

Date: 2025-06-10 Version: 2025-06-11 07:54

Exercise Sheet 5 for Advanced Algorithms, Summer 2025

Hand In: Until 2025-06-18 18:00, on ILIAS.

Problem 1

- a) Prove that it is impossible to perfectly simulate a roll of a fair 6-sided die using random bits in finite worst-case time, i.e., with $t = time_A < \infty$.
- b) How do programming libraries deal with this issue? Provide at least one example with a reference to the documentation or language specification.

Problem 2

Let $P \stackrel{\mathcal{D}}{=} \mathcal{U}(0,1)$ be a random variable uniformly distributed in (0,1) and let X be a random variable with a Bernoulli $\mathcal{B}(p)$ distribution *conditional* on P = p. We also write this as $X \stackrel{\mathcal{D}}{=} \mathcal{B}(P)$. Compute $\mathbb{E}[X]$.

Problem 3

Prove that the set $C = \{000, 111\}^{\omega}$, i.e., the set of infinite bit sequences on with dieRoll does not terminate is in the σ -algebra \mathcal{F} generated by the cylinder sets $\pi_x = \{xy : y \in v\}$ $\{0,1\}^{\omega}\} \subseteq \{0,1\}^{\omega}$ for $x \in \{0,1\}^{\star}$. Show, by computing along the construction for C, that $\Pr[C] = 0$ in the probability measure induced by $\Pr[\pi_w] = 2^{-|w|}$.

Philipps Universität Marburg

15 + 5 points

20 points

10 points

Problem 4

10 + 30 points

- a) Prove that every algorithm that randomly shuffles a given list of n items so that afterwards all possible orderings are equally likely must use $\Theta(n \log n)$ random bits.
- b) Design a (randomized) algorithm A that generates a random permutation of the numbers $1, \ldots, n$. Each permutation is to have the same probability.

Argue that your algorithm has the desired property and determine \mathbb{E} -Time_A(n) as well as the *expected* number of random bits to generate a permutation of length n.

Can you find a method with optimal number of random bits (asymptotically and in expectation)?