

Date: 2025-06-18 Version: 2025-06-17 18:30

Exercise Sheet 6 for Advanced Algorithms, Summer 2025

Hand In: Until 2025-06-25 18:00, on ILIAS.

Problem 1

20 + 30 points

We consider the two variants for Las Vegas algorithms: always-decisive LV and always-terminating LV.

a) Prove Theorem 7.7 from class:

Every Las Vegas algorithm A for $f: \Sigma^* \to \Gamma^*$ can be transformed into a alwaysdecisive LV algorithm, i.e., a randomized algorithm B for f so that for all $x \in \Sigma^*$ holds

- (i) $\Pr[B(x) = f(x)] = 1$ (always correct)
- (ii) \mathbb{E} -time_B(x) $\leq 2 \cdot time_A(x)$
- b) Prove Theorem 7.8 from class:

Every randomized algorithm B for $f: \Sigma^* \to \Gamma^*$ with $\Pr[B(x) = f(x)] = 1$ can be transformed into an always-terminating Las Vegas algorithm A for f so that for all $x \in \Sigma^*$ holds

 $time_A(x) \leq 2 \cdot \mathbb{E} - time_B(x).$

Hint: Recall the Markov's inequality.

Problem 2

20 + 30 points

Let us consider the model of flipping a fair coin n times and denote by $X \in [0:n]$ the total number of "heads" among the n coin flips.

- a) For the concrete value n = 100, compute
 - (i) the exact probability $\Pr[X \ge 66]$ (use computer algebra!),
 - (ii) an upper bound for $\Pr[X \ge 66]$ using Markov's inequality,
 - (iii) an upper bound for $\Pr[X \ge 66]$ using Chebychev's inequality, (recall the formula for $\operatorname{Var}[X]$), and
 - (iv) an upper bound for $\Pr[X \ge 66]$ using the Chernoff bound for the binomial distribution.
- b) Prove that we have for any $\varepsilon > 0$ that $X = \mathbb{E}[X] \pm \mathcal{O}(\sqrt{n}\log(n))$ w. h. p. as $n \to \infty$.

Problem 3

20 points

A one-sided-error Monte Carlo algorithm A for a function $f: \Sigma^* \to \{0, 1\}$ might give a wrong answer every other time, but an answer A(x) = 1 is guaranteed to be correct. We could use majority voting to amplify the success probability $\frac{1}{2}$ to any desired constant, but that would not exploit the one-sidedness.

Describe how we can reduce the error probability to an arbitrary given constant $\delta > 0$, and compute the running time of the resulting method.

What is the running time to obtain a correct result with high probability? Compare your result to the majority-voting result from class for two-sided error Monte Carlo methods.