤ 1

𝑒

Randomized Rounding

1 procedure randomizedRoundingSet(𝑛, 𝑆, 𝑐, 𝑟)
2 𝑥∗ := optimal solution of relaxed set cover LP.
3 for 𝑖 := 1, . . . , 𝑟
4 C𝑖 := ∅
5 for 𝑗 := 1, . . . , 𝑘
6 𝑏 := coin flip with prob 𝑥∗𝑗
7 if 𝑏 == 1 then C𝑖 := C𝑖 ∪ { 𝑗}
8 return C :=

Ð𝑟
𝑖=1 C𝑖

For simplicity, always set 𝑟 = ⌈ln
safely above CC’s 𝐻𝑛

(4𝑛)⌉
Lemma 11.8
randomizedRoundingSet computes a
feasible set-cover with probability ≥ 3

4 . ◀

Proof:
Recall from calculation above that for 𝑒 ∈ 𝑈 and a single iteration of the outer loop:

ℙ[𝑒 not covered by C𝑖] ≤
�
1 − 1

𝑓𝑒

� 𝑓𝑒
≤ 1

𝑒

⇝ ℙ[𝑒 not covered by C] =
𝑟Ö
𝑖=1

ℙ[𝑒 not covered by C𝑖] ≤
�
1
𝑒

� 𝑟
With the union bound over all 𝑛 elements and 𝑟 = ln(4𝑛), we obtain
ℙ[C not a set cover] ≤ 𝑛𝑒−𝑟 = 1

4 . ■

10

Randomized Rounding – Analysis

Lemma 11.9 (Expected quality)
Let C by computed by randomizedRoundingSet with 𝑟 repetitions.
The expected cost are 𝔼[𝑐(C)] ≤ 𝑟 · OPT(𝑃). ◀

11

Randomized Rounding – Analysis

Lemma 11.9 (Expected quality)
Let C by computed by randomizedRoundingSet with 𝑟 repetitions.
The expected cost are 𝔼[𝑐(C)] ≤ 𝑟 · OPT(𝑃). ◀

⇝ For 𝑟 = ln(4𝑛) we have by Markov’s inequality: ℙ
�
𝑐(C) ≥ 4 ln(4𝑛) · OPT(𝑃)

� ≤ 1
4

11

Randomized Rounding – Analysis

Lemma 11.9 (Expected quality)
Let C by computed by randomizedRoundingSet with 𝑟 repetitions.
The expected cost are 𝔼[𝑐(C)] ≤ 𝑟 · OPT(𝑃). ◀

⇝ For 𝑟 = ln(4𝑛) we have by Markov’s inequality: ℙ
�
𝑐(C) ≥ 4 ln(4𝑛) · OPT(𝑃)

� ≤ 1
4

Proof:
We choose C = C1 ∪ · · · ∪ C𝑟 .
For the cost we get

𝔼[𝑐(C)] ≤ 𝔼

"
𝑟Õ
𝑖=1

𝑐(C𝑖)
#

=
𝑟Õ
𝑖=1

𝔼[𝑐(C𝑖)] = 𝑟 · OPT(𝑃) ■

11

Randomized Rounding Approximation for Set Cover
So far, randomizedRoundingSet might return infeasible solution. �

12

Randomized Rounding Approximation for Set Cover
So far, randomizedRoundingSet might return infeasible solution. � But that’s easy to fix!

1 procedure randomizedRoundingSetCover(𝑛, 𝑆, 𝑐)
2 C = randomizedRoundingSet(𝑛, 𝑆, 𝑐, ⌈ln(4𝑛)⌉)
3 if C is a set cover
4 return C

5 else
6 return 𝑆

Theorem 11.10 (randomizedRoundingSetCover randomized approx)
randomizedRoundingSetCover is a randomized 4 ln(4𝑛)-approximation for SetCover. ◀

12

Randomized Rounding Approximation for Set Cover
So far, randomizedRoundingSet might return infeasible solution. � But that’s easy to fix!

1 procedure randomizedRoundingSetCover(𝑛, 𝑆, 𝑐)
2 C = randomizedRoundingSet(𝑛, 𝑆, 𝑐, ⌈ln(4𝑛)⌉)
3 if C is a set cover
4 return C

5 else
6 return 𝑆

Theorem 11.10 (randomizedRoundingSetCover randomized approx)
randomizedRoundingSetCover is a randomized 4 ln(4𝑛)-approximation for SetCover. ◀

Proof:
ℙ[C not SC ∨ 𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)] ≤ ℙ[C not SC] + ℙ[𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)]

Randomized Rounding Approximation for Set Cover
So far, randomizedRoundingSet might return infeasible solution. � But that’s easy to fix!

1 procedure randomizedRoundingSetCover(𝑛, 𝑆, 𝑐)
2 C = randomizedRoundingSet(𝑛, 𝑆, 𝑐, ⌈ln(4𝑛)⌉)
3 if C is a set cover
4 return C

5 else
6 return 𝑆

Theorem 11.10 (randomizedRoundingSetCover randomized approx)
randomizedRoundingSetCover is a randomized 4 ln(4𝑛)-approximation for SetCover. ◀

Proof:
ℙ[C not SC ∨ 𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)] ≤ ℙ[C not SC] + ℙ[𝑐(C) > 4 ln(4𝑛) · OPT(𝑃)]

≤
Lemma 11.8, Lemma 11.9

1
4 + 1

4

= 1
2 .

■

12

11.4 LP Duality

LPs for Approximation
Suppose we consider a minimization NPO problem.
Recall: Key use of LP relaxation for approximation: Get lower bound for OPT.

13

LPs for Approximation
Suppose we consider a minimization NPO problem.
Recall: Key use of LP relaxation for approximation: Get lower bound for OPT.

There’s another powerful technique from linear optimization that can do that: the dual
problem!

13

Bounding optimal values of LPs
Starting with an original (“primal”) LP, how can we bound on its optimal objective value?

min 7𝑥1 + 𝑥2 + 5𝑥3

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6

𝑥1 , 𝑥2 , 𝑥3 ≥ 0

Optimal solution:
𝑥∗ = (1.75, 0, 2.75) with 𝑐𝑇𝑥∗ = 26.

14

Dual LPs

min 𝑐𝑇𝑥

s. t. 𝐴𝑥 ≥ 𝑏 (P)
𝑥 ≥ 0

max 𝑏𝑇 𝑦

s. t. 𝐴𝑇𝑦 ≤ 𝑐 (D)
𝑦 ≥ 0

Generalizations:
▶ 𝑖th constraint in primal with ‘≥’ ↭ 𝑦𝑖 ≥ 0
▶ 𝑖th constraint in primal with ‘=’ ↭ 𝑦𝑖 unconstrained

Lemma 11.11 (Weak Duality)
If 𝑥 and 𝑦 are feasible solutions for the primal resp. dual LP, it holds that 𝑐𝑇𝑥 ≥ 𝑏𝑇 𝑦. ◀

15

Dual LPs

min 𝑐𝑇𝑥

s. t. 𝐴𝑥 ≥ 𝑏 (P)
𝑥 ≥ 0

max 𝑏𝑇 𝑦

s. t. 𝐴𝑇𝑦 ≤ 𝑐 (D)
𝑦 ≥ 0

Generalizations:
▶ 𝑖th constraint in primal with ‘≥’ ↭ 𝑦𝑖 ≥ 0
▶ 𝑖th constraint in primal with ‘=’ ↭ 𝑦𝑖 unconstrained

Lemma 11.11 (Weak Duality)
If 𝑥 and 𝑦 are feasible solutions for the primal resp. dual LP, it holds that 𝑐𝑇𝑥 ≥ 𝑏𝑇 𝑦. ◀

Proof:
Dual constraint 𝐴𝑇𝑦 ≤ 𝑐 implies 𝑐𝑇 ≥ (𝐴𝑇𝑦)𝑇 = 𝑦𝑇𝐴.

⇝ 𝑐𝑇𝑥 ≥ (𝑦𝑇𝐴)𝑥 = 𝑦𝑇(𝐴𝑥) ≥
prim. constr.

𝑦𝑇𝑏 = 𝑏𝑇 𝑦 ■

15

Duality Theory
Indeed, one can show by a closer study that the optimal objective values always coincide.
Theorem 11.12 (Strong duality)
The primal LP has a finite optimal objective if and only if the dual has. If 𝑥∗ resp. 𝑦∗ are two
optimal solutions to the primal resp. dual LP then 𝑐𝑇𝑥∗ = 𝑏𝑇 𝑦∗ holds. ◀

16

Duality Theory
Indeed, one can show by a closer study that the optimal objective values always coincide.
Theorem 11.12 (Strong duality)
The primal LP has a finite optimal objective if and only if the dual has. If 𝑥∗ resp. 𝑦∗ are two
optimal solutions to the primal resp. dual LP then 𝑐𝑇𝑥∗ = 𝑏𝑇 𝑦∗ holds. ◀

Theorem 11.13 (Complementary Slackness Conditions (CSC))
Let 𝑥 and 𝑦 be feasible solutions to the primal and dual LP.
The pair (𝑥 , 𝑦) is optimal if and only if

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨ Í
1≤ 𝑖≤𝑚 𝑎𝑖 , 𝑗 · 𝑦𝑖 = 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨ Í
1≤ 𝑗≤𝑛 𝑎𝑖 , 𝑗 · 𝑥𝑗 = 𝑏𝑖 . ◀

16

Duality Theory
Indeed, one can show by a closer study that the optimal objective values always coincide.
Theorem 11.12 (Strong duality)
The primal LP has a finite optimal objective if and only if the dual has. If 𝑥∗ resp. 𝑦∗ are two
optimal solutions to the primal resp. dual LP then 𝑐𝑇𝑥∗ = 𝑏𝑇 𝑦∗ holds. ◀

Theorem 11.13 (Complementary Slackness Conditions (CSC))
Let 𝑥 and 𝑦 be feasible solutions to the primal and dual LP.
The pair (𝑥 , 𝑦) is optimal if and only if

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨ Í
1≤ 𝑖≤𝑚 𝑎𝑖 , 𝑗 · 𝑦𝑖 = 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨ Í
1≤ 𝑗≤𝑛 𝑎𝑖 , 𝑗 · 𝑥𝑗 = 𝑏𝑖 . ◀

Remark 11.14
1. Strong duality implies that the LP threshold decision problem is in NP ∩ co-NP:

Yes-certificate: feasible solution; No-certificate: feasible solution for the dual.
(We know it actually lies in P)

2. For ILPs, we only get weak duality. ◀

16

11.5 Vertex Cover and Matching Revisited

Vertex Cover & Maximum Matching
Vertex Cover

min
Õ
𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑣 + 𝑥𝑤 ≥ 1 ∀𝑣𝑤 ∈ 𝐸

𝑥𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝑉

Maximum Matching

max
Õ
𝑒∈𝐸

𝑦𝑒

s. t.
Õ
𝑣𝑤∈𝐸

𝑦𝑣𝑤 ≤ 1 ∀𝑣 ∈ 𝑉

𝑦𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸

⇝ Consider the LP relaxations

17

Vertex Cover & Maximum Matching – Example

Graph 𝐺

𝑣1 𝑣2

𝑣3 𝑣4

𝑒1

𝑒2

𝑒3

𝑒4 𝑒5

Minimum Vertex Cover
min 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

s. t. 𝑥1 + 𝑥2 ≥ 1
𝑥1 + 𝑥3 ≥ 1

𝑥3 + 𝑥4 ≥ 1
𝑥1 + 𝑥4 ≥ 1

𝑥2 + 𝑥4 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

Maximum Matching

max 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

s. t. 𝑦1 + 𝑦2 + 𝑦4 ≤ 1
𝑦1 + 𝑦5 ≤ 1

𝑦2 + 𝑦3 ≤ 1
𝑦3 + 𝑦4 + 𝑦5 ≤ 1

𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 , 𝑦5 ≥ 0

18

Vertex Cover & Maximum Matching – Example

Graph 𝐺

𝑣1 𝑣2

𝑣3 𝑣4

𝑒1

𝑒2

𝑒3

𝑒4 𝑒5

Minimum Vertex Cover
min 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

s. t. 𝑥1 + 𝑥2 ≥ 1
𝑥1 + 𝑥3 ≥ 1

𝑥3 + 𝑥4 ≥ 1
𝑥1 + 𝑥4 ≥ 1

𝑥2 + 𝑥4 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

©­­­­­
«

1 1 0 0
1 0 1 0
0 0 1 1
1 0 0 1
0 1 0 1

ª®®®®®
¬

Maximum Matching

max 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

s. t. 𝑦1 + 𝑦2 + 𝑦4 ≤ 1
𝑦1 + 𝑦5 ≤ 1

𝑦2 + 𝑦3 ≤ 1
𝑦3 + 𝑦4 + 𝑦5 ≤ 1

𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 , 𝑦5 ≥ 0

©­­­
«

1 1 0 1 0
1 0 0 0 1
0 1 1 0 0
0 0 1 1 1

ª®®®
¬

18

Vertex Cover & Maximum Matching – Example

Graph 𝐺

𝑣1 𝑣2

𝑣3 𝑣4

𝑒1

𝑒2

𝑒3

𝑒4 𝑒5

Minimum Vertex Cover
min 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

s. t. 𝑥1 + 𝑥2 ≥ 1
𝑥1 + 𝑥3 ≥ 1

𝑥3 + 𝑥4 ≥ 1
𝑥1 + 𝑥4 ≥ 1

𝑥2 + 𝑥4 ≥ 1

𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 ≥ 0

©­­­­­
«

1 1 0 0
1 0 1 0
0 0 1 1
1 0 0 1
0 1 0 1

ª®®®®®
¬

Maximum Matching

max 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 + 𝑦5

s. t. 𝑦1 + 𝑦2 + 𝑦4 ≤ 1
𝑦1 + 𝑦5 ≤ 1

𝑦2 + 𝑦3 ≤ 1
𝑦3 + 𝑦4 + 𝑦5 ≤ 1

𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 , 𝑦5 ≥ 0

©­­­
«

1 1 0 1 0
1 0 0 0 1
0 1 1 0 0
0 0 1 1 1

ª®®®
¬

incidence matrix of 𝐺!

18

Vertex Cover & Maximum Matching – Dual Problems
Problems are dual!
⇝ Our earlier lemma “VC ≥ M” is just weak duality (on the ILPs)

19

Vertex Cover & Maximum Matching – Dual Problems
Problems are dual!
⇝ Our earlier lemma “VC ≥ M” is just weak duality (on the ILPs)

⇝ Can generally try to build approximation algorithm by constructing pair of
primally/dually feasible solutions

19

Vertex Cover & Maximum Matching – Dual Problems
Problems are dual!
⇝ Our earlier lemma “VC ≥ M” is just weak duality (on the ILPs)

⇝ Can generally try to build approximation algorithm by constructing pair of
primally/dually feasible solutions

Note: Dual LPs have equal optimal objective value;
For dual ILPs, can have a duality gap

𝑣1

𝑣2 𝑣3

1
2

1
2

1
2

⇝ For VertexCover/MaximumMatching, duality gap is 2.

19

Bipartite Graphs
Except for bipartite graphs!
Bipartite graph: 𝑉(𝐺) = 𝐿 ¤∪ 𝑅, 𝐸(𝐺) ⊂ 𝐿 × 𝑅

20

Bipartite Graphs
Except for bipartite graphs!
Bipartite graph: 𝑉(𝐺) = 𝐿 ¤∪ 𝑅, 𝐸(𝐺) ⊂ 𝐿 × 𝑅

Known:

▶ incidence matrix 𝐴 of bipartite 𝐺 is a totally

every square submatrix has determinant 0, 1, or −1

unimodular (TU) matrix

▶ 𝐴 TU ⇝ LPs min{𝑐𝑇𝑥 : 𝐴𝑥 ≥ 𝑏 , 𝑥 ≥ 0} and max{𝑏𝑇 𝑦 : 𝐴𝑇𝑦 ≤ 𝑐 , 𝑦 ≥ 0}
with integral 𝑏 and 𝑐 have integral optimal solutions 𝑥∗ and 𝑦∗

⇝ No integrality gap and no duality gap!

20

Bipartite Graphs
Except for bipartite graphs!
Bipartite graph: 𝑉(𝐺) = 𝐿 ¤∪ 𝑅, 𝐸(𝐺) ⊂ 𝐿 × 𝑅

Known:

▶ incidence matrix 𝐴 of bipartite 𝐺 is a totally

every square submatrix has determinant 0, 1, or −1

unimodular (TU) matrix

▶ 𝐴 TU ⇝ LPs min{𝑐𝑇𝑥 : 𝐴𝑥 ≥ 𝑏 , 𝑥 ≥ 0} and max{𝑏𝑇 𝑦 : 𝐴𝑇𝑦 ≤ 𝑐 , 𝑦 ≥ 0}
with integral 𝑏 and 𝑐 have integral optimal solutions 𝑥∗ and 𝑦∗

⇝ No integrality gap and no duality gap!

Here, also easy to see directly:
▶ Maximum matching in bipartite graph must have one side (𝐿 or 𝑅) completely matched
⇝ Taking all of these vertices must be a VC

20

11.6 Set Cover Duality & Dual Fitting

Dual Fitting
Dual fitting uses (I)LPs for a minimization problem as follows:

▶ Simple algorithm maintains primally feasible and integral 𝑥.

▶ In the analysis, we show that 𝑐𝑇𝑥,
the cost of 𝑥, is at most the cost of an implicitly computed (nonintegral) dual 𝑦.
However, 𝑦 is not in general dually feasible.

▶ By scaling 𝑦 down by a factor 𝛿 > 1, we obtain a feasible dual solution: 𝑦/𝛿.

⇝ OPT ≥ OPT(𝑃) = 𝑐𝑇𝑥∗ = 𝑏𝑇 𝑦∗ ≥ 𝑏𝑇(𝑦/𝛿)
⇝ 𝑐𝑇𝑥 ≤ 𝑏𝑇 𝑦 ≤ 𝛿 · OPT

21

Set Cover LP and its dual
Recall: Input: 𝑆 = (𝑆1 , . . . , 𝑆𝑘) over universe 𝑈 ; define 𝑉(𝑒) = { 𝑗 : 𝑒 ∈ 𝑆𝑗}.

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈

𝒙 ≥ 0

max
Õ
𝑒∈𝑈

𝑦𝑒

s. t.
Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝒚 ≥ 0

Intuition:
Pack as much (𝑦𝑒) of good 𝑒 as possible, so that for group 𝑆𝑗 its capacity 𝑐(𝑆𝑗) is not exceeded.

22

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗). Write ℓ = |𝑆𝑗 | .

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗). Write ℓ = |𝑆𝑗 | .

Let 𝑒1 , . . . , 𝑒𝑛 be elements in order as covered by
algorithm.
When 𝑒𝑖 covered, 𝑆𝑗 contains ≥ ℓ − (𝑖−1) uncovered
elements.

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗). Write ℓ = |𝑆𝑗 | .

Let 𝑒1 , . . . , 𝑒𝑛 be elements in order as covered by
algorithm.
When 𝑒𝑖 covered, 𝑆𝑗 contains ≥ ℓ − (𝑖−1) uncovered
elements.
⇝ 𝑆𝑗 covers 𝑒𝑖 at price ≤ 𝑐(𝑆𝑗)

ℓ − 𝑖 + 1 per element.

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗). Write ℓ = |𝑆𝑗 | .

Let 𝑒1 , . . . , 𝑒𝑛 be elements in order as covered by
algorithm.
When 𝑒𝑖 covered, 𝑆𝑗 contains ≥ ℓ − (𝑖−1) uncovered
elements.
⇝ 𝑆𝑗 covers 𝑒𝑖 at price ≤ 𝑐(𝑆𝑗)

ℓ − 𝑖 + 1 per element.

⇝ price(𝑒𝑖) ≤ 𝑐(𝑆𝑗)
ℓ − 𝑖 + 1

Analysis of greedySetCover by dual fitting
Recall greedySetCover from Unit 10:

1 procedure greedySetCover(𝑛, S, 𝑐)
2 C := ∅; 𝐶 := ∅
3 // For analysis: 𝑖 := 1
4 while 𝐶 ≠ [𝑛]
5 𝑖∗ := arg min

𝑖∈[𝑛]
𝑐(𝑆𝑖)

|𝑆𝑖 \ 𝐶|
6 C := C ∪ {𝑖∗}
7 𝐶 := 𝐶 ∪ 𝑆𝑖∗
8 // For analysis only:

9 // 𝛼𝑖 := 𝑐(𝑆𝑖∗)
|𝑆𝑖∗ \ 𝐶|

10 // for 𝑒 ∈ 𝑆𝑖∗ \ 𝐶 set price(𝑒) := 𝛼𝑖
11 // 𝑖 := 𝑖 + 1
12 return C

Lemma 11.15
𝑦𝑒 = price(𝑒)/𝐻𝑛 is dually
feasible. ◀

Proof:
price(𝑒) essentially dual variable, but not directly
feasible. (Recall

Í
𝑒∈𝑈 price(𝑒) = 𝑐(C)).

Consider the dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗). Write ℓ = |𝑆𝑗 | .

Let 𝑒1 , . . . , 𝑒𝑛 be elements in order as covered by
algorithm.
When 𝑒𝑖 covered, 𝑆𝑗 contains ≥ ℓ − (𝑖−1) uncovered
elements.
⇝ 𝑆𝑗 covers 𝑒𝑖 at price ≤ 𝑐(𝑆𝑗)

ℓ − 𝑖 + 1 per element.

⇝ price(𝑒𝑖) ≤ 𝑐(𝑆𝑗)
ℓ − 𝑖 + 1 ⇝ 𝑦𝑒𝑖 ≤ 1

𝐻𝑛

𝑐(𝑆𝑗)
ℓ − 𝑖 + 1

23

Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 =
ℓÕ

𝑚=1
𝑦𝑒𝑖𝑚

⇝ 𝑐(C) ≤ 𝐻𝑛 · OPT(𝐷) = 𝐻𝑛 · OPT(𝑃).

Also note: actually suffices to scale by 𝐻ℓ for ℓ = max |𝑆𝑗 | .

Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 =
ℓÕ

𝑚=1
𝑦𝑒𝑖𝑚 ≤ 𝑐(𝑆𝑗)

𝐻𝑛

ℓÕ
𝑚=1

1
𝑚

⇝ 𝑐(C) ≤ 𝐻𝑛 · OPT(𝐷) = 𝐻𝑛 · OPT(𝑃).

Also note: actually suffices to scale by 𝐻ℓ for ℓ = max |𝑆𝑗 | .

Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 =
ℓÕ

𝑚=1
𝑦𝑒𝑖𝑚 ≤ 𝑐(𝑆𝑗)

𝐻𝑛

ℓÕ
𝑚=1

1
𝑚

=
𝐻ℓ

𝐻𝑛
𝑐(𝑆𝑗) ≤ 𝑐(𝑆𝑗) ■

24

Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 =
ℓÕ

𝑚=1
𝑦𝑒𝑖𝑚 ≤ 𝑐(𝑆𝑗)

𝐻𝑛

ℓÕ
𝑚=1

1
𝑚

=
𝐻ℓ

𝐻𝑛
𝑐(𝑆𝑗) ≤ 𝑐(𝑆𝑗) ■

⇝ 𝑐(C) ≤ 𝐻𝑛 · OPT(𝐷) = 𝐻𝑛 · OPT(𝑃).

24

Analysis of greedySetCover by dual fitting [2]
Proof (cont.):
Consider dual constraint for 𝑆𝑗 :Õ
𝑒∈𝑆𝑗

𝑦𝑒 =
ℓÕ

𝑚=1
𝑦𝑒𝑖𝑚 ≤ 𝑐(𝑆𝑗)

𝐻𝑛

ℓÕ
𝑚=1

1
𝑚

=
𝐻ℓ

𝐻𝑛
𝑐(𝑆𝑗) ≤ 𝑐(𝑆𝑗) ■

⇝ 𝑐(C) ≤ 𝐻𝑛 · OPT(𝐷) = 𝐻𝑛 · OPT(𝑃).

Also note: actually suffices to scale by 𝐻ℓ for ℓ = max |𝑆𝑗 | .

24

Integrality Gap of Set Cover
Previous result shows that integrality gap OPT

OPT(𝑃)
≤ 𝐻𝑛 .

Can we give a lower bound?

25

Integrality Gap of Set Cover
Previous result shows that integrality gap OPT

OPT(𝑃)
≤ 𝐻𝑛 .

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)
For the set cover ILP and its relaxation holds

OPT
OPT(𝑃)

≥ log2(𝑛 + 1)
2 𝑛
𝑛+1

∼ 1
2 ln 2𝐻𝑛 ≈ 0.721𝐻𝑛 ◀

⇝ not possible to improve worst case using LP tricks alone

Proof:
We construct a concrete example family.
Given 𝑛 = 2ℓ − 1 for ℓ ∈ ℕ≥1 ⇝ 𝑈 = [1..2ℓ) all ℓ -bit binary numbers (except 0)

Integrality Gap of Set Cover
Previous result shows that integrality gap OPT

OPT(𝑃)
≤ 𝐻𝑛 .

Can we give a lower bound?

Theorem 11.16 (Integrality Gap of Set Cover)
For the set cover ILP and its relaxation holds

OPT
OPT(𝑃)

≥ log2(𝑛 + 1)
2 𝑛
𝑛+1

∼ 1
2 ln 2𝐻𝑛 ≈ 0.721𝐻𝑛 ◀

⇝ not possible to improve worst case using LP tricks alone

Proof:
We construct a concrete example family.
Given 𝑛 = 2ℓ − 1 for ℓ ∈ ℕ≥1 ⇝ 𝑈 = [1..2ℓ) all ℓ -bit binary numbers (except 0)

View 𝑖 ∈ 𝑈 as binary vector 𝒊 ∈ {0, 1}ℓ using binary digits of number 𝑖.
Set 𝑆𝑗 = {𝑖 ∈ 𝑈 : 𝒊𝑇 𝒋 ≡ 1 (mod 2)} for 𝑗 = 0, . . . , 𝑛 − 1; 𝑐(𝑆𝑗) = 1

25

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Setting all 𝑥𝑗 = 2
𝑛+1 is primally feasible for set cover LP (fractional set cover)

⇝ OPT(𝑃) ≤ 𝑛 · 2
𝑛+1 ∼ 2.

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Setting all 𝑥𝑗 = 2
𝑛+1 is primally feasible for set cover LP (fractional set cover)

⇝ OPT(𝑃) ≤ 𝑛 · 2
𝑛+1 ∼ 2.

However, integral set cover needs ℓ sets.
Suppose not, let 𝑖1 , . . . , 𝑖𝑘 yield cover with 𝑘 < ℓ .

⇝ 𝐴 =
©­­
«

— 𝒊1 —
...

— 𝒊𝑘 —

ª®®
¬

is 𝑘 × ℓ matrix

⇝ rank of 𝐴 is ≤ 𝑘

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Setting all 𝑥𝑗 = 2
𝑛+1 is primally feasible for set cover LP (fractional set cover)

⇝ OPT(𝑃) ≤ 𝑛 · 2
𝑛+1 ∼ 2.

However, integral set cover needs ℓ sets.
Suppose not, let 𝑖1 , . . . , 𝑖𝑘 yield cover with 𝑘 < ℓ .

⇝ 𝐴 =
©­­
«

— 𝒊1 —
...

— 𝒊𝑘 —

ª®®
¬

is 𝑘 × ℓ matrix

⇝ rank of 𝐴 is ≤ 𝑘
⇝ nullspace of 𝐴 ≠ {0} ⇝ ∃𝒋 : 𝐴𝒋 ≡ 0

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Setting all 𝑥𝑗 = 2
𝑛+1 is primally feasible for set cover LP (fractional set cover)

⇝ OPT(𝑃) ≤ 𝑛 · 2
𝑛+1 ∼ 2.

However, integral set cover needs ℓ sets.
Suppose not, let 𝑖1 , . . . , 𝑖𝑘 yield cover with 𝑘 < ℓ .

⇝ 𝐴 =
©­­
«

— 𝒊1 —
...

— 𝒊𝑘 —

ª®®
¬

is 𝑘 × ℓ matrix

⇝ rank of 𝐴 is ≤ 𝑘
⇝ nullspace of 𝐴 ≠ {0} ⇝ ∃𝒋 : 𝐴𝒋 ≡ 0
⇝ 𝑗 ∉ 𝑆𝑖1 , . . . , 𝑆𝑖𝑘 � SC.

Integrality Gap of Set Cover [2]
Proof (cont.):
Can show: |𝑆𝑗 | = 𝑛+1

2 and |𝑉(𝑖)| = 𝑛+1
2

Given 𝒋, can arbitrarily fill ℓ − 1 digits of 𝒊; for last 𝑝 where 𝒋𝑝 = 1, exactly one choice for 𝒊𝑝 makes 𝒊𝑇 𝒋 ≡ 1.

Setting all 𝑥𝑗 = 2
𝑛+1 is primally feasible for set cover LP (fractional set cover)

⇝ OPT(𝑃) ≤ 𝑛 · 2
𝑛+1 ∼ 2.

However, integral set cover needs ℓ sets.
Suppose not, let 𝑖1 , . . . , 𝑖𝑘 yield cover with 𝑘 < ℓ .

⇝ 𝐴 =
©­­
«

— 𝒊1 —
...

— 𝒊𝑘 —

ª®®
¬

is 𝑘 × ℓ matrix

⇝ rank of 𝐴 is ≤ 𝑘
⇝ nullspace of 𝐴 ≠ {0} ⇝ ∃𝒋 : 𝐴𝒋 ≡ 0
⇝ 𝑗 ∉ 𝑆𝑖1 , . . . , 𝑆𝑖𝑘 � SC.

OPT ≥ ℓ = lg(𝑛 + 1).
■

26

11.7 The Primal-Dual Schema

The Primal-Dual Schema
So far:
▶ ad hoc methods, a posteriori justified by LP arguments

▶ rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

27

The Primal-Dual Schema
So far:
▶ ad hoc methods, a posteriori justified by LP arguments

▶ rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

Idea: Use complementary slackness conditions to guide us
On ILPs, need suitably relaxed CSC

▶ maintain (𝑥 , 𝑦) throughout that satisfy relaxed CSC

▶ 𝑥 is always integral, but initially not primal feasible

▶ 𝑦 is dual feasible, but not integral

▶ To make 𝑥 “more feasible” modify it

⇝ let CSCs guides adjustment to 𝑦

27

The Primal-Dual Schema
So far:
▶ ad hoc methods, a posteriori justified by LP arguments

▶ rounding algorithms, must solve primal LP to optimality (polytime, but expensive!)

Can we use duality more directly?

Idea: Use complementary slackness conditions to guide us
On ILPs, need suitably relaxed CSC

▶ maintain (𝑥 , 𝑦) throughout that satisfy relaxed CSC

▶ 𝑥 is always integral, but initially not primal feasible

▶ 𝑦 is dual feasible, but not integral

▶ To make 𝑥 “more feasible” modify it

⇝ let CSCs guides adjustment to 𝑦

⇝ self-certifying algorithm: 𝑦 gives bound on OPT, so proofs approx. ratio for 𝑥
27

Relaxed CSCs
Recall: LP Complementary Slackness Conditions:

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨
Õ

1≤ 𝑖≤𝑚
𝑎𝑖 , 𝑗 𝑦𝑖 = 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨
Õ

1≤ 𝑗≤𝑛
𝑎𝑖 , 𝑗 𝑥𝑗 = 𝑏𝑖 .

28

Relaxed CSCs
Recall: LP Complementary Slackness Conditions:

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨
Õ

1≤ 𝑖≤𝑚
𝑎𝑖 , 𝑗 𝑦𝑖 = 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨
Õ

1≤ 𝑗≤𝑛
𝑎𝑖 , 𝑗 𝑥𝑗 = 𝑏𝑖 .

(𝜶, 𝜷)-Relaxed CSCs: With 𝛼 ≥ 1 and 𝛽 ≥ 1

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨
𝒄𝒋

𝜶
≤

Õ
1≤ 𝑖≤𝑚

𝑎𝑖 , 𝑗 𝑦𝑖 ≤ 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨ 𝑏𝑖 ≤
Õ

1≤ 𝑗≤𝑛
𝑎𝑖 , 𝑗 𝑥𝑗 ≤ 𝜷 · 𝒃𝒊 .

28

Relaxed CSCs
Recall: LP Complementary Slackness Conditions:

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨
Õ

1≤ 𝑖≤𝑚
𝑎𝑖 , 𝑗 𝑦𝑖 = 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨
Õ

1≤ 𝑗≤𝑛
𝑎𝑖 , 𝑗 𝑥𝑗 = 𝑏𝑖 .

(𝜶, 𝜷)-Relaxed CSCs: With 𝛼 ≥ 1 and 𝛽 ≥ 1

1. ∀𝑗 ∈ [𝑛] : 𝑥𝑗 = 0 ∨
𝒄𝒋

𝜶
≤

Õ
1≤ 𝑖≤𝑚

𝑎𝑖 , 𝑗 𝑦𝑖 ≤ 𝑐𝑗 and

2. ∀𝑖 ∈ [𝑚] : 𝑦𝑖 = 0 ∨ 𝑏𝑖 ≤
Õ

1≤ 𝑗≤𝑛
𝑎𝑖 , 𝑗 𝑥𝑗 ≤ 𝜷 · 𝒃𝒊 .

Lemma 11.17 (Relaxed CSC duality)
If 𝑥 and 𝑦 and primal resp. dual feasible and satisfy the (𝛼, 𝛽)-relaxed CSCs
then 𝑐𝑇𝑥 ≤ 𝜶𝜷 · 𝑏𝑇 𝑦 ◀
Proof:
Compute 𝑐𝑇𝑥 ≤ 𝛼(𝐴𝑇𝑦)𝑇𝑥 = 𝛼𝑦𝑇(𝐴𝑥) ≤ 𝛼𝑦𝑇𝛽𝑏 = 𝛼𝛽 · 𝑏𝑇 𝑦. ■

28

CSC for Set Cover
Complementary Slackness Conditions for Set Cover

𝑥𝑗 = 0 ∨
Õ
𝑢∈𝑆𝑗

𝑦𝑢 = 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝑦𝑒 = 0 ∨
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 = 1 ∀𝑒 ∈ 𝑈

Problem: In general only simultaneously fulfilled by fractional solutions

29

CSC for Set Cover
Complementary Slackness Conditions for Set Cover

𝑥𝑗 = 0 ∨
Õ
𝑢∈𝑆𝑗

𝑦𝑢 = 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝑦𝑒 = 0 ∨
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 = 1 ∀𝑒 ∈ 𝑈

Problem: In general only simultaneously fulfilled by fractional solutions

⇝ Initially relax dual constraints via 𝛽 = 𝑓 to

𝑦𝑒 = 0 ∨
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≤ 𝑓 ∀𝑒 ∈ 𝑈

i. e., every element at most 𝑓 times ⇝ trivially fulfilled . . .

29

Primal Dual Set Cover
1 procedure primalDualSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency
3 𝒙 := 0; 𝒚 := 0; 𝑇 := [𝑛]
4 while 𝑇 ≠ ∅
5 Choose 𝑒 ∈ 𝑇 arbitrarily
6 Increase 𝑦𝑒 until CSC holds for one more set 𝑆𝑗
7 for all 𝑆𝑗 with

Í
𝑒∈𝑆𝑗 𝑦𝑒 = 𝑐(𝑆𝑗)

8 𝑇 = 𝑇 \ 𝑆𝑗
9 𝑥𝑗 = 1 // fix 𝑆𝑗 for solution

10 return C := { 𝑗 ∈ [𝑘] : 𝑥𝑗 = 1}

Primal Set Cover
LP

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈

𝒙 ≥ 0

Dual Set Cover LP
max

Õ
𝑒∈𝑈

𝑦𝑒

s. t.
Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝒚 ≥ 0

Theorem 11.18
primalDualSetCover is an 𝑓 -approximation for SetCover. ◀

Proof:
The algorithm only terminates once C is a set cover ⇝ 𝑥 primal feasible.

Primal Dual Set Cover
1 procedure primalDualSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency
3 𝒙 := 0; 𝒚 := 0; 𝑇 := [𝑛]
4 while 𝑇 ≠ ∅
5 Choose 𝑒 ∈ 𝑇 arbitrarily
6 Increase 𝑦𝑒 until CSC holds for one more set 𝑆𝑗
7 for all 𝑆𝑗 with

Í
𝑒∈𝑆𝑗 𝑦𝑒 = 𝑐(𝑆𝑗)

8 𝑇 = 𝑇 \ 𝑆𝑗
9 𝑥𝑗 = 1 // fix 𝑆𝑗 for solution

10 return C := { 𝑗 ∈ [𝑘] : 𝑥𝑗 = 1}

Primal Set Cover
LP

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈

𝒙 ≥ 0

Dual Set Cover LP
max

Õ
𝑒∈𝑈

𝑦𝑒

s. t.
Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝒚 ≥ 0

Theorem 11.18
primalDualSetCover is an 𝑓 -approximation for SetCover. ◀

Proof:
The algorithm only terminates once C is a set cover ⇝ 𝑥 primal feasible.
For 𝑗 with 𝑥𝑗 = 1, must have

Í
𝑒∈𝑆𝑗 𝑦𝑒 = 𝑐(𝑆𝑗) (CSC1)

(was true when 𝑥𝑗 set to 1, not modified later)

Primal Dual Set Cover
1 procedure primalDualSetCover(𝑛,𝑆,𝑐)
2 𝑓 := global frequency
3 𝒙 := 0; 𝒚 := 0; 𝑇 := [𝑛]
4 while 𝑇 ≠ ∅
5 Choose 𝑒 ∈ 𝑇 arbitrarily
6 Increase 𝑦𝑒 until CSC holds for one more set 𝑆𝑗
7 for all 𝑆𝑗 with

Í
𝑒∈𝑆𝑗 𝑦𝑒 = 𝑐(𝑆𝑗)

8 𝑇 = 𝑇 \ 𝑆𝑗
9 𝑥𝑗 = 1 // fix 𝑆𝑗 for solution

10 return C := { 𝑗 ∈ [𝑘] : 𝑥𝑗 = 1}

Primal Set Cover
LP

min
𝑘Õ
𝑗=1

𝑐(𝑆𝑗) · 𝑥𝑗

s. t.
Õ
𝑗∈𝑉(𝑒)

𝑥𝑗 ≥ 1 ∀𝑒 ∈ 𝑈

𝒙 ≥ 0

Dual Set Cover LP
max

Õ
𝑒∈𝑈

𝑦𝑒

s. t.
Õ
𝑒∈𝑆𝑗

𝑦𝑒 ≤ 𝑐(𝑆𝑗) ∀𝑗 ∈ [𝑘]

𝒚 ≥ 0

Theorem 11.18
primalDualSetCover is an 𝑓 -approximation for SetCover. ◀

Proof:
The algorithm only terminates once C is a set cover ⇝ 𝑥 primal feasible.
For 𝑗 with 𝑥𝑗 = 1, must have

Í
𝑒∈𝑆𝑗 𝑦𝑒 = 𝑐(𝑆𝑗) (CSC1)

(was true when 𝑥𝑗 set to 1, not modified later)

(𝑥 , 𝑦) satisfies (1, 𝑓)-relaxed CSCs ⇝ 𝑐(C) = 𝑐𝑇𝑥 ≤ 1 · 𝑓 · 𝑏𝑇 𝑦 ≤ 𝑓 · OPT ■

30

Summary
LP-based Approximation design patterns

▶ deterministic rounding

▶ randomized rounding

▶ dual fitting

▶ primal-dual schema

31

