AI.GORITI-IMS

OF
IOINFORMATICS |

Googling Genomes
15 January 2026

Prof. Dr. Sebastian Wild

Philipps-Universitdt Marburg

Outline

7 Googling Genomes

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Range-Minimum Queries

RMQ - Sparse Table Solution

RMQ - Cartesian Trees

String Matching in Enhanced Suffix Array
The Burrows-Wheeler Transform
Inverting the BWT

Random Access in BWT

Searching in the BWT

Recall Unit 6

Application 4: Longest Common Extensions
» We implicitly used a special case of a more general, versatile idea:
> Given: String T[0..1n)

The longest common extension (LCE) data structure:

» Goal: Answer LCE queries, i.e.,

given positions i, jin T,

how far can we read the same text from there?

formally: LCE(i, j) = max{¢: T[i..i + {) = T[j..j + {)}
~> use suffix tree of T'!

]
$ A ban n
(length of) longest common prefix E 2 [) °
of ith and jth suffix Fl {3 FAN
s o 2
» InT: LCE(i,j) = LCP(T;, Tj)) ~ same thing, different name! Jy [3 h
= string depth of " g kY
lowest common ancester (LCA) of P9 %
: : £h &
leaves | i |and $
T = bananaban$
» in short: | LCE(i, j) = LCP(T;, Ty) = stringDepth (LCA(i] [/]) ‘
17

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

» Could walk up the tree to find LCA ~» ©(n) worst case E@

» Could store all LCAs in big table ~ ©(n?) space and preprocessing EG)

e
%I/é Amazing result: Can compute data structure in ®(n) time and space

|\LJ that finds any LCA in constant(!) time.
» abit tricky to understand

» but a theoretical breakthrough

» and useful in practice

and suffix tree construction inside . ..

=/ 8

~ for now, use O(1) LCA as black box. =

~» | After linear preprocessing (time & space), we can find LCEs in O(1) time.

18

7.1 Range-Minimum Queries

Range-minimum queries (RMQ)
array /numbers don’t change

> Given: Static array A[0..n) of numbers

» Goal: Find minimum in a range;
A known in advance and can be preprocessed
RMQ(7,15) = 10

¢] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[1]a]6]a]7]r0]s]6]a]n]2]2]3]6]10]9]13]4]6]16]10]

> Nitpicks:
» Report index of minimum, not its value

» Report leftmost position in case of ties

Finally: Longest common extensions

» In Unit 6: Left question open how to compute LCA in suffix trees

» But: Enhanced Suffix Array makes life easier!

‘LCE(i, j) = LCP|RMQycp(min{R[i], R[j]} + 1, max{R[i], R[j]})]

s N\ s
Inverse suffix array: going left & right LCP array and internal nodes
> to understand the fastest algorithm, it is helpful to define the inverse suffix array: LePintervals LCP[1..11] L[0..n]
» Rli]=r & L[r]=i L =leaf array.
= there are r suffixes that come before T; in sorted order -
& T has (O-based) rank r ~ call R[0..1] the rank array 5
iPRE T g oL Ty N
/pan® bans| -~
0 6" bananaban$ R'fo] —6 [o] s = .
1 4 ananaban$ aban$ Nabapg
2 9 nanaban$ 2 [7] ans$ o e
3 3 anabans [3] anabang s HII o
2
- e = 906)
6 5 ban$ [@] bananabans T T - o
7 2 an$ LLIsl=4 7 T[] ns
s 7 n$ leff s [4] nabans [«
9 0 $ 9 nanaban$
sort suffixes
~ Leaf array L[0..n] plus LCP array LCP[1..77] encode full tree!
»
\ J \

Rules of the Game

» For the following, consider RMQ on arbitrary arrays

» comparison-based ~+ values don’t matter, only relative order

» Two main quantities of interest:
~~ space usage < P(n)

1. Preprocessing time: Running time P(7) of the preprocessing step

2. Query time: Running time Q(7) of one query (using precomputed data)
» Write (P(n),Q(n)) time solution for short

RMQ Implications for LCE

» Recall: Can compute (inverse) suffix array and LCP array in O(n) time

~» (P(n),Q(n)) time RMQ data structure implies
(P(n) + O(n), Q(n)) time LCE data structure

Trivial Solutions

RMQ(7,15) = 10

0 1 2 g 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[1]afe]a]7]w0]5]6]3]u]2]2]3]6[10]o]13]4]s6]16]10]

» Two easy solutions show extreme ends of scale:
1. Scan on demand

» no preprocessing at all
» answer RMQ(, j) by scanning through A[i..j], keeping track of min
~ (0(1), O(n))

2. Precompute all

» Precompute all answers in a big 2D array M[0..1)[0..1)
> queries simple: RMQ(i, j) = M[i][]]
~ (O(n3),0(1))

» Preprocessing can reuse partial results ~- (0(n?%),0(1))

7.2 RMQ - Sparse Table Solution

Sparse Table

» Idea: Like “precompute-all”, but keep only some entries
> store M[i][j] iff ¢=j—i+1is2k

~» < n-lgn entries

~+ Can be stored as M’[i][k]

» How to answer queries? i) ’
1. Find kwith £/2 <2< ¢
2. Cover range [i..j]| by

2k positions right from i and
10 11 12 13 14 15 16 17 18 19 20 2k pOSlthl’lS left from]

] 1 2 3 4 5 6 7 8 9
1|4]6|af7]0]5]6]3f1f2]2]3]6]10][9[13]1]6]16]10
[1]e]6]4] [0} T
RMQ(7,13) = 10 arg min{A[rmqq], A[rmq,]}

with rmg; = RMQ(i, i +2K - 1)
rmg, = RMQ(j —2% +1, j)

RMQ(10, 18) = 17

» Preprocessing can be done in O(n log 1) times

~» (O(nlogn), O(1)) time solution!

Bootstrapping
» We know a (O(nlogn), O(1)) time solution

» If we use that for m = @(n/logn) elements, O(m logm) = O(n)!

» Break A into blocks of b = O(log) numbers

» Create array of block minima B[0..m) for m = [n/b] = O(n/logn)

012 el 2b 4b (m=1)b mb-1

On)[\H\\\\][\H\\\\]I\H\\\\]HHHH]HHHH][HHH\][HHH\]

01134567012345070123456791214567 912145870123456701234587

B[0..m) [1]a]e|3]|7]5]|2 BJ[i] = index of minimum inside block i

01 2 e om-1
~~ Use sparse table solution for B.

~+ Can solve RMQs in B[0..m) in (O(n), O(1)) time

Query decomposition

> Query RMQu(i, j) covers
» suffix of block ¢ = | i/m]

> prefixof block r = [j/m] query .
» blocks ¢ +1,...,7r—1 y ; '
entirely interblock query

M][0..m) \ intrablock queries —/

B[0..m) [z]2]e[3]7]5]1

RMleocké’(i — (b, ([+ 1)b = 1),

L . _ b-RMQy(£+1,7r-1)+
» RMOQAa(i,j) = argminA[k] with K =
TeK B[RMQy (¢ +1,7 - 1)],

~+ only 3 possible values to check RMQyjock r (rb, j = 7b)
if intrablock and interbloc%eries known

7.3 RMQ - Cartesian Trees

RMQ & LCA

rmq(6,14) = 9 rmq (i, j) = arg max A[k]

e i<k<j
) = index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

0 1 2 3] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[a]efa]7]w0]s5]e]a]ufua]2]5]6]10]9]13]a]6]16]10]

— » Range-max queries on array A:

10

RMQ & LCA

»> Range-max queries on array A:
rmq (i, j) = arg max A[k]

i<k<j
= index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

» rmq(7, j) = inorder of
lowest common ancestor (LCA)

of ith and jth node in inorder

11

Counting binary trees

» Given the Cartesian tree,
all RMQ answers are determined

and vice versa!

» How many different Cartesian trees are there for arrays of length n?

1 (2n
» known result: Catalan numbers ()
n+1l\n
> easy tosee: < 2%

~+ many arrays will give rise to the same Cartesian tree

Can we exploit that?

12

Intrablock queries

~+ It remains to solve the intrablock queries!

» Want (O(n), O(1)) time overall

n n
1 1 S ||l=|l= D — |
must include preprocessing for all m 2 ® (s) blocks!

> Choose b = | 11gn

» many blocks, but just b numbers long

~ Cartesian tree of b elements can be encoded using 2b = % lg n bits

. 1/2
~ # different Cartesian trees is < 220 = 23187 — (Zlg”) = n

~> many equivalent blocks!

~» Recall: Exhaustive-Tabulation Technique:
1. represent each subproblem by storing its type (here: encoding of Cartesian tree)
2. enumerate all possible subproblem types and their solutions

3. use type as index in a large lookup table

13

Exhaustive Tabulation

1. For each block, compute 2b bit representation of Cartesian tree

» can be done in linear time

2. Compute large lookup table

Block type i j RMQ(, j)

> < +/n block types

> < b? combinations for i and j

~ © (/i -log?) rows

» each row can be computed in
O(log n) time

~~ overall preprocessing: O(n) time!

14

RMQ Discussion

» (O(n),O(1)) time solution for RMQ

~» (O(n), O(1)) time solution for LCE in strings!

[ﬁ optimal preprocessing and query time!
l@ a bit complicated

15

7.4 String Matching in Enhanced Suffix Array

Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching P[0..) in L[0..7]

» worst-case cost: Ign + 2 string comparisons of string of length m

~» O(log(n) - m) character comparisons

» suffix tree could do O(m) total time (assuming constant ¢ or hashing for child links)

» surely, enhanced suffix arrays can do better than O(m logn) =

Idea: use LCP information to save character comparisons

» concretely: maintain LCP between lower/upper bound suffixes and P
T[a..n] Slex P <lex T[b..i’l]
{, = LCP(T[a..n], P) and ¢, = LCP(T'[b..n], P)

» avoid comparing same characters again

» Note: with RMQ on LCP array can determine LCP(T;, T}) for any i, j € [0..1)

16

LCP Binary Search

» Input: {;, = LCP(T,, P)
¢, =LCP(T,, P)

~+ Ay = LCP(Tyy,, P) > min{{,, {p}

» Casel: {, =1
Compare P and Tj; starting at ¢,

> Case2: [, # [1; wlog. [l >)
» Case2a: LCP(T,,T,) > ¢,
P >jex T,y w/0 cmps!
» Case 2b: LCP(T,,T,) < ¢,
P <jex T,y w/0 cmps!
» Case 2c: LCP(T,,T,) =4,

Compare P and T, from ¢,
» in each case, learn ¢,, ~~ invariant

» no redundant ‘="-comparisons

T>o

T3

a —>

m —

b —>

$
ahbansbananasman$
an$
ananasman$ Case 2¢
anasman$ P = anarchy
annahbansbananasman$
ansbananasman$
asman$
bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$

17

Enhanced Suffix Arrays — Update

» Enhanced suffix array: L, R and LCP array with RMQ support
» Goal: simulate any suffix tree operations

» string matching in O(m + log n) time

» string depth of internal nodes = LCP values

» internal suffix tree node = LCP interval \/

~ storing information per node
» Dbottom-up traversal via enclosing LCP intervals \/

> longest common extension queries \/
» suffix links \/

Outlook:

» enhanced suffix arrays still need original text T' to work
» a self-index avoids that

» can store T in compressed form and support operations like string matching

18

7.5 The Burrows-Wheeler Transform

Towards Self-Indexes

» For large genomes or multiple-genome datasets, can’t hold T[0..n) in fast memory.
» An enhanced suffix array needs additional ®(7) words of space.

~+ When reference genomes first became available, a major show stopper!

» But since string matching can reconstruct T, can’t avoid storing 7" somehow!

> A self-index is a data structure that answers operations without access to T at query time

> We get to decide how to store T ~» might compress T (if compressible)

» Known as “encoding model” in space-efficient data structures genomes highly repetitive!

~ Key question: How to compress T while supporting random access and read mapping?
“Computing over compressed data”

19

BWT - Definitions

T = time_ flies quickly,, flies, quickly time,
» cyclic shift of a string:
1-frue ~~ cyclic shift lee
» with end-of-word e My, 1 m
e 1 e 1
character $. t t
~ can recover “q y._. "'q y”
original string u_ 1 u 1
i-c-k i-c-k

» The Burrows-Wheeler Transform proceeds in three steps:
1. Consider all cyclic shifts of S

2. Sort these strings lexicographically

3. Bis the list of trailing characters (last column, top-down) of each string

20

BWT - Example

S = alf_eats alfalfa$

1. Take all cyclic shifts of S

2. Sort cyclic shifts

3. Extract last column

B = asff$f e, 11laaata

alf eats alfalfa$
1f_eats alfalfa$a
feats alfalfas$al
weats alfalfasalf
eats alfalfasalf,
ats_alfalfasalf e
ts_alfalfasalf _ea
s,alfalfasalf eat
palfalfasalf eats
alfalfa$alf eats,
lfalfasalf eats, a
falfasalf eats al
alfagsalf eats alf
1fasalf eats alfa
fasalf eats_alfal
asalf eats alfalf
$alf_eats alfalfa

sort

BWT
!

$alf eats alfalfa
palfalfasalf eats
peats alfalfasalf
a$alf_eats alfalf
alf_eats alfalfa$
alfag$alf _eats_alf
alfalfasalf eats,
ats_alfalfasalf e
eats alfalfasalf,
f eats alfalfasal
fasalf eats alfal
falfa$alf eats al
1f_eats alfalfa$a
lfasalf_eats alfa
lfalfa$alf_eats_a
s,alfalfasalf eat
ts_ alfalfasalf _ea

21

Computing the BWT

How can we compute the BWT of a text efficiently?

> cyclic shifts S = suffixes of S

» comparing cyclic shifts stops at first $

» for comparisons, anything after $ irrelevant!

» BWT is essentially suffix sorting!

> Bli] = S[L[i] - 1]

» where L[i] =0, B[i] = $
~+ Can compute B in O(n) time from L

» more direct methods now also available

alf_eats alfalfa$
1f eats alfalfas$a
f_eats alfalfasal
Leats alfalfasalf
eats alfalfasalf,
ats alfalfas$alf e
tsalfalfas$alf ea
s alfalfasalf eat
palfalfasalf eats
alfalfagsalf eats,,
lfalfagsalf eats a
falfagalf eats, al
alfagalf eats alf
lfagsalf eats alfa
fagsalf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

OO WP, O

1 L[r]
$alf eats alfalfa 16
palfalfagalf eats 8
eats alfalfasalf 3
a$alf eats alfalf 15
alf eats alfalfa$ o
alfas$alf eats_alf 12
alfalfagsalf eats, 9
ats alfalfasalf_e 5
eats alfalfa$alf, 4
feats alfalfasal 2
fasalf eats alfal 14
falfasalf eats al 11
1f_eats alfalfasa 1
lfagsalf eats_alfa 13
lfalfasalf eats_.a 10
s alfalfagalf eat 7
ts alfalfas$alf ea 6

22

BWT - Properties

SO0 UIEWN—O N

S N
NI WDN =

L L[r]
$alf eats alfalfa 16
palfalfasalf eats 8
_eats alfalfasalf 3
asalf eats alfalf 15
alf_eats_alfalfa$ o
alfagsalf eats alf 12
alfalfasalf eats, 9
ats alfalfasalf_e 5
eats alfalfagalf, 4
feats alfalfasal 2
fagalf eats,alfal 14
falfag$alf eats al 11
1f_eats alfalfasa 1
lfasalf eats alfa 13
lfalfasalf eats,a 10
s alfalfasalf eat 7
ts alfalfag$alf _eca 6

Why does BWT help for compression?
» sorting groups characters by what follows

»> Example: 1f always preceded by a

» more generally: BWT can be partitioned
into letters following a given context

(formally: low higher-order empirical entropy)

~ If S allows predicting symbols from context,
B has locally low entropy of characters.

» that makes MTF (move-to-front)
transformation effective!

~ use in compression pipeline for bzip2:
BTW — MTF — RLE — Huffman

23

A Bigger Example

have _had, hadnt _hasnt havent has what$
ave _had hadnt hasnt havent has what$h
ve had hadnt _hasnt havent has what$ha
e had hadnt _hasnt, havent has what$hav
ohad_hadnt hasnt _havent has_what$have
had _hadnt, hasnt _havent, has_what$have
ad hadnt _hasnt havent has what$have h
d,hadnt_hasnt _havent, has, what$have ha
ohadnt _hasnt havent has what$have had
hadnt hasnt havent has what$have had ,
adnt _hasnt, havent has what$have had h
dnt_hasnt, havent, has what$have had ha
nt_hasnt_havent _has what$have had,had
t_hasnt havent has what$have had hadn
hasnt _havent _has what$have had hadnt
hasnt havent has what$have had hadnt,,
asnt _havent has what$have had hadnt h
snt_havent, has _what$have had_hadnt ha
nt_havent, has _what$have had_hadnt, has
t, havent has what$have had hadnt hasn
o.havent has what$have had hadnt hasnt
havent _has what$have had hadnt hasnt,
avent has what$have had_hadnt hasnt h
vent,has, what$have had hadnt hasnt_ha
ent_has what$have had hadnt hasnt hav
nt_has_what$have _had hadnt_hasnt have
t, has_what$have _had hadnt_hasnt haven
ohas _what$have had hadnt hasnt havent
has what$have had_hadnt hasnt havent,,
as what$have had_hadnt hasnt_havent h
s what$have had_hadnt hasnt_havent ha
.what$have had, hadnt hasnt havent, has
what$have had, hadnt hasnt havent, has,,
hat$have had hadnt hasnt havent has w
at$have had hadnt_hasnt havent has, wh
t$have _had, hadnt_hasnt havent has, wha
$have _had hadnt hasnt havent has what

$have had hadnt_hasnt havent has what
ohad_hadnt hasnt _havent, has what$have
ohadnt hasnt_havent has_what$have had
.has _what$have _had hadnt hasnt havent
o.hasnt_havent has what$have had hadnt
ohavent has what$have had hadnt hasnt
.what$have had hadnt hasnt havent has
ad_hadnt _hasnt havent has what$have_ h
adnt_hasnt, havent has what$have had_ h
as_what$have had_hadnt hasnt havent h
asnt _havent, has what$have had hadnt_h
at$have had hadnt hasnt_havent _has wh
ave_had hadnt _hasnt havent has _what$h
avent has what$have had_hadnt hasnt_ h
d_hadnt hasnt havent has_what$have_ha
dnt_hasnt, havent, has, what$have had ha
e, had hadnt hasnt _havent has what$hav
ent, has, what$have had _hadnt hasnt_hav
had _hadnt, hasnt _havent, has_what$have ,
hadnt _hasnt, havent has what$have had,
has_what$have had_hadnt hasnt_havent,
hasnt _havent, has_what$have had hadnt,
hats$have had hadnt hasnt havent has, w
have had, hadnt _hasnt havent has what $
havent has, what$have had hadnt hasnt,
nt_has_what$have _had hadnt_hasnt have
nt_hasnt havent _has_what$have had, had
nt_havent, has _what$have had_hadnt has
s what$have had hadnt hasnt_havent ha
snt_havent, has what$have had hadnt ha
t$have_had, hadnt_hasnt havent_has ,wha
t, has what$have had _hadnt hasnt_haven
t, hasnt havent has what$have had,hadn
t, havent _has what$have had hadnt hasn
ve had,hadnt _hasnt havent has what$ha
vent, has, what$have had_hadnt hasnt_ha
what$have had, hadnt hasnt havent has,,

have_ ,had_ hadnt_ hasnt_ havent_ has_ whatt$

B= tedtttshhhhhhhaavv,, ,ow$, ,edsaaannnaa,

24

Run-length BWT Compression

» amazingly, just run-length compressing the BWT is already powerful!

» r = number of runs in BWT

Example:
S = alf_eats, alfalfa$
B = asff$f e, 11laaata
Ri(B) = [§] 312 511 (51 BT HETGT]

~ r=|RL(B)| =12; n=17

Larger Example:

S = have had hadnt hasnt havent has what$
B = tedtttshhhhhhhaavv,,, . w$, ,edsaaannnaa,

~ r=19;, n =36
» Indeed: 7 = O(z logz(n)), z number of LZ77 phrases

proven in 2019 (') E Kempa, Kociumaka: Resolution of the Burrows-Wheeler Transform Conjecture, CACM 2022

25

https://doi.org/10.1145/3531445

7.6 Inverting the BWT

Inverse BWT

» Great, can compute BWT efficiently and it helps compression. But can we get T back?

> “Magic” solution:
1. Create array D[0..1] of pairs:
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abracadabra$

10

11

D

(a, 0)
(r, 1)
(d, 2)
(s, 3)
(r, 4)
(c, 5)
(a, 6)
(a 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

10

11

sorted D
char next
($, 3)
(a, 0)
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b,11)
(c, 5)
(d, 2)
(r, 1)
(r, 4)

26

Inverse BWT — The magic revealed

>

v Yy

\{

v

Inverse BWT very easy to compute:

» only sort individual characters in B (not suffixes)

~+ O(n) with counting sort

but why does this work!? z =)
decode char by char B[r]J
> . . .
can find unique $ ~- starting row e
to get next char, we need asabracadabr
(i) char in first column of current row abragabracad
abracadabra$

(ii) find row with that char’s copy in BWT

~ then we can walk through and decode
for (i): first col = chars of B in sorted order \/

for (ii): relative order of same character stays same:
ith a in first column = ith a in BWT

~~ stably sorting (B[r], r) by first entry enough\/

“——> adabra$abrac

“—> acadabra$abr

bra$abracada—’
bracadabra$a—’

cadabra$abra—’
dabra$abraca—~
ra$abracadab
racadabras$ab

(a,
(r,
(d,
(%,
(r,
(c,
(a,
(a,
(a,
(a,

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)

(b, 10)
(b, 11)

o:($, 3)
1:(3, 0)
2:(3, 6)
3:(6, 7)
4:(a, 8)
5:(6, 9)
6:(b,10)
7:(b,11)
8:(C, 5)
9:(d, 2)
10: (r, 1)
1:(r, 4)

27

Random Access Decoding

Can similarly output any substring T'[i..i + {) if we know inverse suffix array:
Simply do ¢ steps of the inverse BWT starting at » = R[i — 1]!

i R[] ; r L[r] T B[r] D sort(D)
0 6 bananaban$ 0 9] $bananaban (n,0) 0:(3%,6)
1 4 ananaban$b 1 |5] aban$banan (n,1) 1:(a,b)
2 9 nanaban$ba 2 |7] an$bananab (b,2) 2:(a,7)
3 3 anaban$ban 3 3] anaban$ban (n,3) 3:(a,8)
4 8 naban$bana 4 [1] ananaban$h (b,4) 4:(a,9)
5 1 aban$banan 5 |6] ban$banana (@,5) 5:(b,2)
6 5 ban$banana 6 |0] bananaban $ ($,6) 6:(b,4)
7 2 an$bananab 7 | 8] n$bananaba (@7 7:(n,0)
8 7 n$bananaba 8 4] naban$bana (@8 8:(n,1)
9 0 $bananaban 9 2] nanaban$ba (@9) 9:(n,3)

Decoding only needs access to

1. ith char ¢ of sort(T) = sort(B)

If we have that kip sorti toring all of D!
9, e (Ertasey e B If we have that, can skip sorting / storing all of

7.7 Random Access in BWT

Rank & Select on Sequences

Recall: Decoding only needs access to

1. ith char ¢ of sort(T) = sort(B)
2. position of (that copy of) ¢ in B

Both can be supported using
rank/select on sequences. goccurrences of ¢

> rank(T[0..n),i) = |T[0..i)|]
= #c in first i characters of T

» select (T[0..n),r)
= min{j : [T[0../]|c > r} U {n}
= indexof rthcinT, (r=1,2,...)

Random Access in BWT

> store offsets O[c] = 2.5 |B| forc € &

01 2 3
T[0.9) |blaln|a
01 2 3
rank,(T,i) 0 0 1
rank,(T,i) 0 1
rank,(T,i) o0 1
select,(T,r) / 5

select,(T,r) / 0 6
select,(T,7) / 2 4 8

01 2 3
sort(T) |ala|a|a

0[0..6] = [0,4,6,9]

» ith char of sort(B) = unique ¢ for which O[c] < i < O[c + 1]

» position of rth cin B = select.(B, r)

SRS T N

w o |lo|o

= o |3 | o

29

Wavelet Trees _._<> &
The Wavelet Trees for a T € [0..1n) over X = [0..0) .f\l ,/:

» supports access to T[i] in O(log o) time, I J
» rank.(T, i) and select.(T, r) in O(log o) time, and
» occupies ~ 1 lg o bits of Space. (Further compression possible!) ~~ Advanced Data Structures

» The generalized o-rank. (T, i) = rank.(T, i) + Z || is also supported in O(log o) time

c’<c
Storing B[0..n] as a wavelet tree ~» reconstruct { chars from T in O({log o) time
eg, t=lgn if starting position known

Storing every tth entry of R[0..n] ~» may need to go back ¢ characters for access
~ O((¢ + t)log o) time for decode
using ~ n lg n /t extra bits of space

Locally decodable BWT
» no longer need to store T'[0..77)!
» compressible (e.g., Wavelet trees with compressed bitvectors)

30

7.8 Searching in the BWT

Backwards Search

Recall how the sorted suffixes in a suffix array L[0..n] made string matching very easy.
» Simply binary search the pattern P[0..1) in L!
~ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by backwards radix search!

» use sort(B) to locate interval for last character P[m — 1]
> use one step of inverse BWT to narrow down on P[m — 2..m), repeat.

i R[] 1 Llr] r Trrp Blr] sort(D)
0o 6 bananaban$ 19 o $bananaban 0: ($
1 4" ananaban$b 5] 1 aban$banan 1:(a
2 9 nanaban$ba P=anal |7]| 2 an$bananab 2: (a
3 3 anaban$ban 3] 3 anaban$ban 3:(a
4 8 naban$bana 1] 4 ananaban$b 4:(a
5 1 aban$banan 6] 5 ban$banana s: (b
6 b ban$banana 0] 6 bananaban $ 6: (b
7 2 an$bananab 18] 7 n$bananaba 7:(n
8 7 n$bananaba 4] 8 naban$bana g: (n
9 0 $bananaban 2] 9 nanaban$ba 9: (n

31

Backwards Search — Code
Recall total rank operation supported by wavelet trees

o-rank(B, i) = |B[0..i)|, + Z|B|C/

c’<c

1 procedure backwardSearch(B[0..1], P[0..m))
2 // B[0..n] given as wavelet tree

3 // returns range [s..e) of ranks for suffixes starting with P
4 ¢ := Plm—-1]

5 s := g-rank.(B,0)

6 e := o-rank.(B, n)

7 forj :=m-2,m-3,...,0

8 if s > e break // no matches

9 c = P[]]

10 s := g-rank.(B, s)

1 e := o-rank.(B, ¢)

12 return [s..e)

32

Locating Matches
» Backwards Search finds interval [s..e) such that
P[0..m) = T[L[r] .. L[r]+m) iff r € [s..e)
~> still need suffix array L[0..1] to locate matches!
» but can detect and count occurrences even without L

Sampled Suffix Array

> As for inverse suffix array, can store L[7] only for every tth starting index7in T, i.e.,
only store entries for ranks » with L[r] = 0 (mod ¢)

~» O(nlogn/t) bits of extra space
~» Need to continue backwards search for at most ¢ extra characters to locate match
~» String matching in O(m log o + occ - tlog o) time

Wavelet-tree BWT + Sampled Suffix Array = FM Index

Ferragina, Manzini: Indexing compressed text, JACM 2005

33

https://doi.org/10.1145/1082036.1082039

FM-Index Discussion

» FM-Index is one of first compressed self-indexes

> can represent text using ~ Hy(T)n bits of space
Hy(T) = kth order empirical entropy

> still widely used, e. g., as basis of bowtie2 read alignment tool

Langmead, Salzberg: Fast gapped-read alignment with Bowtie 2, Nature Methods 2012

Ongoing research
» Reduce space for very repetitive strings (collection of genomes)

e.g. r-index Navarro: Indexing Highly Repetitive String Collections, Part II: Compressed Indexes, ACM Comp. Surv. 2021

» full support of suffix tree functionality with little extra space?

34

https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1145/3432999

	Googling Genomes
	Recall Unit 6
	Recall Unit 6
	Range-Minimum Queries
	Range-minimum queries (RMQ)
	Finally: Longest common extensions
	Rules of the Game
	Trivial Solutions

	RMQ – Sparse Table Solution
	Sparse Table
	Bootstrapping
	Query decomposition

	RMQ – Cartesian Trees
	RMQ & LCA
	Counting binary trees
	Intrablock queries
	Exhaustive Tabulation
	RMQ Discussion

	String Matching in Enhanced Suffix Array
	Binary searching the suffix array
	LCP Binary Search
	Enhanced Suffix Arrays – Update

	The Burrows-Wheeler Transform
	Towards Self-Indexes
	BWT – Definitions
	BWT – Example
	Computing the BWT
	BWT – Properties
	A Bigger Example
	Run-length BWT Compression

	Inverting the BWT
	Inverse BWT
	Inverse BWT – The magic revealed
	Random Access Decoding

	Random Access in BWT
	Rank & Select on Sequences
	Wavelet Trees

	Searching in the BWT
	Backwards Search
	Backwards Search – Code
	Locating Matches
	FM-Index Discussion

