
Department of Computer Science
Prof. Dr. Sebastian Wild

Date: 2025-05-28
Version: 2025-05-27 17:03

Exercise Sheet 3 for
Advanced Algorithms, Summer 2025

Hand In: Until 2025-06-04 18:00, on ILIAS.

Problem 1 30 points

In class, we have seen that the p-variable-3SAT problem, i.e., the 3CNF satisfiability
problem parametrized by the number k of variables trivially satisfies p-variable-3SAT ∈
FPT since the O(2kn) brute-force algorithm is an fpt-algorithm for this problem. But
that algorithm actually solves the general SAT problem – indeed, even the satisfiability
problem for boolean circuits.
Show that we can indeed exploit the special structure of 3SAT to improve upon this by
designing an fpt-algorithm for p-variable-3SAT with search space O(αk) for some α < 2.
Hint: Find a disjoint decomposition of the search space of all assignments that satisfy
the first clause l1 ∨ l2 ∨ l3.

Problem 2 30 + 20 points

Consider the following problem:
Input: A graph G = (V, E) and k ∈ N.
Question: Can we transform G, by deleting or adding at most k edges, into
a graph that consists of a disjoint union of disconnected cliques (of arbitrary
sizes)?

a) Consider the following algorithm for the problem:

Given G = (V, E) and k ∈ N, do the following:
1) If G is already a union of disjoint cliques, we are done: report “yes”

and return.
2) Otherwise, if k ≤ 0 we can not find a solution in this branch. Report

“no” and return.



Exercise Sheet 3 Advanced Algorithms

3) Otherwise, identify u, v, w ∈ V with {u, v} ∈ E and {u, w} ∈ E,
but {v, w} /∈ E. Call the algorithm on three instances ((V, E′), k′)
defined by

(B1) E′ = E \ {{u, v}} and k′ = k − 1,

(B2) E′ = E \ {{u, w}} and k′ = k − 1 and

(B3) E′ = E ∪ {{v, w}} and k′ = k − 1,

respectively. Report “yes” if at least one of the recursive calls reports
such, and “no” otherwise.

Show that this algorithm solves the given problem and give a non-trivial upper
bound on its runtime as O-class.

b) In order to improve the algorithm given in a), we can distinguish three cases that
can occur for any chosen “conflict triple” (u, v, w) as specified in step 3:

(C1) Vertices v and w do not share a common neighbour, that is

∀x ∈ V \ {u} : {v, x} /∈ E ∨ {w, x} /∈ E .

(C2) Vertices v and w have a common neighbour x ̸= u and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbour x ̸= u and {u, x} /∈ E.

It is possible to show that we can restrict ourselves to the following branching.

• In case (C1), we only have to take branches (B1) and (B2).

• In case (C2), we have to execute (B1) and refine the other two branches
further so that each has one subbranch that deletes one, and another that
deletes two additional edges.

• In case (C3), we have to execute (B1). Branch (B2) can be refined into one
branch that deletes an additional edge, and one that adds and deletes one
edge, respectively. Branch (B3) can be refined into one branch that deletes
two additional edges, and one that adds one edge, respectively.

Give a non-trivial worst-case bound on the size of the search tree as explored by
this improved algorithm!

2 / 2


	Problem 1
	Problem 2

