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Recall Unit 6

Application 4: Longest Common Extensions
▶ We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:
▶ Given: String 𝑇[0..𝑛)
▶ Goal: Answer LCE queries, i. e.,

given positions 𝑖, 𝑗 in 𝑇,
how far can we read the same text from there?
formally: LCE(𝑖 , 𝑗) = max{ℓ : 𝑇[𝑖..𝑖 + ℓ ) = 𝑇[𝑗.. 𝑗 + ℓ )}

⇝ use suffix tree of 𝑇!

▶ In T: LCE(𝑖 , 𝑗) = LCP

(length of) longest common prefix
of 𝑖th and 𝑗th suffix

(𝑇𝑖 , 𝑇𝑗) ⇝ same thing, different name!
= string depth of

lowest common ancester (LCA) of
leaves 𝑖 and 𝑗
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▶ in short: LCE(𝑖 , 𝑗) = LCP(𝑇𝑖 , 𝑇𝑗) = stringDepth
(
LCA( 𝑖 , 𝑗 ))
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Recall Unit 6

Efficient LCA
How to find lowest common ancestors?
▶ Could walk up the tree to find LCA ⇝ Θ(𝑛) worst case

▶ Could store all LCAs in big table ⇝ Θ(𝑛2) space and preprocessing

Amazing result: Can compute data structure in Θ(𝑛) time and space
that finds any LCA in constant(!) time.

▶ a bit tricky to understand

▶ but a theoretical breakthrough

▶ and useful in practice

⇝ for now, use 𝑂(1) LCA as

and suffix tree construction inside . . .

black box.

⇝ After linear preprocessing (time & space), we can find LCEs in 𝑂(1) time.
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7.1 Range-Minimum Queries



Range-minimum queries (RMQ)

▶ Given: Static
array/numbers don’t change

array 𝐴[0..𝑛) of numbers

▶ Goal: Find minimum in a range;
𝐴 known in advance and can be preprocessed
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RMQ(7, 15) = 10

▶ Nitpicks:
▶ Report index of minimum, not its value
▶ Report leftmost position in case of ties
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Finally: Longest common extensions
▶ In Unit 6: Left question open how to compute LCA in suffix trees

▶ But: Enhanced Suffix Array makes life easier!

LCE(𝑖 , 𝑗) = LCP
[
RMQLCP

(
min{𝑅[𝑖], 𝑅[𝑗]} + 1, max{𝑅[𝑖], 𝑅[𝑗]}) ]

Inverse suffix array: going left & right
▶ to understand the fastest algorithm, it is helpful to define the inverse suffix array:

▶ 𝑅[𝑖] = 𝑟 ⇐⇒ 𝐿[𝑟] = 𝑖 𝐿 = leaf array
⇐⇒ there are 𝑟 suffixes that come before 𝑇𝑖 in sorted order
⇐⇒ 𝑇𝑖 has (0-based) rank 𝑟 ⇝ call 𝑅[0..𝑛] the rank array

𝑅[0] = 6

𝐿[8] = 4

sort suffixes

0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

𝑟 𝐿[𝑟] 𝑇𝐿[𝑟]
0 6th bananaban$
1 4th ananaban$
2 9th nanaban$
3 3th anaban$
4 8th naban$
5 1th aban$
6 5th ban$
7 2th an$
8 7th n$
9 0th $

𝑖 𝑅[𝑖] 𝑇𝑖 right

left
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LCP array and internal nodes
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⇝ Leaf array 𝐿[0..𝑛] plus LCP array LCP[1..𝑛] encode full tree!
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Rules of the Game
▶ For the following, consider RMQ on arbitrary arrays

▶ comparison-based ⇝ values don’t matter, only relative order

▶ Two main quantities of interest:
1. Preprocessing time: Running time 𝑃(𝑛) of the preprocessing

⇝ space usage ≤ 𝑃(𝑛)
step

2. Query time: Running time 𝑄(𝑛) of one query (using precomputed data)

▶ Write ⟨𝑷(𝒏),𝑸(𝒏)⟩ time solution for short

RMQ Implications for LCE

▶ Recall: Can compute (inverse) suffix array and LCP array in 𝑂(𝑛) time

⇝ ⟨𝑃(𝑛), 𝑄(𝑛)⟩ time RMQ data structure implies
⟨𝑃(𝑛) + 𝑂(𝑛), 𝑄(𝑛)⟩ time LCE data structure
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Trivial Solutions
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RMQ(7, 15) = 10

▶ Two easy solutions show extreme ends of scale:

1. Scan on demand
▶ no preprocessing at all
▶ answer RMQ(𝑖 , 𝑗) by scanning through 𝐴[𝑖.. 𝑗], keeping track of min
⇝ ⟨𝑂(1), 𝑂(𝑛)⟩

2. Precompute all
▶ Precompute all answers in a big 2D array 𝑀[0..𝑛)[0..𝑛)
▶ queries simple: RMQ(𝑖 , 𝑗) = 𝑀[𝑖][𝑗]
⇝ ⟨𝑂(𝑛3), 𝑂(1)⟩
▶ Preprocessing can reuse partial results ⇝ ⟨𝑂(𝑛2), 𝑂(1)⟩
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7.2 RMQ – Sparse Table Solution



Sparse Table
▶ Idea: Like “precompute-all”, but keep only some entries

▶ store 𝑀[𝑖][𝑗] iff ℓ = 𝑗 − 𝑖 + 1 is 2𝑘 .
⇝ ≤ 𝑛 · lg 𝑛 entries
⇝ Can be stored as 𝑀′[𝑖][𝑘]

▶ How to answer queries?

1
0

4
1

6
2

4
3

7
4

10
5

5
6

6
7

3
8

11
9

2
10

2
11

3
12

6
13

10
14

9
15

13
16

1
17

6
18

16
19

10
20

RMQ(7, 13) = 10

RMQ(10, 18) = 17

1. Find 𝑘 with ℓ/2 ≤ 2𝑘 ≤ ℓ

2. Cover range [𝑖.. 𝑗] by
2𝑘 positions right from 𝑖 and
2𝑘 positions left from 𝑗

3. RMQ(𝑖 , 𝑗) =
arg min{𝐴[rmq1], 𝐴[rmq2]}

with rmq1 = RMQ(𝑖 , 𝑖 + 2𝑘 − 1)
rmq2 = RMQ(𝑗−2𝑘 +1, 𝑗)

▶ Preprocessing can be done in 𝑂(𝑛 log 𝑛) times

⇝ ⟨𝑂(𝑛 log 𝑛), 𝑂(1)⟩ time solution!
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Bootstrapping
▶ We know a ⟨𝑂(𝑛 log 𝑛), 𝑂(1)⟩ time solution

▶ If we use that for 𝑚 = Θ(𝑛/log 𝑛) elements, 𝑂(𝑚 log𝑚) = 𝑂(𝑛)!

▶ Break 𝐴 into blocks of 𝑏 = 𝑂(log 𝑛) numbers

▶ Create array of block minima 𝐵[0..𝑚) for 𝑚 = ⌈𝑛/𝑏⌉ = 𝑂(𝑛/log 𝑛)

𝐴[0..𝑛)
0 1 2 . . . 𝑏−1 𝑏 2𝑏 3𝑏 4𝑏 (𝑚−1)𝑏 𝑚𝑏−1

𝐵[0..𝑚) 𝐵[𝑖] = index of minimum inside block 𝑖
0 1 2 . . . 𝑚−1

1 4 0 3 7 5 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

⇝ Use sparse table solution for 𝐵.

⇝ Can solve RMQs in 𝐵[0..𝑚) in ⟨𝑂(𝑛), 𝑂(1)⟩ time
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Query decomposition
▶ Query RMQ𝐴(𝑖 , 𝑗) covers

▶ suffix of block ℓ = ⌊𝑖/𝑚⌋
▶ prefix of block 𝑟 = ⌊ 𝑗/𝑚⌋
▶ blocks ℓ + 1, . . . , 𝑟 − 1

entirely

query

interblock query

intrablock queries

𝐴[0..𝑛)

𝑀[0..𝑚)
𝐵[0..𝑚) 1 4 0 3 7 5 1

▶ RMQA(𝑖 , 𝑗) = arg min
𝑘∈𝐾

𝐴[𝑘] with 𝐾 =




RMQ block ℓ
(
𝑖 − ℓ𝑏, (ℓ + 1)𝑏 − 1

)
,

𝑏 · RMQ𝑀
(
ℓ + 1, 𝑟 − 1

)+
𝐵
[
RMQ𝑀

(
ℓ + 1, 𝑟 − 1

) ]
,

RMQ block 𝑟
(
𝑟𝑏, 𝑗 − 𝑟𝑏)


⇝ only 3 possible values to check

if intrablock and interbloc✓k queries known
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7.3 RMQ – Cartesian Trees



RMQ & LCA
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rmq(6, 14) = 9
▶ Range-max queries on array 𝐴:

rmq𝐴(𝑖 , 𝑗) = arg max
𝑖≤𝑘≤ 𝑗

𝐴[𝑘]
= index of max

▶ Task: Preprocess 𝐴,
then answer RMQs fast
ideally constant time!

▶ Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

▶ rmq(𝑖 , 𝑗) =

inorder of

lowest common ancestor (LCA)

of 𝑖th and 𝑗th node in inorder
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RMQ & LCA

6 14

9

lca(6, 14) = 9

▶ Range-max queries on array 𝐴:
rmq𝐴(𝑖 , 𝑗) = arg max

𝑖≤𝑘≤ 𝑗
𝐴[𝑘]

= index of max

▶ Task: Preprocess 𝐴,
then answer RMQs fast
ideally constant time!

▶ Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

▶ rmq(𝑖 , 𝑗) = inorder of
lowest common ancestor (LCA)
of 𝑖th and 𝑗th node in inorder
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Counting binary trees

▶ Given the Cartesian tree,
all RMQ answers are determined

and vice versa!

▶ How many different Cartesian trees are there for arrays of length 𝑛?

▶ known result: Catalan numbers 1
𝑛 + 1

(
2𝑛
𝑛

)
▶ easy to see: ≤ 22𝑛

⇝ many arrays will give rise to the same Cartesian tree

Can we exploit that?
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Intrablock queries
⇝ It remains to solve the intrablock queries!

▶ Want ⟨𝑂(𝑛)
must include preprocessing for all 𝑚 =

⌈𝑛
𝑏

⌉
= Θ

( 𝑛
log 𝑛

)
blocks!

, 𝑂(1)⟩ time overall

▶ Choose 𝑏 =
⌈ 1

4 lg 𝑛
⌉

▶ many blocks, but just 𝑏 numbers long
⇝ Cartesian tree of 𝑏 elements can be encoded using 2𝑏 = 1

2 lg 𝑛 bits

⇝ # different Cartesian trees is ≤ 22𝑏 = 2
1
2 lg 𝑛 =

(
2lg 𝑛

)1/2
=

√
𝑛

⇝ many equivalent blocks!

⇝ Recall: Exhaustive-Tabulation Technique:
1. represent each subproblem by storing its type (here: encoding of Cartesian tree)

2. enumerate all possible subproblem types and their solutions
3. use type as index in a large lookup table
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Exhaustive Tabulation
1. For each block, compute 2𝑏 bit representation of Cartesian tree

▶ can be done in linear time

2. Compute large lookup table

Block type 𝑖 𝑗 RMQ(𝑖 , 𝑗)
...

...

▶ ≤ √
𝑛 block types

▶ ≤ 𝑏2 combinations for 𝑖 and 𝑗

⇝ Θ
(√
𝑛 · log2 𝑛

)
rows

▶ each row can be computed in
𝑂(log 𝑛) time

⇝ overall preprocessing: 𝑂(𝑛) time!
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RMQ Discussion
▶ ⟨𝑂(𝑛), 𝑂(1)⟩ time solution for RMQ

⇝ ⟨𝑂(𝑛), 𝑂(1)⟩ time solution for LCE in strings!

optimal preprocessing and query time!

a bit complicated
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7.4 String Matching in Enhanced Suffix Array



Binary searching the suffix array
Recall: Can solve the string matching problem by binary searching 𝑃[0..𝑚) in 𝐿[0..𝑛]
▶ worst-case cost: lg 𝑛 + 2 string comparisons of string of length 𝑚

⇝ 𝑂(log(𝑛) · 𝑚) character comparisons

▶ suffix tree could do 𝑂(𝑚) total time (assuming constant 𝜎 or hashing for child links)

▶ surely, enhanced suffix arrays can do better than 𝑂(𝑚 log 𝑛)

Idea: use LCP information to save character comparisons

▶ concretely: maintain LCP between lower/upper bound suffixes and 𝑃
𝑇[𝑎..𝑛] ≤lex 𝑃 ≤lex 𝑇[𝑏..𝑛]
ℓ𝑎 = LCP(𝑇[𝑎..𝑛], 𝑃) and ℓ𝑏 = LCP(𝑇[𝑏..𝑛], 𝑃)

▶ avoid comparing same characters again

▶ Note: with RMQ on LCP array can determine LCP(𝑇𝑖 , 𝑇𝑗) for any 𝑖 , 𝑗 ∈ [0..𝑛)
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LCP Binary Search
▶ Input: ℓ𝑎 = LCP(𝑇𝑎 , 𝑃)

ℓ𝑏 = LCP(𝑇𝑏 , 𝑃)
⇝ ℓ𝑚 = LCP(𝑇𝑚 , 𝑃) ≥ min{ℓ𝑎 , ℓ𝑏}

▶ Case 1: ℓ𝑎 = ℓ𝑏
Compare 𝑃 and 𝑇𝑚 starting at ℓ𝑎

▶ Case 2: ℓ𝑎 ≠ ℓ𝑏 ; w.l.o.g. ℓ𝑎 > ℓ𝑏
▶ Case 2a: LCP(𝑇𝑎 , 𝑇𝑚) > ℓ𝑎
𝑃 >lex 𝑇𝑚 w/o cmps!

▶ Case 2b: LCP(𝑇𝑎 , 𝑇𝑚) < ℓ𝑎
𝑃 <lex 𝑇𝑚 w/o cmps!

▶ Case 2c: LCP(𝑇𝑎 , 𝑇𝑚) = ℓ𝑎
Compare 𝑃 and 𝑇𝑚 from ℓ𝑎

▶ in each case, learn ℓ𝑚 ⇝ invariant

▶ no redundant ‘=’-comparisons

𝑎

𝑏

𝑚 𝑃 = anarchy
Case 2c

0: 𝑇20 $
1: 𝑇4 ahbansbananasman$
2: 𝑇18 an$
3: 𝑇11 ananasman$
4: 𝑇13 anasman$
5: 𝑇1 annahbansbananasman$
6: 𝑇7 ansbananasman$
7: 𝑇15 asman$
8: 𝑇10 bananasman$
9: 𝑇6 bansbananasman$

10: 𝑇0 hannahbansbananasman$
11: 𝑇5 hbansbananasman$
12: 𝑇17 man$
13: 𝑇19 n$
14: 𝑇3 nahbansbananasman$
15: 𝑇12 nanasman$
16: 𝑇14 nasman$
17: 𝑇2 nnahbansbananasman$
18: 𝑇8 nsbananasman$
19: 𝑇9 sbananasman$
20: 𝑇16 sman$
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Enhanced Suffix Arrays – Update
▶ Enhanced suffix array: 𝐿, 𝑅 and LCP array with RMQ support
▶ Goal: simulate any suffix tree operations

▶ string matching in 𝑂(𝑚 + log 𝑛) time✓▶ string depth of internal nodes = LCP values✓▶ internal suffix tree node = LCP interval✓
⇝ storing information per node✓▶ bottom-up traversal via enclosing LCP intervals✓

▶ longest common extension queries✓▶ suffix links✓
Outlook:

▶ enhanced suffix arrays still need original text 𝑇 to work
▶ a self-index avoids that

▶ can store 𝑇 in compressed form and support operations like string matching

18



7.5 The Burrows-Wheeler Transform



Towards Self-Indexes
▶ For large genomes or multiple-genome datasets, can’t hold 𝑇[0..𝑛) in fast memory.

▶ An enhanced suffix array needs additional Θ(𝑛) words of space.

⇝ When reference genomes first became available, a major show stopper!

▶ But since string matching can reconstruct 𝑇, can’t avoid storing 𝑇 somehow!

▶ A self-index is a data structure that answers operations without access to 𝑇 at query time
▶ We get to decide how to store 𝑇 ⇝ might compress 𝑇 (if compressible

genomes highly repetitive!

)
▶ Known as “encoding model” in space-efficient data structures

⇝ Key question: How to compress 𝑇 while supporting random access and read mapping?
“Computing over compressed data”

19



BWT – Definitions

▶ cyclic shift of a string:

▶ with end-of-word
character $

⇝ can recover
original string

𝑇 = time␣flies␣quickly␣

t
i

m
e

␣fl
i

e
s
␣
q
u

i c k l
y
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t
i

m
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␣fl
i

e
s
␣
q
u

i c k l
y
␣

⇝ cyclic shift

flies␣quickly␣time␣

▶ The Burrows-Wheeler Transform proceeds in three steps:

0. Append end-of-word character $ to 𝑆.
1. Consider all cyclic shifts of 𝑆
2. Sort these strings lexicographically
3. 𝐵 is the list of trailing characters (last column, top-down) of each string
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BWT – Example

𝑆 = alf␣eats␣alfalfa$

1. Take all cyclic shifts of 𝑆

2. Sort cyclic shifts

3. Extract last column

𝐵 = asff$f␣e␣lllaaata

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

⇝
sort

BWT↓
$alf␣eats␣alfalfa
␣alfalfa$alf␣eats
␣eats␣alfalfa$alf
a$alf␣eats␣alfalf
alf␣eats␣alfalfa$
alfa$alf␣eats␣alf
alfalfa$alf␣eats␣
ats␣alfalfa$alf␣e
eats␣alfalfa$alf␣
f␣eats␣alfalfa$al
fa$alf␣eats␣alfal
falfa$alf␣eats␣al
lf␣eats␣alfalfa$a
lfa$alf␣eats␣alfa
lfalfa$alf␣eats␣a
s␣alfalfa$alf␣eat
ts␣alfalfa$alf␣ea
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Computing the BWT

How can we compute the BWT of a text efficiently?

▶ cyclic shifts 𝑆 =̂ suffixes of 𝑆
▶ comparing cyclic shifts stops at first $
▶ for comparisons, anything after $ irrelevant!

▶ BWT is essentially suffix sorting!
▶ 𝐵[𝑖] = 𝑆[𝐿[𝑖] − 1]
▶ where 𝐿[𝑖] = 0, 𝐵[𝑖] = $

⇝ Can compute 𝐵 in 𝑂(𝑛) time from 𝐿

▶ more direct methods now also available

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

𝑟 ↓ 𝐿[𝑟]
0 $alf␣eats␣alfalfa 16
1 ␣alfalfa$alf␣eats 8
2 ␣eats␣alfalfa$alf 3
3 a$alf␣eats␣alfalf 15
4 alf␣eats␣alfalfa$ 0
5 alfa$alf␣eats␣alf 12
6 alfalfa$alf␣eats␣ 9
7 ats␣alfalfa$alf␣e 5
8 eats␣alfalfa$alf␣ 4
9 f␣eats␣alfalfa$al 2
10 fa$alf␣eats␣alfal 14
11 falfa$alf␣eats␣al 11
12 lf␣eats␣alfalfa$a 1
13 lfa$alf␣eats␣alfa 13
14 lfalfa$alf␣eats␣a 10
15 s␣alfalfa$alf␣eat 7
16 ts␣alfalfa$alf␣ea 6
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BWT – Properties

𝑟 ↓ 𝐿[𝑟]
0 $alf␣eats␣alfalfa 16
1 ␣alfalfa$alf␣eats 8
2 ␣eats␣alfalfa$alf 3
3 a$alf␣eats␣alfalf 15
4 alf␣eats␣alfalfa$ 0
5 alfa$alf␣eats␣alf 12
6 alfalfa$alf␣eats␣ 9
7 ats␣alfalfa$alf␣e 5
8 eats␣alfalfa$alf␣ 4
9 f␣eats␣alfalfa$al 2
10 fa$alf␣eats␣alfal 14
11 falfa$alf␣eats␣al 11
12 lf␣eats␣alfalfa$a 1
13 lfa$alf␣eats␣alfa 13
14 lfalfa$alf␣eats␣a 10
15 s␣alfalfa$alf␣eat 7
16 ts␣alfalfa$alf␣ea 6

Why does BWT help for compression?
▶ sorting groups characters by what follows

▶ Example: lf always preceded by a

▶ more generally: BWT can be partitioned
into letters following a given context

⇝ If 𝑆 allows predicting

(formally: low higher-order empirical entropy)

symbols from context,
𝐵 has locally low entropy of characters.
▶ that makes MTF (move-to-front)

transformation effective!
⇝ use in compression pipeline for bzip2:

BTW → MTF → RLE → Huffman
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A Bigger Example have␣had␣hadnt␣hasnt␣havent␣has␣what$ $have␣had␣hadnt␣hasnt␣havent␣has␣what
ave␣had␣hadnt␣hasnt␣havent␣has␣what$h ␣had␣hadnt␣hasnt␣havent␣has␣what$have
ve␣had␣hadnt␣hasnt␣havent␣has␣what$ha ␣hadnt␣hasnt␣havent␣has␣what$have␣had
e␣had␣hadnt␣hasnt␣havent␣has␣what$hav ␣has␣what$have␣had␣hadnt␣hasnt␣havent
␣had␣hadnt␣hasnt␣havent␣has␣what$have ␣hasnt␣havent␣has␣what$have␣had␣hadnt
had␣hadnt␣hasnt␣havent␣has␣what$have␣ ␣havent␣has␣what$have␣had␣hadnt␣hasnt
ad␣hadnt␣hasnt␣havent␣has␣what$have␣h ␣what$have␣had␣hadnt␣hasnt␣havent␣has
d␣hadnt␣hasnt␣havent␣has␣what$have␣ha ad␣hadnt␣hasnt␣havent␣has␣what$have␣h
␣hadnt␣hasnt␣havent␣has␣what$have␣had adnt␣hasnt␣havent␣has␣what$have␣had␣h
hadnt␣hasnt␣havent␣has␣what$have␣had␣ as␣what$have␣had␣hadnt␣hasnt␣havent␣h
adnt␣hasnt␣havent␣has␣what$have␣had␣h asnt␣havent␣has␣what$have␣had␣hadnt␣h
dnt␣hasnt␣havent␣has␣what$have␣had␣ha at$have␣had␣hadnt␣hasnt␣havent␣has␣wh
nt␣hasnt␣havent␣has␣what$have␣had␣had ave␣had␣hadnt␣hasnt␣havent␣has␣what$h
t␣hasnt␣havent␣has␣what$have␣had␣hadn avent␣has␣what$have␣had␣hadnt␣hasnt␣h
␣hasnt␣havent␣has␣what$have␣had␣hadnt d␣hadnt␣hasnt␣havent␣has␣what$have␣ha
hasnt␣havent␣has␣what$have␣had␣hadnt␣ dnt␣hasnt␣havent␣has␣what$have␣had␣ha
asnt␣havent␣has␣what$have␣had␣hadnt␣h e␣had␣hadnt␣hasnt␣havent␣has␣what$hav
snt␣havent␣has␣what$have␣had␣hadnt␣ha ent␣has␣what$have␣had␣hadnt␣hasnt␣hav
nt␣havent␣has␣what$have␣had␣hadnt␣has had␣hadnt␣hasnt␣havent␣has␣what$have␣
t␣havent␣has␣what$have␣had␣hadnt␣hasn hadnt␣hasnt␣havent␣has␣what$have␣had␣
␣havent␣has␣what$have␣had␣hadnt␣hasnt has␣what$have␣had␣hadnt␣hasnt␣havent␣
havent␣has␣what$have␣had␣hadnt␣hasnt␣ hasnt␣havent␣has␣what$have␣had␣hadnt␣
avent␣has␣what$have␣had␣hadnt␣hasnt␣h hat$have␣had␣hadnt␣hasnt␣havent␣has␣w
vent␣has␣what$have␣had␣hadnt␣hasnt␣ha have␣had␣hadnt␣hasnt␣havent␣has␣what$
ent␣has␣what$have␣had␣hadnt␣hasnt␣hav havent␣has␣what$have␣had␣hadnt␣hasnt␣
nt␣has␣what$have␣had␣hadnt␣hasnt␣have nt␣has␣what$have␣had␣hadnt␣hasnt␣have
t␣has␣what$have␣had␣hadnt␣hasnt␣haven nt␣hasnt␣havent␣has␣what$have␣had␣had
␣has␣what$have␣had␣hadnt␣hasnt␣havent nt␣havent␣has␣what$have␣had␣hadnt␣has
has␣what$have␣had␣hadnt␣hasnt␣havent␣ s␣what$have␣had␣hadnt␣hasnt␣havent␣ha
as␣what$have␣had␣hadnt␣hasnt␣havent␣h snt␣havent␣has␣what$have␣had␣hadnt␣ha
s␣what$have␣had␣hadnt␣hasnt␣havent␣ha t$have␣had␣hadnt␣hasnt␣havent␣has␣wha
␣what$have␣had␣hadnt␣hasnt␣havent␣has t␣has␣what$have␣had␣hadnt␣hasnt␣haven
what$have␣had␣hadnt␣hasnt␣havent␣has␣ t␣hasnt␣havent␣has␣what$have␣had␣hadn
hat$have␣had␣hadnt␣hasnt␣havent␣has␣w t␣havent␣has␣what$have␣had␣hadnt␣hasn
at$have␣had␣hadnt␣hasnt␣havent␣has␣wh ve␣had␣hadnt␣hasnt␣havent␣has␣what$ha
t$have␣had␣hadnt␣hasnt␣havent␣has␣wha vent␣has␣what$have␣had␣hadnt␣hasnt␣ha
$have␣had␣hadnt␣hasnt␣havent␣has␣what what$have␣had␣hadnt␣hasnt␣havent␣has␣

h a v e ␣ h a d ␣ h a d n t ␣ h a s n t ␣ h a v e n t ␣ h a s ␣ w h a t $𝑇 =

t e d t t t s h h h h h h h a a v v ␣ ␣ ␣ ␣ w $ ␣ e d s a a a n n n a a ␣𝐵 =
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Run-length BWT Compression
▶ amazingly, just run-length compressing the BWT is already powerful!

▶ 𝒓 = number of runs in BWT

Example:
𝑆 = alf␣eats␣alfalfa$

𝐵 = asff$f␣e␣lllaaata

RL(𝐵) = [a
1
] [s

1
] [f

2
] [$

1
] [f

1
] [␣

1
] [e

1
] [␣

1
] [l

3
] [a

3
] [t

1
] [a

1
]

⇝ 𝑟 = |RL(𝐵)| = 12; 𝑛 = 17

Larger Example:
𝑆 = have␣had␣hadnt␣hasnt␣havent␣has␣what$
𝐵 = tedtttshhhhhhhaavv␣␣␣␣w$␣edsaaannnaa␣

⇝ 𝑟 = 19; 𝑛 = 36
▶ Indeed: 𝑟 = 𝑂(𝑧 log2(𝑛)), 𝑧 number of LZ77 phrases

proven in 2019 (!) � Kempa, Kociumaka: Resolution of the Burrows-Wheeler Transform Conjecture, CACM 2022
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7.6 Inverting the BWT



Inverse BWT
▶ Great, can compute BWT efficiently and it helps compression. But can we get 𝑇 back?

▶ “Magic” solution:
1. Create array 𝐷[0..𝑛] of pairs:

𝐷[𝑟] = (𝐵[𝑟], 𝑟).
2. Sort 𝐷 stably with

respect to first entry.
3. Use 𝐷 as linked list with

(char, next entry)

Example:
𝐵 = ard$rcaaaabb
𝑆 = abracadabra$

(a, 0)0

(r, 1)1

(d, 2)2

($, 3)3

(r, 4)4

(c, 5)5

(a, 6)6

(a, 7)7

(a, 8)8

(a, 9)9

(b, 10)10

(b, 11)11

𝐷

($, 3)0

(a, 0)1

(a, 6)2

(a, 7)3

(a, 8)4

(a, 9)5

(b, 10)6

(b, 11)7

(c, 5)8

(d, 2)9

(r, 1)10

(r, 4)11

sorted 𝐷
char next
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Inverse BWT – The magic revealed
▶ Inverse BWT very easy to compute:

▶ only sort individual characters in 𝐵 (not suffixes)
⇝ 𝑂(𝑛) with counting sort

▶ but why does this work!?
▶ decode char by char

▶ can find unique $ ⇝ starting row

▶ to get next char, we need
(i) char in first column of current row

(ii) find row with that char’s copy in BWT
⇝ then we can walk through and decode

▶ for (i): first col = chars of 𝐵 in sorted order✓
▶ for (ii): relative order of same character stays same:

𝑖th a in first column = 𝑖th a in BWT
⇝ stably sorting (𝐵[𝑟], 𝑟) by first entry enough✓

$abracadabra
a$abracadabr
abra$abracad
abracadabra$
acadabra$abr
adabra$abrac
bra$abracada
bracadabra$a
cadabra$abra
dabra$abraca
ra$abracadab
racadabra$ab

𝐵[𝑟]
(a, 0)

1: (a, 0)(r, 1)

10: (r, 1)

(d, 2)

9: (d, 2)

($, 3)

0: ($, 3)

(r, 4)

11: (r, 4)

(c, 5)

8: (c, 5)

(a, 6)

2: (a, 6)

(a, 7)

3: (a, 7)

(a, 8)

4: (a, 8)

(a, 9)

5: (a, 9)

(b, 10)

6: (b, 10)

(b, 11)

7: (b, 11)
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Random Access Decoding
Can similarly output any substring 𝑇[𝑖..𝑖 + ℓ ) if we know inverse suffix array:
Simply do ℓ steps of the inverse BWT starting at 𝑟 = 𝑅[𝑖 − 1]!

sort suffixes

0 9 $bananaban
1 5 aban$banan
2 7 an$bananab
3 3 anaban$ban
4 1 ananaban$b
5 6 ban$banana
6 0 bananaban$
7 8 n$bananaba
8 4 naban$bana
9 2 nanaban$ba

𝑟 𝐿[𝑟] 𝑇𝐿[𝑟] 𝐵[𝑟] 𝐷 sort(𝐷)
(n, 0)

7: (n, 0)

(n, 1)

8: (n, 1)

(b, 2)

5: (b, 2)

(n, 3)

9: (n, 3)

(b, 4)

6: (b, 4)
(a, 5)

1: (a, 5)

($, 6)

0: ($, 6)

(a, 7)

2: (a, 7)

(a, 8)

3: (a, 8)

(a, 9)

4: (a, 9)

0 6th bananaban$
1 4th ananaban$b
2 9th nanaban$ba
3 3th anaban$ban
4 8th naban$bana
5 1th aban$banan
6 5th ban$banana
7 2th an$bananab
8 7th n$bananaba
9 0th $bananaban

𝑖 𝑅[𝑖] 𝑇𝑖

Decoding only needs access to
1. 𝑖th char 𝑐 of sort(𝑇) = sort(𝐵)
2. position of (that copy of) 𝑐 in 𝐵

⇝ If we have that, can skip sorting / storing all of 𝐷!
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7.7 Random Access in BWT



Rank & Select on Sequences

Recall: Decoding only needs access to

1. 𝑖th char 𝑐 of sort(𝑇) = sort(𝐵)
2. position of (that copy of) 𝑐 in 𝐵

Both can be supported using
rank/select on sequences.

▶ rank𝑐(𝑇[0..𝑛), 𝑖) =
��𝑇[0..𝑖)��

#occurrences of 𝑐

𝑐
= #𝑐 in first 𝑖 characters of 𝑇

▶ select𝑐(𝑇[0..𝑛), 𝑟)
= min

{
𝑗 : |𝑇[0.. 𝑗]|𝑐 ≥ 𝑟

} ∪ {𝑛}
= index of 𝑟th 𝑐 in 𝑇, (𝑟 = 1, 2, . . .)

0

b
1

a
2

n
3

a
4

n
5

a
6

b
7

a
8

n
0

0
0
0

1

0
1
0

2

1
1
0

3

1
1
1

4

2
1
1

5

2
1
2

6

3
1
2

7

3
2
2

8

4
2
2

9

4
2
3

0

/
/
/

1

1
0
2

2

3
6
4

3

5
9
8

4

7
9
9

5

9
9
9

6

9
9
9

7

9
9
9

8

9
9
9

9

9
9
9

𝑇[0..9)

ranka(𝑇, 𝑖)
rankb(𝑇, 𝑖)
rankn(𝑇, 𝑖)

selecta(𝑇, 𝑟)
selectb(𝑇, 𝑟)
selectn(𝑇, 𝑟)

sort(𝑇)
0

a
1

a
2

a
3

a
4

b
5

b
6

n
7

n
8

n

𝑂[0..𝜎] = [0, 4, 6, 9]
Random Access in BWT
▶ store offsets 𝑂[𝑐] = ∑𝑐−1

𝑐′=0 |𝐵|𝑐′ for 𝑐 ∈ Σ
▶ 𝑖th char of sort(𝐵) = unique 𝑐 for which 𝑂[𝑐] ≤ 𝑖 < 𝑂[𝑐 + 1]
▶ position of 𝑟th 𝑐 in 𝐵 = select𝑐(𝐵, 𝑟)
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Wavelet Trees
The Wavelet Trees for a 𝑇 ∈ [0..𝑛) over Σ = [0..𝜎)
▶ supports access to 𝑇[𝑖] in 𝑂(log 𝜎) time,
▶ rank𝑐(𝑇, 𝑖) and select𝑐(𝑇, 𝑟) in 𝑂(log 𝜎) time, and
▶ occupies ∼ 𝑛 lg 𝜎 bits of space. (Further compression possible!) ⇝ Advanced Data Structures

▶ The generalized 𝜎-rank𝑐(𝑇, 𝑖) = rank𝑐(𝑇, 𝑖) +
∑
𝑐′<𝑐

|𝑇|𝑐′ is also supported in 𝑂(log 𝜎) time

Storing 𝐵[0..𝑛] as a wavelet tree ⇝ reconstruct ℓ chars from 𝑇 in 𝑂(ℓ log 𝜎) time
if starting position known

Storing every 𝒕

e. g., 𝑡 = lg 𝑛

th entry of 𝑅[0..𝑛] ⇝ may need to go back 𝑡 characters for access
⇝ 𝑂((ℓ + 𝑡) log 𝜎) time for decode

using ∼ 𝑛 lg 𝑛/𝑡 extra bits of space
Locally decodable BWT
▶ no longer need to store 𝑇[0..𝑛)!
▶ compressible (e. g., Wavelet trees with compressed bitvectors)
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7.8 Searching in the BWT



Backwards Search
Recall how the sorted suffixes in a suffix array 𝐿[0..𝑛] made string matching very easy.
▶ Simply binary search the pattern 𝑃[0..𝑚) in 𝐿!
⇝ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by backwards radix search!
▶ use sort(𝐵) to locate interval for last character 𝑃[𝑚 − 1]
▶ use one step of inverse BWT to narrow down on 𝑃[𝑚 − 2..𝑚), repeat.

𝑃 = ana

09 $bananaban
15 aban$banan
27 an$bananab
33 anaban$ban
41 ananaban$b
56 ban$banana
60 bananaban$
78 n$bananaba
84 naban$bana
92 nanaban$ba

𝑟𝐿[𝑟] 𝑇𝐿[𝑟] 𝐵[𝑟] sort(𝐷)

7: (n, 0)
8: (n, 1)

5: (b, 2)

9: (n, 3)

6: (b, 4)

1: (a, 5)
0: ($, 6)

2: (a, 7)
3: (a, 8)
4: (a, 9)

0 6th bananaban$
1 4th ananaban$b
2 9th nanaban$ba
3 3th anaban$ban
4 8th naban$bana
5 1th aban$banan
6 5th ban$banana
7 2th an$bananab
8 7th n$bananaba
9 0th $bananaban

𝑖 𝑅[𝑖] 𝑇𝑖
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Backwards Search – Code
Recall total rank operation supported by wavelet trees

𝜎-rank𝑐(𝐵, 𝑖) =
��𝐵[0..𝑖)��𝑐 +

∑
𝑐′<𝑐

|𝐵|𝑐′

1 procedure backwardSearch(𝐵[0..𝑛], 𝑃[0..𝑚))
2 // 𝐵[0..𝑛] given as wavelet tree
3 // returns range [𝑠..𝑒) of ranks for suffixes starting with 𝑃
4 𝑐 := 𝑃[𝑚 − 1]
5 𝑠 := 𝜎-rank𝑐(𝐵, 0)
6 𝑒 := 𝜎-rank𝑐(𝐵, 𝑛)
7 for 𝑗 := 𝑚 − 2, 𝑚 − 3, . . . , 0
8 if 𝑠 ≥ 𝑒 break // no matches
9 𝑐 := 𝑃[𝑗]

10 𝑠 := 𝜎-rank𝑐(𝐵, 𝑠)
11 𝑒 := 𝜎-rank𝑐(𝐵, 𝑒)
12 return [𝑠..𝑒)
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Locating Matches
▶ Backwards Search finds interval [𝑠..𝑒) such that

𝑃[0..𝑚) = 𝑇 [𝐿[𝑟] .. 𝐿[𝑟]+𝑚)
iff 𝑟 ∈ [𝑠..𝑒)

⇝ still need suffix array 𝐿[0..𝑛] to locate matches!

▶ but can detect and count occurrences even without 𝐿

Sampled Suffix Array
▶ As for inverse suffix array, can store 𝐿[𝑟] only for every 𝑡th starting index 𝑖 in 𝑇, i. e.,

only store entries for ranks 𝑟 with 𝐿[𝑟] ≡ 0 (mod 𝑡)
⇝ 𝑂(𝑛 log 𝑛/𝑡) bits of extra space

⇝ Need to continue backwards search for at most 𝑡 extra characters to locate match

⇝ String matching in 𝑂(𝑚 log 𝜎 + occ · 𝑡 log 𝜎) time

Wavelet-tree BWT + Sampled Suffix Array = FM Index

� Ferragina, Manzini: Indexing compressed text, JACM 2005
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FM-Index Discussion
▶ FM-Index is one of first compressed self-indexes

▶ can represent text using ∼ H𝑘(𝑇)𝑛 bits of space
H𝑘(𝑇) = 𝑘th order empirical entropy

▶ still widely used, e. g., as basis of bowtie2 read alignment tool

� Langmead, Salzberg: Fast gapped-read alignment with Bowtie 2, Nature Methods 2012

Ongoing research

▶ Reduce space for very repetitive strings (collection of genomes)

e. g., 𝑟-index � Navarro: Indexing Highly Repetitive String Collections, Part II: Compressed Indexes, ACM Comp. Surv. 2021

▶ full support of suffix tree functionality with little extra space?
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