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8.1 Noncoding RNA



RNA
RNA (Ribonucleic acid)

▶ similar to DNA: polymer of nucleotides

⇝ sequence of nitrogenous bases
Adenine, and Cytosine, Guanine, Uracil

▶ unlike DNA, typically single-stranded

▶ more “sticky” backbone

▶ mostly known as messenger RNA (mRNA)
▶ including mRNA vaccines!
▶ mRNA is a coding RNA

since they encode a protein

The Central Dogma of Molecular Biology
DNA makes RNA makes Protein

https://commons.wikimedia.org/wiki/File:Summary_of_the_protein_biosynthesis_process.png

Protein Biosynthesis

▶ mechanism to produce
protein a according to
recipe stored in a gene

� From DNA to protein - 3D
https://youtu.be/gG7uCskUOrA
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Noncoding RNA

But RNA serves many other roles!

� Introduction to Non-Coding RNA
https://youtu.be/KIohfQsRRdQ

▶ ironically, ribosomes (protein factories) themselves are mostly made of RNA

▶ for noncoding RNA, structure (3D folding form) crucial for function

▶ indeed, sequence often highly variable between species, but structure is similar!
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RNA Secondary Structure Prediction
▶ Unfortunately, 3D shape hard and expensive to determine experimentally (X-ray

crystallography)

▶ Available (diverse) data much smaller than for proteins
⇝ May not soon see successful machine-learning solutions similar to AlphaFold

Rhĳu Das, https://youtu.be/XqFq_zYx7Vo

▶ To make matters worse, often not a single static structure

� RNA folding in action
https://youtu.be/2XTi9LG9NnU

⇝ study de-novo approaches

⇝ and use simplified models of chemistry and shape to make progress
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8.2 RNA Secondary Structure



Model of RNA Structure
▶ RNA sequence / primary structure 𝑅[0..𝑛) ∈ Σ𝑛 Σ = {A, C, G, U}

▶ RNA secondary structure: matching of indices
𝑆 ⊂ [0..𝑛)2 of pairs (𝑖 , 𝑗) that are
▶ ordered 𝑖 ≤ 𝑗

▶ disjoint: (𝑖 , 𝑗), (𝑘, 𝑙) ∈ 𝑆 ∧ (𝑖 = 𝑘 ∨ 𝑗 = 𝑙) =⇒ (𝑖 , 𝑗) = (𝑘, 𝑙)
▶ not too close (𝑖 , 𝑗) ∈ 𝑆 =⇒ 𝑗 − 𝑖 ≥ 4

min. length of hairpin loop

backbone can’t bend more

▶ secondary structure 𝑆 is valid for sequence 𝑅 if

(𝑖 , 𝑗) ∈ 𝑆 =⇒ (𝑅[𝑖], 𝑅[𝑗]) ∈ C =
{
(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)

}
▶ C are the canonical base pairs: can form hydrogen bonds to stabilize RNA
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Optimal RNA Structure – Attempt 1
▶ Since base pairs provide stability

Try to maximize |𝑆| (# pairs) among all valid secondary structures for 𝑅[0..𝑛).

⇝ maximum matching in graph of all bases

▶ possible in polynomial time
▶ actually, ignoring minimum hairpin length, trivial greedy approach is optimal:

1. form arbitrary C − G pairs (until we run out of Cs or Gs)
2. form arbitrary A − U pairs (until we run out)
3. form arbitrary G − U pairs (until we run out)

▶ unfortunately, useless predictions!
▶ number of pairs dictated by base counts
▶ many equally good options exist
▶ many “optimal” solutions force entire molecule crowd up in one place
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Let’s play a game!

phenylalanine transfer RNA from Saccharomyces
https://rnacentral.org/rna/URS000011107D/4930
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EteRNA
eternagame.org

▶ Eterna is a citizen scientist computer game running since 2010
lead by Rhĳu Das (Stanford University School of Medicine)

▶ You have to design an RNA sequence that folds into a given target secondary structure.

▶ The game uses the best available simulation of RNA folding.

▶ Simulation, prediction, and RNA design algorithms are co-evolving
▶ RNA design crowdsourced to players
▶ top designs synthesized and structure determined
⇝ growing dataset for RNA structures
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2D Approximation
▶ As in Eterna, RNA secondary structure often drawn as “roadkill diagrams”

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png
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Stacks
Key Observation: Stable structures have many adjacent pairs

▶ “stacked” pairs forming a stem (the “ladder” regions)

▶ in 3D, stems form into a double helix (similar to DNA!)

▶ only reverse complement
stems are stable

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png
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Optimal RNA Structure – Attempt 2
▶ Recall: 𝑆 ⊂ [0..𝑛)2 set of indices of paired bases

▶ instead of maximizing |𝑆| (# pairs), let’s maximize number of base pair stackings!

BPS(𝑆) =

���{(𝑖 , 𝑗) ∈ 𝑆 : (𝑖 + 1, 𝑗 − 1) ∈ 𝑆
}���

4 base pair stackings

General Secondary Structure Prediction
▶ Given: Sequence 𝑅 ∈ {A, C, G, U}𝑛

▶ Goal: Valid secondary structure 𝑆

with maximal BPS(𝑆)
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Hardness
Unfortunately, General Secondary Structure Prediction is NP-hard.

▶ reduction from BinPacking

� Lyngsø: Complexity of Pseudoknot Prediction in Simple Models, ICALP 2004
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8.3 Pseudoknot-free secondary structures



Flat Structures
Recall example tRNA structure

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png

⇝ Seems reasonable to only consider
roadkill diagrams without crossings.

“Correct” formalization seems to be:
Require graph of pairs bases and backbone edges to be outerplanar.

Any other secondary structure is called a pseudoknot.
12
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Pseudoknot-free secondary structures
▶ planar secondary structure (pairs) cover most of free energy of folding

▶ “coarse graining” of 3D structure biochemically useful

▶ natural intermediate step on folding pathway

▶ often well conserved between related species

▶ computationally tractable
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Pseudoknot-free secondary structures – Representations
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Nussinov’s Algorithm
Idea: Maximize total number of valid pairs among all pseudoknot-free structures.

▶ back to maximum matching, but subject to outerplanar constraint . . .

▶ outerplanar iff ∀(𝑖 , 𝑗), (𝑘, ℓ ) ∈ 𝑆 either
𝑖 < 𝑘 < ℓ < 𝑗 (nested ), or
𝑖 < 𝑗 < 𝑘 < ℓ (disjoint ). Anything else ( ) ⇝ pseudoknot.

▶ key insight: decomposability! see arc diagram / dot-bracket representation

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G⇝ Apply dynamic programming
on subproblems 𝑅[𝑖.. 𝑗)

𝐷(𝑖 , 𝑗) = max valid pairs in pseudoknot-free structure for 𝑅[𝑖.. 𝑗)
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Nussinov’s Algorithm – DP

𝐷(𝑖 , 𝑗) = max valid pairs in any
pseudoknot-free structure for 𝑅[𝑖.. 𝑗)

Figure 10.7 from Durbin et al. 1998

⇝ 𝐷(𝑖 , 𝑗) =



0, if 𝑗 − 𝑖 ≤ 4;

max



𝐷(𝑖 + 1, 𝑗 − 1) +
[
(𝑅[𝑖], 𝑅[𝑗−1]) ∈ C

]
,

𝐷(𝑖 + 1, 𝑗),
𝐷(𝑖 , 𝑗 − 1),
max
𝑘∈[𝑖.. 𝑗)

𝐷(𝑖 , 𝑘) + 𝐷(𝑘 + 1, 𝑗)

else.

⇝ 𝑂(𝑛3) time, 𝑂(𝑛2) space
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8.5 Refined Models



Back to Base Pair Stackings
▶ While maximum outerplanar matching is well-defined and tractable,

it doesn’t usually yield natural structures.

▶ already know that we should count base pair stackings!

▶ We can extend the DP solution to count those instead!
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Graphical notation for DP recursions

= min

{
, ,

}
Key

▶ dots bases; if touching, neighbors on backbone

▶ horizontal line RNA backbone

▶ wiggly arcs base pair

▶ dashed arcs boundary; could be paired or not

▶ white area no arcs here

▶ gray area potentially further arcs
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Counting Base Pair Stackings
Idea: Need to remember whether outermost bases paired.

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖 𝑗𝑖1 𝑗1

,
𝑖 𝑗𝑝𝑖+1 𝑗−1𝑝+1

}
▶ In the middle case, if (𝑖1 , 𝑗1) = (𝑖 , 𝑗), count stacked base pair for (𝑖 , 𝑗)

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖

𝑗
𝑖+1

,
𝑖

𝑗𝑗−1

,
𝑖 𝑗

𝑝 𝑝+1

}
⇝ Same 𝑂(𝑛3) time, 𝑂(𝑛2) space complexity
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Turner Energy Model
▶ Simply counting base pair stackings is still a very crude approximation

▶ Which bases are paired influences bonding strength

▶ Which bases are adjacent in stems influences stabilization contribution of stem

▶ Which bases form first unpaired base in hairpin loop influences stability

▶ . . . (play Eterna a bit for more )

⇝ More refined models to compute free energy (≈ instability) of structure

�
Mathews, Sabina, Zuker, Turner: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary
structure, J Molecul. Biolog. 1999

�
Mathews, Disney, Childs, Schroeder, Zuker, Turner: Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure, PNAS 2004
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Turner Energy Model [2]

𝐺 𝐶 𝐶 𝐶 𝑈 𝐺 𝐴 𝑈 𝐴 𝐺 𝐶 𝐺 𝑈 𝐴 𝐺 𝑈 𝐶 𝐴 𝐶 𝑈 𝐴 𝐺 𝐶 𝐺 𝐴 𝐺 𝑈 𝐶 𝑈 𝐺 𝑈 𝐴 𝑈 𝑈 𝐶 𝑈 𝐴 𝐴 𝐺 𝐴 𝐴 𝐺 𝐴 𝑈 𝐶 𝐴 𝐶 𝑈 𝐺 𝐴 𝐺 𝐺 𝐺 𝑈 𝑈 𝐶 𝐺 𝐶 𝐺 𝐺 𝐺 𝐺

1 5 10 15 20 25 30 35 40 45 50 55 60 62

▶ structure = partition into 𝑘-loops
▶ model assumptions

▶ total free energy = sum of loop contributions
▶ loop contributions are independent
▶ determined in lots of experiments

Conceptually unbounded sum

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖 𝑗𝑖1 𝑗1

, , , . . .

}
� too many variables!
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Zuker’s Algorithm
▶ Only compute exactly up to 2-loops (2 enclosed pairs)

▶ additive approximation for bigger multiloops

⇝ same mutually recursive cost as for pair stackings
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8.6 Grammar-based Approaches



Can’t machine learning help?
▶ free-energy models are great ab initio methods

▶ however, they remain limited in accuracy

▶ with growing datasets, tempting to improve structure prediction using machine
learning

▶ but: available data much too few for blackbox learning

⇝ statistical learning with curated probabilistic model
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Probabilistic Context-Free Grammars
Recap from your formal languages intro course . . .

Context-free grammars (CFG)
𝐺 = (𝑁,𝑇, 𝑅, 𝑆)
▶ nonterminals 𝑁

▶ terminals 𝑇
▶ rules 𝑅 ⊆ 𝑁 × (𝑁 ∪ 𝑇)∗
▶ start symbol 𝑆 ∈ 𝑁

Applying rules to replace nonterminals
𝑆 ⇒∗ 𝑤 ⇝ 𝑤 ∈ L(𝐺)

Example
▶ 𝑁 = {𝐸, 𝐼, 𝑉, 𝐶, 𝐶′}
▶ 𝑇 = {x, y, 0, . . . , 9, +, •}
▶ 𝐸 → (𝐸 + 𝐸) | (𝐸 • 𝐸) | 𝐼

𝐼 → 𝐶 | 𝑉
𝑉 → x | y
𝐶 → 0 | 1𝐶′ | . . . | 9𝐶′

𝐶′ → 𝜀

empty string

| 0𝐶′ | . . . | 9𝐶′

Probabilistic Context-Free Grammars (PCFG)

▶ For each nonterminal, assign probabilities to right-hand sides.
⇝ prob of a derivation in 𝐺 = product of rule probabilities.
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RNA Sequence and Structure
Pseudoknot-free secondary structures ≈ correctly parenthesized strings

⇝ representable by context-free grammar

Idea: Represent RNA sequence and structure as string of pairs

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62
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]
⇝ Consider grammars with terminals
𝑇 =

{[A
•

]
,
[A
(

]
,
[A
)

]
,
[C
•

]
,
[C
(

]
,
[C
)

]
,
[G
•

]
,
[G
(

]
,
[G
)

]
,
[U
•

] [U
(

]
,
[U
)

]}
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RNA Grammars
Example Grammar to produce RNA sequence and structure pairs
(with some fictitious rule probabilities)

rule prob. rule prob. rule prob.

𝑆 → 𝐿 𝑆 0.65 𝐿 →
[C
(

]
𝑆
[G
)

]
0.10 𝐿 →

[A
•

]
0.10

𝑆 → 𝜀 0.35 𝐿 →
[G
(

]
𝑆
[C
)

]
0.05 𝐿 →

[U
•

]
0.15

𝐿 →
[A
(

]
𝑆
[U
)

]
0.05 𝐿 →

[U
(

]
𝑆
[G
)

]
0.05 𝐿 →

[C
•

]
0.10

𝐿 →
[U
(

]
𝑆
[A
)

]
0.15 𝐿 →

[G
(

]
𝑆
[U
)

]
0.10 𝐿 →

[G
•

]
0.15

Can prove: Grammar has unique parse tree iff valid RNA sequence structure pair.

Key idea for structure prediction:

▶ Given only sequence of bases, cannot distinguish
[A
•

]
,
[A
(

]
, and

[A
)

]
⇝ Many possible parse trees compatible with sequence
⇝ Predict structure corresponding to most likely parse tree
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Structure Prediction with PCFG
rule prob. rule prob. rule prob.

𝑆 → 𝐿 𝑆 0.65 𝐿 →
[C
(

]
𝑆
[G
)

]
0.10 𝐿 →

[A
•

]
0.10

𝑆 → 𝜀 0.35 𝐿 →
[G
(

]
𝑆
[C
)

]
0.05 𝐿 →

[U
•

]
0.15

𝐿 →
[A
(

]
𝑆
[U
)

]
0.05 𝐿 →

[U
(

]
𝑆
[G
)

]
0.05 𝐿 →

[C
•

]
0.10

𝐿 →
[U
(

]
𝑆
[A
)

]
0.15 𝐿 →

[G
(

]
𝑆
[U
)

]
0.10 𝐿 →

[G
•

]
0.15

Leftmost derivations for 𝑅 = GAC using A ≡
[A
*

]
≡
[A
•

]
≡
[A
(

]
≡
[A
)

]
1. ¤𝑆 ⇒

0.65
¤𝐿𝑆 ⇒

0.15

[G
•

] ¤𝑆 ⇒
0.65

[G
•

] ¤𝐿𝑆 ⇒
0.10

[G
•

][A
•

] ¤𝑆 ⇒
0.65

[G
•

][A
•

] ¤𝐿𝑆 ⇒
0.10

[G
•

][A
•

][C
•

] ¤𝑆 ⇒
0.35

[G
•

][A
•

][C
•

]
Total probability 0.000144

2. ¤𝑆 ⇒
0.65

¤𝐿𝑆 ⇒
0.05

[G
(

] ¤𝑆 [C)]𝑆 ⇒
0.65

[G
(

] ¤𝐿𝑆 [C)]𝑆 ⇒
0.10

[G
(

] [A
•

] ¤𝑆 [C)]𝑆 ⇒
0.35

[G
(

] [A
•

] [C
)

] ¤𝑆 ⇒
0.35

[G
(

] [A
•

] [C
)

]
Total probability 0.000259

⇝ Predict structure “(•)” (Simple grammar ignores min length of hairpin loops!)

Here trivial, since only 2 different derivations . . . how to solve in general?
And where do the probabilities come from?
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Stochastic Approach to Secondary Structure Prediction

Grammar
terminals ACGU

structure annotations

parametric

stochastic model

training data
GGCGGUGCCA

(((•••)))•

compute
parse trees
for secondary str.

prediction data
AUGGUGGGUGCCAA

compute

most likely
parse tree

for sequence

most likely structure
AUGGUGGGUGCCAA

•((((••••))))•

induces

rel. rule freq.

training phase

Both can all be done with the
same probabilistic parser.
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8.7 Probabilistic Parsing



Refresher: Chomsky Normal Form
Describing parsing easier with specific form of grammars. (reduces case distinctions)

Theorem 8.1 (Chomsky-Normalform (CNF))
For every context-free grammar (CFG) 𝐺 = (𝑁,𝑇, 𝑅, 𝑆) with 𝜀 ∉ L(𝐺), we can effectively
construct CFG 𝐺′ = (𝑁 ′, 𝑇, 𝑅′, 𝑆′) with L(𝐺) = L(𝐺′) and 𝑅′ ⊂ 𝑁 ′ × 𝑁 ′ 𝑁 ′ ∪ 𝑁 ′ × 𝑇. ◀

⇝ Only rules of form 𝐴 → 𝑎 or 𝐴 → 𝐵𝐶

Proof idea:

Successively eliminate

1. 𝜀-rules 𝐴 → 𝜀

2. chain rules 𝐴 → 𝐵

3. “unproductive nonterminals”
i. e., 𝐴 where there is no derivation 𝑆 ⇒★ 𝛼𝐴𝛽 ⇒★ 𝑤

4. terminals in RHS 𝐴 → 𝛼a𝛽 ⇝ 𝐴 → 𝛼𝐴a𝛽 und 𝐴a → 𝑎

5. overlong RHS 𝐴 → 𝐵𝐶𝐷 ⇝ 𝐴 → 𝐵𝐴′ and 𝐴′ → 𝐶𝐷

⇝ need to verify:
Later steps don’t re-introduce
problems eliminated earlier
(easy)
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Refresher: Cocke-Younger-Kasami
CNF ⇝ Only rules of form 𝐴 → 𝑎 or 𝐴 → 𝐵𝐶

Given: CFG 𝐺 = (𝑁,𝑇, 𝑅, 𝑆) in Chomsky normal form, word 𝑤 ∈ 𝑇𝑛 , 𝑛 ≥ 1
Decide: 𝑤 ∈ L(𝐺)?

Solve more general problem: 𝐴 ⇒★ 𝑤[𝑖.. 𝑗) ? for all 𝐴 ∈ 𝑁 , 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.

⇝ 𝑤 ∈ L(𝐺) iff 𝐴 ⇒★ 𝑤[𝑖.. 𝑗) for 𝐴 = 𝑆, 𝑖 = 0, 𝑗 = 𝑛

▶ Guess first used rule ⇝ two cases for the two rule types

▶ 𝐴 ⇒★ 𝑤[𝑖..𝑖 + 1) iff 𝐴 → 𝑤[𝑖] ∈ 𝑅

▶ 𝐴 ⇒★ 𝑤[𝑖.. 𝑗) for 𝑗 ≥ 𝑖 + 2 iff ∃𝑘 ∈ [𝑖 + 1.. 𝑗), 𝐵, 𝐶 ∈ 𝑁 with 𝐴 → 𝐵𝐶 ∈ 𝑅 and
𝐵 ⇒★ 𝑤[𝑖..𝑘) and
𝐶 ⇒★ 𝑤[𝑘.. 𝑗)

instances of same problem

⇝ dynamic programming ⇝ 𝑂(𝑛3𝑔) time for 𝑔 the number of rules in 𝐺

⇝ via backtrace also find a leftmost derivation for 𝑤 (if 𝑤 ∈ L(𝐺))
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Probabilistic Parsing
Notation

▶ derivation 𝑟1 , . . . , 𝑟𝑡 = a sequence of rules from 𝑅

▶ probability of a derivation ℙ[𝑟1 , . . . , 𝑟𝑡] =
∏𝑡

𝑖=1 𝑃(𝑟𝑖)
▶ write lmd𝐴→𝛾(𝑥𝐴𝛽) = 𝑥𝛾𝛽 for one leftmost derivation step
▶ extend lmd𝑟(◦) to several rules lmd𝑟1 ,...,𝑟𝑡 (◦) by successively applying rules

Standard CYK solves the word/parsing problem
Given: CFG 𝐺 = (𝑁,𝑇, 𝑅, 𝑆) in Chomsky normal form, word 𝑤 ∈ 𝑇𝑛 , 𝑛 ≥ 1
Output: any 𝑟1 , . . . , 𝑟𝑡 such that lmd𝑟1 ,...,𝑟𝑡 (𝑆) = 𝑤 or NOT_IN_LANGUAGE

For RNA structure prediction, need the most likely among many possible derivations!

Viterbi parse problem
Given: PCFG 𝐺 = (𝑁,𝑇, 𝑅, 𝑆, 𝑃), word 𝑤 ∈ 𝑇𝑛 , 𝑛 ≥ 1
Output: 𝑟1 , . . . , 𝑟𝑡 = arg max

𝑟1 ,...,𝑟𝑡
lmd𝑟1 ,...,𝑟𝑡 (𝑆)=𝑤

ℙ[𝑟1 , . . . , 𝑟𝑡]
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Viterbi value vs. probability
Note that in probabilistic parsing, there two “probabilities” for a string 𝑤

1. the Viterbi value
𝑉(𝑤) = max

𝑟1 ,...,𝑟𝑡
lmd𝑟1 ,...,𝑟𝑡 (𝑆)=𝑤

ℙ[𝑟1 , . . . , 𝑟𝑡]

probability of a single, most likely derivation 𝑆 ⇒★ 𝑤

2. the production probability
ℙ[𝑤] = ℙ[𝑆 ⇒★ 𝑤] =

∑

𝑟1 ,...,𝑟𝑡
lmd𝑟1 ,...,𝑟𝑡 (𝑆)=𝑤

ℙ[𝑟1 , . . . , 𝑟𝑡]

total probability that we obtain 𝑤

when starting with 𝑆 and applying randomly chosen rules to expand nonterminals.

Both can make sense; for us only Viterbi value needed.
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Probabilistic CYK
In Chomsky normal form, easy to make CYK probabilistic

General Viterbi values: 𝑉𝐴(𝑤) = max
𝑟1 ,...,𝑟𝑡

lmd𝑟1 ,...,𝑟𝑡 (𝐴)=𝑤

ℙ[𝑟1 , . . . , 𝑟𝑡]

𝑉𝐴(𝑤[𝑖..𝑖 + 1)) =

{
𝑃(𝐴 → 𝑤[𝑖]) if 𝐴 → 𝑤[𝑖] ∈ 𝑅

0 otherwise

𝑉𝐴(𝑤[𝑖.. 𝑗)) = max
𝑘∈[𝑖+1.. 𝑗)
𝐴→𝐵𝐶∈𝑅

𝑃(𝐴 → 𝐵𝐶)𝑉𝐵(𝑤[𝑖..𝑘))𝑉𝐶(𝑤[𝑘.. 𝑗))

⇝ Same DP works!
𝑂(𝑛3𝑔) time, backtrace yields most likely derivation
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8.8 The Grammar of RNA



RNA Grammar Normal Form
Chomsky Normal Form rather inconvenient for RNA.
▶ Really want a single rule to introduce a pair bond.

▶ Nonterminals often represent a logical abstraction of several special cases
would want to have chain rules for that

Stochastic RNA Form (SRF)
Normal form from � Onokpasa, Wild, Wong: Towards Optimal Grammars for RNA Structures, DCC 2024

▶ Assume 𝑁 = {𝐴1 , . . . , 𝐴𝑘}

▶ start symbol must be 𝐴𝒌

▶ all rules must of the form
(i) 𝐴𝑖 → 𝐴 𝑗𝐴ℓ

(ii) 𝐴𝑖 → •
(iii) 𝐴𝑖 → (𝐴 𝑗)
(iv) 𝐴𝑖 → 𝐴 𝑗 and 𝑗 < 𝑖

(assumes a total order on the nonterminals)

34

https://www.wild-inter.net/publications/onokpasa-wild-wong-2024


Viterbi values
Generalization of CYK computes Viterbi values

𝑉𝐴(𝑤[𝑖..𝑖 + 1)) =

{
𝑃(𝐴 → 𝑤[𝑖]) if 𝐴 → 𝑤[𝑖] ∈ 𝑅 type (ii) rules
0 otherwise

𝑉𝐴(𝑤[𝑖.. 𝑗)) = max



max
𝑘∈[𝑖+1.. 𝑗)
𝐴→𝐵𝐶∈𝑅

𝑃(𝐴 → 𝐵𝐶)𝑉𝐵(𝑤[𝑖..𝑘))𝑉𝐶(𝑤[𝑘.. 𝑗)) type (i) rules

max
𝐴→𝑤[𝑖]𝐵𝑤[𝑗−1]∈𝑅

𝑃(𝐴 → 𝑤[𝑖] 𝐵𝑤[𝑗 − 1])𝑉𝐵(𝑤[𝑖 + 1.. 𝑗 − 1)) type (iii) rules

max
𝐴→𝐵∈𝑅

𝑃(𝐴 → 𝐵)𝑉𝐵(𝑤[𝑖.. 𝑗)) type (iv) rules
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Towards Subcubic RNA Folding
▶ both general context-free parsing as well as minimum-free energy models led to Θ(𝑛3)

worst case time algorithms

▶ at core, both problems resemble matrix multiplication
▶ dominant running time comes from bifurcation rules

▶ e. g., Recall Nussinov 𝐷(𝑖 , 𝑗) =



0, if 𝑗 − 𝑖 ≤ 4;

max



𝐷(𝑖 + 1, 𝑗 − 1) +
[
(𝑅[𝑖], 𝑅[𝑗−1]) ∈ C

]
,

𝐷(𝑖 + 1, 𝑗),
𝐷(𝑖 , 𝑗 − 1),

max
𝒌∈[𝑖.. 𝑗)

𝐷(𝑖 , 𝒌) + 𝐷(𝒌 + 1, 𝑗)

else.
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Towards Subcubic RNA Folding [2]
Approaches

1. Exhaustive Tabulation can be made to work . . . shaves off log-factors

2. for (probabilistic) context-free parsing Valiant’s algorithm reduces the problem to
(Boolean) matrix multiplication ⇝ 𝑂(𝑛𝜔) possible

� Valiant: General context-free recognition in less than cubic time, J Comput. System Sci. 1975

▶ constant factors are huge; even asymptotically slower Strassen
▶ beyond plain word recognition problem, more complications to be overcome

� Zakov, Tsur, Ziv-Ukelson: Reducing the worst case running times of a family of RNA and CFG problems, using Valiant’s approach, Alg.
Molecul. Biol. 2011

3. Closer to (min,+)-matrix multiplication than regular matrix (+, ·)-multiplication
▶ in general, likely no 𝑂(𝑛3−𝜖) algorithms to be expected
▶ but for bounded difference matrices, speedups known

�
Bringmann, Grandoni, Saha, Williams: Truly Subcubic Algorithms for Language Edit Distance and RNA Folding via Fast Bounded-Difference
Min-Plus Product, SIAM J. Comput. 2019

37

https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1186/1748-7188-6-20
https://doi.org/10.1137/17M112720X


What Grammars to Choose?
▶ #parameters = #rules −1 per nonterminal

▶ more parameters means more expressive
but also more prone to overfitting

▶ finding a grammar that captures structure well at this point more art than science

⇝ Good results, e. g., for this grammar

𝑈 → •
𝐵 → (𝑀)
𝑇 → 𝐵 | 𝑈

𝑀 → 𝐵 | 𝑇𝑆 | 𝑇

𝑆 → 𝑇𝑆 | 𝑇

Grammar 𝐺6 from

�
Dowell, Eddy: Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure
prediction, BMC Bioinform. 2004

38

https://doi.org/10.1186/1471-2105-5-71


8.9 RNA Prediction and Compression



Prediction = Compression + Generalization
▶ RNA grammar turns RNA sequence-structure pair into single string:

The sequence of used rules!

▶ Can compress these rules using arithmetic coding

⇝ efficient compression of RNA

Can we use the compression ratio as a proxy to compare RNA grammars?

� Onokpasa, Wild, Wong: RNA secondary structures: from ab initio prediction to better compression, and back, DCC 2023

Can we find better grammars than Dowell & Eddy?

� Onokpasa, Wild, Wong: Towards Optimal Grammars for RNA Structures, DCC 2024
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