
3 Comparing Sequences
13 November 2025

Prof. Dr. Sebastian Wild

CS594 (Winter 2025-26)

Philipps-Universität Marburg

version 2025-11-20 22:38 H

Outline

3 Comparing Sequences
3.1 Sequence Alignment
3.2 Dynamic Programming
3.3 Global – Local – Semilocal
3.4 General Scores & Affine Gap Costs
3.5 Bounded-Distance Alignments
3.6 Exhaustive Tabulation
3.7 Linear-Space Alignments
3.8 Multiple Sequence Alignment

3.1 Sequence Alignment

Sequence Similarity
Example: two proteins from human hemoglobin
Human Hemoglobin 𝛼 globin subunit https://www.uniprot.org/uniprotkb/P69905

Human Hemoglobin 𝛽 globin subunit https://www.uniprot.org/uniprotkb/P68871

⇝ essentially symmetric copies with same function

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
Sequences of the subunits (142 resp. 147 amino acids):

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

These are supposed to be “similar”!?

Alignment by EMBOSS Needle https://www.ebi.ac.uk/jdispatcher/psa

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
|| |:| :|: | | |||| : | | ||| |: : :| |: :| | ||| |: :|| ||||| | :: :||:|:: : ||:|| || ||| ||:|| : |: || | |||| | |: | :| |: | ||
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

| = same amino acid (65x); : = similar amino acids (25x) ⇝ 60% same

1

https://www.uniprot.org/uniprotkb/P69905
https://www.uniprot.org/uniprotkb/P68871
https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
https://www.ebi.ac.uk/jdispatcher/psa

String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

▶ This unit studies wide class of options

▶ Algorithmically, all are similar to deal with

▶ Unfortunately, general case again hard . . .

▶ Simplest string distance function: Hamming distance 𝑑𝐻 = #mismatches

� only defined for strings of same length

▶ How about strings like this:

𝐴 = alongsharedstring
𝐵 = longsharedstrings

⇝ 𝑑𝐻 (𝐴, 𝐵) = |𝐴| = 17 These are maximally different!?

⇝ Need a more flexible notion . . .

2

Edit Distance
Natural idea for distances: describe how to get from 𝐴 to 𝐵 ⇝ relative compression!

𝐴[0..17) = alongsharedstring
𝐵[0..17) = longsharedstrings

“Edit script”:

0. Start with 𝑆1.

1. Delete 𝑆1[0]
2. Insert s at end of 𝑆1.

⇝ 2 character operations needed ⇝ 𝑑edit(𝐴, 𝐵) = 2

Edit Distance Problem

▶ Given: String 𝐴[0..𝑚) and 𝐵[0..𝑛) over alphabet Σ = [0..𝜎).
▶ Goal: 𝑑edit(𝐴, 𝐵) = minimal # symbol operations to transform 𝐴 into 𝐵

operations can be insertion/deletion/substitution of single character

+ optimal edit script (with this number of operations)

3

Edit Distance Example
Example: edit distance 𝑑edit(𝐴, 𝐵) with 𝐴 = algorithm, 𝐵 = logarithm?

012345678
algorithm
logarithm

Edit script:

1. Delete 𝐴[0]
2. Insert o after 𝐴[1] = l

3. Replace 𝐴[3] = o by a

Compact representation of edit script: String alignment

0123456789
al-gorithm
-|+|x|||||
-logarithm

Formally: string over pairs of letters or gap symbols{[
𝑐

𝑐

]
: 𝑐 ∈ Σ

}
∪

{[
𝑐

−

]
,

[
−
𝑐

]
: 𝑐 ∈ Σ

}
∪

{[
𝑐

𝑐′

]
: 𝑐, 𝑐′ ∈ Σ, 𝑐 ≠ 𝑐′

}
⇝ Edit distance = #

[
𝑐
−
]
,

[−
𝑐

]
,

[
𝑐
𝑐′
]

with 𝑐 ≠ 𝑐′

4

Edit Distance and Longest Common Subsequence
▶ Note: close relation to longest common subsequence

Optimal edit script ≈ maximal number of matches = longest common subsequence

▶ But: Optimal alignment may not contain any longest common subsequence

axxa axxa axxa
| | | | | |
a ayya ayya ayy

axxaaxxaaxxa
| || ||

aayyaayyaayy

▶ LCS and edit distance are equivalent if we only allow insert and delete operations

5

3.2 Dynamic Programming

Recap: The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution

▶ Steps 1–3 require insight / creativity / intuition;

Steps 4–6 are mostly automatic / same each time

⇝ Correctness proof usually at level of DP recurrence

running time too! worst case time = #subproblems · time to find single best guess

⇝ see Efficient Algorithms

6

Edit Distance by DP
1. Subproblems: (𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚 compute 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))

2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: 𝐷(𝑖 , 𝑗) = 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))

𝐷(𝑖 , 𝑗) =



𝑖 if 𝑗 = 0

𝑗 if 𝑖 = 0

min


𝐷(𝑖 − 1, 𝑗) + 1,

𝐷(𝑖 , 𝑗 − 1) + 1,

𝐷(𝑖 − 1, 𝑗 − 1) +
[
𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]

] otherwise

⇝ 𝑂(𝑛𝑚) subproblems

▶ 𝑂(1) time to check all guesses (per subproblem)

⇝ 𝑂(𝑛𝑚) overall time and space

▶ An optimal edit script can be constructed by a backtrace (see below)

7

Edit Distance – Step 4: Memoization
▶ Write recursive function to compute recurrence 1. Subproblems

2. Guess!

3. DP Recurrence

4. Memoization

5. Table Filling

6. Backtrace

▶ But memoize all results! (symbol table: subproblem ↦→ optimal cost)

⇝ First action of function: check if subproblem known

▶ If so, return cached optimal cost

▶ Otherwise, compute optimal cost and remember it!

1 procedure editDist(𝑖, 𝑗):

2 if 𝑖 == 0

3 return 𝑗

4 else if 𝑗 == 0

5 return 𝑖

6 end if
7 best := +∞
8 𝐷𝑖 := cachedED(𝑖, 𝑗 − 1) + 1

9 𝐷𝑑 := cachedED(𝑖 − 1, 𝑗) + 1

10 𝐷𝑚 := cachedED(𝑖 − 1, 𝑗 − 1) +
[
𝐴[𝑖] ≠ 𝐵[𝑗]

]
11 best := min{𝐷𝑑 , 𝐷𝑖 , 𝐷𝑚}
12 return best

13 procedure cachedED(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
14 // 𝐷[0..𝑚][0..𝑛] initialized to NULL at start
15 if 𝐷[𝑖][𝑗] == NULL
16 𝐷[𝑖][𝑗] := editDist(𝑖, 𝑗)

17 return 𝐷[𝑖][𝑗]

𝐷(𝑖 , 𝑗) =



𝑖 if 𝑗 = 0

𝑗 if 𝑖 = 0

min


𝐷(𝑖 , 𝑗 − 1) + 1,

𝐷(𝑖 − 1, 𝑗) + 1,

𝐷(𝑖 − 1, 𝑗 − 1) +
[
𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]

] otherwise

8

Edit Distance – Step 5: Table Filling
▶ Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

2. Guess!

3. DP Recurrence

4. Memoization

5. Table Filling

6. Backtrace

▶ Memoized recurrence traverses this DAG (DFS!)

▶ We can slightly improve performance by systematically

computing subproblems following a fixed topological order

▶ Topological order here: lexicographic by (𝑖 , 𝑗)
1 procedure editDist(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚][0..𝑛] := new array

3 for 𝑖 = 0, 1, . . . , 𝑚 // iterate over subproblems . . .

4 for 𝑗 = 0, 1 . . . , 𝑛 // . . . in topological order
5 if 𝑖 == 0

6 𝐷[𝑖][𝑗] := 𝑗

7 else if 𝑗 == 0

8 𝐷[𝑖][𝑗] := 𝑖

9 else

10 𝐷[𝑖][𝑗] := min


𝐷[𝑖][𝑗 − 1] + 1,

𝐷[𝑖 − 1][𝑗] + 1,

𝐷[𝑖 − 1][𝑗 − 1] +
[
𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]

]
11 return 𝐷[𝑚][𝑛]

▶ Same Θ-class as memoized

recursive function

▶ In practice usually

substantially faster

▶ lower overhead

▶ predictable memory

accesses

9

Edit Distance – Step 6: Backtracing
▶ So far, only determine the cost of an optimal solution 1. Subproblems

2. Guess!

3. DP Recurrence

4. Memoization

5. Table Filling

6. Backtrace

▶ But we also want the solution itself

▶ By retracing our steps, we can construct optimal edit script

1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚)[0..𝑛) := editDist(𝐴[0..𝑚), 𝐵[0..𝑛))
3 return traceback(𝑚, 𝑛)

4

5 procedure traceback(𝑖, 𝑗):

6 if 𝑖 == 0

7 return Insert(𝐵[0]), . . ., Insert(𝐵[𝑗 − 1])
8 else if 𝑗 == 0

9 return Delete(𝐴[0]), . . ., Delete(𝐴[𝑖 − 1])
10 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖][𝑗 − 1] + 1

11 return traceback(𝑖, 𝑗 − 1), Insert(𝐵[𝑗 − 1])
12 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖 − 1][𝑗] + 1

13 return traceback(𝑖 − 1, 𝑗), Delete(𝐵[𝑖 − 1])
14 else if 𝐴[𝑖 − 1] == 𝐵[𝑗 − 1]
15 return traceback(𝑖 − 1, 𝑗 − 1)

16 else return traceback(𝑖 − 1, 𝑗 − 1), Replace(𝐴[𝑖 − 1] → 𝐵[𝑗 − 1])

▶ follow recurrence a second time

▶ always have for running time:

backtracing = 𝑂(computing 𝑀)

⇝ computing optimal cost and

computing optimal solution have

same complexity

10

3.3 Global – Local – Semilocal

Local Alignment
So far, we assumed that we know similar regions.
How to detect significantly similar regions hidden in larger strings?

⇝ Allow new edit script operations (all cost 0):

▶ IgnorePrefix(𝐴[0..𝑖)) free deletes at beginning

▶ IgnorePrefix(𝐵[0.. 𝑗)) free inserts at beginning

▶ IgnoreSuffix(𝐴[𝑖..𝑚)) free deletes at end

▶ IgnoreSuffix(𝐵[𝑗..𝑛)) free inserts at end

⇝ Local Alignment

▶ Easy to incorporate in DP recurrence:

0. switch to maximizing score (instead min difference), otherwise empty substring is best

⇝ Matches contribute +1 reward, rest penalty (negative score)

1. Always allow 4th option: start a new local alignment from here (at score 0)

2. Allow to finish at any 𝐷[𝑖][𝑗] ⇝ free suffix

11

Local Alignment Recurrence

𝐷(𝑖 , 𝑗) =



0 if 𝑗 = 0

0 if 𝑖 = 0

min


0,
𝐷(𝑖 − 1, 𝑗) − 1,
𝐷(𝑖 , 𝑗 − 1) − 1,
𝐷(𝑖 − 1, 𝑗 − 1) +

[
𝐴[𝑖 − 1] = 𝐵[𝑗 − 1]

] otherwise

Optimal local alignment score: max

𝑖∈[0..𝑚], 𝑗∈[0..𝑛]
𝐷[𝑖][𝑗]

12

Semilocal Aligment a.k.a. Fitting Alignment
Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of 𝑩[0..𝒏) is the best match for 𝑨[0..𝒎)? (typically then 𝑚 ≪ 𝑛)

⇝ only allow IgnorePrefix(𝐵[0.. 𝑗)) and IgnoreSuffix(𝐵[𝑗..𝑛))

⇝ 𝐷(𝑖 , 𝑗) =



−𝑖 if 𝑗 = 0

0 if 𝑖 = 0

min


𝐷(𝑖 − 1, 𝑗) − 1,
𝐷(𝑖 , 𝑗 − 1) − 1,
𝐷(𝑖 − 1, 𝑗 − 1) +

[
𝐴[𝑖 − 1] = 𝐵[𝑗 − 1]

] otherwise

Optimal local alignment score: max

𝑗∈[0..𝑛]
𝐷[𝑚][𝑗]

13

3.4 General Scores & Affine Gap Costs

General Scores
DP algorithm remains unchanged if we let contribution of (mis)match 𝐴[𝑖 − 1] vs 𝐵[𝑗 − 1]
depend on used letters.

▶ For example, replacing amino acid with chemically similar one might not affect function

⇝ contributes small positive score

▶ replacing amino acid with dissimilar one ⇝ negative score

Formally, any function giving additive scores for columns 𝑆 : (Σ ∪ {−})2 \
{[−

−
]}

→ ℝ works.

General Alignment Score 𝑆:
▶ symmetric matches/substitutions matrix 𝑝 : Σ × Σ → ℝ (𝑝(𝑎, 𝑏) = 𝑝(𝑏, 𝑎))
▶ gap penalty 𝑔 ∈ ℝ

⇝ 𝑆
([

𝑐
𝑐′
])

= 𝑝(𝑎, 𝑏), 𝑆
([

𝑐
−
])

= 𝑆
([−

𝑐

])
= 𝑔

⇝ score of alignment sum of scores of columns

14

BLOSOM Matrices

https://en.wikipedia.org/wiki/BLOSUM#/media/File:Blosum62-dayhoff-ordering.svg

15

https://en.wikipedia.org/wiki/BLOSUM#/media/File:Blosum62-dayhoff-ordering.svg

Affine Gap costs
In sequence evolution, insertions of single stretch of 𝑘 characters much more likely than 𝑘 isolated
(single-character) insertions
So far, we score these the same.

⇝ affine gap costs:
score 𝑘 contiguous insertions (or 𝑘 contiguous deletions) instead as 𝑔0 + 𝑘 · 𝑔
(usually then 𝑔0 ≫ 𝑔)

▶ If we represent contiguous insertions as

[⊢
𝑐1

] [−
𝑐2

]
· · ·

[−
𝑐𝑘

]
can assign 𝑆(

[⊢
𝑐

]
) = 𝑔0 + 𝑔 and 𝑆

[−
𝑐

]
= 𝑔.

▶ DP algorithm can be extended to handle these refined scores

⇝ exercises

16

3.5 Bounded-Distance Alignments

Good Alignment or Abort

17

3.6 Exhaustive Tabulation

Four Russians?
The exhaustive-tabulation technique to follow is often called “Four Russians trick” . . .

▶ The algorithmic technique was published 1970 by

V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev

▶ all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)

▶ American authors coined the othering term “Method of Four Russians”

. . . name in widespread use

18

A Trick for Matrix Multiplication
Suppose we want to multiply two 𝑛 × 𝑛 Boolean matrices 𝐶 = 𝐴 · 𝐵.

We divide 𝐴, 𝐵, and 𝐶 into ℓ × ℓ micro matrices.
⇝ 𝐶 consists of

(
𝑛
ℓ

)
2

micro matrices, each of which is the sum of
𝑛
ℓ micro-matrix products.

The number of different possible micro matrix products is 𝐿 = 2
ℓ2 · 2

ℓ2

.

If we pick ℓ = 1

4

√
lg 𝑛, we have only 𝐿 = 2

2ℓ2

=
√
𝑛 different products.

⇝ Exhaustive Tabulation: Can precompute all

√
𝑛 possible micro-matrix sums/products!

For two micro matrices 𝑎 and 𝑏, we store 𝑎 · 𝑏 at the offset 𝑎1,1 . . . 𝑎ℓ ,ℓ 𝑏1,1 . . . 𝑏ℓ ,ℓ , where we

interpret this bitstring as a binary number.

On a word RAM, we can use this as indirect memory access in 𝑂(1) time.

⇝ Any micro matrix sum/product takes 𝑂(1) time

after a total of 𝑂(
√
𝑛 · log

3/2 𝑛) preprocessing.

The total time to compute one micro matrix in 𝐶 is thus 𝑂(𝑛ℓ).
So the total time to compute 𝐶 is 𝑂(𝑛3/ℓ 3) = 𝑂(𝑛3/log

3/2 𝑛).

Note: By taking 𝑛 × ℓ resp. ℓ × 𝑛 “micro strips” instead of squares, we can choose

ℓ = Θ(log 𝑛) and obtain final time 𝑂(𝑛3/log
2 𝑛).

19

Exhaustive Tabulation for Edit Distance

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

Micro matrix

▶ Split 𝐷(𝑖 , 𝑗) matrix Again ℓ × ℓ submatrices

corresponding to ℓ -char substrings of 𝑆1 and 𝑆2

▶ values in 𝐹 only depend on 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸!

⇝ can make progress micro matrix by micro matrix

But . . . exhaustive tabulation doesn’t seem to work! The values of 𝐷(𝑖 , 𝑗) keep increasing!
How shall we bound the number of possible micro matrices?
▶ Observation: The difference between neighboring cells 𝐷(𝑖 , 𝑗) and 𝐷(𝑖 , 𝑗 + 1)

respectively 𝐷(𝑖 , 𝑗) and 𝐷(𝑖 + 1, 𝑗) is in {−1, 0, +1}.

▶ 𝐷(𝑖 , 𝑗 + 1) ≤ 𝐷(𝑖 , 𝑗) + 1 is trivial from recurrence

▶ 𝐷(𝑖 , 𝑗) ≤ 𝐷(𝑖 , 𝑗 + 1) + 1 needs closer look / case distinction

⇝ Apply tabulation for offset, not actual values in 𝐷(𝑖 , 𝑗)
20

Putting the Micro Matrices together

Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation
and One-against-many Banded Alignment, Fig. 1

▶ Choose micro matrices with

one row/col overlapping

▶ initialize first row and col

(as per recurrence)

▶ number of different micro matrices:

≤ 𝜎2ℓ · 3
2(ℓ−1)

⇝ ℓ ≤ 1

4
log

3𝜎(𝑛) for 𝑂(
√
𝑛) micro matrices

▶ For constant 𝜎, ℓ = Θ(log 𝑛) and we have to fill 𝑛2/ℓ 2
micro matrices

▶ Filling table cells not needed; grid row/col only fed into next lookup table

⇝ 𝑂(1) time per micro matrix

⇝ 𝑂(𝑛2/log
2 𝑛) time overall

21

Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance)
An algorithm for computing the edit distance of any two strings of length 𝑛 in time 𝑂(𝑛2−𝛿)
for constant 𝛿 > 0 would refute the Strong Exponential-Time Hypothesis. ◀

� Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant 𝛿 > 0 so that every

algorithm for 3SAT requires Ω(2𝛿𝑘) time, where 𝑘 is the number of variables. ◀

Definition 3.3 (Strong Exponential-Time Hypothesis)
The Strong Exponential-Time Hypothesis (SETH) asserts that for every 𝜀 > 0 there is a 𝑘 such

that 𝑘SAT requires Ω(2(1−𝜀)𝑘) time, where 𝑘 is the number of variables. ◀

Unlikely to see “truly subquadratic” algorithms (even for constant alphabets)

22

https://dl.acm.org/doi/abs/10.1145/2746539.2746612

3.7 Linear-Space Alignments

Saving Space is Easy for Score

Assume here that 𝑛 ≤ 𝑚.

DP for 𝐷[𝑖][𝑗],
only need 𝑂(𝑛) space:

▶ 𝐷[𝑖][𝑗] depends on 𝐷[𝑖 − 1][𝑗],
𝐷[𝑖][𝑗 − 1], and 𝐷[𝑖 − 1][𝑗 − 1].

▶ clearly enough to keep

previous and current row of 𝐷

▶ actually, can even overwrite as

we go along

⇝ single row sufficient

1 procedure Score(𝐴[0..𝑚), 𝐵[0..𝑛))
2 𝐷 := ScoresRow(𝐴, 𝐵)

3 return 𝐷[𝑛]
4

5 procedure ScoresRow(𝐴[0..𝑚), 𝐵[0..𝑛))
6 𝐷[0..𝑛] := new array

7 for 𝑗 := 0, . . . , 𝑛

8 𝐷[𝑗] := 𝑗 · 𝑔
9 for 𝑖 := 1, . . . , 𝑚

10 match := (𝑖 − 1) · 𝑔
11 for 𝑗 = 1, . . . , 𝑛

12 new := min


match + 𝑝(𝐴[𝑖 − 1], 𝐵[𝑗 − 1])
𝐷[𝑗] + 𝑔

𝐷[𝑗 − 1] + 𝑔

13 match := 𝐷[𝑗]
14 𝐷[𝑗] := new

23

The Middle-Point Problem
To reconstruct alignment/edit script using standard backtrace, need full table 𝐷[0..𝑛][0..𝑚].

But can also reconstruct edit script using Divide & Conquer DP approach!

▶ Idea: Construct edit script for turning 𝐴[0..𝑚/2) into 𝐵[0.. 𝑗∗)
and for turning 𝐴[𝑚/2..𝑚) into 𝐵[𝑗∗..𝑛)

▶ But we don’t know middle point 𝑗∗ . . . so need to guess it! ⇝ use DP!

Hold on, are we running in circles?

No! 𝑗∗ optimizes sum of scores of 𝐴[0..𝑚/2) → 𝐵[0.. 𝑗∗) and 𝐴[𝑚/2..𝑚) → 𝐵[𝑗∗..𝑛)
⇝ Can use linear-space ScoresRow!

▶ Score for 𝐴[0..𝑚/2) → 𝐵[0.. 𝑗∗) is 𝐷[𝑚/2][𝑗∗]

▶ For 𝐴[𝑚/2..𝑚) → 𝐵[𝑗∗..𝑛) we don’t have an entry in 𝐷!

▶ But we can reverse 𝐴 and 𝐵

24

Linear-Space Alignment
1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛))
2 if 𝑚 == 0 then return Insert(𝐵[0]), . . ., Insert(𝐵[𝑛 − 1])
3 else if 𝑛 == 0 then return Delete(𝐴[0]), . . ., Delete(𝐴[𝑚 − 1])
4 else if 𝑚 == 1

5 𝑗 := arg min

0≤ 𝑗<𝑛
𝑝(𝐴[0], 𝐵[𝑗])

6 return Insert(𝐵[0.. 𝑗)), Replace(𝐴[0], 𝐵[𝑗]), Insert(𝐵[𝑗 + 1..𝑛))
7 else
8 𝑖∗ := ⌊𝑚

2
⌋

9 𝐷top := ScoresRow(𝐴[0..𝑖∗), 𝐵)

10 𝐷bottom := ScoresRow(𝐴[𝑖∗..𝑚)𝑅 , 𝐵𝑅
) // 𝑠𝑅 is 𝑠 reversed

11 𝑗∗ := arg min

0≤ 𝑗≤𝑛
𝐷top[𝑗] + 𝐷bottom[𝑛 − 𝑗]

12 return editScript(𝐴[0..𝑖∗), 𝐵[0.. 𝑗∗)), editScript(𝐴[𝑖∗..𝑚), 𝐵[𝑗∗..𝑛))
13 endif

▶ Non-recursive cost Θ(𝑛 · 𝑚) for ScoresRow

▶ “Area” 𝑛 · 𝑚 in recursive calls is halved in each step.

⇝ Total time Θ(𝑛𝑚), but using only Θ(min 𝑛, 𝑚) space

25

3.8 Multiple Sequence Alignment

Multiple-Sequence Alignment
Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.
A shared region between two sequences could be random coincidence.

A shared region between many sequences hardly are.

“One or two homologous sequences whisper . . . a full multiple alignment shouts out loud”
(Arthus Lesk)

Example: 𝛽-globin in different species:

African Clawed Frog (Xenopus laevis): P02133

Zebrafish (Danio rerio): Q90486

Chicken (Gallus gallus): P02112

Human (Homo sapiens): P68871

Mouse (Mus musculus): P02088

https://www.ebi.ac.uk/jdispatcher/msa/clustalo

26

https://www.ebi.ac.uk/jdispatcher/msa/clustalo

Scoring Multiple Alignments
▶ Given sequences 𝐴1[0..𝑛1), . . . , 𝐴𝑘[0..𝑛𝑘) over common alphabet Σ

▶ alignment is sequence of columns in (Σ−)𝑘 with Σ− = Σ ∪ {−}

▶ going from 2 to 𝑘 sequences requires score for 𝑘-columns

▶ different options

▶ One option: total Hamming distance (see Unit 2 for motifs)

Motif with consensus and profile

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 2.2

https://cogniterra.org/lesson/29868/step/9?unit=21966
▶ Here: SP-Score (sum-of-pairs score) w.r.t. 𝑆

𝑑SP
©­­«

𝑐1

...

𝑐𝑘


ª®®¬ =

∑
1≤𝑖< 𝑗≤𝑘

𝑆

([
𝑐𝑖
𝑐 𝑗

])
for 𝑆 any pairwise-alignment score

27

https://cogniterra.org/lesson/29868/step/9?unit=21966

Dynamic Programming Solution
Pairwise alignment = path in grid graph; optimal alignment = shortest path between

corners

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6

https://cogniterra.org/lesson/29932/step/1?unit=22029

⇝ DP solution with 2D matrix 𝐷[0..𝑚][0..𝑛]

For 𝑘 strings, shortest path in 𝑘-dimensional grid graph

⇝ 𝑛1 · 𝑛2 · · · · · 𝑛𝑘 vertices to consider for 𝑘 strings of 𝑛 characters Θ(𝑛𝑘) time �

28

https://cogniterra.org/lesson/29932/step/1?unit=22029

Bad News (Again)
Multiple Alignment with SP-Score is NP-hard for any 𝜎 ≥ 2 and any metric 𝑆

� Elias: Settling the Intractability of Multiple Alignment, J. of Computational Biology 2006

Proof Idea: Reduction from Vertex Cover on Cubic Graphs

29

https://doi.org/10.1089/cmb.2006.13.1323

Bounding SP-scores
Not all hope is lost.

SP-score can be bounded by optimal pairwise alignments and heuristic for some alignment:∑
1≤𝑖< 𝑗≤𝑘

𝑑𝑆(𝐴𝑖 , 𝐴𝑗) ≤ 𝑑SP(𝐴1 , . . . , 𝐴𝑘) ≤ 𝑑SP(some alignment)

▶ can be the basis for a Branch & Bound algorithm

▶ but: need efficient approximation algorithm for Multiple Alignment with SP-Score

⇝ Can we build a multiple alignment by successively adding in one new sequence at a time?

30

Extending Pairwise Alignments is tricky
Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a

But No in general . . .

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22b

31

Alignment Trees
Problem in example comes precisely from cycle!

▶ Given a tree over sequences 𝐴1 , . . . , 𝐴𝑘

▶ Compute optimal pairwise alignments along all 𝑘 − 1 tree edges

▶ Build multiple alignment one edge at a time

▶ Here, use

[−
−
]

for every gap symbol in either endpoint of an edge

We always assume 𝑆(
[−
−
]
) = 0

▶ Notation:
▶ 𝑀 ∈

(
Σ−𝑘

)𝑁
multiple alignment of length 𝑁 ≥ max 𝑛 𝑗

▶ 𝑑SP SP-Score w.r.t. pairwise score 𝑆

▶ 𝑑𝑆(𝐴, 𝐵) score of optimal pairwise alignment of 𝐴 and 𝐵

▶ 𝑀 induces pairwise alignment 𝑀[:][𝑖 , 𝑗] for 𝐴𝑖 and 𝐴𝑗

Note: 𝑆(𝑀[:][𝑖 , 𝑗]) ≥ 𝑑𝑆(𝐴𝑖 , 𝐴𝑗) and in general not optimal

32

Center-Star Approximation
Use simplest possible tree: A star!

Center-Star Multiple Sequence Alignment

1. Compute all pairwise distances 𝑑𝑆(𝐴𝑖 , 𝐴𝑗)

2. Find 𝑐 ∈ [𝑘] that minimizes

∑
𝑗 𝑑𝑆(𝐴𝑐 , 𝐴𝑗)

3. Construct 𝑀 as alignment consistent with star alignment with center 𝑆𝑐 .

33

Center-Star Approximation – Analysis

Theorem 3.4
Assume 𝑑𝑆 is a metric for pairwise alignments. The center-star alignment for 𝑘 strings is a

(2 − 2

𝑘)-approximation w.r.t. to the SP-score of the multiple sequence alignment. ◀

34

	Comparing Sequences
	Sequence Alignment
	Sequence Similarity
	String Distances
	Edit Distance
	Edit Distance Example
	Edit Distance and Longest Common Subsequence

	Dynamic Programming
	Recap: The 6 Steps of Dynamic Programming
	Edit Distance by DP
	Edit Distance – Step 4: Memoization
	Edit Distance – Step 5: Table Filling
	Edit Distance – Step 6: Backtracing

	Global – Local – Semilocal
	Local Alignment
	Local Alignment Recurrence
	Semilocal Aligment a.k.a. Fitting Alignment

	General Scores & Affine Gap Costs
	General Scores
	BLOSOM Matrices
	Affine Gap costs

	Bounded-Distance Alignments
	Good Alignment or Abort

	Exhaustive Tabulation
	Four Russians?
	A Trick for Matrix Multiplication
	Exhaustive Tabulation for Edit Distance
	Putting the Micro Matrices together
	Can we do better?

	Linear-Space Alignments
	Saving Space is Easy for Score
	The Middle-Point Problem
	Linear-Space Alignment

	Multiple Sequence Alignment
	Multiple-Sequence Alignment
	Scoring Multiple Alignments
	Dynamic Programming Solution
	Bad News (Again)
	Bounding SP-scores
	Extending Pairwise Alignments is tricky
	Alignment Trees
	Center-Star Approximation
	Center-Star Approximation – Analysis

