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3.1 Sequence Alignment



Sequence Similarity
Example: two proteins from human hemoglobin
Human Hemoglobin 𝛼 globin subunit https://www.uniprot.org/uniprotkb/P69905

Human Hemoglobin 𝛽 globin subunit https://www.uniprot.org/uniprotkb/P68871

⇝ essentially symmetric copies with same function

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png
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Sequence Similarity
Example: two proteins from human hemoglobin
Human Hemoglobin 𝛼 globin subunit https://www.uniprot.org/uniprotkb/P69905

Human Hemoglobin 𝛽 globin subunit https://www.uniprot.org/uniprotkb/P68871

⇝ essentially symmetric copies with same function

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.pngSequences of the subunits (142 resp. 147 amino acids):
MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

These are supposed to be “similar”!?

Alignment by EMBOSS Needle https://www.ebi.ac.uk/jdispatcher/psa

MV-LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
|| |:| :|: | | |||| : | | ||| |: : :| |: :| | ||| |: :|| ||||| | :: :||:|:: : ||:|| || ||| ||:|| : |: || | |||| | |: | :| |: | ||
MVHLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

| = same amino acid (65x); : = similar amino acids (25x) ⇝ 60% same
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String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

▶ This unit studies wide class of options

▶ Algorithmically, all are similar to deal with

▶ Unfortunately, general case again hard . . .

2



String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

▶ This unit studies wide class of options

▶ Algorithmically, all are similar to deal with

▶ Unfortunately, general case again hard . . .

▶ Simplest string distance function: Hamming distance 𝑑𝐻 = #mismatches
� only defined for strings of same length

2



String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

▶ This unit studies wide class of options

▶ Algorithmically, all are similar to deal with

▶ Unfortunately, general case again hard . . .

▶ Simplest string distance function: Hamming distance 𝑑𝐻 = #mismatches
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String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

▶ This unit studies wide class of options

▶ Algorithmically, all are similar to deal with

▶ Unfortunately, general case again hard . . .

▶ Simplest string distance function: Hamming distance 𝑑𝐻 = #mismatches
� only defined for strings of same length
▶ How about strings like this:

𝐴 = alongsharedstring
𝐵 = longsharedstrings

⇝ 𝑑𝐻 (𝐴, 𝐵) = |𝐴| = 17 These are maximally different!?

⇝ Need a more flexible notion . . .
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Edit Distance
Natural idea for distances: describe how to get from 𝐴 to 𝐵 ⇝ relative compression!

𝐴[0..17) = alongsharedstring
𝐵[0..17) = longsharedstrings

“Edit script”:
0. Start with 𝑆1.

1. Delete 𝑆1[0]
2. Insert s at end of 𝑆1.

⇝ 2 character operations needed ⇝ 𝑑edit(𝐴, 𝐵) = 2
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Edit Distance
Natural idea for distances: describe how to get from 𝐴 to 𝐵 ⇝ relative compression!

𝐴[0..17) = alongsharedstring
𝐵[0..17) = longsharedstrings

“Edit script”:
0. Start with 𝑆1.

1. Delete 𝑆1[0]
2. Insert s at end of 𝑆1.

⇝ 2 character operations needed ⇝ 𝑑edit(𝐴, 𝐵) = 2

Edit Distance Problem

▶ Given: String 𝐴[0..𝑚) and 𝐵[0..𝑛) over alphabet Σ = [0..𝜎).
▶ Goal: 𝑑edit(𝐴, 𝐵) = minimal # symbol operations to transform 𝐴 into 𝐵

operations can be insertion/deletion/substitution of single character

+ optimal edit script (with this number of operations)
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Edit Distance Example
Example: edit distance 𝑑edit(𝐴, 𝐵) with 𝐴 = algorithm, 𝐵 = logarithm?
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Edit Distance Example
Example: edit distance 𝑑edit(𝐴, 𝐵) with 𝐴 = algorithm, 𝐵 = logarithm?

012345678
algorithm
logarithm

Edit script:
1. Delete 𝐴[0]
2. Insert o after 𝐴[1] = l

3. Replace 𝐴[3] = o by a
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Example: edit distance 𝑑edit(𝐴, 𝐵) with 𝐴 = algorithm, 𝐵 = logarithm?

012345678
algorithm
logarithm

Edit script:
1. Delete 𝐴[0]
2. Insert o after 𝐴[1] = l

3. Replace 𝐴[3] = o by a
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al-gorithm
-|+|x|||||
-logarithm
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Edit Distance Example
Example: edit distance 𝑑edit(𝐴, 𝐵) with 𝐴 = algorithm, 𝐵 = logarithm?

012345678
algorithm
logarithm

Edit script:
1. Delete 𝐴[0]
2. Insert o after 𝐴[1] = l

3. Replace 𝐴[3] = o by a

Compact representation of edit script: String alignment

0123456789
al-gorithm
-|+|x|||||
-logarithm

Formally: string over pairs of letters or gap symbols��
𝑐
𝑐

�
: 𝑐 ∈ Σ

�
∪

��
𝑐
−
�
,

�−
𝑐

�
: 𝑐 ∈ Σ

�
∪

��
𝑐
𝑐′

�
: 𝑐 , 𝑐′ ∈ Σ, 𝑐 ≠ 𝑐′

�

⇝ Edit distance = #
� 𝑐
−
�
,
�−
𝑐

�
,
� 𝑐
𝑐′
�

with 𝑐 ≠ 𝑐′
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Edit Distance and Longest Common Subsequence
▶ Note: close relation to longest common subsequence

Optimal edit script ≈ maximal number of matches = longest common subsequence
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Edit Distance and Longest Common Subsequence
▶ Note: close relation to longest common subsequence

Optimal edit script ≈ maximal number of matches = longest common subsequence

▶ But: Optimal alignment may not contain any longest common subsequence
axxa axxa axxa
| | | | | |
a ayya ayya ayy

axxaaxxaaxxa
| || ||

aayyaayyaayy

▶ LCS and edit distance are equivalent if we only allow insert and delete operations
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3.2 Dynamic Programming



Recap: The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution
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Recap: The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution

▶ Steps 1–3 require insight / creativity / intuition;
Steps 4–6 are mostly automatic / same each time

⇝ Correctness proof usually at level of DP recurrence

running time too! worst case time = #subproblems · time to find single best guess

⇝ see Efficient Algorithms
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Edit Distance by DP
1. Subproblems: (𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚 compute 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))
2. Guess: What to do with last positions? (insert/delete/(mis)match)
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Edit Distance by DP
1. Subproblems: (𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚 compute 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: 𝐷(𝑖 , 𝑗) = 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))

𝐷(𝑖 , 𝑗) =




𝑖 if 𝑗 = 0
𝑗 if 𝑖 = 0

min



𝐷(𝑖 − 1, 𝑗) + 1,
𝐷(𝑖 , 𝑗 − 1) + 1,
𝐷(𝑖 − 1, 𝑗 − 1) + �

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]�
otherwise
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Edit Distance by DP
1. Subproblems: (𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚 compute 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: 𝐷(𝑖 , 𝑗) = 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))

𝐷(𝑖 , 𝑗) =




𝑖 if 𝑗 = 0
𝑗 if 𝑖 = 0

min



𝐷(𝑖 − 1, 𝑗) + 1,
𝐷(𝑖 , 𝑗 − 1) + 1,
𝐷(𝑖 − 1, 𝑗 − 1) + �

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]�
otherwise

⇝ 𝑂(𝑛𝑚) subproblems
▶ 𝑂(1) time to check all guesses (per subproblem)
⇝ 𝑂(𝑛𝑚) overall time and space

▶ An optimal edit script can be constructed by a backtrace (see below)
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Edit Distance – Step 4: Memoization
▶ Write recursive function to compute recurrence 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But memoize all results! (symbol table: subproblem ↦→ optimal cost )

⇝ First action of function: check if subproblem known
▶ If so, return cached optimal cost
▶ Otherwise, compute optimal cost and remember it!
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Edit Distance – Step 4: Memoization
▶ Write recursive function to compute recurrence 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But memoize all results! (symbol table: subproblem ↦→ optimal cost )

⇝ First action of function: check if subproblem known
▶ If so, return cached optimal cost
▶ Otherwise, compute optimal cost and remember it!

1 procedure editDist(𝑖, 𝑗):
2 if 𝑖 == 0
3 return 𝑗
4 else if 𝑗 == 0
5 return 𝑖
6 end if
7 best := +∞
8 𝐷𝑖 := cachedED(𝑖, 𝑗 − 1) + 1
9 𝐷𝑑 := cachedED(𝑖 − 1, 𝑗) + 1

10 𝐷𝑚 := cachedED(𝑖 − 1, 𝑗 − 1) + �
𝐴[𝑖] ≠ 𝐵[𝑗]�

11 best := min{𝐷𝑑 ,𝐷𝑖 ,𝐷𝑚}
12 return best

13 procedure cachedED(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
14 // 𝐷[0..𝑚][0..𝑛] initialized to NULL at start
15 if 𝐷[𝑖][𝑗] == NULL
16 𝐷[𝑖][𝑗] := editDist(𝑖, 𝑗)
17 return 𝐷[𝑖][𝑗]

𝐷(𝑖 , 𝑗) =




𝑖 if 𝑗 = 0
𝑗 if 𝑖 = 0

min



𝐷(𝑖 , 𝑗 − 1) + 1,
𝐷(𝑖 − 1, 𝑗) + 1,
𝐷(𝑖 − 1, 𝑗 − 1) + �

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]�
otherwise
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Edit Distance – Step 5: Table Filling
▶ Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Memoized recurrence traverses this DAG (DFS!)
▶ We can slightly improve performance by systematically

computing subproblems following a fixed topological order
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Edit Distance – Step 5: Table Filling
▶ Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Memoized recurrence traverses this DAG (DFS!)
▶ We can slightly improve performance by systematically

computing subproblems following a fixed topological order

▶ Topological order here: lexicographic by (𝑖 , 𝑗)
1 procedure editDist(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚][0..𝑛] := new array
3 for 𝑖 = 0, 1, . . . ,𝑚 // iterate over subproblems . . .
4 for 𝑗 = 0, 1 . . . , 𝑛 // . . . in topological order
5 if 𝑖 == 0
6 𝐷[𝑖][𝑗] := 𝑗
7 else if 𝑗 == 0
8 𝐷[𝑖][𝑗] := 𝑖
9 else

10 𝐷[𝑖][𝑗] := min



𝐷[𝑖][𝑗 − 1] + 1,
𝐷[𝑖 − 1][𝑗] + 1,
𝐷[𝑖 − 1][𝑗 − 1] + �

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]�
11 return 𝐷[𝑚][𝑛]
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Edit Distance – Step 5: Table Filling
▶ Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Memoized recurrence traverses this DAG (DFS!)
▶ We can slightly improve performance by systematically

computing subproblems following a fixed topological order

▶ Topological order here: lexicographic by (𝑖 , 𝑗)
1 procedure editDist(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚][0..𝑛] := new array
3 for 𝑖 = 0, 1, . . . ,𝑚 // iterate over subproblems . . .
4 for 𝑗 = 0, 1 . . . , 𝑛 // . . . in topological order
5 if 𝑖 == 0
6 𝐷[𝑖][𝑗] := 𝑗
7 else if 𝑗 == 0
8 𝐷[𝑖][𝑗] := 𝑖
9 else

10 𝐷[𝑖][𝑗] := min



𝐷[𝑖][𝑗 − 1] + 1,
𝐷[𝑖 − 1][𝑗] + 1,
𝐷[𝑖 − 1][𝑗 − 1] + �

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]�
11 return 𝐷[𝑚][𝑛]

▶ Same Θ-class as memoized
recursive function

▶ In practice usually
substantially faster

▶ lower overhead
▶ predictable memory

accesses
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Edit Distance – Step 6: Backtracing
▶ So far, only determine the cost of an optimal solution 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But we also want the solution itself

▶ By retracing our steps, we can construct optimal edit script
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Edit Distance – Step 6: Backtracing
▶ So far, only determine the cost of an optimal solution 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But we also want the solution itself

▶ By retracing our steps, we can construct optimal edit script

1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚)[0..𝑛) := editDist(𝐴[0..𝑚), 𝐵[0..𝑛))
3 return traceback(𝑚, 𝑛)
4

5 procedure traceback(𝑖, 𝑗):
6 if 𝑖 == 0
7 return Insert(𝐵[0]), . . ., Insert(𝐵[𝑗 − 1])
8 else if 𝑗 == 0
9 return Delete(𝐴[0]), . . ., Delete(𝐴[𝑖 − 1])

10 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖][𝑗 − 1] + 1
11 return traceback(𝑖, 𝑗 − 1), Insert(𝐵[𝑗 − 1])
12 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖 − 1][𝑗] + 1
13 return traceback(𝑖 − 1, 𝑗), Delete(𝐵[𝑖 − 1])
14 else if 𝐴[𝑖 − 1] == 𝐵[𝑗 − 1]
15 return traceback(𝑖 − 1, 𝑗 − 1)
16 else return traceback(𝑖 − 1, 𝑗 − 1), Replace(𝐴[𝑖 − 1] → 𝐵[𝑗 − 1])

▶ follow recurrence a second time
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Edit Distance – Step 6: Backtracing
▶ So far, only determine the cost of an optimal solution 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But we also want the solution itself

▶ By retracing our steps, we can construct optimal edit script

1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛)):
2 𝐷[0..𝑚)[0..𝑛) := editDist(𝐴[0..𝑚), 𝐵[0..𝑛))
3 return traceback(𝑚, 𝑛)
4

5 procedure traceback(𝑖, 𝑗):
6 if 𝑖 == 0
7 return Insert(𝐵[0]), . . ., Insert(𝐵[𝑗 − 1])
8 else if 𝑗 == 0
9 return Delete(𝐴[0]), . . ., Delete(𝐴[𝑖 − 1])

10 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖][𝑗 − 1] + 1
11 return traceback(𝑖, 𝑗 − 1), Insert(𝐵[𝑗 − 1])
12 else if 𝐷[𝑖][𝑗] == 𝐷[𝑖 − 1][𝑗] + 1
13 return traceback(𝑖 − 1, 𝑗), Delete(𝐵[𝑖 − 1])
14 else if 𝐴[𝑖 − 1] == 𝐵[𝑗 − 1]
15 return traceback(𝑖 − 1, 𝑗 − 1)
16 else return traceback(𝑖 − 1, 𝑗 − 1), Replace(𝐴[𝑖 − 1] → 𝐵[𝑗 − 1])

▶ follow recurrence a second time

▶ always have for running time:
backtracing = 𝑂(computing 𝑀)

⇝ computing optimal cost and
computing optimal solution have
same complexity
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3.3 Global – Local – Semilocal



Local Alignment
So far, we assumed that we know similar regions.
How to detect significantly similar regions hidden in larger strings?

⇝ Allow new edit script operations (all cost 0):
▶ IgnorePrefix(𝐴[0..𝑖)) free deletes at beginning

▶ IgnorePrefix(𝐵[0.. 𝑗)) free inserts at beginning

▶ IgnoreSuffix(𝐴[𝑖..𝑚)) free deletes at end

▶ IgnoreSuffix(𝐵[𝑗..𝑛)) free inserts at end

⇝ Local Alignment
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Local Alignment
So far, we assumed that we know similar regions.
How to detect significantly similar regions hidden in larger strings?

⇝ Allow new edit script operations (all cost 0):
▶ IgnorePrefix(𝐴[0..𝑖)) free deletes at beginning

▶ IgnorePrefix(𝐵[0.. 𝑗)) free inserts at beginning

▶ IgnoreSuffix(𝐴[𝑖..𝑚)) free deletes at end

▶ IgnoreSuffix(𝐵[𝑗..𝑛)) free inserts at end

⇝ Local Alignment

▶ Easy to incorporate in DP recurrence:
0. switch to maximizing score (instead min difference), otherwise empty substring is best
⇝ Matches contribute +1 reward, rest penalty (negative score)
1. Always allow 4th option: start a new local alignment from here (at score 0)
2. Allow to finish at any 𝐷[𝑖][𝑗] ⇝ free suffix
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Local Alignment Recurrence

𝐷(𝑖 , 𝑗) =




0 if 𝑗 = 0
0 if 𝑖 = 0

min




0,
𝐷(𝑖 − 1, 𝑗) − 1,
𝐷(𝑖 , 𝑗 − 1) − 1,
𝐷(𝑖 − 1, 𝑗 − 1) + �

𝐴[𝑖 − 1] = 𝐵[𝑗 − 1]�
otherwise

Optimal local alignment score: max
𝑖∈[0..𝑚], 𝑗∈[0..𝑛]

𝐷[𝑖][𝑗]
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Semilocal Aligment a.k.a. Fitting Alignment
Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of 𝑩[0..𝒏) is the best match for 𝑨[0..𝒎)? (typically then 𝑚 ≪ 𝑛)

13



Semilocal Aligment a.k.a. Fitting Alignment
Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of 𝑩[0..𝒏) is the best match for 𝑨[0..𝒎)? (typically then 𝑚 ≪ 𝑛)

⇝ only allow IgnorePrefix(𝐵[0.. 𝑗)) and IgnoreSuffix(𝐵[𝑗..𝑛))

⇝ 𝐷(𝑖 , 𝑗) =




−𝑖 if 𝑗 = 0
0 if 𝑖 = 0

min



𝐷(𝑖 − 1, 𝑗) − 1,
𝐷(𝑖 , 𝑗 − 1) − 1,
𝐷(𝑖 − 1, 𝑗 − 1) + �

𝐴[𝑖 − 1] = 𝐵[𝑗 − 1]�
otherwise

Optimal local alignment score: max
𝑗∈[0..𝑛]

𝐷[𝑚][𝑗]
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3.4 General Scores & Affine Gap Costs



General Scores
DP algorithm remains unchanged if we let contribution of (mis)match 𝐴[𝑖 − 1] vs 𝐵[𝑗 − 1]
depend on used letters.
▶ For example, replacing amino acid with chemically similar one might not affect function

⇝ contributes small positive score

▶ replacing amino acid with dissimilar one ⇝ negative score
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General Scores
DP algorithm remains unchanged if we let contribution of (mis)match 𝐴[𝑖 − 1] vs 𝐵[𝑗 − 1]
depend on used letters.
▶ For example, replacing amino acid with chemically similar one might not affect function

⇝ contributes small positive score

▶ replacing amino acid with dissimilar one ⇝ negative score

Formally, any function giving additive scores for columns 𝑆 : (Σ ∪ {−})2 \ ��−−�	 → ℝ works.

General Alignment Score 𝑆:
▶ symmetric matches/substitutions matrix 𝑝 : Σ × Σ → ℝ (𝑝(𝑎 , 𝑏) = 𝑝(𝑏 , 𝑎))
▶ gap penalty 𝑔 ∈ ℝ

⇝ 𝑆
 � 𝑐

𝑐′
� �

= 𝑝(𝑎 , 𝑏), 𝑆
 � 𝑐

−
� �

= 𝑆
 �−

𝑐

� �
= 𝑔

⇝ score of alignment sum of scores of columns
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BLOSOM Matrices

https://en.wikipedia.org/wiki/BLOSUM#/media/File:Blosum62-dayhoff-ordering.svg
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Affine Gap costs
In sequence evolution, insertions of single stretch of 𝑘 characters much more likely than 𝑘 isolated
(single-character) insertions
So far, we score these the same.
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Affine Gap costs
In sequence evolution, insertions of single stretch of 𝑘 characters much more likely than 𝑘 isolated
(single-character) insertions
So far, we score these the same.

⇝ affine gap costs:
score 𝑘 contiguous insertions (or 𝑘 contiguous deletions) instead as 𝑔0 + 𝑘 · 𝑔
(usually then 𝑔0 ≫ 𝑔)

▶ If we represent contiguous insertions as
� ⊢
𝑐1

� �−
𝑐2

� · · · �−𝑐𝑘�
can assign 𝑆(�⊢𝑐�) = 𝑔0 + 𝑔 and 𝑆

�−
𝑐

�
= 𝑔.

▶ DP algorithm can be extended to handle these refined scores
⇝ exercises
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3.5 Bounded-Distance Alignments



Good Alignment or Abort
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3.6 Exhaustive Tabulation





Four Russians?
The exhaustive-tabulation technique to follow is often called “Four Russians trick” . . .

▶ The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev

▶ all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)
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Four Russians?
The exhaustive-tabulation technique to follow is often called “Four Russians trick” . . .

▶ The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev

▶ all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)

▶ American authors coined the othering term “Method of Four Russians”
. . . name in widespread use
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A Trick for Matrix Multiplication
Suppose we want to multiply two 𝑛 × 𝑛 Boolean matrices 𝐶 = 𝐴 · 𝐵.

We divide 𝐴, 𝐵, and 𝐶 into ℓ × ℓ micro matrices.
⇝ 𝐶 consists of

 𝑛
ℓ

�2 micro matrices, each of which is the sum of 𝑛
ℓ micro-matrix products.
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⇝ 𝐶 consists of

 𝑛
ℓ

�2 micro matrices, each of which is the sum of 𝑛
ℓ micro-matrix products.

The number of different possible micro matrix products is 𝐿 = 2ℓ2 · 2ℓ2 .
If we pick ℓ = 1

4
p

lg 𝑛, we have only 𝐿 = 22ℓ2
=
√
𝑛 different products.

⇝ Exhaustive Tabulation: Can precompute all
√
𝑛 possible micro-matrix sums/products!
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If we pick ℓ = 1

4
p

lg 𝑛, we have only 𝐿 = 22ℓ2
=
√
𝑛 different products.

⇝ Exhaustive Tabulation: Can precompute all
√
𝑛 possible micro-matrix sums/products!

For two micro matrices 𝑎 and 𝑏, we store 𝑎 · 𝑏 at the offset 𝑎1,1 . . . 𝑎ℓ ,ℓ 𝑏1,1 . . . 𝑏ℓ ,ℓ , where we
interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in 𝑂(1) time.
⇝ Any micro matrix sum/product takes 𝑂(1) time

after a total of 𝑂(√𝑛 · log3/2 𝑛) preprocessing.
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interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in 𝑂(1) time.
⇝ Any micro matrix sum/product takes 𝑂(1) time

after a total of 𝑂(√𝑛 · log3/2 𝑛) preprocessing.
The total time to compute one micro matrix in 𝐶 is thus 𝑂( 𝑛ℓ ).
So the total time to compute 𝐶 is 𝑂(𝑛3/ℓ 3) = 𝑂(𝑛3/log3/2 𝑛).
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⇝ 𝐶 consists of

 𝑛
ℓ

�2 micro matrices, each of which is the sum of 𝑛
ℓ micro-matrix products.

The number of different possible micro matrix products is 𝐿 = 2ℓ2 · 2ℓ2 .
If we pick ℓ = 1

4
p

lg 𝑛, we have only 𝐿 = 22ℓ2
=
√
𝑛 different products.

⇝ Exhaustive Tabulation: Can precompute all
√
𝑛 possible micro-matrix sums/products!

For two micro matrices 𝑎 and 𝑏, we store 𝑎 · 𝑏 at the offset 𝑎1,1 . . . 𝑎ℓ ,ℓ 𝑏1,1 . . . 𝑏ℓ ,ℓ , where we
interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in 𝑂(1) time.
⇝ Any micro matrix sum/product takes 𝑂(1) time

after a total of 𝑂(√𝑛 · log3/2 𝑛) preprocessing.
The total time to compute one micro matrix in 𝐶 is thus 𝑂( 𝑛ℓ ).
So the total time to compute 𝐶 is 𝑂(𝑛3/ℓ 3) = 𝑂(𝑛3/log3/2 𝑛).

Note: By taking 𝑛 × ℓ resp. ℓ × 𝑛 “micro strips” instead of squares, we can choose
ℓ = Θ(log 𝑛) and obtain final time 𝑂(𝑛3/log2 𝑛).
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Exhaustive Tabulation for Edit Distance

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

Micro matrix

▶ Split 𝐷(𝑖 , 𝑗) matrix Again ℓ × ℓ submatrices
corresponding to ℓ -char substrings of 𝑆1 and 𝑆2

▶ values in 𝐹 only depend on 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸!

⇝ can make progress micro matrix by micro matrix
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Exhaustive Tabulation for Edit Distance

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

Micro matrix

▶ Split 𝐷(𝑖 , 𝑗) matrix Again ℓ × ℓ submatrices
corresponding to ℓ -char substrings of 𝑆1 and 𝑆2

▶ values in 𝐹 only depend on 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸!

⇝ can make progress micro matrix by micro matrix

But . . . exhaustive tabulation doesn’t seem to work! The values of 𝐷(𝑖 , 𝑗) keep increasing!
How shall we bound the number of possible micro matrices?
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Exhaustive Tabulation for Edit Distance

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

Micro matrix

▶ Split 𝐷(𝑖 , 𝑗) matrix Again ℓ × ℓ submatrices
corresponding to ℓ -char substrings of 𝑆1 and 𝑆2

▶ values in 𝐹 only depend on 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸!

⇝ can make progress micro matrix by micro matrix

But . . . exhaustive tabulation doesn’t seem to work! The values of 𝐷(𝑖 , 𝑗) keep increasing!
How shall we bound the number of possible micro matrices?
▶ Observation: The difference between neighboring cells 𝐷(𝑖 , 𝑗) and 𝐷(𝑖 , 𝑗 + 1)

respectively 𝐷(𝑖 , 𝑗) and 𝐷(𝑖 + 1, 𝑗) is in {−1, 0, +1}.
▶ 𝐷(𝑖 , 𝑗 + 1) ≤ 𝐷(𝑖 , 𝑗) + 1 is trivial from recurrence
▶ 𝐷(𝑖 , 𝑗) ≤ 𝐷(𝑖 , 𝑗 + 1) + 1 needs closer look / case distinction

⇝ Apply tabulation for offset, not actual values in 𝐷(𝑖 , 𝑗)
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Putting the Micro Matrices together

Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation
and One-against-many Banded Alignment, Fig. 1

▶ Choose micro matrices with
one row/col overlapping

▶ initialize first row and col
(as per recurrence)
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Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation
and One-against-many Banded Alignment, Fig. 1

▶ Choose micro matrices with
one row/col overlapping

▶ initialize first row and col
(as per recurrence)

▶ number of different micro matrices:
≤ 𝜎2ℓ · 32(ℓ−1)

⇝ ℓ ≤ 1
4 log3𝜎(𝑛) for 𝑂(√𝑛) micro matrices
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Putting the Micro Matrices together

Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation
and One-against-many Banded Alignment, Fig. 1

▶ Choose micro matrices with
one row/col overlapping

▶ initialize first row and col
(as per recurrence)

▶ number of different micro matrices:
≤ 𝜎2ℓ · 32(ℓ−1)

⇝ ℓ ≤ 1
4 log3𝜎(𝑛) for 𝑂(√𝑛) micro matrices

▶ For constant 𝜎, ℓ = Θ(log 𝑛) and we have to fill 𝑛2/ℓ 2 micro matrices

▶ Filling table cells not needed; grid row/col only fed into next lookup table

⇝ 𝑂(1) time per micro matrix

⇝ 𝑂(𝑛2/log2 𝑛) time overall
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Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance)
An algorithm for computing the edit distance of any two strings of length 𝑛 in time 𝑂(𝑛2−𝛿)
for constant 𝛿 > 0 would refute the Strong Exponential-Time Hypothesis. ◀

� Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant 𝛿 > 0 so that every
algorithm for 3SAT requires Ω(2𝛿𝑘) time, where 𝑘 is the number of variables. ◀

Definition 3.3 (Strong Exponential-Time Hypothesis)
The Strong Exponential-Time Hypothesis (SETH) asserts that for every 𝜀 > 0 there is a 𝑘 such
that 𝑘SAT requires Ω(2(1−𝜀)𝑘) time, where 𝑘 is the number of variables. ◀
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Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance)
An algorithm for computing the edit distance of any two strings of length 𝑛 in time 𝑂(𝑛2−𝛿)
for constant 𝛿 > 0 would refute the Strong Exponential-Time Hypothesis. ◀

� Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)
The Exponential-Time Hypothesis (ETH) asserts that there is a constant 𝛿 > 0 so that every
algorithm for 3SAT requires Ω(2𝛿𝑘) time, where 𝑘 is the number of variables. ◀

Definition 3.3 (Strong Exponential-Time Hypothesis)
The Strong Exponential-Time Hypothesis (SETH) asserts that for every 𝜀 > 0 there is a 𝑘 such
that 𝑘SAT requires Ω(2(1−𝜀)𝑘) time, where 𝑘 is the number of variables. ◀

Unlikely to see “truly subquadratic” algorithms (even for constant alphabets)
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3.7 Linear-Space Alignments



Saving Space is Easy for Score

Assume here that 𝑛 ≤ 𝑚.

DP for 𝐷[𝑖][𝑗],
only need 𝑂(𝑛) space:

▶ 𝐷[𝑖][𝑗] depends on 𝐷[𝑖 − 1][𝑗],
𝐷[𝑖][𝑗 − 1], and 𝐷[𝑖 − 1][𝑗 − 1].

▶ clearly enough to keep
previous and current row of 𝐷
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Saving Space is Easy for Score

Assume here that 𝑛 ≤ 𝑚.

DP for 𝐷[𝑖][𝑗],
only need 𝑂(𝑛) space:

▶ 𝐷[𝑖][𝑗] depends on 𝐷[𝑖 − 1][𝑗],
𝐷[𝑖][𝑗 − 1], and 𝐷[𝑖 − 1][𝑗 − 1].

▶ clearly enough to keep
previous and current row of 𝐷

▶ actually, can even overwrite as
we go along
⇝ single row sufficient

1 procedure Score(𝐴[0..𝑚), 𝐵[0..𝑛))
2 𝐷 := ScoresRow(𝐴, 𝐵)
3 return 𝐷[𝑛]
4

5 procedure ScoresRow(𝐴[0..𝑚), 𝐵[0..𝑛))
6 𝐷[0..𝑛] := new array
7 for 𝑗 := 0, . . . , 𝑛
8 𝐷[𝑗] := 𝑗 · 𝑔
9 for 𝑖 := 1, . . . ,𝑚

10 match := (𝑖 − 1) · 𝑔
11 for 𝑗 = 1, . . . , 𝑛

12 new := min




match + 𝑝(𝐴[𝑖 − 1], 𝐵[𝑗 − 1])
𝐷[𝑗] + 𝑔

𝐷[𝑗 − 1] + 𝑔
13 match := 𝐷[𝑗]
14 𝐷[𝑗] := new
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The Middle-Point Problem
To reconstruct alignment/edit script using standard backtrace, need full table 𝐷[0..𝑛][0..𝑚].
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No! 𝑗∗ optimizes sum of scores of 𝐴[0..𝑚/2) → 𝐵[0.. 𝑗∗) and 𝐴[𝑚/2..𝑚) → 𝐵[𝑗∗..𝑛)
⇝ Can use linear-space ScoresRow!

▶ Score for 𝐴[0..𝑚/2) → 𝐵[0.. 𝑗∗) is 𝐷[𝑚/2][𝑗∗]
▶ For 𝐴[𝑚/2..𝑚) → 𝐵[𝑗∗..𝑛) we don’t have an entry in 𝐷!

▶ But we can reverse 𝐴 and 𝐵
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Linear-Space Alignment
1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛))
2 if 𝑚 == 0 then return Insert(𝐵[0]), . . ., Insert(𝐵[𝑛 − 1])
3 else if 𝑛 == 0 then return Delete(𝐴[0]), . . ., Delete(𝐴[𝑚 − 1])
4 else if 𝑚 == 1
5 𝑗 := arg min

0≤ 𝑗<𝑛
𝑝(𝐴[0], 𝐵[𝑗])

6 return Insert(𝐵[0.. 𝑗)), Replace(𝐴[0], 𝐵[𝑗]), Insert(𝐵[𝑗 + 1..𝑛))
7 else
8 𝑖∗ := ⌊ 𝑚2 ⌋
9 𝐷top := ScoresRow(𝐴[0..𝑖∗), 𝐵)

10 𝐷bottom := ScoresRow(𝐴[𝑖∗..𝑚)𝑅 , 𝐵𝑅) // 𝑠𝑅 is 𝑠 reversed
11 𝑗∗ := arg min

0≤ 𝑗≤𝑛
𝐷top[𝑗] + 𝐷bottom[𝑛 − 𝑗]

12 return editScript(𝐴[0..𝑖∗), 𝐵[0.. 𝑗∗)), editScript(𝐴[𝑖∗..𝑚), 𝐵[𝑗∗..𝑛))
13 endif
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Linear-Space Alignment
1 procedure editScript(𝐴[0..𝑚), 𝐵[0..𝑛))
2 if 𝑚 == 0 then return Insert(𝐵[0]), . . ., Insert(𝐵[𝑛 − 1])
3 else if 𝑛 == 0 then return Delete(𝐴[0]), . . ., Delete(𝐴[𝑚 − 1])
4 else if 𝑚 == 1
5 𝑗 := arg min

0≤ 𝑗<𝑛
𝑝(𝐴[0], 𝐵[𝑗])

6 return Insert(𝐵[0.. 𝑗)), Replace(𝐴[0], 𝐵[𝑗]), Insert(𝐵[𝑗 + 1..𝑛))
7 else
8 𝑖∗ := ⌊ 𝑚2 ⌋
9 𝐷top := ScoresRow(𝐴[0..𝑖∗), 𝐵)

10 𝐷bottom := ScoresRow(𝐴[𝑖∗..𝑚)𝑅 , 𝐵𝑅) // 𝑠𝑅 is 𝑠 reversed
11 𝑗∗ := arg min

0≤ 𝑗≤𝑛
𝐷top[𝑗] + 𝐷bottom[𝑛 − 𝑗]

12 return editScript(𝐴[0..𝑖∗), 𝐵[0.. 𝑗∗)), editScript(𝐴[𝑖∗..𝑚), 𝐵[𝑗∗..𝑛))
13 endif

▶ Non-recursive cost Θ(𝑛 · 𝑚) for ScoresRow
▶ “Area” 𝑛 · 𝑚 in recursive calls is halved in each step.
⇝ Total time Θ(𝑛𝑚), but using only Θ(min 𝑛 ,𝑚) space
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3.8 Multiple Sequence Alignment



Multiple-Sequence Alignment
Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.
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Multiple-Sequence Alignment
Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.
A shared region between two sequences could be random coincidence.
A shared region between many sequences hardly are.

“One or two homologous sequences whisper . . . a full multiple alignment shouts out loud”
(Arthus Lesk)

Example: 𝛽-globin in different species:

African Clawed Frog (Xenopus laevis): P02133
Zebrafish (Danio rerio): Q90486
Chicken (Gallus gallus): P02112
Human (Homo sapiens): P68871
Mouse (Mus musculus): P02088

https://www.ebi.ac.uk/jdispatcher/msa/clustalo
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Scoring Multiple Alignments
▶ Given sequences 𝐴1[0..𝑛1), . . . ,𝐴𝑘[0..𝑛𝑘) over common alphabet Σ

▶ alignment is sequence of columns in (Σ−)𝑘 with Σ− = Σ ∪ {−}
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▶ Given sequences 𝐴1[0..𝑛1), . . . ,𝐴𝑘[0..𝑛𝑘) over common alphabet Σ

▶ alignment is sequence of columns in (Σ−)𝑘 with Σ− = Σ ∪ {−}

▶ going from 2 to 𝑘 sequences requires score for 𝑘-columns
▶ different options
▶ One option: total Hamming distance (see Unit 2 for motifs)

Motif with consensus and profile

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 2.2
https://cogniterra.org/lesson/29868/step/9?unit=21966
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Scoring Multiple Alignments
▶ Given sequences 𝐴1[0..𝑛1), . . . ,𝐴𝑘[0..𝑛𝑘) over common alphabet Σ

▶ alignment is sequence of columns in (Σ−)𝑘 with Σ− = Σ ∪ {−}

▶ going from 2 to 𝑘 sequences requires score for 𝑘-columns
▶ different options
▶ One option: total Hamming distance (see Unit 2 for motifs)

Motif with consensus and profile

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 2.2
https://cogniterra.org/lesson/29868/step/9?unit=21966

▶ Here: SP-Score (sum-of-pairs score) w.r.t. 𝑆

𝑑SP
©­­
«

𝑐1
...
𝑐𝑘


ª®®
¬

=
Õ

1≤ 𝑖< 𝑗≤𝑘

𝑆

� �
𝑐𝑖
𝑐𝑗

� �
for 𝑆 any pairwise-alignment score
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Dynamic Programming Solution
Pairwise alignment = path in grid graph; optimal alignment = shortest path between
corners

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6
https://cogniterra.org/lesson/29932/step/1?unit=22029

⇝ DP solution with 2D matrix 𝐷[0..𝑚][0..𝑛]
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Dynamic Programming Solution
Pairwise alignment = path in grid graph; optimal alignment = shortest path between
corners

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6
https://cogniterra.org/lesson/29932/step/1?unit=22029

⇝ DP solution with 2D matrix 𝐷[0..𝑚][0..𝑛]

For 𝑘 strings, shortest path in 𝑘-dimensional grid graph
⇝ 𝑛1 · 𝑛2 · · · · · 𝑛𝑘 vertices to consider for 𝑘 strings of 𝑛 characters Θ(𝑛𝑘) time �
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Bad News (Again)
Multiple Alignment with SP-Score is NP-hard for any 𝜎 ≥ 2 and any metric 𝑆

� Elias: Settling the Intractability of Multiple Alignment, J. of Computational Biology 2006
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Bad News (Again)
Multiple Alignment with SP-Score is NP-hard for any 𝜎 ≥ 2 and any metric 𝑆

� Elias: Settling the Intractability of Multiple Alignment, J. of Computational Biology 2006

Proof Idea: Reduction from Vertex Cover on Cubic Graphs
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Bounding SP-scores
Not all hope is lost.

SP-score can be bounded by optimal pairwise alignments and heuristic for some alignment:Õ
1≤ 𝑖< 𝑗≤𝑘

𝑑𝑆(𝐴𝑖 ,𝐴𝑗) ≤ 𝑑SP(𝐴1 , . . . ,𝐴𝑘) ≤ 𝑑SP(some alignment)

▶ can be the basis for a Branch & Bound algorithm

▶ but: need efficient approximation algorithm for Multiple Alignment with SP-Score
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Bounding SP-scores
Not all hope is lost.

SP-score can be bounded by optimal pairwise alignments and heuristic for some alignment:Õ
1≤ 𝑖< 𝑗≤𝑘

𝑑𝑆(𝐴𝑖 ,𝐴𝑗) ≤ 𝑑SP(𝐴1 , . . . ,𝐴𝑘) ≤ 𝑑SP(some alignment)

▶ can be the basis for a Branch & Bound algorithm

▶ but: need efficient approximation algorithm for Multiple Alignment with SP-Score

⇝ Can we build a multiple alignment by successively adding in one new sequence at a time?

30



Extending Pairwise Alignments is tricky
Can we combine optimal pairwise alignment into a multiple alignment?
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Extending Pairwise Alignments is tricky
Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a
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Extending Pairwise Alignments is tricky
Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a

But No in general . . .

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22b
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Alignment Trees
Problem in example comes precisely from cycle!
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Alignment Trees
Problem in example comes precisely from cycle!

▶ Given a tree over sequences 𝐴1 , . . . ,𝐴𝑘

▶ Compute optimal pairwise alignments along all 𝑘 − 1 tree edges

▶ Build multiple alignment one edge at a time
▶ Here, use

�−
−
�

for every gap symbol in either endpoint of an edge
We always assume 𝑆(�−−�) = 0
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Alignment Trees
Problem in example comes precisely from cycle!

▶ Given a tree over sequences 𝐴1 , . . . ,𝐴𝑘

▶ Compute optimal pairwise alignments along all 𝑘 − 1 tree edges

▶ Build multiple alignment one edge at a time
▶ Here, use

�−
−
�

for every gap symbol in either endpoint of an edge
We always assume 𝑆(�−−�) = 0

▶ Notation:
▶ 𝑀 ∈

Σ−𝑘 �𝑁 multiple alignment of length 𝑁 ≥ max 𝑛𝑗

▶ 𝑑SP SP-Score w.r.t. pairwise score 𝑆

▶ 𝑑𝑆(𝐴, 𝐵) score of optimal pairwise alignment of 𝐴 and 𝐵

▶ 𝑀 induces pairwise alignment 𝑀[:][𝑖 , 𝑗] for 𝐴𝑖 and 𝐴𝑗
Note: 𝑆(𝑀[:][𝑖 , 𝑗]) ≥ 𝑑𝑆(𝐴𝑖 ,𝐴𝑗) and in general not optimal
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Center-Star Approximation
Use simplest possible tree: A star!

Center-Star Multiple Sequence Alignment

1. Compute all pairwise distances 𝑑𝑆(𝐴𝑖 ,𝐴𝑗)
2. Find 𝑐 ∈ [𝑘] that minimizes

Í
𝑗 𝑑𝑆(𝐴𝑐 ,𝐴𝑗)

3. Construct 𝑀 as alignment consistent with star alignment with center 𝑆𝑐 .
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Center-Star Approximation – Analysis

Theorem 3.4
Assume 𝑑𝑆 is a metric for pairwise alignments. The center-star alignment for 𝑘 strings is a
(2 − 2

𝑘 )-approximation w.r.t. to the SP-score of the multiple sequence alignment. ◀
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