Hidden Messages

23 October 2025

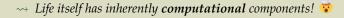
Prof. Dr. Sebastian Wild

CS594 (Winter 2025-26) Philipps-Universität Marburg version 2025-10-30 12:02

2.1 Biology Big Picture

Biology

- ► *biology* = the scientific study of *living* things
 - originally *naturalists*: individual people manually **observing** plants and animals e. g., *Darwin's finches*
 - ▶ gradually more scientific: controlled experiments, isolated mechanisms e. g., *Mendel's inheritance experiments on peas*
 - ▶ gradually more focus on molecular/chemical mechanisms: microscopes, biochemisty


Biology

- ► *biology* = the scientific study of *living* things
 - originally *naturalists*: individual people manually **observing** plants and animals
 e. g., *Darwin's finches*
 - ▶ gradually more scientific: controlled experiments, isolated mechanisms e. g., *Mendel's inheritance experiments on peas*
 - ▶ gradually more focus on molecular/chemical mechanisms: microscopes, biochemisty
- ▶ now clear: fundamental mechanisms (and origins!) of life are microscopic
- → fundamental mechanisms to be found in molecular biology

- ▶ 20th Century: discovery of DNA and genes
 - ▶ DNA stores information about biomolecules in discrete form human genome: 3.055 billion letter string over alphabet {A, C, G, T} (!)
 - → genetic information can copied precisely
 mutations are errors in the copying
 - ▶ double strands (backup!) and "coiling up" into chromosomes protects data
 - production of chemicals in living cells (*proteins*) is determined by *genes* (parts of DNA)

- ▶ 20th Century: discovery of DNA and genes
 - DNA stores information about biomolecules in discrete form human genome: 3.055 billion letter string over alphabet {A, C, G, T} (!)
 - → genetic information can copied precisely
 mutations are errors in the copying
 - ▶ double strands (backup!) and "coiling up" into chromosomes protects data
 - ▶ production of chemicals in living cells (*proteins*) is determined by *genes* (parts of DNA)

■ Zoom in on DNA https://youtu.be/wZozOrFluiw

- ▶ 20th Century: discovery of DNA and genes
 - ► DNA stores information about biomolecules in **discrete form** human genome: 3.055 billion letter string over alphabet {A, C, G, T} (!)
 - genetic information can copied precisely mutations are errors in the copying

Zoom in on DNA

■ Zoom in on DNA https://youtu.be/wZoz0rFluiw

- ▶ double strands (backup!) and "coiling up" into chromosomes protects data
- ▶ production of chemicals in living cells (*proteins*) is determined by *genes* (parts of DNA)
- ightsquigarrow Life itself has inherently computational components! \overrightarrow{v}
- → Computer science can contribute to the understanding these! → bioinformatics

- ▶ 20th Century: discovery of DNA and genes
 - DNA stores information about biomolecules in discrete form human genome: 3.055 billion letter string over alphabet {A, C, G, T} (!)
 - → genetic information can copied precisely
 mutations are errors in the copying

■ Zoom in on DNA https://youtu.be/wZozOrFluiw

- double strands (backup!) and "coiling up" into chromosomes protects data
- production of chemicals in living cells (proteins) is determined by genes (parts of DNA)
- → Life itself has inherently **computational** components! 😿
- → Computer science can contribute to the understanding these! → bioinformatics
- ▶ But also: biology increasingly a data-centric field
 - much of knowledge discovery intrinsically reliant on computational analysis of collected data
 - e. g., reading the 3 billion letters of DNA is not possible with current lab techniques
 use computers to puzzle it together (see Sequencing Unit)
 - ► "in silico" experiments

Collection of (more or less) Fun Sources

Collaborative Mindmap on Infinity maps

- ► Share useful resources
- Structure knowledge hierarchically
- ► Link on Campuswire / ILIAS

There's tons to learn, new things discovered every day, and it's about life itself!

Molecular Biology 101

Molecular Biology (Britannica concise)

- concerned with chemical structures and processes of biological phenomena at the molecular level
- developed out of biochemistry, genetics, and biophysics
- ▶ particularly concerned with the study of **proteins**, nucleic acids, and enzymes

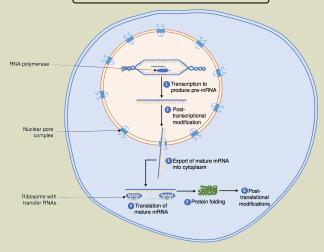
Molecular Biology 101

Molecular Biology (Britannica concise)

- concerned with chemical structures and processes of biological phenomena at the molecular level
- developed out of biochemistry, genetics, and biophysics
- ▶ particularly concerned with the study of **proteins**, nucleic acids, and enzymes

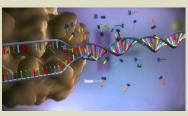
Biology = lots of terminology and names . . .

We will focus on mechanisms over terms, but a bit of context helps let's make it at least whimsical (and maybe memorable)



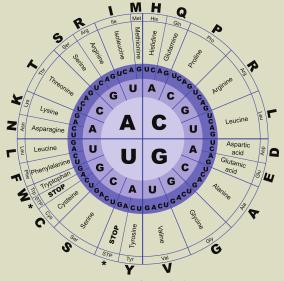
■ Biomolecules (Updated 2023) https://youtu.be/1Dx7LDwINLU

2.2 What are Genes?


The Central Dogma of Molecular Biology

DNA makes **RNA** makes **Protein**

Protein Biosynthesis


 mechanism to produce protein a according to recipe stored in a gene

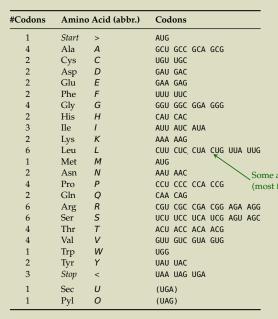
■ From DNA to protein - 3D https://youtu.be/gG7uCskU0rA

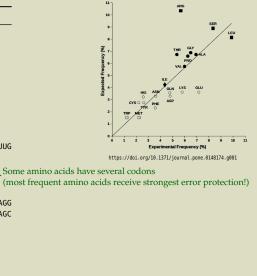
https://commons.wikimedia.org/wiki/File:Summary of the protein biosynthesis process.png

Genetic Code

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 4.1 https://cogniterra.org/lesson/29910/step/2?unit=22007

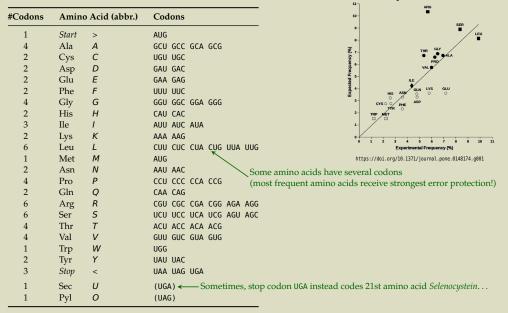
Within *ribosomes* (protein factories)


- translation
 - ► from RNA bases {A, C, G, U}
 - ► to amino acids (peptide) {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}
- ► uses transfer RNA "chemical finite state transducer"
- Genetic Code:3-base codons → amino acid


Inverse Codon Table

#Codons	Amin	o Acid (abbr.)	Codons
1	Start	>	AUG
4	Ala	Α	GCU GCC GCA GCG
2	Cys	С	UGU UGC
2	Asp	D	GAU GAC
2	Glu	Ε	GAA GAG
2	Phe	F	UUU UUC
4	Gly	G	GGU GGC GGA GGG
2	His	Н	CAU CAC
3	Ile	1	AUU AUC AUA
2	Lys	K	AAA AAG
6	Leu	L	CUU CUC CUA CUG UUA UUG
1	Met	М	AUG
2	Asn	Ν	AAU AAC
4	Pro	Р	CCU CCC CCA CCG
2	Gln	Q	CAA CAG
6	Arg	R	CGU CGC CGA CGG AGA AGG
6	Ser	S	UCU UCC UCA UCG AGU AGC
4	Thr	T	ACU ACC ACA ACG
4	Val	V	GUU GUC GUA GUG
1	Trp	W	UGG
2	Tyr	Υ	UAU UAC
3	Stop	<	UAA UAG UGA
1	Sec	U	(UGA)
1	Pyl	0	(UAG)

Inverse Codon Table


Amino Acid Frequencies in Human Pr	oteins
------------------------------------	--------

Inverse Codon Table

Amino Acid Frequencies in Human Proteins

But:

- non-ribosomal peptides (proteins not made according to central dogma)
- epigenetics (which genes are expressed)
- ► horizontal gene transfer (change genome during lifetime)
- retro viruses (inserts its one genes into host's genome!)
- proteins are also not the only active molecules (e.g., functional RNA)

Life finds a way . . . or a few dozen, just to be sure

2.3 Gene Detection

How can we find genes?

Recall: Gene = protein-coding region of DNA

Central options:

- 1. ab initio ("from the beginning"): just using the DNA
 - ► search for start (AUG) and stop codons (UAA, UAG, UGA) → open reading frame
 - search for promoter <u>binding</u> sites (docking station for transcription molecules)
 - ▶ bias of base frequencies in coding vs non-coding regions (haden Markor models)
- 2. extrinsic methods: using additional (lab) data
 - e. g.sequencing messenger RNA from live cells (many more options)
 - comparison of genome to other species with known genes

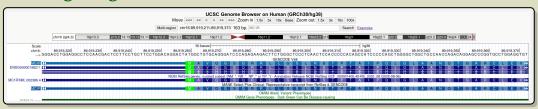

Focus for today: Ab initio options

Why should there be any hope of finding hidden messages?

- ► Evolution!
- Random mutations always at play
- ▶ If functional part becomes dysfunctional, individual does not produce offspring
- other parts might be subject to random modifications
- → *signal*: property in a text that us unlikely to be present in random strings (noise)
- → noise / null model: unused DNA is random

2.4 Waiting for Words

How big are genes?


How big are genes?

- ▶ only ~10% of human genome are genes
- ▶ length of (human) genes highly variable base pairs (DNA strands!)
 - ▶ shortest known gene (*U7 snRNA*) has only 63 bp
 - ▶ longest gene (dystrophin) over 2M bp
 - but: 99% of that are introns (cut out before translation)! "split genes"
 - → transcription takes several hours (!)
 - ► moretypical: ~20K bp

How big are genes?

- ▶ only ~10% of human genome are genes
- ▶ length of (human) genes highly variable base pairs (DNA strands!)
 - ► shortest known gene (*U7 snRNA*) has only 63 bp
 - ▶ longest gene (dystrophin) over 2M bp
 - but: 99% of that are introns (cut out before translation)! "split genes"
 - → transcription takes several hours (!)
 - ► moretypical: ~20K bp

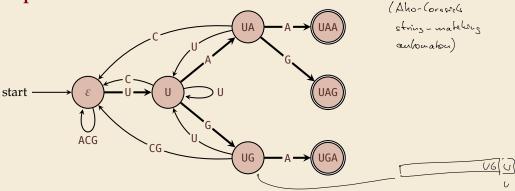
→ Can we reliably distinguish genes from randomly occurring open reading frames?

Open Reading Frame Gene Detection

- ► *Random RNA Model:* String D[0..N) generated i.i.d. uniformly i.e., each $D[i] \stackrel{\mathcal{D}}{=} \text{Uniform}(\{A, C, G, T\})$
- ► Random Open Reading Frame: How many bp should we expect in random RNA between occurrences of the start codon ATG and first occurrence of any stop codon (TAA, TAG, TGA)?

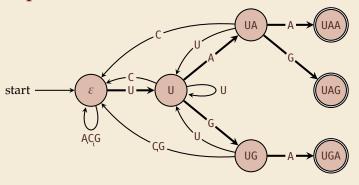
(Recall: \mbox{U} in mRNA is \mbox{T} in DNA)

Clicker Question

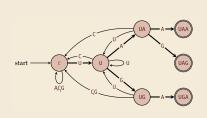

In a string of random (i.i.d. uniform) DNA, what is the expected length of an open reading frame?

→ sli.do/cs594

Back-of-the-envelope


Stop Codon automaton

After seeing a start codon AUG, we accept the language of all strings that


- ▶ end with a stop codon and
- ▶ do not contain a stop codon earlier.

Stop Codon automaton

After seeing a start codon AUG, we accept the language of all strings that

- ▶ end with a stop codon and
- ▶ do not contain a stop codon earlier.

TUAR = TUAR = TURA = 0

$$T_{\varepsilon} = \frac{64}{3} = 21.\overline{3}$$
 << 60

2.5 Probability Generating Functions

Probability Generating Functions

Expected values do not tell the full story . . . can we get at the distribution?

Probability Generating Functions

Expected values do not tell the full story . . . can we get at the distribution?

Definition 2.1 (pgf)

For $X \in \mathbb{N}_{\geq 0}$ a random variable, define its *probability generating function (pgf)* as

$$G_X(z) = \sum_{k>0} \mathbb{P}[X=k] \cdot z^k$$

•

Probability Generating Functions

Expected values do not tell the full story . . . can we get at the distribution?

Definition 2.1 (pgf)

For $X \in \mathbb{N}_{>0}$ a random variable, define its probability generating function (pgf) as

$$G_X(z) = \sum_{k \ge 0} \mathbb{P}[X = k] \cdot z^k$$

$$\mathbb{E}[X] = \sum_{k \ge 0} \mathbb{P}[X = k] \cdot k$$

Lemma 2.2 (Moments from pgf)

Lemma 2.2 (Moments from pgf)
$$G_X(z) = \sum_{k \neq 0} \underbrace{\frac{d}{dz} \, \mathbb{P}[X = l_1] \cdot z^k}_{= \mathbb{P}[X = k] \cdot k \cdot z^{k-1}}$$
1. The expected value of X is
$$\mathbb{E}[X] = G_X'(1)$$

- **2.** The variance of *X* is $Var[X] = G_X''(1) + G_X'(1) (G_X'(1))^2$