AI.GORITI-IMS

OF
IOINFORMATICS |
3 Comparing Sequences

Prof. Dr. Sebastian Wild

Philipps-Universitdt Marburg

Outline

3 Comparing Sequences

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Sequence Alignment

Dynamic Programming

Global - Local — Semilocal
General Scores & Affine Gap Costs
Bounded-Distance Alignments
Exhaustive Tabulation
Linear-Space Alignments

Multiple Sequence Alignment

3.1 Sequence Alignment

3D Structure of hemoglobin

Sequence Similarity

Example: two proteins from human hemoglobin
Human Hemoglobin « globin subunit nttps://m.uniprot.org/uniprotkb/p6sges
Human Hemoglobin § globin subumnit fttps://mv.uniprot.ore/uniprotko/pessrs

~ essentially symmetric copies with same function

https://commons .wikimedia.org/wiki/File:16ZX_Haemoglobin.png

Sequences of the subunits (142 resp. 147 amino acids):
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNAL SALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEF TPAVHASLDKFLASVSTVLTSKYR
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPHTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGT FATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEF TPPVQAAYQKVVAGVANALAHKYH

These are supposed to be “similar”!?

Alignment by EMBOSS Needle https://www.ebi.ac.uk/jdispatcher/psa

M- LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLS----- HGSAOVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASYSTV%TSTTR

1 1 O 3 1 G 1 O 11 [E O
ML TPEEKSAVTALIGRY--IVDEVGGEALGRLLINYPTGRFFESFGDLSTPDAYNGIPVKAGKKVLGAFSDGLAHLONLKG TFATLSELHCOKLHVDPENFRLLGINLVCYLAHHFKEFTPPVQAAYQRVVAGIAIALAEKY

| = same amino acid (65x); : = similar amino acids (25x) ~ 60% same

https://www.uniprot.org/uniprotkb/P69905
https://www.uniprot.org/uniprotkb/P68871
https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
https://www.ebi.ac.uk/jdispatcher/psa

String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . ..
How can we formally define these?

» This unit studies wide class of options

» Algorithmically, all are similar to deal with

» Unfortunately, general case again hard . ..

» Simplest string distance function: Hamming distance dy = #mismatches
¥ only defined for strings of same length

» How about strings like this:

A = alongsharedstri . .
B fo:gsghaigjstrI:SS ~ dy(A,B) =|A| =17 These are maximally different!?

~~ Need a more flexible notion . . .

Edit Distance

Natural idea for distances: describe how to get from A to B

~ relative compression!

A[0..17) = alongsharedstring
B[0..17) = longsharedstrings

“Edit script”:
0. Start with S;.
1. Delete S1[0]
2. Inserts atend of S7.

~~ 2 character operations needed ~+ degit(A, B) =2
Edit Distance Problem

» Given: String A[0..m) and B[0..n) over alphabet £ = [0..0).

» Goal: deqit(A, B) = minimal # symbol operations to transform A into B
operations can be insertion/deletion/substitution of single character

+ optimal edit script (with this number of operations)

Edit Distance Example

Example: edit distance degit(A, B) with A = algorithm, B = logarithm?

Edit script:
algorithm 1. Delete A[0]

; 2. Inserto after A[1] =1
L rith
oga m 3. Replace A[3] =obya

Compact representation of edit script: ~ String alignment

Formally: string over pairs of letters or gap symbols

el et o{ld ez o {le)oeemend]

-logarithm

~ Edit distance = # [f], [;], [CC] with ¢ # ¢’

Edit Distance and Longest Common Subsequence

» Note: close relation to longest common subsequence
Optimal edit script ~ maximal number of matches = longest common subsequence

» But: Optimal alignment may not contain any longest common subsequence
axxa axxa axxa

I
a ayya ayya ayy

axxaaxxaaxxa

N
aayyaayyaayy

» LCS and edit distance are equivalent if we only allow insert and delete operations

3.2 Dynamic Programming

Recap: The 6 Steps of Dynamic Programming

1.

SAN. R

: .. ~ see Efficient Algorithms
Define subproblems (and relate to original problem)

Guess (part of solution) ~» local brute force

Set up DP recurrence (for quality of solution)

Recursive implementation with Memoization

Bottom-up table filling (topological sort of subproblem dependency graph)
Backtracing to reconstruct optimal solution

Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time

~ Correctness proof usually at level of DP recurrence

[ﬁ running time too! worst case time = #subproblems - time to find single best guess

Edit Distance by DP
1. Subproblems: (i,j)for0<i<m,0< j < m compute degit(A[0..7), B[0..]))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,]) = deqit(A[0..7), B[O..}))

i ifj=0

j ifi=0
D(l,])I D(i_lrj)+1/

min<D(i,j-1)+1, otherwise

D(i-1,j—1)+ [Ali - 1] # B[j — 1]]

~» O(nm) subproblems
»> O(1) time to check all guesses (per subproblem)

~> O(nm) overall time and space

» An optimal edit script can be constructed by a backtrace (see below)

Edit Distance — Step 4: Memoization

> Write recursive function to compute recurrence 1. Subproblems
2 |
» But memoize all results! (symbol table: subproblem — optimal cost) 2. Guess!
3. DP Recurrence
~ First action of function: check if subproblem known 4. Memoization
» If so, return cached optimal cost 5. Table Filling
» Otherwise, compute optimal cost and remember it! 6. Backtrace
1 procedure editDist(i, j):
5 ifi== i ifj=0
3 return j J L=
4 elseif j==0 D@ = DG, j-1)+1,
0 min{D(i-1,j)+1, otherwise
5 return 1 D=1, 1) + [Ali — 1] # Blj - 1]
. end if (i-1,j-1)+[Ali-1] #B[j - 1]
7 best := +o0
8 D; := cachedED(i,j—1) +1 13 procedure cachedED(r[i..j), c[i..j)):
9 Dy := cachedED(i -1, j) +1 14 // D[0..m][0..n] initialized to NULL at start
10 Dy := cachedBD(i — 1,/ - 1) + [A[i] # B[j]] 5 if D[i][j] == NULL
1 best := min{Dy, D;, D, } 16 DIi][j] := editDist(i, j)

12 return best 17 return D[i][/]

Edit Distance — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)
. . 1. Subproblems
» Memoized recurrence traverses this DAG (DFS!) 2. Guess!
» We can slightly improve performance by systematically 3. DP Recurrence
computing subproblems following a fixed topological order D e
5. Table Filling
» Topological order here: lexicographic by (i, j) 6. Backtrace
1 procedure editDist(A[0..m), B[0..n)):
2 D[0..m][0..n] := new array
3 fori=0,1,...,m //iterate over subproblems . ..
4 forj=0,1...,n//... in topological order » Same O-class as memoized
> ifi== O .) recursive function
6 DI[i][j] == j i
7 elseif j==0 » In practice usually
. D[il[j] := i substantially faster
2 else o » lower overhead
D[i][j -1]+1, » predictable memory
10 D[i][j] := min < D[i - 1][j] + 1, accesses

D[i - 1][j = 1] + [Ali = 1] # B[j - 1]]
1 return D[m]|[n]

Edit Distance — Step 6: Backtracing

» So far, only determine the cost of an optimal solution

» But we also want the solution itself

» By retracing our steps, we can construct optimal edit script

1
2
3)
4
5)
6
7
8
9

procedure editScript(A[0..1m), B[0..1)):
D[0..m)[0..n) := editDist(A[0..m), B[0..n))
return traceback(m, n)

procedure traceback(i, j):

ifi==0
return Insert(B[0]), . . ., Insert(B[j — 1])
elseif j ==0

return Delete(A[0]), . .., Delete(A[i — 1])
else if D[i][j] == D[i][j - 1] +1
return traceback(i, j — 1), Insert(B[j — 1])
else if D[i][j] == D[i — 1][j] + 1
return traceback(i — 1, j), Delete(B[i — 1])
elseif A[i —1] == B[j — 1]
return traceback(i — 1, j — 1)
else return traceback(i — 1, j — 1), Replace(A[i — 1] — B[j —1])

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

S S Col =

follow recurrence a second time

always have for running time:
backtracing = O(computing M)

computing optimal cost and
computing optimal solution have
same complexity

10

3.3 Global — Local — Semilocal

Local Alignment

So far, we assumed that we know similar regions.
How to detect significantly similar regions hidden in larger strings?

~+ Allow new edit script operations (all cost 0):

» IgnorePrefix(A[0..7)) free deletes at beginning
» IgnorePrefix(BJ[0..])) free inserts at beginning
» IgnoreSuffix(A[i..m)) free deletes at end

» IgnoreSuffix(B[;j..n)) free inserts at end

~ Local Alignment

> Easy to incorporate in DP recurrence:
0. switch to maximizing score (instead min difference), otherwise empty substring is best
~> Matches contribute +1 reward, rest penalty (negative score)
1. Always allow 4th option: start a new local alignment from here (at score 0)

2. Allow to finish at any D[7][j] ~» free suffix

11

Local Alignment Recurrence

ifj=0
ifi =0

otherwise

0,
D(i,j) =
ol . |DG-1,j)-1,
min
D(l/] - 1) - 1/
D(i-1,j-1)+ [Ali -1]=B[j - 1]]
Optimal local alignment score: max

i€[0..m],je[0..n]

D[i][j]

12

Semilocal Aligment a.k.a. Fitting Alignment

Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of B[0..n) is the best match for A[0..m)? (typically then n < 1)

~+ only allow IgnorePrefix(B[0..])) and IgnoreSuffix(B[;..n))

—i ifj=0
0 ifi=0
~ D(i,j) = D(i-1,j)-1,
min{ D(i,j—-1) -1, otherwise
D(i-1,j—1)+ [Ali - 1] =B[j - 1]]

Optimal local alignment score: 'rr[}Jax] D[m][]]
j€[0..n

13

3.4 General Scores & Affine Gap Costs

General Scores

DP algorithm remains unchanged if we let contribution of (mis)match A[i — 1] vs B[j — 1]
depend on used letters.

» For example, replacing amino acid with chemically similar one might not affect function
~+ contributes small positive score

> replacing amino acid with dissimilar one ~+ negative score

Formally, any function giving additive scores for columns S : (X U {-})? \ { [:] } — R works.

General Alignment Score S:
» symmetric matches/substitutions matrix p : 2 X 2 — R (p(a,b) = p(b,a))
> cap penalty g € R

~ S([&]) =pa,b), S([C]) =s([:]) = ¢

~ score of alignment sum of scores of columns

14

BLOSOM Matrices

VFCSVAlOWOZITEXEHLSE >N
18 O [
> ~ m|>
= HZlH
= Bk
< R
= el B
= Bl s S
= e =cfanalyar
e © 9 kel el
= e SR
® R MR R AR
< @ el PRl iRkl RN
B © plcholid Shelnl inEnkeld RO
B 9 el e RN NN
- R) e Sl R

NVFCOALQOWOZTEXEHLSE>WN

https://en.wikipedia.org/wiki/BLOSUM#/media/File:Blosum62- dayhoff-ordering.svg

15

https://en.wikipedia.org/wiki/BLOSUM#/media/File:Blosum62-dayhoff-ordering.svg

Affine Gap costs

In sequence evolution, insertions of single stretch of k characters much more likely than k isolated
(single-character) insertions

So far, we score these the same.

~~ affine gap costs:

score k contiguous insertions (or k contiguous deletions) instead as go + k - ¢
(usually then go > g)

> If we represent contiguous insertions as [|[_]--- []
canassign S([']) = g0+ gand S[_] = g.

» DP algorithm can be extended to handle these refined scores
~ exercises

16

3.5 Bounded-Distance Alignments

Good Alignment or Abort

17

3.6 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called “Four Russians trick” ...

» The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. FaradZev

» all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)

» American authors coined the othering term “Method of Four Russians”
...name in widespread use

18

A Trick for Matrix Multiplication

Suppose we want to multiply two #n X n Boolean matrices C = A - B.

We divide A, B, and C into ¢ X ¢ micro matrices.
~+ C consists of (%)2 micro matrices, each of which is the sum of 7 micro-matrix products.

The number of different possible micro matrix products is L = B
If we pick £ = 1+/lgn, we have only L = 226 = /i different products.
~~+ Exhaustive Tabulation: Can precompute all \/n possible micro-matrix sums/products!

For two micro matrices a and b, we store a - b at the offset ay 1 ...a¢b1,1 ... bs s, where we

interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in O(1) time.

~» Any micro matrix sum/product takes O(1) time
after a total of O(+/ - log3/ % 11) preprocessing.
The total time to compute one micro matrix in C is thus O(7).
So the total time to compute C is O(13/£3) = O(1%/log®* n).

Note: By taking n X ¢ resp. ¢ X n “micro strips” instead of squares, we can choose
! = ©(log n) and obtain final time O(n3/log2 n).

19

Exhaustive Tabulation for Edit Distance

0 E » Micro matrix

_ » Split D(i, j) matrix Again ¢ X ¢ submatrices
E{i Al s corresponding to {-char substrings of S; and S,

» values in F only depend on A, B, C, D, and E!

~+ can make progress micro matrix by micro matrix

n

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

But ... exhaustive tabulation doesn’t seem to work! The values of D(i, j) keep increasing!
How shall we bound the number of possible micro matrices?

» Observation: The difference between neighboring cells D(i, j) and D(i, j + 1)
respectively D(i,j) and D(i + 1,) isin {-1,0, +1}.
> D(i,j+1) < D(i,j) + 11is trivial from recurrence
» D(i,j) < D(i,j + 1) + 1 needs closer look / case distinction

~~ Apply tabulation for offset, not actual values in D(i, j)

Putting the Micro Matrices together

T » Choose micro matrices with
: one row/col overlapping
G 1-10]|1
> -1 0 . o g . .
ATTCA A EmmND » initialize first row and col
T 1 1]
Gl 11101 g Lol (as per recurrence)
Cl-1 0 :
Al-l 0 » number of different micro matrices:
T|1 -1 < 20 . 320-1)
T(1]1/-1/0(1 -
Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation > e S i 10g3 (n) for O(\/ﬁ) micro matrices
and One-against 1y Banded Alig t, Fig. 1 o

» For constant 0, £ = @(log 1) and we have to fill n?/¢?> micro matrices
» Filling table cells not needed; grid row/col only fed into next lookup table
~» O(1) time per micro matrix

~ O(n?/log* n) time overall

21

Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance)
An algorithm for computing the edit distance of any two strings of length 7 in time O(12~°)
for constant 0 > 0 would refute the Strong Exponential-Time Hypothesis. <

E Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)

The Exponential-Time Hypothesis (ETH) asserts that there is a constant 6 > 0 so that every
algorithm for 3SAT requires Q)(2°F) time, where k is the number of variables. <

Definition 3.3 (Strong Exponential-Time Hypothesis)

The Strong Exponential-Time Hypothesis (SETH) asserts that for every ¢ > 0 there is a k such
that kSAT requires Q(2(1-9F) time, where k is the number of variables. <

Unlikely to see “truly subquadratic” algorithms (even for constant alphabets)

22

https://dl.acm.org/doi/abs/10.1145/2746539.2746612

3.7 Linear-Space Alignments

Saving Space is Easy for Score

Assume here that n < m.

DP for D[i][/],
only need O(n) space:

» DJi][j] depends on D[i —1][/],
Dl[i][j — 1], and D[i — 1][j — 1].

» clearly enough to keep
previous and current row of D

» actually, can even overwrite as
we go along
~~ single row sufficient

1
2
3
4
5
6
7
8
9
10
11

12

13

14

procedure Score(A[0..1m), B[0..1))
D := ScoresRow(A, B)
return D|n]

procedure ScoresRow(A[0..m), B[0..1))
D[0..n] := new array

forj:=0,...,n
Dl[jl:=j-g
fori:=1,...,m

match := (i—1)- g
forj=1,...,n
match + p(Ali — 1], B[j — 1])
new := min{ D[j] + ¢
D[j-1]+g
match := DIj]
D[j] := new

23

The Middle-Point Problem

To reconstruct alignment/edit script using standard backtrace, need full table D[0..n][0..m].
But can also reconstruct edit script using Divide & Conquer DP approach!

» Idea: Construct edit script for turning A[0..1/2) into B[0..;*)
and for turning A[m/2..m) into B[j*..n)

» But we don't know middle point j* ... soneed to guess it! ~» use DP!
Hold on, are we running in circles?

No! j* optimizes sum of scores of A[0..m/2) — B[0..j*) and A[m/2..m) — B[j*..n)
~~ Can use linear-space ScoresRow!

» Score for A[0..m/2) — B[0..j*) is D[m /2][j*]
» For A[m/2..m) — B[j*..n) we don’t have an entry in D!

» But we can reverse A and B

24

Linear-Space Alignment

1 procedure editScript(A[0..1m), B[0..1))
2 if m == 0 then return Insert(B[0]), . . ., Insert(B[n — 1])
3 else if n == 0 then return Delete(A[0]), . . ., Delete(A[m — 1])

4 elseif m ==1
5 j = argmin p(A[0], B[j])
0<j<n
6 return Insert(B[0..7)), Replace(A[0], B[/]), Insert(B[j + 1..1))
7 else
8 = L%J
9 Dtop := ScoresRow(A[0..i%), B)
10 Dpottom = ScoresRow(A[i*..m)R, BR) //sR is s reversed
L j* = argmin Dtop[j] + Dpottom[1 = f]
0<j<n
12 return editScript(A[0..7%), B[0..j*)), editScript(A[i*..m), B[j*..n))
13 endif

» Non-recursive cost @(n - m) for ScoresRow
> “Area” n - m in recursive calls is halved in each step.
~+ Total time @(nm), but using only ®(min 7, 1) space
25

3.8 Multiple Sequence Alignment

Multiple-Sequence Alignment

Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.

A shared region between two sequences could be random coincidence.
A shared region between many sequences hardly are.

“One or two homologous sequences whisper . . . a full multiple alignment shouts out loud”
(Arthus Lesk)

Example: f-globin in different species:

Xenopus MVHWTAEEKAATTSVWQKVNVEHDGHDALGRLLIVYPWTQRYFSNFGNLSNSAAVAGNAKVQAHGKKVLSAVGNATSHIDSVKSSLQQLSKIHATEL FVDPENFKRFGGVLVIVLGAKLGT - AFTPKVQAAWEKFIAVLVDGLSQGYN
Zebrafish MVEWTDAERTAILGLWGKLNIDEIGPQALSRCLIVYPWTQRYFATFGNLSSPAATMGNPKVAAHGRTVMGGLERATKNMDNVKNTYAALSVMHSEKLHVDPDNFRLLADCITVCAAMKFGQAGFNADVQEAWQKFLAVVVSALCRQYH
Chicken MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILITVLAAHFSK-DFTPECQAAWQKLVRVVAHALARKYH
Human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK - EFTPPVQAAYQKVVAGVANALAHKYH
Mouse

MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAKVKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLGK - DFTPAAQAAFQKVVAGVATALAHKYH
. * Lo . :* *:* o :.* *:*******:* .¥*:**. *: *% ***’:‘*: .. . ::*.:*.: *% :*‘ :*.**¥:X*: (I .. i **::*I: 25 ool *:
African Clawed Frog (Xenopus laevis): P02133

Zebrafish (Danio rerio): Q90486

Chicken (Gallus gallus): P02112

Human (Homo sapiens): P68871

Mouse (Mus musculus): P02088

https://www.ebi.ac.uk/jdispatcher/msa/clustalo

26

https://www.ebi.ac.uk/jdispatcher/msa/clustalo

Scoring Multiple Alignments
» Given sequences A1[0..111), ..., Ax[0..n) over common alphabet ©
> alignment is sequence of columns in (=) withz_ =X u{-}

» going from 2 to k sequences requires score for k-columns

» different options

» One option: total Hamming distance (see Unit 2 for motifs)

» Here: SP-Score (sum-of-pairs score) w.r.t. S
€1

dsp| | = Z S([CIJ) for S any pairwise-alignment score
1<i<j<k i

Ck

27

https://cogniterra.org/lesson/29868/step/9?unit=21966

Dynamic Programming Solution

Pairwise alignment = path in grid graph; optimal alignment = shortest path between
corners

A T Cc G T c c €
0 1 2 3 4 5 5 6 6 7 T
NN N N N LN .
A

match/mismatch (N\,/>\,), insertion (—), or deletion (/).
T
A

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6
https://cogniterra.org/lesson/29932/step/17unit=22629

~+ DP solution with 2D matrix D[0..m][0..n]

For k strings, shortest path in k-dimensional grid graph

> MMt ny vertices to consider for k strings of n characters O(n*) time ¥

28

https://cogniterra.org/lesson/29932/step/1?unit=22029

Bad News (Again)

MULTIPLE ALIGNMENT WITH SP-SCORE is NP-hard for any ¢ > 2 and any metric S

Elias: Settling the Intractability of Multiple Alignment, . of Computational Biology 2006

Proof Idea: Reduction from VERTEX COVER ON CUBIC GRAPHS

29

https://doi.org/10.1089/cmb.2006.13.1323

Bounding SP-scores

Not all hope is lost.

SP-score can be bounded by optimal pairwise alignments and heuristic for some alignment:
Z ds(Ai, Aj) < dsp(A1,...,Ax) < dsp(some alignment)

1<i<j<k

» can be the basis for a Branch & Bound algorithm

» but: need efficient approximation algorithm for MULTIPLE ALIGNMENT WITH SP-SCORE

~~ Can we build a multiple alignment by successively adding in one new sequence at a time?

30

Extending Pairwise Alignments is tricky

Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

AAAATTTT

AAAATTTT---- AAAATTTT----
----TTTTGGGG / ----TTTTGGGG \ ARAA----GGGG
AAAATTTT----

ARAA----GGGG
ARAA- - - -GGGG
----TTTTGGGG

(a) Compatible pairwise alignments

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a

But No in general . . .

AAAATTTT

AAAATTTT----
----TTTTGGGG

TTTTGGGG

GGGGAAAA

----GGGGAAAA
TTTTGGGG----

(b) Incompatible pairwise alignments

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22b

31

Alignment Trees
Problem in example comes precisely from cycle!
» Given a tree over sequences A, ..., Ax

» Compute optimal pairwise alignments along all k — 1 tree edges

» Build multiple alignment one edge at a time

> Here, use || for every gap symbol in either endpoint of an edge
We always assume S([j) =0

> Notation:
> M e (%) multiple alignment of length N > maxn i
» dgp SP-Score w.r.t. pairwise score S
» ds(A, B) score of optimal pairwise alignment of A and B

» M induces pairwise alignment M[:][7, j] for A; and A j
Note: S(M[:][7,j]) = ds(A;, Aj) and in general not optimal

32

Center-Star Approximation

Use simplest possible tree: A star!

Center-Star Multiple Sequence Alignment
1. Compute all pairwise distances ds(A;, A;)

2. Find c € [k] that minimizes Z]» ds(Ac, Aj)

3. Construct M as alignment consistent with star alignment with center S..

33

Center-Star Approximation — Analysis

Theorem 3.4

Assume ds is a metric for pairwise alignments. The center-star alignment for k strings is a
(2 — %)-approximation w.r.t. to the SP-score of the multiple sequence alignment.

34

	Comparing Sequences
	Sequence Alignment
	Sequence Similarity
	String Distances
	Edit Distance
	Edit Distance Example
	Edit Distance and Longest Common Subsequence

	Dynamic Programming
	Recap: The 6 Steps of Dynamic Programming
	Edit Distance by DP
	Edit Distance – Step 4: Memoization
	Edit Distance – Step 5: Table Filling
	Edit Distance – Step 6: Backtracing

	Global – Local – Semilocal
	Local Alignment
	Local Alignment Recurrence
	Semilocal Aligment a.k.a. Fitting Alignment

	General Scores & Affine Gap Costs
	General Scores
	BLOSOM Matrices
	Affine Gap costs

	Bounded-Distance Alignments
	Good Alignment or Abort

	Exhaustive Tabulation
	Four Russians?
	A Trick for Matrix Multiplication
	Exhaustive Tabulation for Edit Distance
	Putting the Micro Matrices together
	Can we do better?

	Linear-Space Alignments
	Saving Space is Easy for Score
	The Middle-Point Problem
	Linear-Space Alignment

	Multiple Sequence Alignment
	Multiple-Sequence Alignment
	Scoring Multiple Alignments
	Dynamic Programming Solution
	Bad News (Again)
	Bounding SP-scores
	Extending Pairwise Alignments is tricky
	Alignment Trees
	Center-Star Approximation
	Center-Star Approximation – Analysis

