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1.1 Protein Sequencing



Proteins: The Workhorses of the Cell
▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape

determines the function.

▶ What do they do? Almost everything!
▶ They act as enzymes (catalyzing chemical reactions)
▶ provide structural support (cell walls, muscles!),
▶ transport molecules (e. g., hemoglobin),
▶ send signals (some hormones, e. g., insulin)
▶ and more

Amino Acids

Primary Protein Structure

Amino group

R group

Acidic
carboxyl
group

is sequence of a chain of amino acids

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
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⇝ Target of many activities
across bioinformatics
▶ analyzing amino acid sequence
▶ predicting structure (AlphaFold)
▶ study interaction networks
▶ design new proteins

as potential drugs
▶ . . .
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Amino Acids
Amino acid 3-letter code Molecular formula Mass (Da)

Alanine Ala C3H5NO 71.03711
Cysteine Cys C3H5NOS 103.00919
Aspartic acid Asp C4H5NO3 115.02694
Glutamic acid Glu C5H7NO3 129.04259
Phenylalanine Phe C9H9NO 147.06841
Glycine Gly C2H3NO 57.02146
Histidine His C6H7N3O 137.05891
Isoleucine Ile C6H11NO 113.08406
Lysine Lys C6H12N2O 128.09496
Leucine Leu C6H11NO 113.08406
Methionine Met C5H9NOS 131.04049
Asparagine Asn C4H6N2O2 114.04293
Proline Pro C5H7NO 97.05276
Glutamine Gln C5H8N2O 128.05858
Arginine Arg C6H12N4O 156.10111
Serine Ser C3H5NO2 87.03203
Threonine Thr C4H7NO2 101.04768
Valine Val C5H9NO 99.06841
Tryptophan Trp C11H10N2O 186.07931
Tyrosine Tyr C9H9NO2 163.06333
Compeau & Pevzner, Bioinformatics Algorithms, https://cogniterra.org/lesson/29925/step/1

▶ Dalton (Da): unit of molecular mass.

▶ 1 Da = 1
12 of a carbon-12 atom

≈ 1.66 × 10−27 kg.
▶ We will use rounded integer weights

▶ Monoisotopic mass: sum of atomic
masses of most abundant isotopes.

▶ Only shows 20 proteinogenic amino acids
(those encoded in DNA)
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Protein Sequencing
How to determine the sequence of amino acids in a protein?
▶ indirect option: via genes

▶ . . . we will come back to that
▶ not always possible (e. g., for non-ribosomal peptides)

▶ (more) direct option: mass spectrometry
1. Shatter (many copies) molecule into pieces
2. Measure spectrum of particle masses* (which masses occur how often)

 Mass Spectrometry
https://youtu.be/mBT73Pesiog

⇝ from this, reconstruct what the molecule was!?
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1.2 The Turnpike Problem



Turnpike Problems

 The Sopranos Opening
https://youtu.be/mJpNmYeooQE
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Turnpike Problems

 The Sopranos Opening
https://youtu.be/mJpNmYeooQE

⇝ Turnpike = toll road

▶ typically, price for road ∝ length of segment on road

▶ Can enter and leave at any pair of exits
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Ideal Spectra
Back to mass spectrometry . . .

Simplifying assumptions

▶ perfect integer molecular weights, no isotopes
▶ all breakpoints realized
▶ multiplicities of weights correctly observed
▶ no contamination
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Ideal Spectra
Back to mass spectrometry . . .

Simplifying assumptions

▶ perfect integer molecular weights, no isotopes
▶ all breakpoints realized
▶ multiplicities of weights correctly observed
▶ no contamination

Definition 1.1 (Difference multiset)
Given 𝑃 = 𝑃[0..𝑛) ∈ ℕ𝑛

≥1 a sequence of numbers

molecular weights / distances / turnpike tolls

,
define the prefix sums 𝑆[0..𝑛] = prefSum(𝑃[0..𝑛)) via 𝑆[𝑖] = 𝑃[0] + · · · + 𝑃[𝑖 − 1].
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Ideal Spectra
Back to mass spectrometry . . .

Simplifying assumptions

▶ perfect integer molecular weights, no isotopes
▶ all breakpoints realized
▶ multiplicities of weights correctly observed
▶ no contamination

Definition 1.1 (Difference multiset)
Given 𝑃 = 𝑃[0..𝑛) ∈ ℕ𝑛

≥1 a sequence of numbers

molecular weights / distances / turnpike tolls

,
define the prefix sums 𝑆[0..𝑛] = prefSum(𝑃[0..𝑛)) via 𝑆[𝑖] = 𝑃[0] + · · · + 𝑃[𝑖 − 1].
The difference multiset Δ𝑆 is the multiset

Δ𝑆 =
��
𝑆[𝑗] − 𝑆[𝑖] : 0 ≤ 𝑖 < 𝑗 ≤ 𝑛

		multiset

. ◀

Important: Keep duplicates / multiplicities of distances! ⇝
��Δ𝑆[0..𝑛]�� = 𝑛+1

2
�
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The Turnpike Problem

Definition 1.2 (Turnpike Problem)
Given: a multiset 𝐷 with |𝐷| = 𝑛

2
�

Goal: Find sequence 𝑃 with Δ(prefSum(𝑃)) = 𝐷 (or state that no such 𝑃 exists). ◀
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Goal: Find sequence 𝑃 with Δ(prefSum(𝑃)) = 𝐷 (or state that no such 𝑃 exists). ◀

Examples:

1. 𝑃1 = [3, 5, 1, 2]
⇝ 𝑆1 = [0, 3, 8, 9, 11]
⇝ 𝐷1 = Δ𝑆1 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
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⇝ 𝐷1 = Δ𝑆1 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}

2. 𝑃2 = [1, 1, 1, 1, 1]
⇝ 𝑆2 = [0, 1, 2, 3, 4, 5]
⇝ 𝐷2 = Δ𝑆2 = {{1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5}}

3. For 𝐷 = {{1, 1, 1}} no set 𝑆 exists such that 𝐷 = Δ𝑆
Any two points 𝑎 < 𝑏 will give Δ(0, 𝑎 , 𝑏) = {{𝑎 , 𝑏 , 𝑏 − 𝑎}} � 𝑎 ≠ 𝑏
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Clicker Question

 → sli.do/cs594

Suppose Δ𝑆 = {{1, 1, 2, 2, 3, 4}}. What is 𝑆?



1.3 Backtracking Algorithm



Systematic Solution
Consider Δ𝑆 = {{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18}}.
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Backtracking Turnpike
1 procedure turnpikeBacktracking(𝐷)
2 𝑑 := max𝐷
3 𝑆 := {0, 𝑑} // sorted set of prefSums
4 return turnpikeRec(𝑆, 𝐷)
5

6 procedure turnpikeRec(𝑆, 𝐷)
7 // Invariant: Δ𝑆 ⊆ 𝐷
8 if Δ𝑆 == 𝐷
9 return 𝑆

10 𝑑 := max(𝐷 \ Δ𝑆)
11 // Option 1: Distance 𝑑 from left end
12 𝑆′ := 𝑆 ∪ {𝑑}
13 if Δ𝑆′ ⊆ 𝐷
14 𝑅 := turnpikeRec(𝑆′, 𝐷)
15 if 𝑅 ≠ NO_DIFFERENCE_MULTISET
16 return 𝑅
17 // else try Option 2: Distance 𝑑 from right
18 𝑆′ := 𝑆 ∪ {(max𝐷) − 𝑑}
19 if Δ𝑆′ ⊆ 𝐷
20 return turnpikeRec(𝑆′, 𝐷)
21 else // no option worked!
22 return NO_DIFFERENCE_MULTISET
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21 else // no option worked!
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▶ Correctness
▶ After placing a few points in prefix sums 𝑆,

largest remaining distance must be measured
from one endpoint.

▶ Otherwise we are immediately missing a
larger distance �

⇝ only two checked options are possible
▶ invariant explicitly checked for recursive calls
▶ invariant at return guarantees correct answer
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20 return turnpikeRec(𝑆′, 𝐷)
21 else // no option worked!
22 return NO_DIFFERENCE_MULTISET

▶ Correctness
▶ After placing a few points in prefix sums 𝑆,

largest remaining distance must be measured
from one endpoint.

▶ Otherwise we are immediately missing a
larger distance �

⇝ only two checked options are possible
▶ invariant explicitly checked for recursive calls
▶ invariant at return guarantees correct answer

▶ Running time
▶ worst case: exponential! ⇝ see tutorials
▶ not known whether problem is NP-hard(!)
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Clicker Question

 → sli.do/cs594

If 𝐷 is a valid difference multiset, turnpikeBacktracking will find a
sequence producing it.
Is the answer well-defined?

A Yes

B No

C For most inputs

D No idea

E turnpikeBacktracking is too slow to tell.



Clicker Question

 → sli.do/cs594

If 𝐷 is a valid difference multiset, turnpikeBacktracking will find a
sequence producing it.
Is the answer well-defined?

A Yes

B No✓
C For most inputs✓
D No idea

E turnpikeBacktracking is too slow to tell.



1.4 A Pseudopolynomial Algorithm



Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
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Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
but one seemingly magic one does!

▶ Consider again 𝑆 = [0, 3, 8, 9, 11] ⇝ 𝐷 = Δ𝑆 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
▶ We can get all pairwise combinations (distances) via convolutions

▶ Write 𝑆(𝑧) =
Õ
𝑠∈𝑆

𝑧𝑠 = 𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 𝑧0

9



Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
but one seemingly magic one does!

▶ Consider again 𝑆 = [0, 3, 8, 9, 11] ⇝ 𝐷 = Δ𝑆 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
▶ We can get all pairwise combinations (distances) via convolutions

▶ Write 𝑆(𝑧) =
Õ
𝑠∈𝑆

𝑧𝑠 = 𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 𝑧0

▶ Now observe that
𝑆(𝑧) · 𝑆(𝑧−1) =

�
1
𝑧11 + 1

𝑧9 + 1
𝑧8 + 1

𝑧3 + 1
� �
𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 1

�

9



Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
but one seemingly magic one does!

▶ Consider again 𝑆 = [0, 3, 8, 9, 11] ⇝ 𝐷 = Δ𝑆 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
▶ We can get all pairwise combinations (distances) via convolutions

▶ Write 𝑆(𝑧) =
Õ
𝑠∈𝑆

𝑧𝑠 = 𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 𝑧0

▶ Now observe that
𝑆(𝑧) · 𝑆(𝑧−1) =

�
1
𝑧11 + 1

𝑧9 + 1
𝑧8 + 1

𝑧3 + 1
� �
𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 1

�
= 𝑧11 + 𝑧9 + 2𝑧8 + 𝑧6 + 𝑧5 + 2𝑧3 + 𝑧2 + 𝑧1

9



Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
but one seemingly magic one does!

▶ Consider again 𝑆 = [0, 3, 8, 9, 11] ⇝ 𝐷 = Δ𝑆 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
▶ We can get all pairwise combinations (distances) via convolutions

▶ Write 𝑆(𝑧) =
Õ
𝑠∈𝑆

𝑧𝑠 = 𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 𝑧0

▶ Now observe that
𝑆(𝑧) · 𝑆(𝑧−1) =

�
1
𝑧11 + 1

𝑧9 + 1
𝑧8 + 1

𝑧3 + 1
� �
𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 1

�
= 𝑧11 + 𝑧9 + 2𝑧8 + 𝑧6 + 𝑧5 + 2𝑧3 + 𝑧2 + 𝑧1

+ 1
𝑧11 + 1

𝑧9 + 2
𝑧8 + 1

𝑧6 + 1
𝑧5 + 2

𝑧3 + 1
𝑧2 + 1

𝑧
+ 5

=
Õ
𝑠∈𝑆

Õ
𝑡∈𝑆

𝑧𝑠−𝑡

9



Algebra to the Rescue
Few other algorithmic approaches known for the Turnpike Problem . . .
but one seemingly magic one does!

▶ Consider again 𝑆 = [0, 3, 8, 9, 11] ⇝ 𝐷 = Δ𝑆 = {{1, 2, 3, 3, 5, 6, 8, 8, 9, 11}}
▶ We can get all pairwise combinations (distances) via convolutions

▶ Write 𝑆(𝑧) =
Õ
𝑠∈𝑆

𝑧𝑠 = 𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 𝑧0

▶ Now observe that
𝑆(𝑧) · 𝑆(𝑧−1) =

�
1
𝑧11 + 1

𝑧9 + 1
𝑧8 + 1

𝑧3 + 1
� �
𝑧11 + 𝑧9 + 𝑧8 + 𝑧3 + 1

�
= 𝑧11 + 𝑧9 + 2𝑧8 + 𝑧6 + 𝑧5 + 2𝑧3 + 𝑧2 + 𝑧1

+ 1
𝑧11 + 1

𝑧9 + 2
𝑧8 + 1

𝑧6 + 1
𝑧5 + 2

𝑧3 + 1
𝑧2 + 1

𝑧
+ 5

=
Õ
𝑠∈𝑆

Õ
𝑡∈𝑆

𝑧𝑠−𝑡

=
Õ
𝒅∈𝑫

𝒛𝒅 +
Õ
𝑑∈𝐷

𝑧−𝑑 + |𝑆|

9



Factoring Polynomials
▶ The expanded product depends only on 𝐷

⇝ can be constructed from the input

▶ Use polynomial factorization to check if it can be written as a product 𝑆(𝑧)𝑆(𝑧−1)
▶ this can be done in pseudopolynomial time

▶ a polynomial of degree 𝑑 with integer coefficients represented with 𝑏 bits can be factored over the
integers in time 𝑂poly(𝑑, 𝑏)

▶ Lenstra-Lenstra-Lovász (LLL) algorithm
▶ polynomial running time in terms of 𝑛 = |𝐷| , but exponential in 𝑏 = log(max𝐷)

𝑏 is the number of bits in the occurring numbers
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1.5 Back to the Lab



Ideal vs. Real Spectra
Real protein sequencing tasks unfortunately need additional work . . .

Actual spectrum

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 4.13
https://cogniterra.org/lesson/29918/step/2?unit=22015

Values of peaks

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.14
https://cogniterra.org/lesson/29918/step/3?unit=22015

Ideal Spectrum

Compeau & Pevzner, Bioinformatics Algorithms, Fig 4.7
https://cogniterra.org/lesson/29912/step/5?unit=22009

Complications:

▶ inaccuracy of “weights”

▶ weights are actually mass/charge ratios (often not so bad)

▶ missing/missed peaks

▶ false peaks, e. g., from contamination
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Dealing with Real Spectra
Typical situation in bioinformatics!
▶ Inaccuracies in the data

▶ can sometimes be cleaned
▶ or avoided with better lab techniques
▶ or averaged out by producing more repetitions
▶ and/or be worked around by better algorithms!

▶ For example, we can
▶ Find best fitting sequence instead of Yes/No (robust algorithms)
▶ Use further domain knowledge (range of molecular weights of amino acids!)

⇝ Must deal with possibilities of incorrect results
▶ learn how to judge
▶ learn how to communicate shortcomings of methods clearly
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