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3.1 Sequence Alignment



Sequence Similarity 3D Structure of hemoglobin

Example: two proteins from human hemoglobin
Human Hemoglobin « globin subunit  nttps://uu.uniprot.org/uniprotk/Ps9%05
Human Hemoglobin § globin subunit  nttps://uu.uniprot.org/uniprotky/psss71

~~ essentially symmetric copies with same function
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3D Structure of hemoglobin

Sequence Similarity

Example: two proteins from human hemoglobin
Human Hemoglobin « globin subunit  nttps://uu.uniprot.org/uniprotk/Ps9%05
Human Hemoglobin § globin subunit  nttps://uu.uniprot.org/uniprotky/psss71

~~ essentially symmetric copies with same function

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Sequences of the subunits (142 resp. 147 amino acids):
MVLSPADKTNVKAANGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADAL TNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCL LVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPHTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGT FATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

These are supposed to be “similar”!?

Alignment by EMBOSS Needle https://www.ebi.ac.uk/jdispatcher/psa

M- LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF DLS----- HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR

O Ot Lt O 11 A O O |
MUBLTPEEKSAVTALHGKV- -DEVGGEALGRLLIYPYTQRFFESFDLSTPOAYNGHPKKAHGAKVLGAFSDGLARLDNLKGTFATLSELHCOKLAVDPENFRLLGNVLVCYLAHFGHEFTPPUOAAY QRVAGUANALANKYH

| = same amino acid (65x); : = similar amino acids (25x) ~  60% same



String Distances

Mutations mean much in bioinformatics needs fuzzy comparisons . . .

How can we formally define these?

» This unit studies wide class of options
» Algorithmically, all are similar to deal with

»> Unfortunately, general case again hard . ..
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String Distances
Mutations mean much in bioinformatics needs fuzzy comparisons . . .
How can we formally define these?

» This unit studies wide class of options

» Algorithmically, all are similar to deal with

» Unfortunately, general case again hard . ..

» Simplest string distance function: Hamming distance dp; = #mismatches

¥ only defined for strings of same length

» How about strings like this:

A = alongsharedstring

= = [ [ ,?
B = longsharedstrings dy(A,B) =|A| =17 These are maximally different!?

~+ Need a more flexible notion . . .



Edit Distance

Natural idea for distances: describe how to get from A to B
A[0..17) :ﬁlongsha redstrings
B[0..17) = longsharedstrings
“Edit script”:
0. Start with 4.
1. Delete éf\llol A
2. Inserts atend of 4.

~» 2 character operations needed ~» degit(A, B) =2

~+  relative compression!



Edit Distance

Natural idea for distances: describe how to get from A to B ~+  relative compression!

A[0..17) = alongsharedstring
B[0..17) = longsharedstrings

“Edit script”:
0. Start with S.
1. Delete S1[0]
2. Insert s at end of Sq.

~» 2 character operations needed ~» degit(A, B) =2

Edit Distance Problem

> Given: String A[0..m) and B[0..n) over alphabet = = [0..0).

» Goal: deyit(A, B) = minimal #symbol operations to transform A into B
operations can be insertion/deletion/substitution of single character

+ optimal edit script (with this number of operations)



Edit Distance Example

Example: edit distance dogit(A, B) with A = algorithm, B = logarithm?
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g 2. Inserto after A[1] =1
logarithm

3. Replace A[3] =obya
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Edit Distance Example

Example: edit distance dogit(A, B) with A = algorithm, B = logarithm?

algorithm
logarithm

Edit script:
1. Delete A[0]
2. Insert o after A[1] =1
3. Replace A[3] =obya

Compact representation of edit script:  String alignment

al-gorithm
-+ I
-logarithm

Formally: string over pairs of letters or gap symbols
,j ic,c’e€X, c# c’}

el <<z o 1) oo o {1

~ Edit distance = # [f], [;], [f,] with ¢ # ¢/




Edit Distance and Longest Common Subsequence

> Note: close relation to longest common subsequence
Optimal edit script ~ maximal number of matches = longest common subsequence



Edit Distance and Longest Common Subsequence

> Note: close relation to longest common subsequence
Optimal edit script ~ maximal number of matches = longest common subsequence

» But: Optimal alignment may not contain any longest common subsequence
axxa axxa axxa

[ I
a ayya ayya ayy

~ axXaaxxaaxxa

ERTENEE 8
aayyaayyaayy -

» LCS and edit distance are equivalent if we only allow insert and delete operations



3.2 Dynamic Programming



Recap: The 6 Steps of Dynamic Programming

1.
2

Define subproblems (and relate to original problem)

Guess (part of solution) ~» local brute force

Set up DP recurrence (for quality of solution)

Recursive implementation with Memoization

Bottom-up table filling (topological sort of subproblem dependency graph)

Backtracing to reconstruct optimal solution



Recap: The 6 Steps of Dynamic Programming

~ see Efficient Algorithms
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ~- local brute force
3. Set up DP recurrence (for quality of solution)
4. Recursive implementation with Memoization
5. Bottom-up table filling (topological sort of subproblem dependency graph)
6. Backtracing to reconstruct optimal solution
> Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time
~+ Correctness proof usually at level of DP recurrence

[ﬁ] running time too! worst case time = #subproblems - time to find single best guess



Edit Distance by DP ogead  imen,j=e

1. Subproblems: (i,j)for0<i < m,0< j< m compute degit(A[0..7), B[0..]))

2. Guess: What to do with last positions? (insert/delete/(mis)match)
(Q
o)
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Edit Distance by DP

1. Subproblems: (i,j)for0<i < m,0< j< m compute degit(A[0..7), B[0..]))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,]) = degit(A[0..7), B[0..]))

i s Ao ifj=0
Ny reshens ifi=0
. A Y
D(Z/]) = D(Z_ll])+1/ I_///l
min{D@i,j-1)+1; """ otherwise

D(i—1,j-1)+ [Ali - 1] # B[j - 1]]

E‘i cad be

(verston brmcle o e



Edit Distance by DP

1. Subproblems: (i,j)for0<i<m,0<j< # compute deqit(A[0..7), B[O..f))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,]) = degit(A[0..7), B[0..]))

i ifj=0
j ifi=0
min{D(,j-1)+1, otherwise

D(i—1,j-1)+ [Ali - 1] # B[j - 1]]

~> O(nm) subproblems
»> O(1) time to check all guesses (per subproblem)

~» O(nm) overall time and space

» An optimal edit script can be constructed by a backtrace (see below)



Edit Distance — Step 4: Memoization
» Write recursive function to compute recurrence

» But memoize all results! (symbol table: subproblem — optimal cost )

~- First action of function: check if subproblem known
» If so, return cached optimal cost

» Otherwise, compute optimal cost and remember it!

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace




Edit Distance — Step 4: Memoization

> Write recursive function to compute recurrence 1. Subproblems
. !
» But memoize all results! (symbol table: subproblem — optimal cost ) 2. Guess!
3. DP Recurrence
~- First action of function: check if subproblem known 4. Memoization
> If so, return cached optimal cost 5. Table Filling
» Otherwise, compute optimal cost and remember it! 6. Backtrace

1 procedure editDist(i, j):

2 ifi==0 3 =0

3 return j i st

. else if j == D(i,j) = D(i,j-1)+1,

5 TR £ min D(I: = 1,]:) +1, ’ v otherwise
) end if D(i-1,j-1)+ [Ali - 1] # B[j - 1]]

7 best := +oo

8 D; := cachedED(i,j—1) +1 13 procedure cachedED(r[i..j), c[i..j)):

9 Dy := cachedED(i —1,j) +1 14 // D]0..m][0..1n] initialized to NULL at start
10 Dy := cachedED(i — 1, j — 1) + [A[i] # B[j]] 15 if D[i][j] == NULL

11 best := min{Dy, D;j, Dy, } 16 D[i][j] := editDist(i, j)

12 return best 17 return D|[i][]]




Edit Distance — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)
» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically
computing subproblems following a fixed topological order
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. Backtrace




Edit Distance — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)
» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically
computing subproblems following a fixed topological order

» Topological order here: lexicographic by (i, j)

7

‘DL?MD - j

&

f b
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Edit Distance — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)

» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically
computing subproblems following a fixed topological order

» Topological order here: lexicographic by (i, j)

1
2
3
4
5
6
7
8
9

procedure editDist(A[0..1m), B[0..n)):
DI[0..m][0..n] =—rmwemmar——=-
fori=0,1,..., m // iterate over subproblems . ..

forj=0,1...,n//... intopological order
ifi==0
DLillj] = j
elseif j ==0
Dillj] = i
else
Dlillj-1]+1,
D[i][j] := min{D[i —1][j] +1,
D[i —1][j - 1] + [Ali - 1] # B[j — 1]]
return D[m|[n]

S Sk =

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace




Edit Distance — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)
» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically
computing subproblems following a fixed topological order

» Topological order here: lexicographic by (i, j)

1 procedure editDist(A[0..m), B[0..n)):
2 DI[0..m][0..n] := new array
3 fori=0,1,...,m //iterate over subproblems . ..
4 forj=0,1...,n//... intopological order
5 ifi==0
‘ DIillj] = j
7 elseif j ==0
. DIi][j] = i
9 else
DIillj -11+1,
D[i][j] := min{D[i —1][j] +1,
D[i —1][j - 1] + [Ali - 1] # B[j — 1]]
return D[m|[n]

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

S Sk =

» Same ©-class as memoized
recursive function

» In practice usually
substantially faster

» lower overhead
» predictable memory
accesses



Edit Distance — Step 6: Backtracing

> So far, only determine the cost of an optimal solution
> But we also want the solution itself

» By retracing our steps, we can construct optimal edit script

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

10



Edit Distance — Step 6: Backtracing

> So far, only determine the cost of an optimal solution
1. Subproblems
» But we also want the solution itself 2. Guess!
» By retracing our steps, we can construct optimal edit script 3. DP Recurrence
4. Memoization
1 procedure editScript(A[0..11), B[0..n)): 5. Table Filling
2 D[0..m)[0..n) := editDist(A[0..m), B[0..1)) 6. Backtrace
3 return traceback(in, 1)
4
5 procedure traceback(i, j):
6 ifi == » follow recurrence a second time
7 return Insert(B[0]), ..., Insert(B[j — 1])
8 elseif j ==
9

return Delete(A[0]), . .., Delete(A[i — 1])
else if D[i][j] == D[i][j — 1] +1
return traceback(i, j — 1), Insert(B[j — 1])
else if D[i][j] == D[i — 1][j] + 1
return traceback(i — 1, ), Delete(B[i — 1])
elseif A[i —1] == B[j — 1]
return traceback(i — 1, j — 1)
else return traceback(i — 1, j — 1), Replace(A[i — 1] — B[j —1])

10



Edit Distance — Step 6: Backtracing

> So far, only determine the cost of an optimal solution
> But we also want the solution itself

» By retracing our steps, we can construct optimal edit script

procedure editScript(A[0..m), B[0..n)):
D[0..m)[0..n) := editDist(A[0..m), B[0..1))
return traceback(in, 1)

ifi ==
return Insert(B[0]), . . ., Insert(B[j — 1])
elseif j ==
return Delete(A[0]), . .., Delete(A[i — 1])
10 else if D[i][j] == D[i][j — 1] +1

1
2
3
4
5 procedure traceback(i, j):
6
7
8
9

11 return traceback(i, j — 1), Insert(B[j — 1])
12 else if D[i][j] == D[i — 1][j] + 1

13 return traceback(i — 1, ), Delete(B[i — 1])
14 elseif A[i —1] == B[j — 1]

15 return traceback(i — 1, j — 1)

16 else return traceback(i — 1, j — 1), Replace(A[i — 1] — B[j —1])

. Table Filling
. Backtrace

S G R wN N

Subproblems
Guess!

DP Recurrence
Memoization

» follow recurrence a second time
» always have for running time:
backtracing = O(computing M)

~ computing optimal cost and
computing optimal solution have
same complexity

10



3.3 Global - Local — Semilocal



Local Alignment
So far, we assumed that we know similar regions.
How to detect significantly similar regions hidden in larger strings?
~ Allow new edit script operations (all cost 0):
» IgnorePrefix(A[0..7)) free deletes at beginning
» IgnorePrefix(BJ[0..f)) free inserts at beginning

» IgnoreSuffix(A[i..m)) free deletes at end

» IgnoreSuffix(B[;..n)) free inserts at end

~ Local Alignment

11



Local Alignment

So far, we assumed that we know similar regions.

How to detect significantly similar regions hidden in larger strings? @
~ Allow new edit script operations (all cost 0):
» IgnorePrefix(A[0..7)) free deletes at beginning
» IgnorePrefix(BJ[0..f)) free inserts at beginning

» IgnoreSuffix(A[i..m)) free deletes at end

» IgnoreSuffix(B[;..n)) free inserts at end

~ Local Alignment

» Easy to incorporate in DP recurrence: i
0. switch to maximizing score (instead min difference), otherwise empty substring is best
~» Matches contribute +1 reward, rest penalty (negative score)

1. Always allow 4th option: start a new local alighment from here (at score 0)

2. Allow to finish at any D[7][j] ~ free suffix

11



Local Alignment Recurrence

ifj=0
ifi=0
DG, ) 0,
i,7) =
J _|DGE-1,5)-1, )
min otherwise
D@, j-1)-1,
D(i-1,j-1)+[Ali - 1] = B[j - 1]]

—[AL - 7 BG- 1]
Optimal local alignment score: max D[i][j]
i€[0..m],j€[0..n]



Semilocal Aligment a.k.a. Fitting Alignment

Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of B[0..n) is the best match for A[0..m)? (typically then m < 1)

13



Semilocal Aliément a.k.a. Fitting Alignment

Slight twist: We know conserved region, but need to find best match in larger sequence.
What substring of B[0..n) is the best match for A[0..m)? (typically then m < 1)

~~ only allow IgnorePrefix(B[0..j)) and IgnoreSuffix(B|;..n))

—i ifj=0
0 ifi=0
~ D(i,j) = D(i-1,j)-1,
min{D(i,j-1) -1, otherwise

D(i—1,j-1)+ [Ali - 1] =B[j — 1]

Optimal local alignment score: ‘II[I()aX] D[m][]]
j€l0..n

13



3.4 General Scores & Affine Gap Costs



General Scores

DP algorithm remains unchanged if we let contribution of (mis)match A[i — 1] vs B[j — 1]
depend on used letters.
» For example, replacing amino acid with chemically similar one might not affect function
~+ contributes small positive score

> replacing amino acid with dissimilar one ~» negative score

14



General Scores

DP algorithm remains unchanged if we let contribution of (mis)match A[i — 1] vs B[j — 1]
depend on used letters.

» For example, replacing amino acid with chemically similar one might not affect function
~+ contributes small positive score

> replacing amino acid with dissimilar one ~» negative score

Formally, any function giving additive scores for columns S : (ZU {-})?\ {[]} — R works.

General Alignment Score S:
» symmetric matches/substitutions matrix p : T X 2 — R (p(a,b) = p(b,a))
> gap penalty ¢ € R

~ S([&]) =p@b), S(€]) =s([;]) =g

~ score of alignment sum of scores of columns

14



BLOSOM Matrices
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Affine Gap costs

In sequence evolution, insertions of single stretch of k characters much more likely than k isolated
(single-character) insertions

So far, we score these the same.

16



Affine Gap costs

In sequence evolution, insertions of single stretch of k characters much more likely than k isolated
(single-character) insertions

So far, we score these the same.

~ affine gap costs:

score k contiguous insertions (or k contiguous deletions) instead as go + k - ¢
(usually then gy > g)

> If we represent contiguous insertions as [;] [;2] e [;, ]
can assign S(|']) = g0+ gand S| = g.

» DP algorithm can be extended to handle these refined scores
~ exercises

16



3.5 Bounded-Distance Alignments



Good Alignment or Abort
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3.6 Exhaustive Tabulation
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Four Russians?
The exhaustive-tabulation technique to follow is often called “Four Russians trick” ...

» The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. FaradZev

» all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)

18



Four Russians?

The exhaustive-tabulation technique to follow is often called “Four Russians trick” ...

» The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. FaradZev

» all worked in Moscow at that time . . . but not even clear if all are Russians

(Arlazarov and Kronrod are Russian)

» American authors coined the othering term “Method of Four Russians”
...name in widespread use

18



A Trick for Matrix Multiplication

Suppose we want to multiply two n X n Boolean matrices C = A - B.

We divide A, B, and C into ¢ X ¢ micro matrices.
~~ C consists of (%) micro matrices, each of which is the sum of % micro-matrix products.

19



A Trick for Matrix Multiplication

Suppose we want to multiply two n X n Boolean matrices C = A - B.
We divide A, B, and C into ¢ X ¢ micro matrices.
~~ C consists of (%)2 micro matrices, each of which is the sum of % micro-matrix products.

The number of different possible micro matrix products is L = y A
If we pick ¢ = 14/l 7, we have only L = 22* = /i different products.
~~ Exhaustive Tabulation: Can precompute all v/ possible micro-matrix sums/products!
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A Trick for Matrix Multiplication

Suppose we want to multiply two n X n Boolean matrices C = A - B.

We divide A, B, and C into ¢ X ¢ micro matrices.
~ C consists of (%) micro matrices, each of which is the sum of % micro-matrix products.

The number of different possible micro matrix products is L = y A
If we pick ¢ = 14/l 7, we have only L = 22* = /i different products.
~~ Exhaustive Tabulation: Can precompute all v/ possible micro-matrix sums/products!

For two micro matrices a and b, we store a - b at the offset a11...ay¢b11 ...bs ¢, where we
interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in O(1) time.

~> Any micro matrix sum/product takes O(1) time
after a total of O(v/7 - log®/? i) preprocessing.

19



A Trick for Matrix Multiplication

Suppose we want to multiply two n X n Boolean matrices C = A - B.

We divide A, B, and C into ¢ X ¢ micro matrices.
~ C consists of (%)2 micro matrices, each of which is the sum of % micro-matrix products.

The number of different possible micro matrix products is L = y A
If we pick ¢ = 14/l 7, we have only L = 22* = /i different products.
~~ Exhaustive Tabulation: Can precompute all v/ possible micro-matrix sums/products!

For two micro matrices a and b, we store a - b at the offset a11...ay¢b11 ...bs ¢, where we
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So the total time to compute C is O(n°/£3) = O(rz?’/logS/2 n).

19



A Trick for Matrix Multiplication

Suppose we want to multiply two n X n Boolean matrices C = A - B.

We divide A, B, and C into ¢ X ¢ micro matrices.
~ C consists of (%)2 micro matrices, each of which is the sum of % micro-matrix products.

The number of different possible micro matrix products is L = y A
If we pick ¢ = 14/l 7, we have only L = 22* = /i different products.
~~ Exhaustive Tabulation: Can precompute all v/ possible micro-matrix sums/products!

For two micro matrices a and b, we store a - b at the offset a11...ay¢b11 ...bs ¢, where we

interpret this bitstring as a binary number.
On a word RAM, we can use this as indirect memory access in O(1) time.

~> Any micro matrix sum/product takes O(1) time
after a total of O(v/7 - log®/? i) preprocessing.

The total time to compute one micro matrix in C is thus O(%).
So the total time to compute C is O(n°/£3) = O(rz?’/logS/2 n).

Note: By taking n X ¢ resp. { X n “micro strips” instead of squares, we can choose
¢ = ©(log n) and obtain final time O(n?’/log2 n).
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Exhaustive Tabulation for Edit Distance

0 E = Micro matrix

» Split D(i, j) matrix Again ¢ X £ submatrices
;{t al s corresponding to ¢-char substrings of S and S»

» values in F only depend on A, B, C, D, and E!

~+ can make progress micro matrix by micro matrix

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21
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But . .. exhaustive tabulation doesn’t seem to work! — The values of D(i, j) keep increasing!
How shall we bound the number of possible micro matrices?
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Exhaustive Tabulation for Edit Distance

N E »  Micro matrix

» Split D(i, j) matrix Again ¢ X £ submatrices
;{t al s corresponding to ¢-char substrings of S and S»

» values in F only depend on A, B, C, D, and E!

~+ can make progress micro matrix by micro matrix

Gusfield, Algorithms on Strings, Trees, and Sequences, Fig. 12.21

But . .. exhaustive tabulation doesn’t seem to work! — The values of D(i, j) keep increasing!
How shall we bound the number of possible micro matrices?

> Observation: The difference between neighboring cells D(i, j) and D(i, j + 1)
respectively D(i, j) and D(i + 1, j) is in {1, 0, +1}.

S
> D(i,j+1) < D(i,j) + 1 s trivial from recurrence L_g;% Ay
» D(i,j) < D(i,j + 1) + 1 needs closer look / case distinction =

~» Apply tabulation for offset, not actual values in D(i, j)
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Putting the Micro Matrices together

HH > Qa0

ATTCA: -
G 1-10f1
ATTCA A ! .
Vi[1jof1 : o mfio|c
-1 0 :
-1 0
1 -1
11 -10(1

Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation
and One-against-many Banded Alignment, Fig. 1

» Choose micro matrices with
one row/col overlapping

» initialize first row and col
(as per recurrence)
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Putting the Micro Matrices together

ST » Choose micro matrices with
one row/col overlapping
G| 1-1/0]1
C 1| 0 . o e . .
ATTCA A i 3 » initialize first row and col
T 1 -1
N g IS it (as per recurrence)
Cl-1 0 :
Al-1 0 » number of different micro matrices:
T|1 -1 < g2¢ . 3206-1)
T|1|1]-10f1 -
Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation VS f < % 10g3(7(1’1) for O(\/E) micro matrices

and One-against-many Banded Alignment, Fig. 1
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Putting the Micro Matrices together

TTTIT » Choose micro matrices with
: one row/col overlapping
G| 1-1/0]1
C 1| 0 . o e . .
ATTCA A i 3 » initialize first row and col
T 1 -1
o I R T 1litrols (as per recurrence)
Cl-1 0 :
Al-1 0 » number of different micro matrices:
T|1 -1 : < g2¢ . 3206-1)
T|1]1]-1]0]1 -
Brubach Ghurye, A Succinct Four Russians Speedup for Edit Distance Computation A f S % 10g3(7(1’1) for O(\/E) micro matrices

and One-against-many Banded Alignment, Fig. 1

» For constant ¢, { = ©(log 1) and we have to fill 7?/{? micro matrices
» Filling table cells not needed; grid row/col only fed into next lookup table
~» O(1) time per micro matrix

~ O(n?/ log2 n) time overall
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Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance) ‘
An algorithm for computing the edit distance of any two strings of length 7 in time O(12°)
for constant 6 > 0 would refute the Strong Exponential-Time Hypothesis. <

E Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)

The Exponential-Time Hypothesis (ETH) asserts that there is a constant 6 > 0 so that every
algorithm for 3SAT requires ((2°F) time, where k is the number of variables. <

Definition 3.3 (Strong Exponential-Time Hypothesis)

The Strong Exponential-Time Hypothesis (SETH) asserts that for every ¢ > 0 there is a k such
that kSAT requires Q(21-9%) time, where k is the number of variables. |
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Can we do better?

Theorem 3.1 (Conditional Lower Bound for Edit Distance) ‘
An algorithm for computing the edit distance of any two strings of length 7 in time O(12°)
for constant 6 > 0 would refute the Strong Exponential-Time Hypothesis. |

E Backurs, Indyk: Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false), STOC 2015

Definition 3.2 (Exponential-Time Hypothesis)

The Exponential-Time Hypothesis (ETH) asserts that there is a constant 6 > 0 so that every
algorithm for 3SAT requires ((2°F) time, where k is the number of variables. <

Definition 3.3 (Strong Exponential-Time Hypothesis)

The Strong Exponential-Time Hypothesis (SETH) asserts that for every ¢ > 0 there is a k such
that kSAT requires Q(21-9%) time, where k is the number of variables. |

Unlikely to see “truly subquadratic” algorithms (even for constant alphabets)
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3.7 Linear-Space Alignments



Saving Space is Easy for Score

Assume here that n < m.
DP for D[i][j],
only need O(n) space:
» D[i][j] depends on D[i — 1][],
DIi][j - 1], and D[i - 1][j - 1].

> clearly enough to keep
previous and current row of D
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Saving Space is Easy for Score

f/j;//!/
Assume here that n < m.
DP for D[i][j],
only need O(n) space:
» D[i][j] depends on D[i — 1][],
D{il[j - 1], and D[i — 1][j - 1].

> clearly enough to keep
previous and current row of D

» actually, can even overwrite as
we go along
~~ single row sufficient

1
2
3
4
5
6
7
8
9

procedure Score(A[0..m), B[0..1))
D := ScoresRow(A, B)
return D|[n]

procedure ScoresRow(A|[0..12), B[0..1))
D[0..n] := new array
forj:=0,...,n

Dljl=j-g
fori:=1,...,m
match == (i—1)- g
forj=1,...,n
match + p(Ali — 1], B[j — 1])
new := minq D[j] + ¢
Dlj-1]+¢g
match = D[j]
D[j] := new

23



The Middle-Point Problem

To reconstruct alignment/edit script using standard backtrace, need full table D[0..n][0..m].
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To reconstruct alignment/edit script using standard backtrace, need full table D[0..n][0..m].
But can also reconstruct edit script using Divide & Conquer DP approach!

» Idea: Construct edit script for turning A[0..71/2) into B[0..j*)
and for turning A[m /2..m) into B[j*..n)

» But we don’t know middle point j* ... soneed to guess it! ~- use DP!
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No! j* optimizes sum of scores of A[0..m/2) — B[0..j*) and A[m /2..m) — B[j*..n)
~  Can use linear-space ScoresRow!

» Score for A[0..m/2) — B[0..j*) is D[m/2][j*]
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The Middle-Point Problem

To reconstruct alignment/edit script using standard backtrace, need full table D[0..n][0..m].
But can also reconstruct edit script using Divide & Conquer DP approach!

» Idea: Construct edit script for turning A[0..71/2) into B[0..j*)
and for turning A[m /2..m) into B[j*..n)

» But we don’t know middle point j* ... soneed to guess it! ~- use DP!

Hold on, are we running in circles?

No! j* optimizes sum of scores of A[0..m/2) — B[0..j*) and A[m /2..m) — B[j*..n)
~  Can use linear-space ScoresRow!

» Score for A[0..m/2) — B[0..j*) is D[m /2][j*]
» For A[m/2..m) — B[j*..n) we don’t have an entry in D!

» But we can reverse A and B
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Linear-Space Alignment o)

1 procedure editScript(A[0..1m), B[0..1))

2

3

4

5

if m == 0 then return Insert(B[0]), . . ., Insert(B[n — 1])
else if n == (0 then return Delete(A[0]), ..., Delete(A[m — 1])
elseif m ==

j = argmin p(A[0], B[])

0<j<n

return Insert(B[0../)), Replace(A[0], B[j]), Insert(B[j + 1..1))
else

it = %]
Dtop = ScoresRow(A[0..i%), B)
Dpottom := ScoresRow(A[i*..m)R, BR) // sR is s reversed (&) i 1
3 o . : . N v (Pt
j* »=argmin Dyop[j] + Dyottom[n — j1

0<j<n

return editScript(A[0..i*), B[0..j*)), editScript(A[i*..m), B[j*..n))
endif

[y

25



Linear-Space Alignment e

1 procedure editScript(A[0..1m), B[0..1))

2 if m == 0 then return Insert(B[0]), . . ., Insert(B[n — 1])

3 else if n == (0 then return Delete(A[0]), ..., Delete(A[m — 1])
4 else if m ==

5 j = argmin p(A[0], B[])
0<j<n
6 return Insert(B[0../)), Replace(A[0], B[j]), Insert(B[j + 1..1))
7 else
8 7=l %
9 Dtop = ScoresRow(A[0..i%), B)
10 Dpottom := ScoresRow(A[i*..m)R, BR) // sR is s reversed
L j* »=argmin Dyop[j] + Dyottom[n — j1
0<j<n
12 return editScript(A[0..i*), B[0..j*)), editScript(A[i*..m), B[j*..n))
13 endif
» Non-recursive cost ©(n - m) for ScoresRow coussoralive eshube  Logm vec el
»> “Area” n - m in recursive calls is halved in each step. cal oml Ofww)

~ Total time ®(nm), but using only ®(min 1, 11) space
25



3.8 Multiple Sequence Alignment



Multiple-Sequence Alignment

Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.
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Multiple-Sequence Alignment

Biological sequences are often too noisy to recognize preserved regions from pairwise alignments.

A shared region between two sequences could be random coincidence.
A shared region between many sequences hardly are.

“One or two homologous sequences whisper . . . a full multiple alignment shouts out loud”
(Arthus Lesk)

Example: p-globin in different species:

Xenopus MVHWTAEEKAATTSVWQKVNVEHDGHDALGRLLIVYPWTQRYFSNFGNLSNARVAGNAKVQAHGKKVLSAVGNATSHIDSVKSSLQQLSKIHATEL FVDPENFKRFGGVLVIVLGAKLGT - AFTPKVQAAWEKFIAVLVDGLSQGYN
Zebrafish MVEWTDAERTAILGLWGKLNIDEIGPQALSRCLIVYPWTQRYFATFGNLSSHARIMGNPKVAAHGRTVMGGLERATKNMDNVKNTYAALSVMHSEKLHVDPDNFRLLADCITVCAAMKFGQAGFNADVQEAWQKFLAVVVSALCRQYH
Chicken MVHWTAEEKQLITGLWGKVNVAECGAEALARLLIVYPWTQRFFASFGNLSSHTAILGNPMVRAHGKKVLTSFGDAVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAHFSK-DFTPECQAAWQKLVRVVAHALARKYH
Human MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPPAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK - EFTPPVQAAYQKVVAGVANALAHKYH
Mouse MVHLTDAEKAAVSCLWGKVNSDEVGGEALGRLLVVYPWTQRYFDSFGDLSSABATMGNAKVKAHGKKVITAFNDGLNHLDSLKGTFASLSELHCDKLHVDPENFRLLGNMIVIVLGHHLGK - DFTPAAQAAFQKVVAGVATALAHKYH
W, UOBR g gu el O gD DAY SO, g B8 DESREY o oB Q8VaBY.R P B BNLRREER o, B o B8 b O ERES:E a8 &8
African Clawed Frog (Xenopus laevis): P02133 _/_ T

Zebrafish (Danio rerio): Q90486
Chicken (Gallus gallus): P02112
Human (Homo sapiens): P68871
Mouse (Mus musculus): P02088

https://www.ebi.ac.uk/jdispatcher/msa/clustalo
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Scoring Multiple Alignments

» Given sequences A;[0..11), ..., Ax[0..n;) over common alphabet X

> alignment is sequence of columns in (Z_)k withX_ =X U {-}
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» Given sequences A;[0..11), ..., Ax[0..n;) over common alphabet X
> alignment is sequence of columns in (Z_)k withX_ =X U {-}

> going from 2 to k sequences requires score for k-columns

» different options

» One option: total Hamming distance (see Unit 2 for motifs)
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Scoring Multiple Alignments
» Given sequences A;[0..11), ..., Ax[0..n;) over common alphabet X
> alignment is sequence of columns in (Z_)k withX_ =X U {-}

> going from 2 to k sequences requires score for k-columns

» different options

» One option: total Hamming distance (see Unit 2 for motifs)

» Here: SP-Score (sum-of-pairs score) w.r.t. S
C1 -
5 Ci & rcf ]
dsp| | = Z S(| . for S any pairwise-alignment score
o 1<i<j<k i
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Dynamic Programming Solution

Pairwise alignment = path in grid graph; optimal alignment = shortest path between
corners

A " T VR A

match/mismatch (/" ), insertion (—), or deletion (| ).

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6
https://cogniterra.org/lesson/29932/step/17unit=22029

~» DP solution with 2D matrix D[0..1m][0..7]
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For k strings, shortest path in k-dimensional grid graph

O TRV REREE ny vertices to consider
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Dynamic Programming Solution

Pairwise alignment = path in grid graph; optimal alignment = shortest path between
corners

A " T VR A

match/mismatch (/" ), insertion (—), or deletion (| ).

Compeau & Pevzner, Bioinformatics Algorithms, Fig. 5.5 & 5.6
https://cogniterra.org/lesson/29932/step/17unit=22029

~» DP solution with 2D matrix D[0..1m][0..7]

For k strings, shortest path in k-dimensional grid graph

A MMt ny vertices to consider for k strings of n characters O(nk) time ¥
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Bad News (Again)

MULTIPLE ALIGNMENT WITH SP-ScORE is NP-hard for any ¢ > 2 and any metric S

/5 Elias: Settling the Intractability of Multiple Alignment,J. of Computational Biology 2006
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Bad News (Again)

MULTIPLE ALIGNMENT WITH SP-ScORE is NP-hard for any ¢ > 2 and any metric S

Elias: Settling the Intractability of Multiple Alignment, J. of Computational Biology 2006
Boegolor  wry vk bas 3 adgey

P
Proof Idea: Reduction from VERTEX COVER ON CUBIC GRAPHS
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Bounding SP-scores

Not all hope is lost.

SP-score can be bounded by optimal pairwise alighments and heuristic for some alignment:
Z ds(Ai,Aj) < dsp(A1,...,Ar) < dsp(some alignment)

1<i<j<k XY
Z 4o (Mettay)

» can be the basis for atﬁfanch & Bound algorithm

> but: need efficient approximation algorithm for MULTIPLE ALIGNMENT WITH SP-SCORE
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Bounding SP-scores

Not all hope is lost.

SP-score can be bounded by optimal pairwise alighments and heuristic for some alignment:
Z ds(Ai,Aj) < dsp(A1,...,Ar) < dsp(some alignment)

1<i<j<k

» can be the basis for a Branch & Bound algorithm

> but: need efficient approximation algorithm for MULTIPLE ALIGNMENT WITH SP-SCORE

~+  Can we build a multiple alignment by successively adding in one new sequence at a time?

30



Extending Pairwise Alignments is tricky

Can we combine optimal pairwise alignment into a multiple alignment?
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Extending Pairwise Alignments is tricky

Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

AAAATTTT

AAAATTTT----
----TTTTGGGG

AAAATTTT----
- - --TTTTGGGG AAAA----GGGG
AAAATTTT----

AAAA- - - -GGGG

TTTTGGGG AAAAGGGG

AAAA----GGGG
----TTTTGGGG

(a) Compatible pairwise alignments

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a



Extending Pairwise Alignments is tricky

Can we combine optimal pairwise alignment into a multiple alignment?

Sometimes Yes!

AAAATTTT

AAAATTTT----
----TTTTGGGG

AAAATTTT----
- - --TTTTGGGG AAAA----GGGG
AAAATTTT----

AAAA- - - -GGGG

TTTTGGGG AAAAGGGG

AAAA----GGGG
----TTTTGGGG

(a) Compatible pairwise alignments

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22a

But No in general . ..

AAAATTTT

AAAATTTT----
----TTTTGGGG

TTTTGGGG

GGGGAAAA

----GGGGAAAA
TTTTGGGG- - -~

(b) Incompatible pairwise alignments

Jones & Pevzner, Bioinformatics Algorithms, Fig 6.22b
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Alignment Trees

Problem in example comes precisely from cycle!
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Alignment Trees @ A
S
Problem in example comes precisely from cycle!

But No in geneml

> Given a tree over sequences A1, ..., A

» Compute optimal pairwise alignments along all k — 1 tree edges

ARAATTTT-
-TTTTGGGG

» Build multiple alignment one edge at a time

» Here, use [ ] for every gap symbol in either endpoint of an edge m (o] A
We always assume S([_|) = W
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Alignment Trees
Problem in example comes precisely from cycle!
> Given a tree over sequences A1, ..., A

» Compute optimal pairwise alignments along all k — 1 tree edges

» Build multiple alignment one edge at a time

> Here, use || for every gap symbol in either endpoint of an edge
We always assume S( [:]) =0

» Notation:

> M € (Z_I‘)N multiple alignment of length N > max#;
» dgsp SP-Score w.r.t. pairwise score S
» ds(A, B) score of optimal pairwise alignment of A and B

> M induces pairwise alignment M[:][7, j] for A; and A;
Note: S(M[:][7, j]) = ds(A;, Aj) and in general not optimal
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Center-Star Approximation =

Use simplest possible tree: A star! \

Center-Star Multiple Sequence Alignment <

1. Compute all pairwise distances ds(A;, A;)
2. Find c € [k] that minimizes }}; ds(Ac, 4))

3. Construct M as alignment consistent with star alignment with center S..

33



Center-Star Approximation — Analysis

Theorem 3.4

Assume ds is a metric for pairwise alignments. The center-star alignment for k strings is a
(2 — 2)-approximation w.r.t. to the SP-score of the multiple sequence alignment.

* S > Me (=N multiple alignment of length N > max 7;
M ﬂP]’(“"‘B&O A » dgp SP-Score w.r.t. pairwise score S
{. » dg(A, B) score of optimal pairwise alignment of A and B
ML ceM.LN Sl‘l’»’ 09*‘15"‘""*""‘ » M induces pairwise alignment M([:][i, j] for A; and A;
Note: S(M][:][7,j]) = ds(A;, Aj) and in general not optimal
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