GORITHM

Puzzle from the Lab

16 October 2025

Prof. Dr. Sebastian Wild

CS594 (Winter 2025-26) Philipps-Universität Marburg version 2025-10-23 11:58

Outline

Puzzle from the Lab

- 1.1 Protein Sequencing
- 1.2 The Turnpike Problem
- 1.3 Backtracking Algorithm
- 1.4 A Pseudopolynomial Algorithm
- 1.5 Back to the Lab

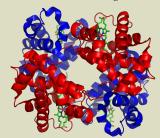
1.1 Protein Sequencing

Proteins: The Workhorses of the Cell

- ▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape determines the function.
- ► What do they do? Almost everything!
 - ► They act as *enzymes* (catalyzing chemical reactions)
 - provide structural support (cell walls, muscles!),
 - transport molecules (e. g., hemoglobin),
 - ▶ send signals (some hormones, e. g., insulin)
 - and more

Primary Protein Structure

3D Structure of hemoglobin

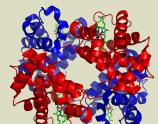


https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Proteins: The Workhorses of the Cell

▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape determines the function.

- ► What do they do? Almost everything!
 - ► They act as *enzymes* (catalyzing chemical reactions)
 - provide structural support (cell walls, muscles!),
 - transport molecules (e. g., hemoglobin),
 - ▶ send signals (some hormones, e. g., insulin)
 - and more
- → Target of many activities across bioinformatics
 - analyzing amino acid sequence
 - predicting structure (AlphaFold)
 - study interaction networks
 - design new proteins as potential drugs
 - ▶ ...



https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Amino Acids

Amino acid	3-letter code	Molecular formula	Mass (Da)	
Alanine	Ala	C ₃ H ₅ NO	71.03711	
Cysteine	Cys	C ₃ H ₅ NOS	103.00919	
Aspartic acid	Asp	$C_4H_5NO_3$	115.02694	
Glutamic acid	Glu	$C_5H_7NO_3$	129.04259	
Phenylalanine	Phe	C ₉ H ₉ NO	147.06841	
Glycine	Gly	C ₂ H ₃ NO	57.02146	
Histidine	His	$C_6H_7N_3O$	137.05891	
Isoleucine	Ile	$C_6H_{11}NO$	113.08406	
Lysine	Lys	$C_6H_{12}N_2O$	128.09496	
Leucine	Leu	$C_6H_{11}NO$	113.08406	
Methionine	Met	C ₅ H ₉ NOS	131.04049	
Asparagine	Asn	$C_4H_6N_2O_2$	114.04293	
Proline	Pro	C ₅ H ₇ NO	97.05276	
Glutamine	Gln	$C_5H_8N_2O$	128.05858	
Arginine	Arg	$C_6H_{12}N_4O$	156.10111	
Serine	Ser	$C_3H_5NO_2$	87.03203	
Threonine	Thr	$C_4H_7NO_2$	101.04768	
Valine	Val	C ₅ H ₉ NO	99.06841	
Tryptophan	Trp	$C_{11}H_{10}N_2O$	186.07931	
Tyrosine	Tyr	C ₉ H ₉ NO ₂	163.06333	

- ► 1 Da = $\frac{1}{12}$ of a carbon-12 atom $\approx 1.66 \times 10^{-27}$ kg.
 - ► We will use rounded integer weights
- ► Monoisotopic mass: sum of atomic masses of most abundant isotopes.
- ► Only shows 20 *proteinogenic* amino acids (those encoded in DNA)

Compeau & Pevzner, Bioinformatics Algorithms, https://cogniterra.org/lesson/29925/step/1

[▶] Dalton (Da): unit of molecular mass.

Protein Sequencing

How to determine the sequence of amino acids in a protein?

- ▶ indirect option: via *genes*
 - ... we will come back to that
 - ▶ not always possible (e. g., for non-ribosomal peptides)
- ▶ (more) direct option: *mass spectrometry*
 - 1. Shatter (many copies) molecule into pieces
 - 2. Measure *spectrum* of particle masses* (which masses occur how often)

■ Mass Spectrometry https://youtu.be/mBT73Pesiog

→ from this, reconstruct what the molecule was!?

1.2 The Turnpike Problem

Turnpike Problems

■ The Sopranos Opening https://youtu.be/mJpNmYeooQE

Turnpike Problems

■ The Sopranos Opening https://youtu.be/mJpNmYeooQE

- → Turnpike = toll road
- ightharpoonup typically, price for road \propto length of segment on road
- ► Can enter and leave at any pair of exits

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- no contamination

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- ▶ no contamination

```
Definition 1.1 (Difference multiset) molecular weights / distances / turnpike tolls Given P = P[0..n) \in \mathbb{N}_{\geq 1}^n a sequence of numbers, define the prefix sums S[0..n] = \operatorname{prefSum}(P[0..n)) via S[i] = P[0] + \cdots + P[i-1].
```

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- no contamination

Definition 1.1 (Difference multiset)

molecular weights / distances / turnpike tolls

Given $P = P[0..n) \in \mathbb{N}_{\geq 1}^n$ a sequence of numbers, define the *prefix sums* $S[0, n] = \operatorname{prefSum}(P[0, n])$

define the *prefix sums* $\bar{S}[0..n] = \text{prefSum}(P[0..n)) \text{ via } S[i] = P[0] + \cdots + P[i-1].$

The *difference multiset* ΔS is the multiset

multiset

$$\Delta S = \{ \{S[j] - S[i] : 0 \le i < j \le n \} \}.$$

Important: Keep duplicates / multiplicities of distances! \rightarrow $|\Delta S[0..n]| = \binom{n+1}{2}$

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset *D* with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

⋖

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset *D* with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

Examples:

Examples:
1.
$$P_1 = [3,5,1,2]$$
 $O \in \mathcal{C}$ $O \cap \mathcal{C}$ $O \in \mathcal{C}$ $O \cap \mathcal{C}$

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset D with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

Examples:

2.
$$P_2 = [1, 1, 1, 1, 1]$$

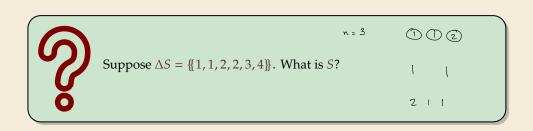
$$\Rightarrow S_2 = [0, 1, 2, 3, 4, 5]$$

$$\Rightarrow D_2 = \Delta S_2 = \{\{1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5\}\}$$

3512

3. For $D = \{1, 1, 1\}$ no set S exists such that $D = \Delta S$ Any two points a < b will give $\Delta(0, a, b) = \{\{a, b, b - a\}\}$ $4a \neq b$

Clicker Question

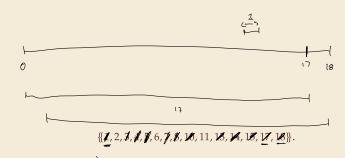


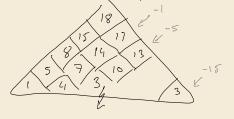


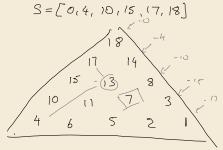
1.3 Backtracking Algorithm

Systematic Solution

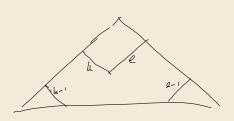
Consider $\Delta S = \{\{\underline{1}, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, \underline{17}, \underline{18}\}\}.$







- · pyramid is increasing
 - 7 K along diagonals
- => second largest can so



Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        S := \{0, d\} // sorted set of prefSums
 3
        return turnpikeRec(S, D)
 5
  procedure turnpikeRec(S, D)
       // Invariant: \Delta S \subseteq D
        if \Delta S == D
 8
            return S
 9
        d := \max(D \setminus \Delta S)
10
       // Option 1: Distance d from left end
11
        S' := S \cup \{d\}
12
        if \Delta S' \subset D
13
            R := turnpikeRec(S', D)
14
            if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        S' := S \cup \{(\max D) - d\}
18
        if \Delta S' \subseteq D
19
            return turnpikeRec(S', D)
20
        else // no option worked!
21
            return NO DIFFERENCE MULTISET
22
```

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        S := \{0, d\} // sorted set of prefSums
        return turnpikeRec(S, D)
   procedure turnpikeRec(S, D)
        // Invariant: \Delta S \subseteq D
        if \Delta S == D
             return S
 9
        d := \max(D \setminus \Delta S)
10
       // Option 1: Distance d from left end
11
        S' := S \cup \{d\}
12
       if \Delta S' \subseteq D
13
             R := turnpikeRec(S', D)
14
             if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        S' := S \cup \{(\max D) - d\}
18
        if \Delta S' \subset D
19
             return turnpikeRec(S', D)
20
        else // no option worked!
21
             return NO DIFFERENCE MULTISET
22
```

Correctness

- After placing a few points in prefix sums S, largest remaining distance must be measured from one endpoint.
- Otherwise we are immediately missing a larger distance ¶
- $\rightsquigarrow\,$ only two checked options are possible
- invariant explicitly checked for recursive calls
- invariant at return guarantees correct answer

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        S := \{0, d\} // sorted set of prefSums
        return turnpikeRec(S, D)
   procedure turnpikeRec(S, D)
        // Invariant: \Delta S \subseteq D
        if \Delta S == D
             return S
 9
        d := \max(D \setminus \Delta S)
10
       // Option 1: Distance d from left end
11
        S' := S \cup \{d\}
12
       if \Delta S' \subseteq D
13
             R := turnpikeRec(S', D)
14
             if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        S' := S \cup \{(\max D) - d\}
18
        if \Delta S' \subset D
19
             return turnpikeRec(S', D)
20
        else // no option worked!
21
             return NO DIFFERENCE MULTISET
22
```

Correctness

- After placing a few points in prefix sums S, largest remaining distance must be measured from one endpoint.
- Otherwise we are immediately missing a larger distance ¶
- → only two checked options are possible
- invariant explicitly checked for recursive calls
- invariant at return guarantees correct answer

Running time

- ▶ worst case: exponential! → see tutorials
- not known whether problem is NP-hard(!)

Clicker Question

If D is a valid difference multiset, turnpike Backtracking will find a sequence producing it.

Is the answer well-defined?

- (A) Yes
- B) No
- **C** For most inputs
- **D** No idea
- **E** turnpikeBacktracking is too slow to tell.

→ sli.do/cs594

Clicker Question

If *D* is a valid difference multiset, turnpikeBacktracking will find a sequence producing it.

Is the answer well-defined?

- {0, 1, 3, 8, 9, 11, 12, 13, 15} and {0, 1, 3, 4, 5, 7, 12, 13, 15}
- $\Delta S_1 = \Delta S_2$ for random real P proven **C** For most inputs √

1.4 A Pseudopolynomial Algorithm

Few other algorithmic approaches known for the Turnpike Problem . . .

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

• Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

• Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

Now observe that
$$S(z) \cdot S(z^{-1}) = \left(\frac{1}{z^{11}} + \frac{1}{z^9} + \frac{1}{z^8} + \frac{1}{z^3} + 1\right) \left(z^{11} + z^9 + z^8 + z^3 + 1\right)$$

Few other algorithmic approaches known for the Turnpike Problem . . . but one seemingly magic one does!

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

• Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

Now observe that $S(z) \cdot S(z^{-1}) = \left(\frac{1}{z^{11}} + \frac{1}{z^9} + \frac{1}{z^8} + \frac{1}{z^3} + 1\right) \left(z^{11} + z^9 + z^8 + z^3 + 1\right)$ $= z^{11} + z^9 + 2z^8 + z^6 + z^5 + 2z^3 + z^2 + z^1$

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

• Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

Now observe that
$$S(z) \cdot S(z^{-1}) = \left(\frac{1}{z^{11}} + \frac{1}{z^9} + \frac{1}{z^8} + \frac{1}{z^3} + 1\right) \left(z^{11} + z^9 + z^8 + z^3 + 1\right)$$

$$= z^{11} + z^9 + 2z^8 + z^6 + z^5 + 2z^3 + z^2 + z^1$$

$$+ \frac{1}{z^{11}} + \frac{1}{z^9} + \frac{2}{z^8} + \frac{1}{z^6} + \frac{1}{z^5} + \frac{2}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 5z^6$$

$$= \sum_{s \in S} \sum_{t \in S} z^{s-t}$$

- ► Consider again $S = [0, 3, 8, 9, 11] \rightarrow D = \Delta S = \{\{1, 2, 3, 3, 5, 6, 8, 8, 9, 11\}\}$
- ▶ We can get all pairwise combinations (distances) via *convolutions*

► Write
$$S(z) = \sum_{s \in S} z^s = z^{11} + z^9 + z^8 + z^3 + z^0$$

► Now observe that
$$S(z) \cdot S(z^{-1}) = \left(\frac{1}{z^{11}} + \frac{1}{z^9} + \frac{1}{z^8} + \frac{1}{z^3} + 1\right) \left(z^{11} + z^9 + z^8 + z^3 + 1\right)$$

$$= z^{11} + z^9 + 2z^8 + z^6 + z^5 + 2z^3 + z^2 + z^1$$

$$+ \frac{1}{z^{11}} + \frac{1}{z^9} + \frac{2}{z^8} + \frac{1}{z^6} + \frac{1}{z^5} + \frac{2}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 5$$

$$= \sum_{s \in S} \sum_{t \in S} z^{s-t}$$

$$= \sum_{d \in D} z^d + \sum_{d \in D} z^{-d} + |S|$$

$$|D| = \binom{|S|}{2}$$

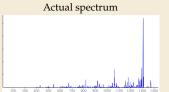
Factoring Polynomials

- ► The expanded product depends only on *D*
 - \rightsquigarrow can be constructed from the input
- ▶ Use polynomial factorization to check if it can be written as a product $S(z)S(z^{-1})$
 - ► this can be done in <u>pseudopolynomial time</u> (ply kine only if all number it is O(of)
 - ▶ a polynomial of degree d with integer coefficients represented with b bits can be factored over the integers in time $O(\text{poly}(d,b)) = \int_{0}^{\infty} db$
 - integers in time $O(\text{poly}(d, b)) = (b)^{O(1)}$ Lenstra-Lenstra-Lovász (LLL) algorithm
- 5 + 20 S10 + 2
- ▶ polynomial running time in terms of n = |D|, but exponential in $b = \log(\max D)$ b is the number of bits in the occurring numbers

1.5 Back to the Lab

Ideal vs. Real Spectra

Real protein sequencing tasks unfortunately need additional work . . .



Compeau & Pevzner, Bioinformatics Algorithms, Fig. 4.13

https://cogniterra.org/lesson/29918/step/2?unit=22015

Values of peaks

372.2	397.2	402.0	406.3	415.1	431.2	448.3	449.3	452.2
471.3	486.3	488.2	500.5	505.3	516.1	536.1	544.2	545.3
562.5	571.3	599.2	614.4	615.4	616.4	618.2	632.0	655.5
656.3	672.5	673.3	677.3	691.4	692.4	712.1	722.3	746.5
760.4	761.6	762.5	771.6	788.4	802.3	803.3	818.5	819.4
831.4	836.3	853.3	875.5	876.5	901.5	915.9	916.5	917.8
918.4	933.4	934.7	935.5	949.4	966.2	995.4	1015.6	1027.5
1029.5	1031.5	1044.5	1046.5	1061.5	1063.4	1079.2	1083.7	
1088.4	1093.5	1096.5	1098.4	1158.5	1159.5	1176.6	1177.7	
1178.6	1192.7	1195.4	1207.5	1210.4	1224.6	1252.5	1270.5	
1271.5	1278.6	1279.6	1295.6	1305.6	1306.5	1307.5	1309.6	

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.14 https://cogniterra.org/lesson/29918/step/3?unit=22015

Ideal Spectrum

0	97	99	113	114	128	128	147	147	163	186	227
241	242	244	260	261	262	283	291	333	340	357	388
389	390										518
543	544	552	575	577	584	631	632	650	651	671	672
690	691					778					
											989
1031	1039	1060	1061	1062	1078	1080	1081	1095	1136	1159	1175
1175	1194	1194	1208	1209	1223	1225	1322				

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.7 https://cogniterra.org/lesson/29912/step/5?unit=22009

Complications:

- ▶ inaccuracy of "weights"
- ▶ weights are actually *mass/charge ratios* (often not so bad)
- missing/missed peaks
- ▶ false peaks, e.g., from contamination

Dealing with Real Spectra

Typical situation in bioinformatics!

- Inaccuracies in the data
 - can sometimes be cleaned
 - or avoided with better lab techniques
 - or averaged out by producing more repetitions
 - ▶ and/or be worked around by **better algorithms**!
- ► For example, we can
 - ► Find *best fitting* sequence instead of Yes/No (robust algorithms)
 - ▶ Use further domain knowledge (range of molecular weights of amino acids!)
- → Must deal with possibilities of incorrect results
 - learn how to judge
 - learn how to communicate shortcomings of methods clearly