



ALGORITHMS OF BIOINFORMATICS

7 Googling Genomes

15 January 2026

Prof. Dr. Sebastian Wild

Outline

7 Googling Genomes

- 7.1 Range-Minimum Queries
- 7.2 RMQ – Sparse Table Solution
- 7.3 RMQ – Cartesian Trees
- 7.4 String Matching in Enhanced Suffix Array
- 7.5 The Burrows-Wheeler Transform
- 7.6 Inverting the BWT
- 7.7 Random Access in BWT
- 7.8 Searching in the BWT

Recall Unit 6

Application 4: Longest Common Extensions

- We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

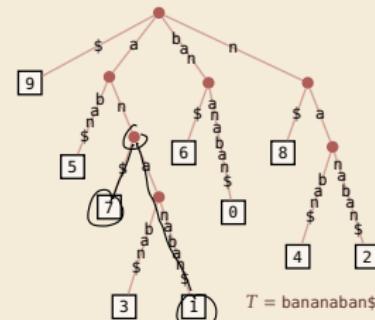
- Given: String $T[0..n]$
- Goal: Answer LCE queries, i.e.,
given positions i, j in T ,
how far can we read the same text from there?
formally: $\text{LCE}(i, j) = \max\{\ell : T[i..i + \ell] = T[j..j + \ell]\}$

↔ use suffix tree of T !

(length of) longest common prefix
of i th and j th suffix

- In T : $\text{LCE}(i, j) = \text{LCP}(T_i, T_j) \rightsquigarrow$ same thing, different name!
= string depth of
lowest common ancestor (LCA) of
leaves \boxed{i} and \boxed{j}

- in short: $\text{LCE}(i, j) = \text{LCP}(T_i, T_j) = \text{stringDepth}(\text{LCA}(\boxed{i}, \boxed{j}))$



Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- ▶ Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case
- ▶ Could store all LCAs in big table $\rightsquigarrow \Theta(n^2)$ space and preprocessing

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA in **constant(l)** time.

- ▶ a bit tricky to understand
- ▶ but a theoretical breakthrough
- ▶ and useful in practice

and suffix tree construction inside ...

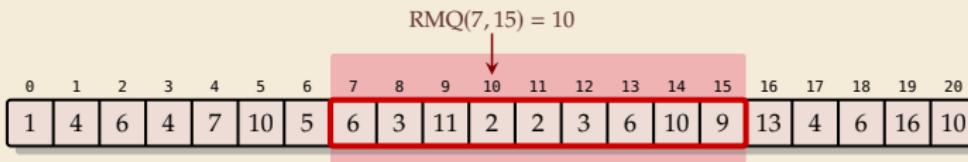
\rightsquigarrow for now, use $O(1)$ LCA as black box.

\rightsquigarrow After linear preprocessing (time & space), we can find LCEs in $O(1)$ time.

7.1 Range-Minimum Queries

Range-minimum queries (RMQ)

- Given: Static array $A[0..n)$ of numbers
array/numbers don't change
- Goal: Find minimum in a range;
 A known in advance and can be preprocessed



- Nitpicks:
 - Report *index* of minimum, not its value
 - Report *leftmost* position in case of ties

Finally: Longest common extensions

- ▶ In Unit 6: Left question open how to compute LCA in suffix trees
- ▶ But: Enhanced Suffix Array makes life easier!

$$\text{LCE}(i, j) = \text{LCP}[\text{RMQ}_{\text{LCP}}(\min\{R[i], R[j]\} + 1, \max\{R[i], R[j]\})]$$

Inverse suffix array: going left & right

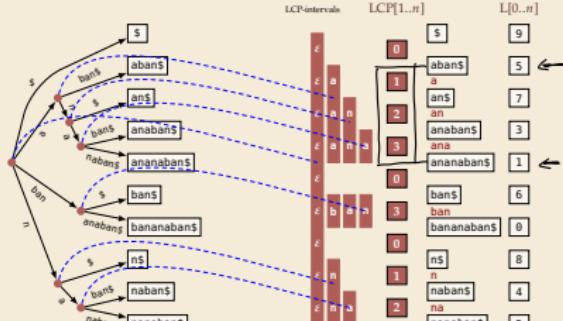
▶ to understand the fastest algorithm, it is helpful to define the *inverse suffix array*:

- ▶ $R[i] = r \iff L[r] = i$ L = leaf array
- ▶ \iff there are r suffixes that come before T_i in sorted order
- ▶ $\iff T_i$ has (0-based) **rank** r \rightsquigarrow call $R[0..n]$ the **rank array**

i	$R[i]$	T_i	r	$L[r]$	$T_{L[r]}$
0	6 th	bananaban\$	0	9	\$
1	4 th	ananaban\$	1	5	aban\$
2	9 th	nanaban\$	2	7	an\$
3	3 th	anaban\$	3	3	anaban\$
4	8 th	naban\$	4	1	anabanan\$
5	1 th	aban\$	5	6	ban\$
6	5 th	ban\$	6	8	bananaban\$
7	2 th	an\$	7	8	n\$
8	7 th	n\$	8	4	naban\$
9	0 th	\$	9	2	nanaban\$

sort suffixes

LCP array and internal nodes



\rightsquigarrow Leaf array $L[0..n]$ plus LCP array $LCP[1..n]$ encode full tree!

Rules of the Game

- ▶ For the following, consider RMQ on arbitrary arrays
- ▶ comparison-based \rightsquigarrow values don't matter, only relative order
- ▶ Two main quantities of interest:
 1. **Preprocessing time:** Running time $P(n)$ of the preprocessing step
 2. **Query time:** Running time $Q(n)$ of one query (using precomputed data)
- ▶ Write $\langle P(n), Q(n) \rangle$ **time solution** for short

\rightsquigarrow space usage $\leq P(n)$

Rules of the Game

- ▶ For the following, consider RMQ on arbitrary arrays
- ▶ comparison-based \rightsquigarrow values don't matter, only relative order
- ▶ Two main quantities of interest:
 1. **Preprocessing time:** Running time $P(n)$ of the preprocessing step
 2. **Query time:** Running time $Q(n)$ of one query (using precomputed data)
- ▶ Write $\langle P(n), Q(n) \rangle$ **time solution** for short

RMQ Implications for LCE

- ▶ Recall: Can compute (inverse) suffix array and LCP array in $O(n)$ time

$\rightsquigarrow \langle P(n), Q(n) \rangle$ time RMQ data structure implies $\langle P(n) + O(n), Q(n) \rangle$ time LCE data structure

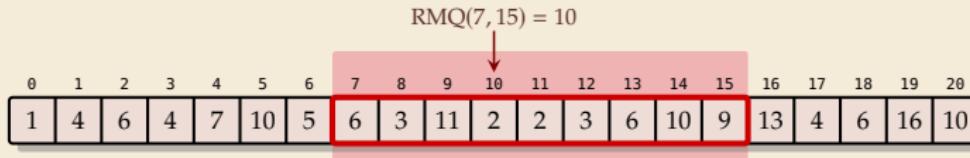
Trivial Solutions

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	4	6	4	7	10	5	6	3	11	2	2	3	6	10	9	13	4	6	16	10

$$\text{RMQ}(7, 15) = 10$$

- ▶ Two easy solutions show extreme ends of scale:

Trivial Solutions



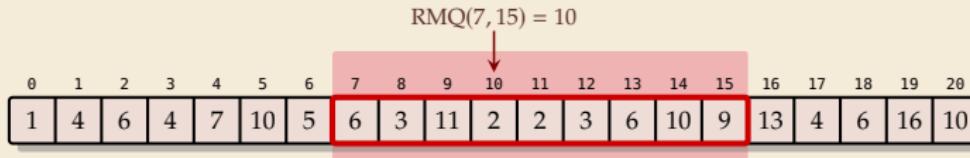
- ▶ Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer $\text{RMQ}(i, j)$ by scanning through $A[i..j]$, keeping track of min

$\rightsquigarrow \langle O(1), O(n) \rangle$

Trivial Solutions



- ▶ Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer $\text{RMQ}(i, j)$ by scanning through $A[i..j]$, keeping track of min

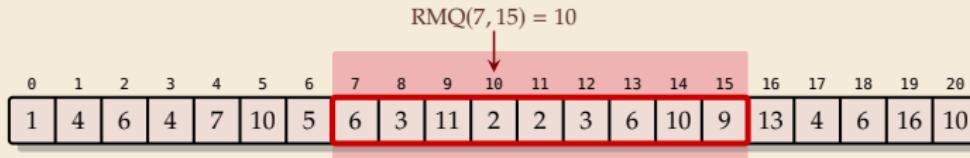
$\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array $M[0..n][0..n]$
- ▶ queries simple: $\text{RMQ}(i, j) = M[i][j]$

$\rightsquigarrow \langle O(n^3), O(1) \rangle$

Trivial Solutions



- ▶ Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer $\text{RMQ}(i, j)$ by scanning through $A[i..j]$, keeping track of min

$\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array $M[0..n][0..n]$
- ▶ queries simple: $\text{RMQ}(i, j) = M[i][j]$

$\rightsquigarrow \langle O(n^3), O(1) \rangle$

- ▶ Preprocessing can reuse partial results $\rightsquigarrow \langle O(n^2), O(1) \rangle$

7.2 RMQ – Sparse Table Solution

Sparse Table

- ▶ **Idea:** Like “precompute-all”, but keep only *some* entries
- ▶ store $M[i][j]$ iff $\ell = j - i + 1$ is 2^k .
 - ~~ $\leq n \cdot \lg n$ entries
 - ~~ Can be stored as $\underline{M'[i][k]}$

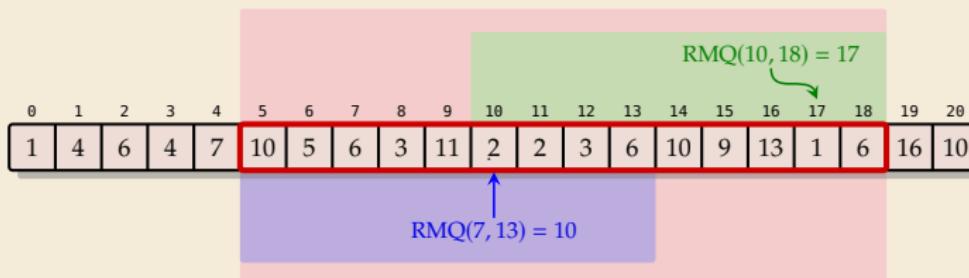
Sparse Table

- ▶ **Idea:** Like “precompute-all”, but keep only *some* entries
- ▶ store $M[i][j]$ iff $\ell = j - i + 1$ is 2^k .
 - ~~ $\leq n \cdot \lg n$ entries
 - ~~ Can be stored as $M'[i][k]$
- ▶ How to answer queries?

Sparse Table

- **Idea:** Like “precompute-all”, but keep only *some* entries
- store $M[i][j]$ iff $\ell = j - i + 1$ is 2^k .
 - ~~ $\leq n \cdot \lg n$ entries
 - ~~ Can be stored as $M'[i][k]$

- How to answer queries?

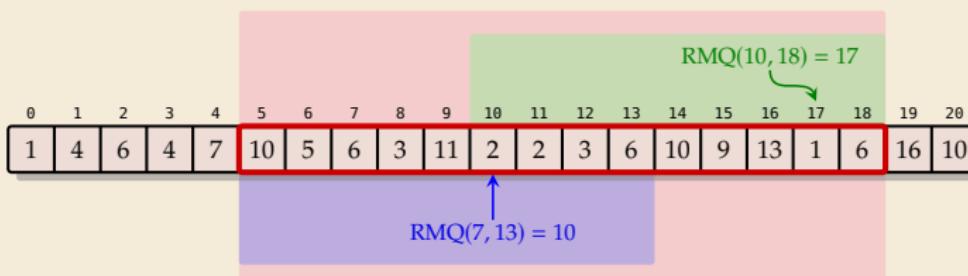


1. Find k with $\ell/2 \leq 2^k \leq \ell$
2. Cover range $[i..j]$ by 2^k positions right from i and 2^k positions left from j
3. $\text{RMQ}(i, j) = \arg \min \{A[\text{rmq}_1], A[\text{rmq}_2]\}$
with $\text{rmq}_1 = \text{RMQ}(i, i + 2^k - 1)$
 $\text{rmq}_2 = \text{RMQ}(j - 2^k + 1, j)$

Sparse Table

- **Idea:** Like “precompute-all”, but keep only *some* entries
- store $M[i][j]$ iff $\ell = j - i + 1$ is 2^k .
 - ~ $\leq n \cdot \lg n$ entries
 - ~ Can be stored as $M'[i][k]$

- How to answer queries?



1. Find k with $\ell/2 \leq 2^k \leq \ell$
2. Cover range $[i..j]$ by 2^k positions right from i and 2^k positions left from j
3. $\text{RMQ}(i, j) = \arg \min \{A[\text{rmq}_1], A[\text{rmq}_2]\}$
with $\text{rmq}_1 = \text{RMQ}(i, i + 2^k - 1)$
 $\text{rmq}_2 = \text{RMQ}(j - 2^k + 1, j)$

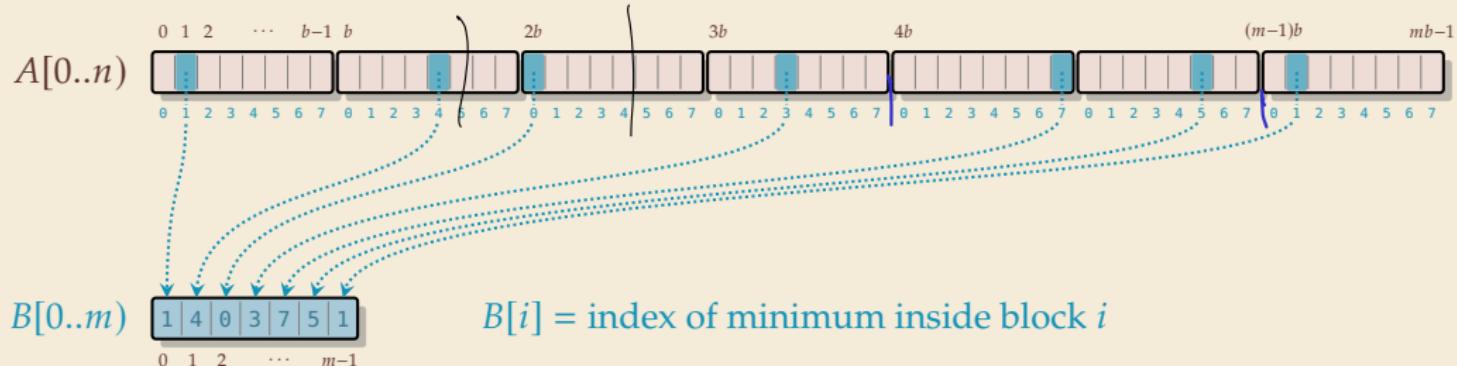
- Preprocessing can be done in $\mathcal{O}(n \log n)$ times
 - ~ $\langle \mathcal{O}(n \log n), \mathcal{O}(1) \rangle$ time solution!

Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$

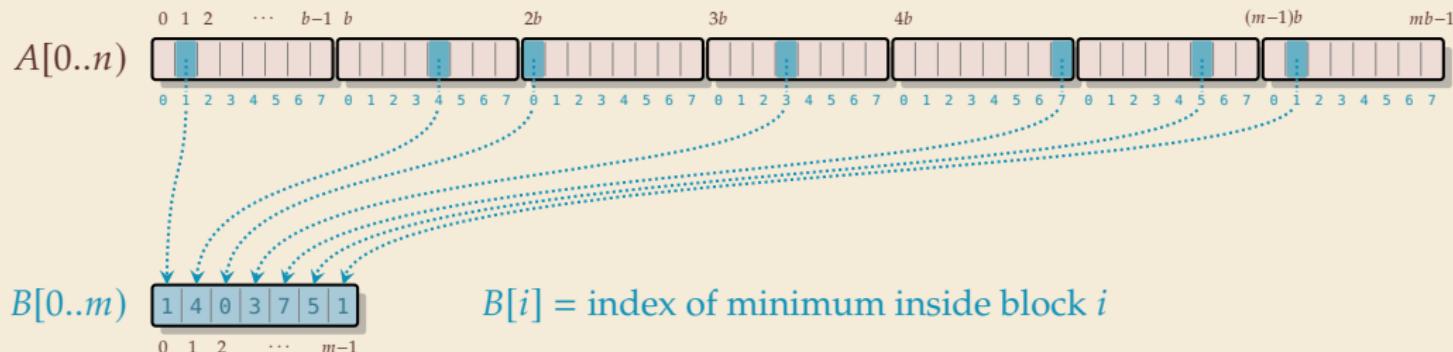
Bootstrapping

- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$
- Break A into blocks of $b = O(\log n)$ numbers
- Create array of block minima $B[0..m)$ for $m = \lceil n/b \rceil = O(n/\log n)$



Bootstrapping

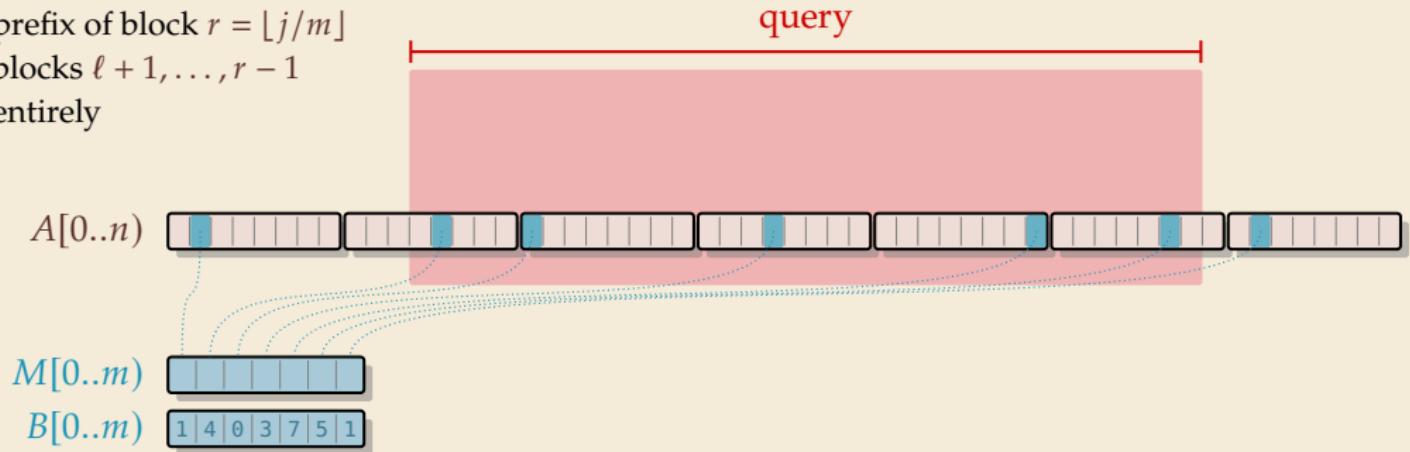
- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$
- Break A into blocks of $b = O(\log n)$ numbers
- Create array of block minima $B[0..m)$ for $m = \lceil n/b \rceil = O(n/\log n)$



- ~~ Use sparse table solution for B .
- ~~ Can solve RMQs in $B[0..m)$ in $\langle O(n), O(1) \rangle$ time

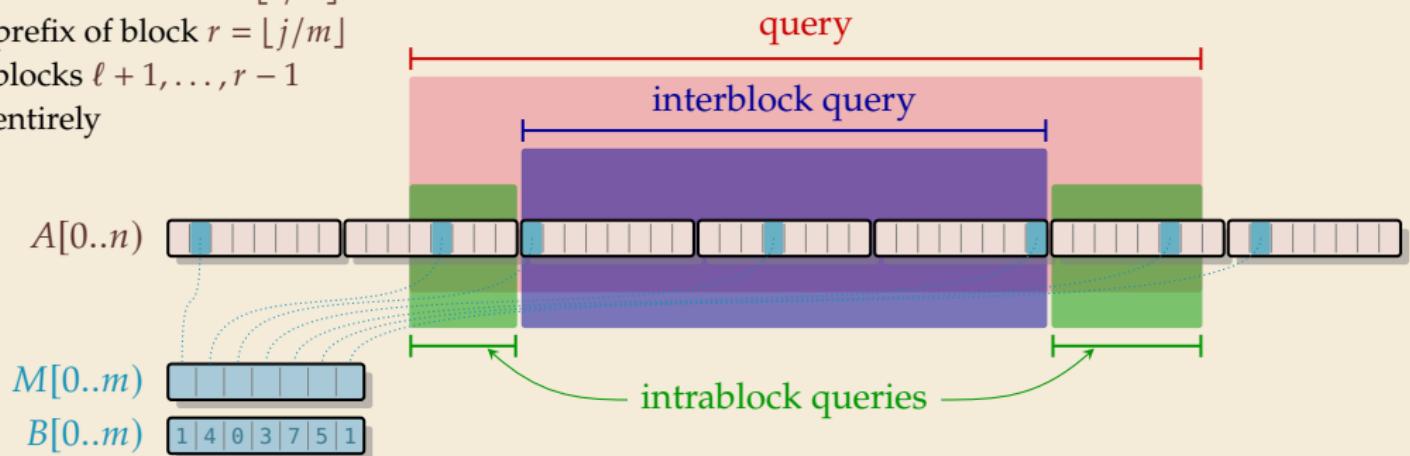
Query decomposition

- ▶ Query $\text{RMQ}_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r - 1$ entirely



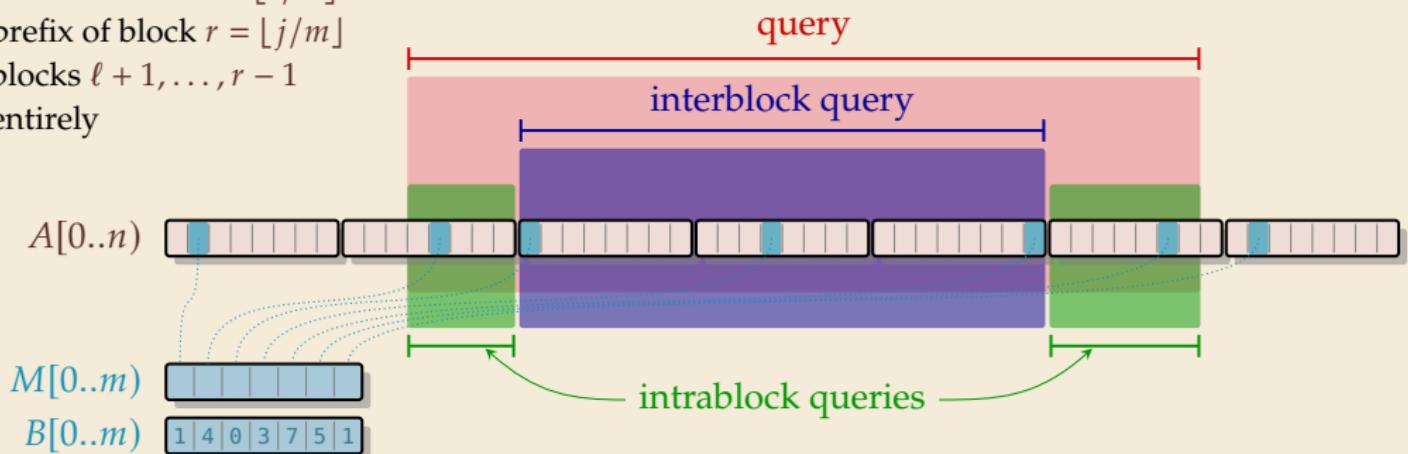
Query decomposition

- ▶ Query $\text{RMQ}_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r - 1$ entirely



Query decomposition

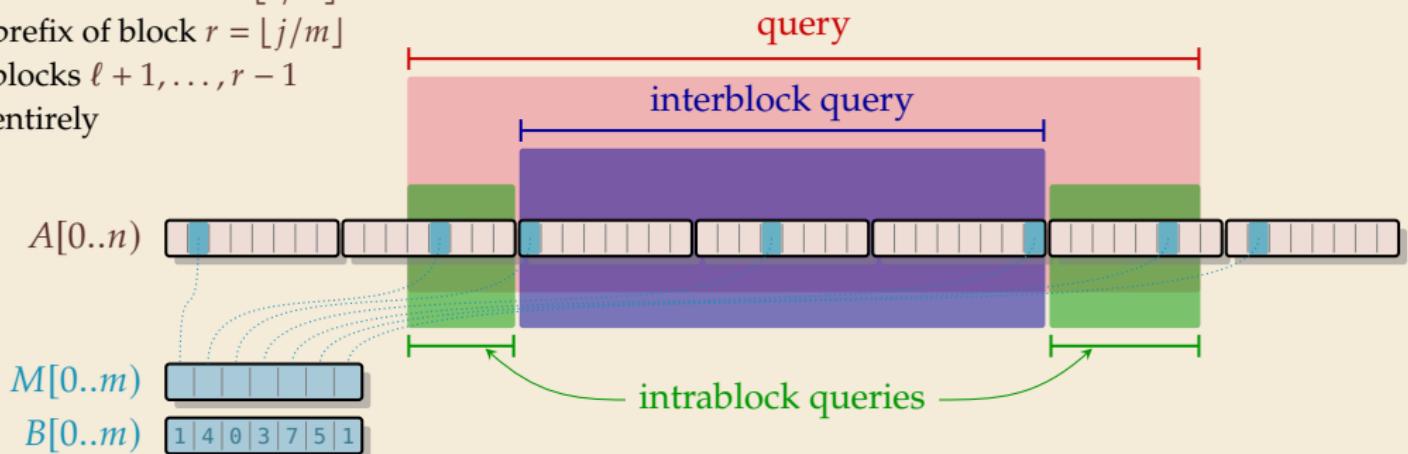
- ▶ Query $\text{RMQ}_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r - 1$ entirely



- ▶ $\text{RMQ}_A(i, j) = \arg \min_{k \in K} A[k] \quad \text{with} \quad K = \begin{cases} \text{RMQ}_{\text{block } \ell}(i - \ell b, (\ell + 1)b - 1), \\ b \cdot \text{RMQ}_M(\ell + 1, r - 1) + \\ B[\text{RMQ}_M(\ell + 1, r - 1)], \\ \text{RMQ}_{\text{block } r}(rb, j - rb) \end{cases}$

Query decomposition

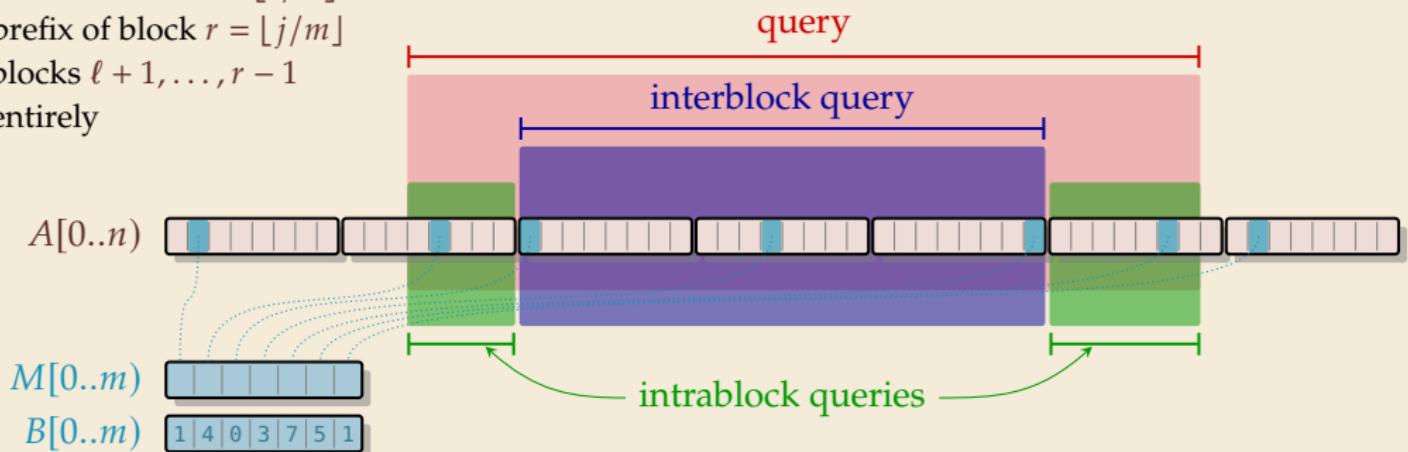
- ▶ Query $\text{RMQ}_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r - 1$ entirely



- ▶ $\text{RMQ}_A(i, j) = \arg \min_{k \in K} A[k]$ with $K = \begin{cases} \text{RMQ}_{\text{block } \ell}(i - \ell b, (\ell + 1)b - 1), \\ b \cdot \text{RMQ}_M(\ell + 1, r - 1) + \\ B[\text{RMQ}_M(\ell + 1, r - 1)], \\ \text{RMQ}_{\text{block } r}(rb, j - rb) \end{cases}$
- ↝ only 3 possible values to check if **intrablock** and **interblock** queries known

Query decomposition

- ▶ Query $\text{RMQ}_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r - 1$ entirely



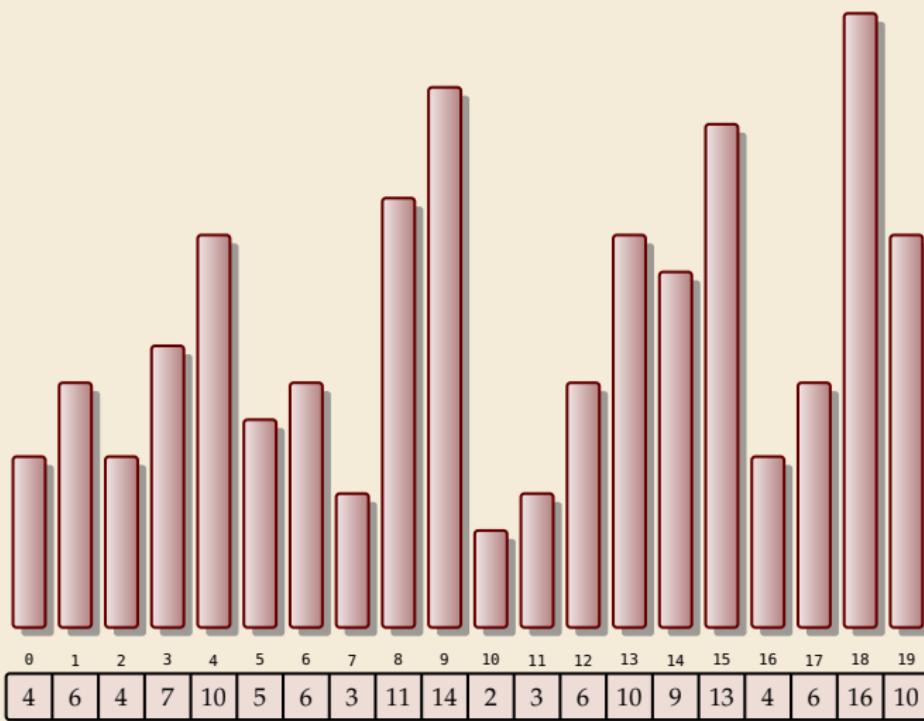
- ▶ $\text{RMQ}_A(i, j) = \arg \min_{k \in K} A[k]$ with $K = \begin{cases} \text{RMQ}_{\text{block } \ell}(i - \ell b, (\ell + 1)b - 1), \\ b \cdot \text{RMQ}_M(\ell + 1, r - 1) + \\ B[\text{RMQ}_M(\ell + 1, r - 1)], \\ \text{RMQ}_{\text{block } r}(rb, j - rb) \end{cases}$
- ↝ only 3 possible values to check if intrablock and interblock queries known $\mathcal{O}(\log n)$ $\langle \mathcal{O}(n), \mathcal{O}(\log n) \rangle$

7.3 RMQ – Cartesian Trees

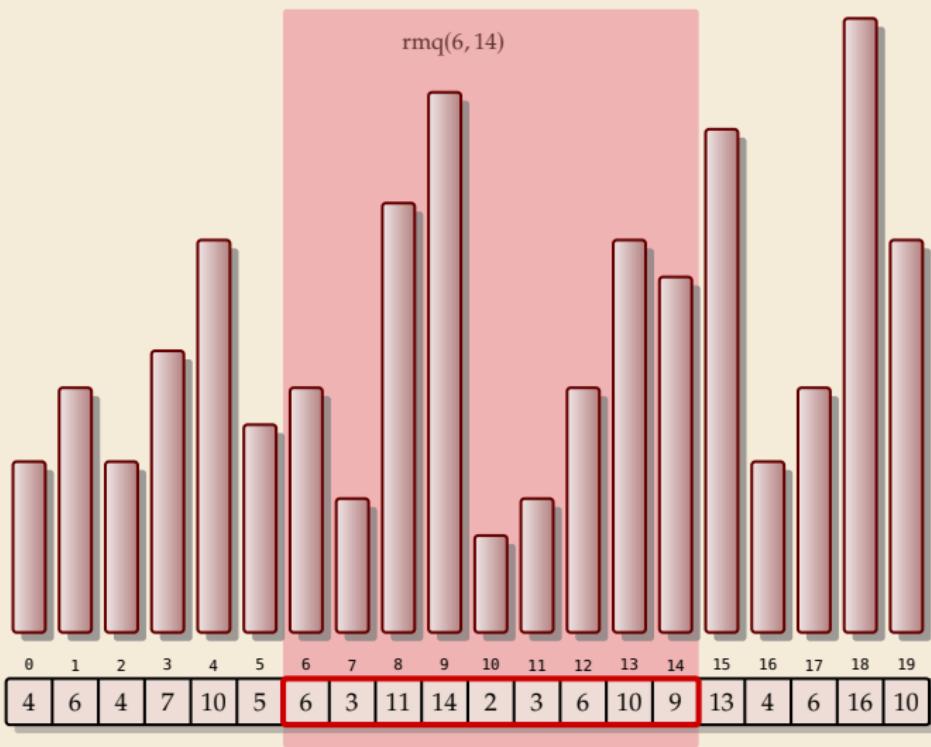
RMQ & LCA

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
4	6	4	7	10	5	6	3	11	14	2	3	6	10	9	13	4	6	16	10

RMQ & LCA

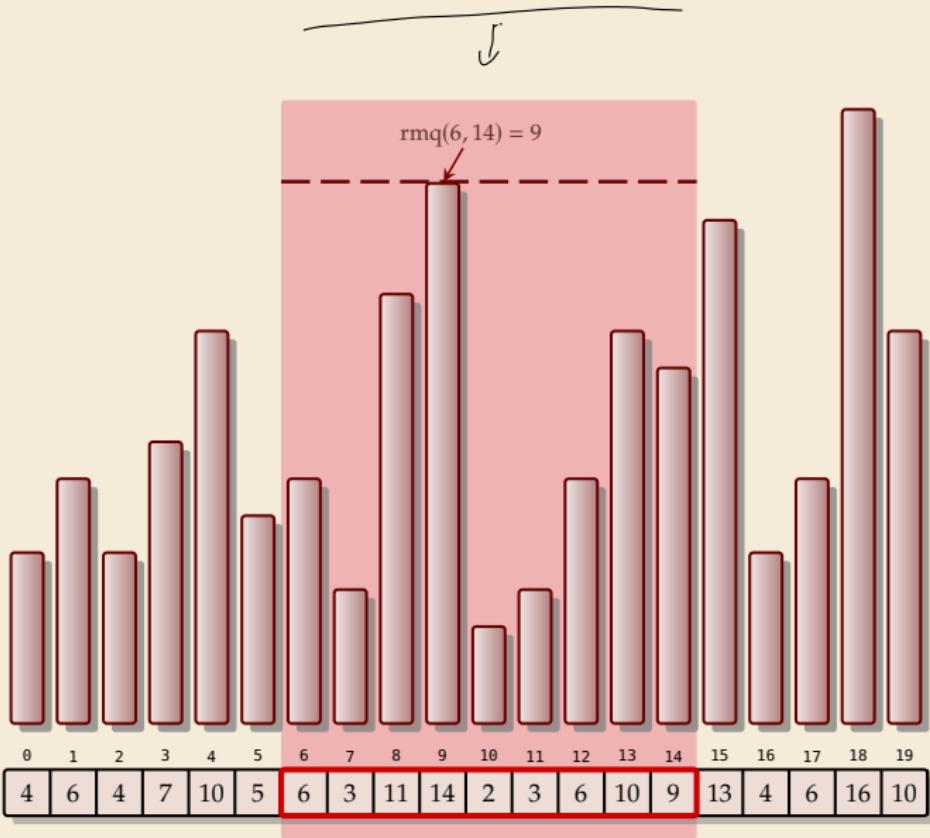


RMQ & LCA



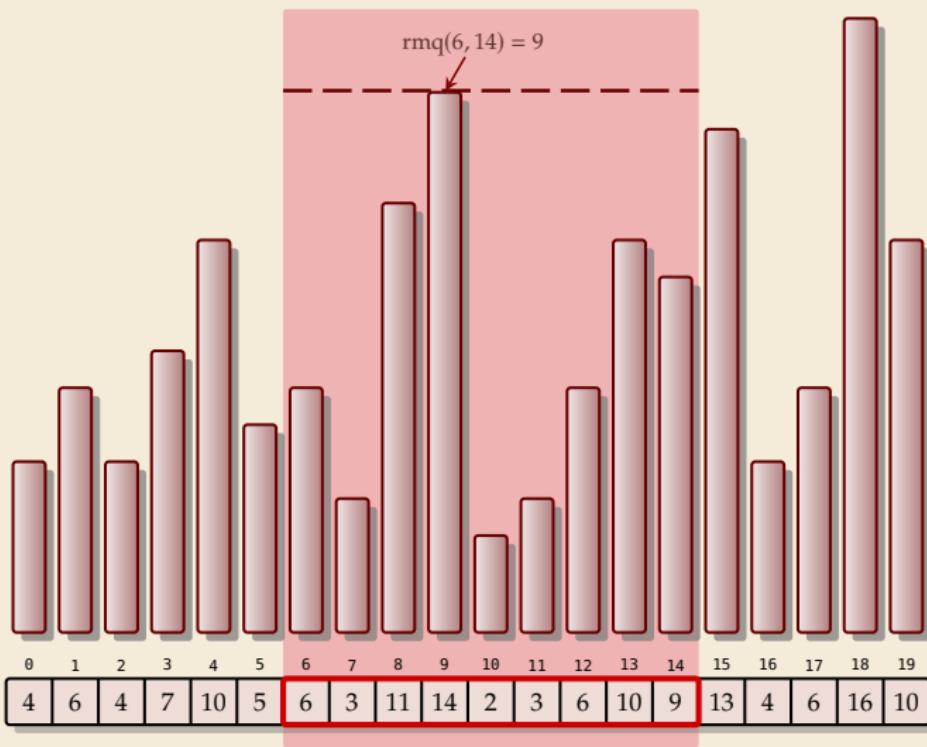
- Range-max queries on array A :
$$\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$$
$$= \text{index of max}$$

RMQ & LCA



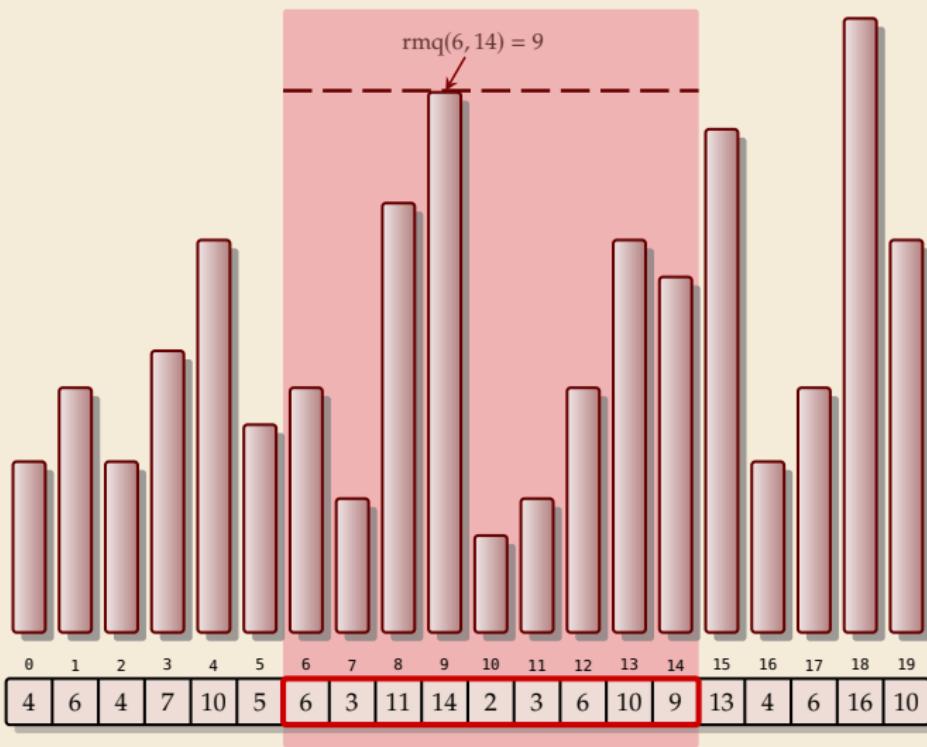
- **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$

RMQ & LCA



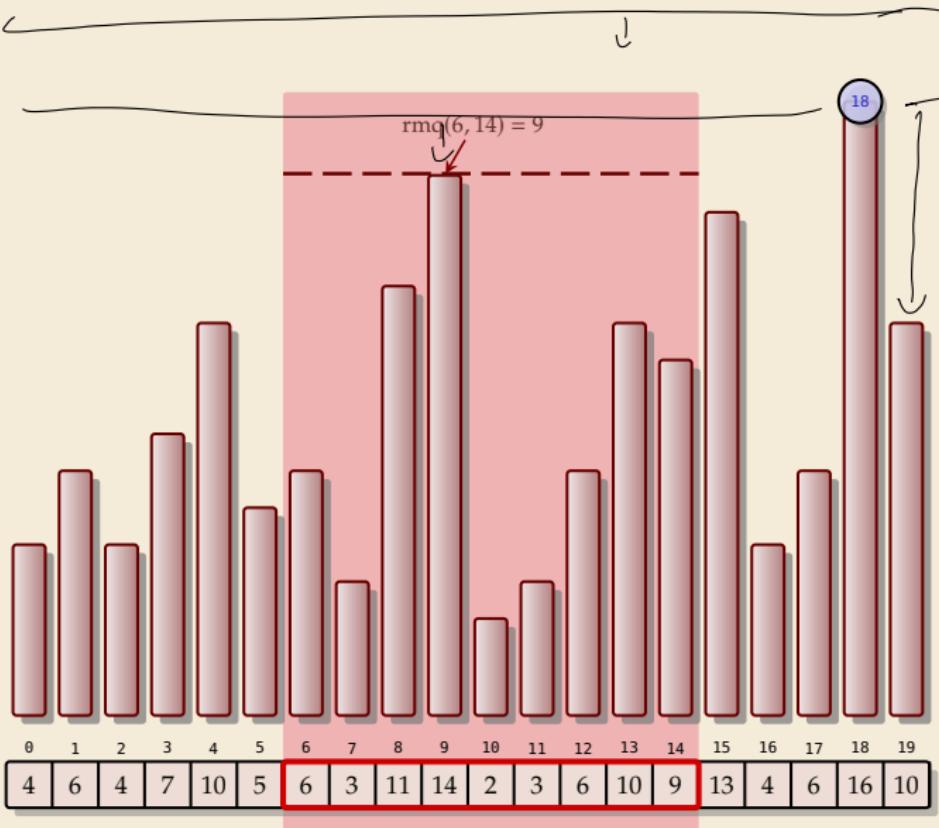
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast

RMQ & LCA



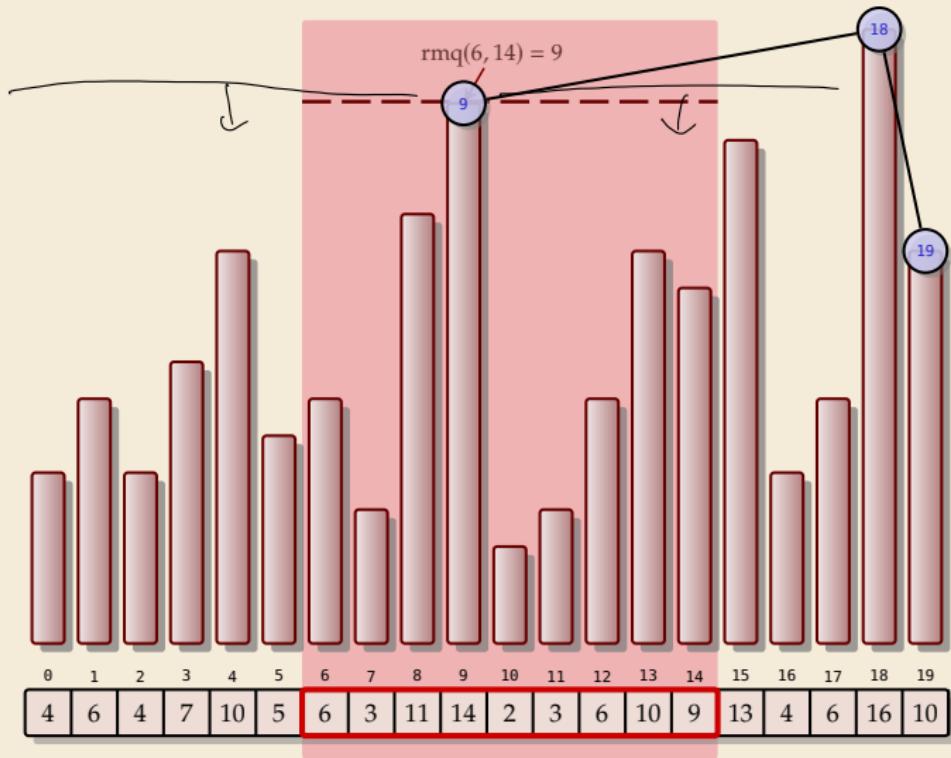
- ▶ Range-max queries on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!

RMQ & LCA



- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down

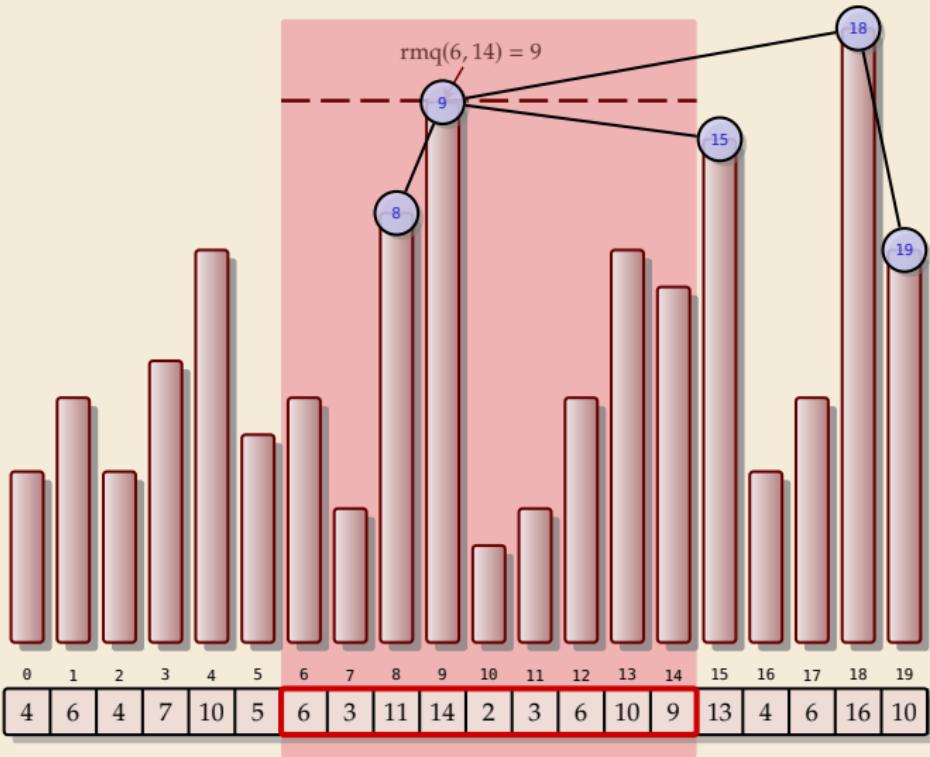
RMQ & LCA



- ▶ **Range-max queries** on array A :
$$\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$$

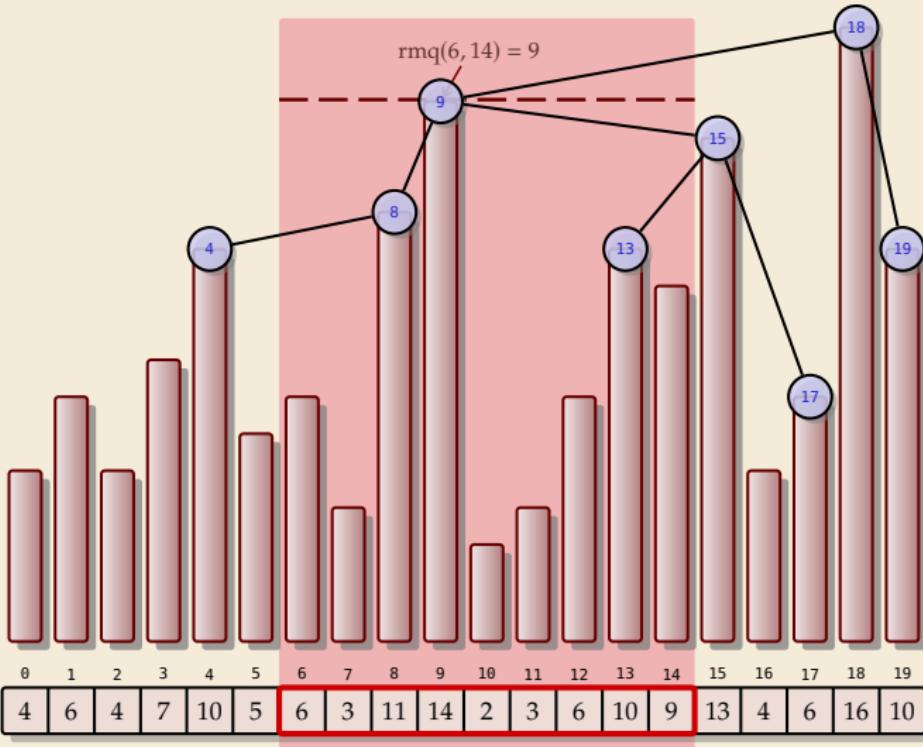
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down

RMQ & LCA



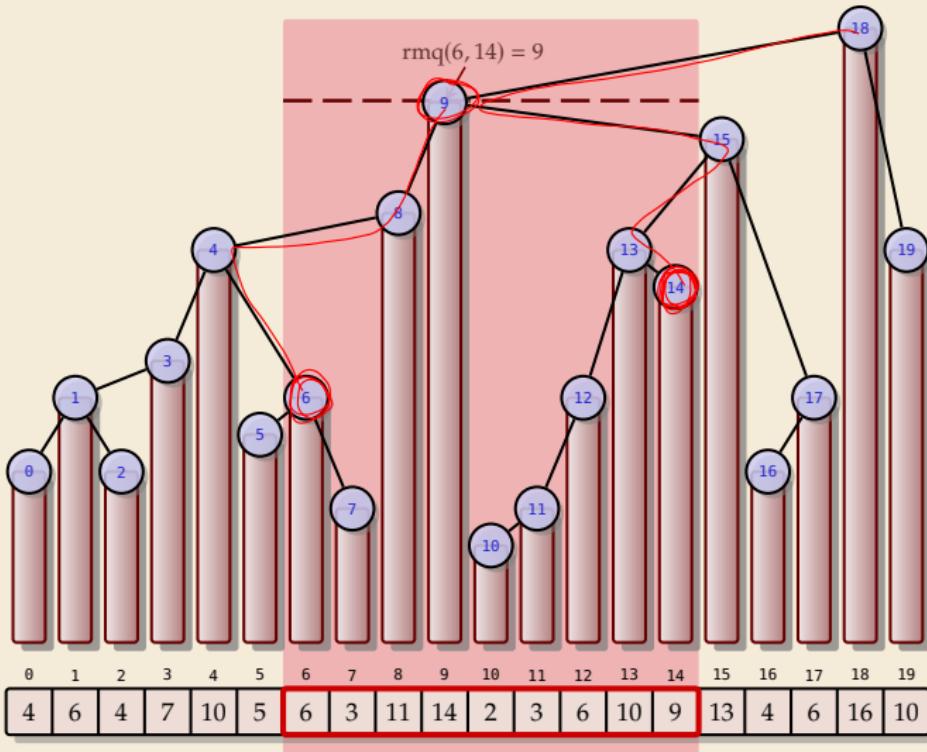
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down

RMQ & LCA



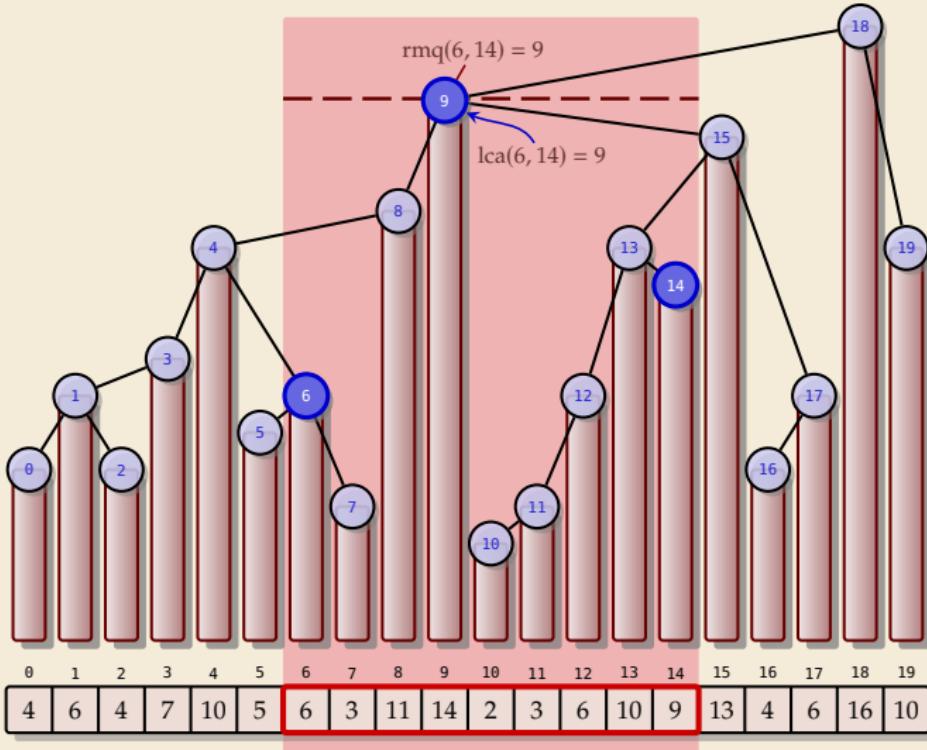
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down

RMQ & LCA



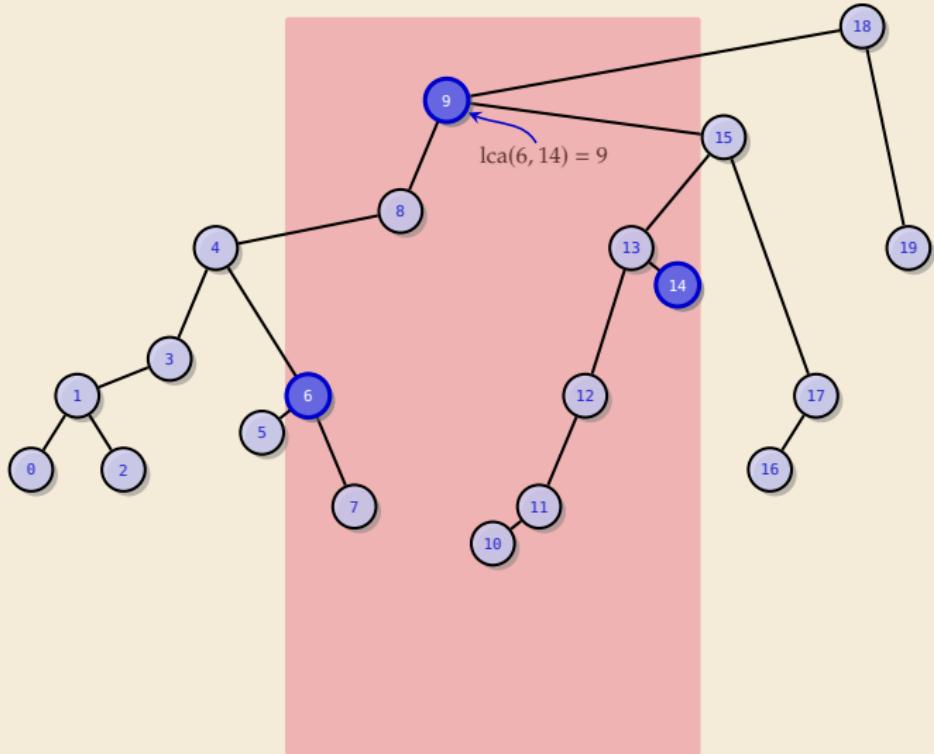
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down

RMQ & LCA



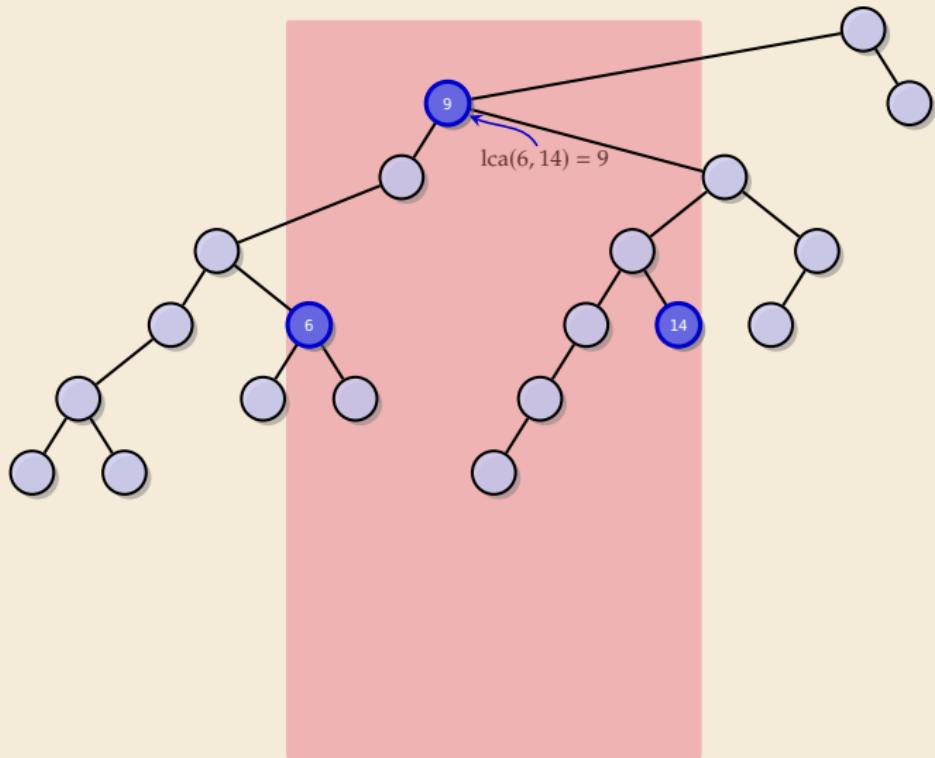
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down
- ▶ $\text{rmq}(i, j) =$
lowest common ancestor (LCA)

RMQ & LCA



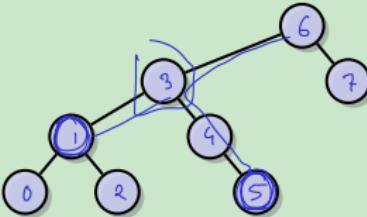
- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
 $= \text{index of max}$
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down
- ▶ $\text{rmq}(i, j) =$
lowest common ancestor (LCA)

RMQ & LCA



- ▶ **Range-max queries** on array A :
 $\text{rmq}_A(i, j) = \arg \max_{i \leq k \leq j} A[k]$
= *index of max*
- ▶ **Task:** Preprocess A ,
then answer RMQs fast
ideally constant time!
- ▶ **Cartesian tree:** (cf. *treap*)
construct binary tree by
sweeping line down
- ▶ $\text{rmq}(i, j) =$ inorder of
lowest common ancestor (LCA)
of i th and j th node in inorder

Clicker Question

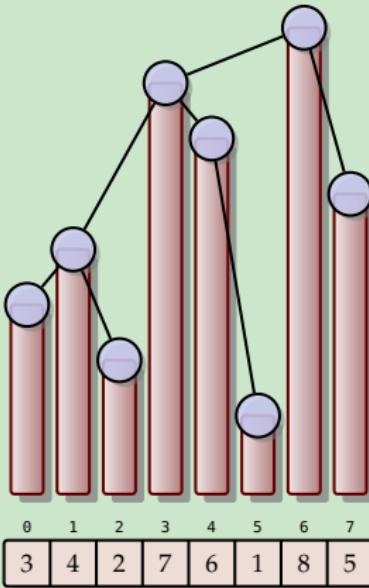


① Inorder traversal

Given the (max-oriented) Cartesian tree for A on the left, what is $\text{RMQ}_A(1, 5)$?

→ sli.do/cs594

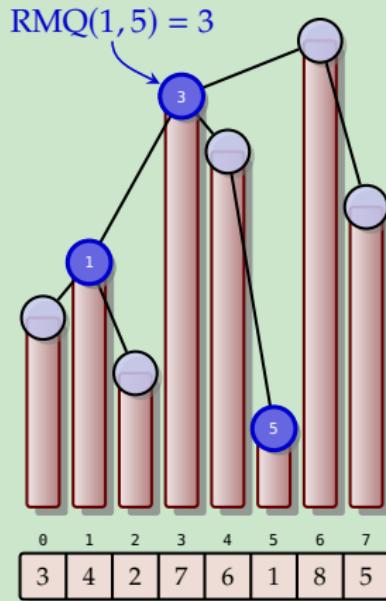
Clicker Question



Given the (max-oriented) Cartesian tree for A on the left, what is $\text{RMQ}_A(1, 5)$?

→ *sli.do/cs594*

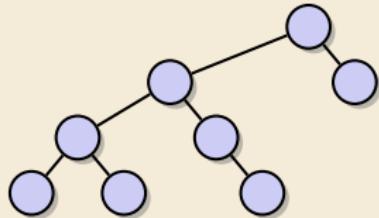
Clicker Question



Given the (max-oriented) Cartesian tree for A on the left, what is $\text{RMQ}_A(1, 5)$?

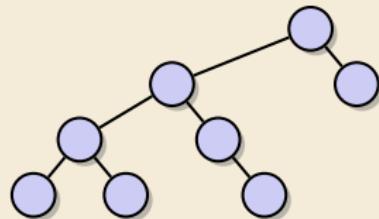
→ *sli.do/cs594*

Counting binary trees



- ▶ Given the Cartesian tree,
all RMQ answers are determined
and vice versa!

Counting binary trees



- ▶ Given the Cartesian tree, all RMQ answers are determined and vice versa!

- ▶ How many different Cartesian trees are there for arrays of length n ?

- ▶ known result: *Catalan numbers* $\frac{1}{n+1} \binom{2n}{n}$

- ▶ easy to see: $\leq 2^{2n}$

↝ many arrays will give rise to the same Cartesian tree

Can we exploit that?

Encoding binary trees : in preorder traversal
write down (has left, has right)

$$\frac{1}{4} \cdot \binom{6}{3} = \frac{6!}{3!3!4!} = \frac{6 \cdot 5 \cdot 4}{3!} = 5$$

Intrablock queries

~~ It remains to solve the **intrablock** queries!

► Want $\langle O(n), O(1) \rangle$ time overall

must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!

Intrablock queries

- ~~ It remains to solve the **intrablock** queries!
- Want $\langle O(n), O(1) \rangle$ time overall
 - must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- Choose $b = \lceil \frac{1}{4} \lg n \rceil$
- many blocks, but just b numbers long
 - ~~ Cartesian tree of b elements can be encoded using $2b = \frac{1}{2} \lg n$ bits
 - ~~ # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = (2^{\lg n})^{1/2} = \sqrt{n}$
 - ~~ many *equivalent* blocks!

Intrablock queries

~~ It remains to solve the **intrablock** queries!

► Want $\langle O(n), O(1) \rangle$ time overall

must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!

► Choose $b = \lceil \frac{1}{4} \lg n \rceil$

► many blocks, but just b numbers long

~~ Cartesian tree of b elements can be encoded using $2b = \frac{1}{2} \lg n$ bits

~~ # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = (2^{\lg n})^{1/2} = \sqrt{n}$

~~ many *equivalent* blocks!

~~ **Recall: Exhaustive-Tabulation Technique:**

1. represent each subproblem by storing its *type* (here: encoding of Cartesian tree)
2. *enumerate* all possible subproblem types and their solutions
3. use type as index in a large *lookup table*

Exhaustive Tabulation

1. For each block, compute $2b$ bit representation of Cartesian tree
 - ▶ can be done in linear time

Exhaustive Tabulation

1. For each block, compute $2b$ bit representation of Cartesian tree
 - ▶ can be done in linear time
2. Compute large lookup table

Block type	i	j	$\text{RMQ}(i, j)$
\vdots			
	0	1	0
011000	0	2	0
	1	2	2
\vdots			

Exhaustive Tabulation

1. For each block, compute $2b$ bit representation of Cartesian tree
 - ▶ can be done in linear time
2. Compute large lookup table

Block type	i	j	$\text{RMQ}(i, j)$
\vdots			
\vdots			

- ▶ $\leq \sqrt{n}$ block types
- ▶ $\leq b^2$ combinations for i and j
- $\rightsquigarrow \Theta(\sqrt{n} \cdot \log^2 n)$ rows
- ▶ each row can be computed in $O(\log n)$ time
- \rightsquigarrow overall preprocessing: $O(n)$ time!

RMQ Discussion

- ▶ $\langle O(n), O(1) \rangle$ time solution for RMQ
- ⇝ $\langle O(n), O(1) \rangle$ time solution for LCE in strings!

RMQ Discussion

- ▶ $\langle O(n), O(1) \rangle$ time solution for RMQ
- ⇝ $\langle O(n), O(1) \rangle$ time solution for LCE in strings!

 optimal preprocessing and query time!

 a bit complicated

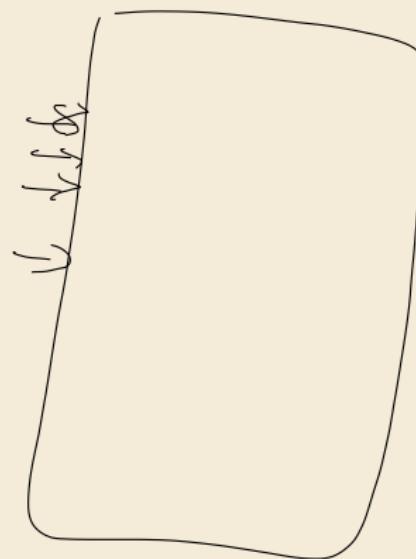
7.4 String Matching in Enhanced Suffix Array

Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching $P[0..m]$ in $L[0..n]$

► worst-case cost: $(\lg n + 2)$ string comparisons of string of length m

$\rightsquigarrow O(\log(n) \cdot m)$ character comparisons



Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching $P[0..m]$ in $L[0..n]$

- ▶ worst-case cost: $\lg n + 2$ *string* comparisons of string of length m
- ~~ $O(\log(n) \cdot m)$ character comparisons
- ▶ suffix tree could do $O(m)$ total time (assuming constant σ or hashing for child links)
- ▶ surely, enhanced suffix arrays can do better than $O(m \log n)$ ☺

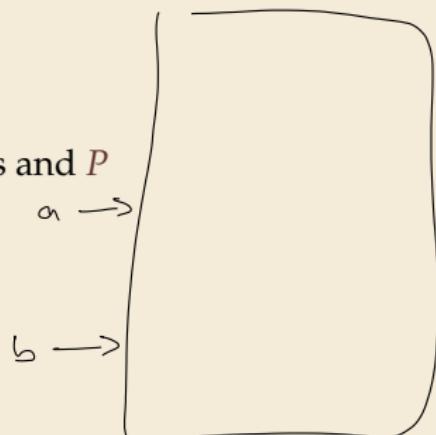
Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching $P[0..m]$ in $L[0..n]$

- ▶ worst-case cost: $\lg n + 2$ *string* comparisons of string of length m
- ~~ $O(\log(n) \cdot m)$ character comparisons
- ▶ suffix tree could do $O(m)$ total time (assuming constant σ or hashing for child links)
- ▶ surely, enhanced suffix arrays can do better than $O(m \log n)$ ☺

Idea: use LCP information to save character comparisons

- ▶ concretely: maintain LCP between lower/upper bound suffixes and P
 $T[a..n] \leq_{\text{lex}} P \leq_{\text{lex}} T[b..n]$
 $\ell_a = \text{LCP}(T[a..n], P)$ and $\ell_b = \text{LCP}(T[b..n], P)$



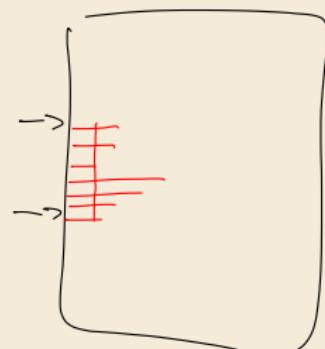
Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching $P[0..m]$ in $L[0..n]$

- ▶ worst-case cost: $\lg n + 2$ *string* comparisons of string of length m
- ~~ $O(\log(n) \cdot m)$ character comparisons
- ▶ suffix tree could do $O(m)$ total time (assuming constant σ or hashing for child links)
- ▶ surely, enhanced suffix arrays can do better than $O(m \log n)$ ☺

Idea: use LCP information to save character comparisons

- ▶ concretely: maintain LCP between lower/upper bound suffixes and P
 $T[a..n] \leq_{\text{lex}} P \leq_{\text{lex}} T[b..n]$
 $\ell_a = \text{LCP}(T[a..n], P)$ and $\ell_b = \text{LCP}(T[b..n], P)$
- ▶ avoid comparing same characters again
- ▶ Note: with RMQ on LCP array can determine $\text{LCP}(T_i, T_j)$ for any $i, j \in [0..n]$



LCP Binary Search

► Input: $\ell_a = \text{LCP}(T_a, P)$

$\ell_b = \text{LCP}(T_b, P)$

$\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$

0: T_{20}	\$
1: T_4	ahbansbananasman\$
2: T_{18}	an\$
3: T_{11}	ananasman\$
4: T_{13}	anasman\$
5: T_1	annahbansbananasman\$
6: T_7	ansbananasman\$
7: T_{15}	asman\$
8: T_{10}	bananasman\$
9: T_6	bansbananasman\$
10: T_0	hannahbansbananasman\$
11: T_5	hbansbananasman\$
12: T_{17}	man\$
13: T_{19}	n\$
14: T_3	nahbansbananasman\$
15: T_{12}	nanasman\$
16: T_{14}	nasman\$
17: T_2	nnahbansbananasman\$
18: T_8	nsbananasman\$
19: T_9	sbananasman\$
20: T_{16}	sman\$

LCP Binary Search

► Input: $\ell_a = \text{LCP}(T_a, P)$

$\ell_b = \text{LCP}(T_b, P)$

$\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$

► Case 1: $\ell_a = \ell_b$

Compare P and T_m starting at ℓ_a

0: T_{20}	\$	
1: T_4	$a \rightarrow$ <u>a</u> hbansbananasman\$	Case 1
2: T_{18}	an\$	
3: T_{11}	ananasman\$	
4: T_{13}	$m \rightarrow$ <u>an</u> asman\$	$P = \underline{a}nn$
5: T_1	annahbansbananasman\$	
6: T_7	ansbananasman\$	
7: T_{15}	$b \rightarrow$ <u>as</u> man\$	
8: T_{10}	bananasman\$	
9: T_6	bansbananasman\$	
10: T_0	hannahbansbananasman\$	
11: T_5	hbansbananasman\$	
12: T_{17}	man\$	
13: T_{19}	n\$	
14: T_3	nahbansbananasman\$	
15: T_{12}	nanasman\$	
16: T_{14}	nasman\$	
17: T_2	nnahbansbananasman\$	
18: T_8	nsbananasman\$	
19: T_9	sbananasman\$	
20: T_{16}	sman\$	

LCP Binary Search

- ▶ Input: $\ell_a = \text{LCP}(T_a, P)$

$$\ell_b = \text{LCP}(T_b, P)$$

$$\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$$

- ▶ Case 1: $\ell_a = \ell_b$

Compare P and T_m starting at ℓ_a

- ▶ Case 2: $\ell_a \neq \ell_b$; w.l.o.g. $\ell_a > \ell_b$

- ▶ Case 2a: $\text{LCP}(T_a, T_m) > \ell_a$

$P >_{\text{lex}} T_m$ w/o cmps!

0:	T_{20}	\$
1:	T_4	ahbansbananasman\$
2:	T_{18}	an\$
3:	T_{11}	ananasman\$
4:	T_{13}	$a \rightarrow \underline{\text{an}}\text{asman\$}$ Case 2a
5:	T_1	annahbansbananasman\$
6:	T_7	$m \rightarrow \underline{\text{an}}\text{sbananasman\$}$ $P = \text{asterix}$
7:	T_{15}	asman\$
8:	T_{10}	$b \rightarrow \underline{\text{ba}}\text{nanasman\$}$
9:	T_6	bansbananasman\$
10:	T_0	hannahbansbananasman\$
11:	T_5	hbansbananasman\$
12:	T_{17}	man\$
13:	T_{19}	n\$
14:	T_3	nahbansbananasman\$
15:	T_{12}	nanasman\$
16:	T_{14}	nasman\$
17:	T_2	nnahbansbananasman\$
18:	T_8	nsbananasman\$
19:	T_9	sbananasman\$
20:	T_{16}	sman\$

LCP Binary Search

- ▶ Input: $\ell_a = \text{LCP}(T_a, P)$
 $\ell_b = \text{LCP}(T_b, P)$
 $\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$

- ▶ **Case 1:** $\ell_a = \ell_b$
 Compare P and T_m starting at ℓ_a
- ▶ **Case 2:** $\ell_a \neq \ell_b$; w.l.o.g. $\ell_a > \ell_b$

▶ **Case 2a:** $\text{LCP}(T_a, T_m) > \ell_a$
 $P >_{\text{lex}} T_m$ w/o cmps!

▶ **Case 2b:** $\text{LCP}(T_a, T_m) < \ell_a$
 $P <_{\text{lex}} T_m$ w/o cmps!

0: T_{20}	\$	
1: T_4	ahbansbananasman\$	
2: T_{18}	an\$	
3: T_{11}	$a \rightarrow \underline{\text{ananasman}}$	Case 2b
4: T_{13}	$m \rightarrow \underline{\text{anasman}}$	$P = \underline{\text{ananasmen}}$
5: T_1	annahbansbananasman\$	
6: T_7	$b \rightarrow \underline{\text{ansbananasman}}$	
7: T_{15}	asman\$	
8: T_{10}	bananasman\$	
9: T_6	bansbananasman\$	
10: T_0	hannahbansbananasman\$	
11: T_5	hbansbananasman\$	
12: T_{17}	man\$	
13: T_{19}	n\$	
14: T_3	nahbansbananasman\$	
15: T_{12}	nanasman\$	
16: T_{14}	nasman\$	
17: T_2	nnahbansbananasman\$	
18: T_8	nsbananasman\$	
19: T_9	sbananasman\$	
20: T_{16}	sman\$	

LCP Binary Search

- ▶ Input: $\ell_a = \text{LCP}(T_a, P)$
 $\ell_b = \text{LCP}(T_b, P)$
 $\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$

- ▶ **Case 1:** $\ell_a = \ell_b$
Compare P and T_m starting at ℓ_a

- ▶ **Case 2:** $\ell_a \neq \ell_b$; w.l.o.g. $\ell_a > \ell_b$
 - ▶ **Case 2a:** $\text{LCP}(T_a, T_m) > \ell_a$
 $P >_{\text{lex}} T_m$ w/o cmps!
 - ▶ **Case 2b:** $\text{LCP}(T_a, T_m) < \ell_a$
 $P <_{\text{lex}} T_m$ w/o cmps!
 - ▶ **Case 2c:** $\text{LCP}(T_a, T_m) = \ell_a$
Compare P and T_m from ℓ_a

0: T_{20}	\$	
1: T_4	ahbansbananasman\$	
2: T_{18}	an\$	
3: T_{11}	$a \rightarrow \underline{\text{ananasman}}$	Case 2c
4: T_{13}	$m \rightarrow \underline{\text{anasman}}$	$P = \underline{\text{anarchy}}$
5: T_1	annahbansbananasman\$	
6: T_7	$b \rightarrow \underline{\text{ansbananasman}}$	
7: T_{15}	asman\$	
8: T_{10}	bananasman\$	
9: T_6	bansbananasman\$	
10: T_0	hannahbansbananasman\$	
11: T_5	hbansbananasman\$	
12: T_{17}	man\$	
13: T_{19}	n\$	
14: T_3	nahbansbananasman\$	
15: T_{12}	nanasman\$	
16: T_{14}	nasman\$	
17: T_2	nnahbansbananasman\$	
18: T_8	nsbananasman\$	
19: T_9	sbananasman\$	
20: T_{16}	sman\$	

LCP Binary Search

- ▶ Input: $\ell_a = \text{LCP}(T_a, P)$
 $\ell_b = \text{LCP}(T_b, P)$
 $\rightsquigarrow \ell_m = \text{LCP}(T_m, P) \geq \min\{\ell_a, \ell_b\}$
- ▶ **Case 1:** $\ell_a = \ell_b$
Compare P and T_m starting at ℓ_a
- ▶ **Case 2:** $\ell_a \neq \ell_b$; w.l.o.g. $\ell_a > \ell_b$
 - ▶ **Case 2a:** $\text{LCP}(T_a, T_m) > \ell_a$
 $P >_{\text{lex}} T_m$ w/o cmps!
 - ▶ **Case 2b:** $\text{LCP}(T_a, T_m) < \ell_a$
 $P <_{\text{lex}} T_m$ w/o cmps!
 - ▶ **Case 2c:** $\text{LCP}(T_a, T_m) = \ell_a$
Compare P and T_m from ℓ_a
- ▶ in each case, learn $\ell_m \rightsquigarrow$ invariant
- ▶ no redundant '='-comparisons

0: T_{20}	\$	
1: T_4	ahbansbananasman\$	
2: T_{18}	an\$	
3: T_{11}	$a \rightarrow$ ananasman\$	Case 2c
4: T_{13}	$m \rightarrow$ anasman\$	<i>P = anarchy</i>
5: T_1	annahbansbananasman\$	
6: T_7	$b \rightarrow$ ansbananasman\$	
7: T_{15}	asman\$	
8: T_{10}	bananasman\$	
9: T_6	bansbananasman\$	
10: T_0	hannahbansbananasman\$	
11: T_5	hbansbananasman\$	
12: T_{17}	man\$	
13: T_{19}	n\$	
14: T_3	nahbansbananasman\$	
15: T_{12}	nanasman\$	
16: T_{14}	nasman\$	
17: T_2	nnahbansbananasman\$	
18: T_8	nsbananasman\$	
19: T_9	sbananasman\$	
20: T_{16}	sman\$	

Enhanced Suffix Arrays – Update

- *Enhanced suffix array*: L , R and LCP array with RMQ support
- **Goal:** simulate any suffix tree operations
 - string matching in $\tilde{O}(m + \log n)$ time ✓
 - string depth of internal nodes = LCP values ✓
 - internal suffix tree node = LCP interval
 - ~~> storing information per node ✓
 - bottom-up traversal via enclosing LCP intervals ✓
 - longest common extension queries ✓
 - suffix links ✓

Enhanced Suffix Arrays – Update

- *Enhanced suffix array*: L , R and LCP array with RMQ support
- **Goal:** simulate any suffix tree operations
 - string matching in $O(m + \log n)$ time ✓
 - string depth of internal nodes = LCP values ✓
 - internal suffix tree node = LCP interval
 - ~~> storing information per node ✓
 - bottom-up traversal via enclosing LCP intervals ✓
 - longest common extension queries ✓
 - suffix links ✓

Outlook:

- enhanced suffix arrays still need original text T to work
- a *self-index* avoids that
 - can store T in *compressed* form **and** support operations like string matching

7.5 The Burrows-Wheeler Transform

Towards Self-Indexes

- ▶ For large genomes or multiple-genome datasets, can't hold $T[0..n)$ in fast memory.
- ▶ An enhanced suffix array needs additional $\Theta(n)$ words of space.

~~> When reference genomes first became available, a major show stopper!

Towards Self-Indexes

- ▶ For large genomes or multiple-genome datasets, can't hold $T[0..n)$ in fast memory.
- ▶ An enhanced suffix array needs additional $\Theta(n)$ words of space.
 - ~~ When reference genomes first became available, a major show stopper!
- ▶ But since string matching can reconstruct T , can't avoid storing T somehow!
- ▶ A *self-index* is a data structure that answers operations without access to T at query time
 - ▶ We get to decide *how* to store T ~~ might *compress* T (if compressible)
 - ▶ Known as "*encoding model*" in space-efficient data structures genomes highly repetitive!

Towards Self-Indexes

- ▶ For large genomes or multiple-genome datasets, can't hold $T[0..n)$ in fast memory.
- ▶ An enhanced suffix array needs additional $\Theta(n)$ words of space.
- ~~> When reference genomes first became available, a major show stopper!
- ▶ But since string matching can reconstruct T , can't avoid storing T somehow!
- ▶ A *self-index* is a data structure that answers operations without access to T at query time
 - ▶ We get to decide *how* to store T ~~ might *compress* T (if compressible)
 - ▶ Known as "*encoding model*" in space-efficient data structures genomes highly repetitive!
- ~~> **Key question:** *How to compress T while supporting random access and read mapping?*
"Computing over compressed data"

BWT – Definitions

- *cyclic shift* of a string:

$T = \underline{\text{time}} \text{flies} \text{quickly}$

$\text{flies} \text{quickly} \underline{\text{time}}$

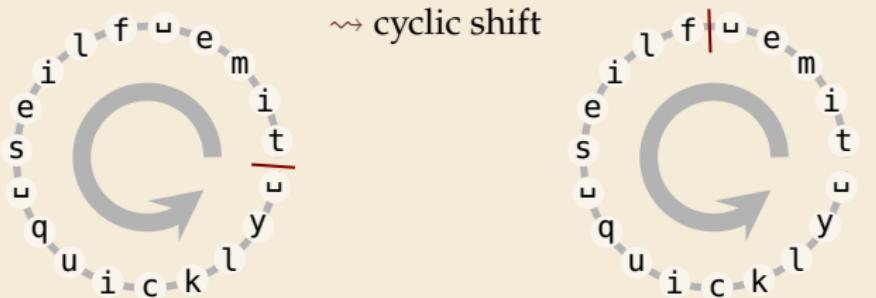
↔ cyclic shift

BWT – Definitions

- ▶ *cyclic shift* of a string:
- ▶ with end-of-word character $\$$
- ~~ can **recover** original string

$T = \text{time}_\square \text{flies}_\square \text{quickly}_\square$

$\text{flies}_\square \text{quickly}_\square \text{time}_\square$



~~ cyclic shift

BWT – Definitions

- *cyclic shift* of a string:

- with end-of-word character $\$$

- ~~ can **recover** original string

$T = \text{time}_\square \text{flies}_\square \text{quickly}_\square$

$\text{flies}_\square \text{quickly}_\square \text{time}_\square$

~~ cyclic shift

- The Burrows-Wheeler Transform proceeds in three steps:

0. Append end-of-word character $\$$ to S .

1. Consider *all cyclic shifts* of S

2. Sort these strings lexicographically

3. B is the *list of trailing characters* (last column, top-down) of each string

BWT – Example

$S = \text{alf_eats_alfalfa\$}$

1. Take all cyclic shifts of S

alf_eats_alfalfa\$
lf_eats_alfalfa\$a
f_eats_alfalfa\$al
_eats_alfalfa\$alf
eats_alfalfa\$alf_
ats_alfalfa\$alf_e
ts_alfalfa\$alf_ea
s_alfalfa\$alf_eat
_alfalfa\$alf_eats
alfalfa\$alf_eats_
lfalfa\$alf_eats_a
falfa\$alf_eats_al
alfa\$alf_eats_alf
lfa\$alf_eats_alfa
fa\$alf_eats_alfal
a\$alf_eats_alfalf
\$alf_eats_alfalfa

↗
sort

BWT – Example

$S = \text{alf_eats_alfalfa\$}$

1. Take all cyclic shifts of S
2. Sort cyclic shifts

alf_eats_alfalfa\$
lf_eats_alfalfa\$a
f_eats_alfalfa\$al
_eats_alfalfa\$alf
eats_alfalfa\$alf_
ats_alfalfa\$alf_e
ts_alfalfa\$alf_ea
s_alfalfa\$alf_eat
_alfalfa\$alf_eats
alfalfa\$alf_eats_
lfalfa\$alf_eats_a
fal\$alf_eats_alf
alfa\$alf_eats_alf
lfa\$alf_eats_alfa
fa\$alf_eats_alfal
a\$alf_eats_alfalfa
\$alf_eats_alfalfa

~~~  
sort

\$alf\_eats\_alfalfa  
\_alfalfa\$alf\_eats  
\_eats\_alfalfa\$alf  
a\$alf\_eats\_alfalfa  
lf\_eats\_alfalfa\$  
alfa\$alf\_eats\_alf  
alfalfa\$alf\_eats\_  
ats\_alfalfa\$alf\_e  
eats\_alfalfa\$alf\_  
f\_eats\_alfalfa\$al  
fa\$alf\_eats\_alfal  
fal\$alf\_eats\_alf  
lf\_eats\_alfalfa\$a  
lfa\$alf\_eats\_alfa  
lfalfa\$alf\_eats\_a  
s\_alfalfa\$alf\_eat  
ts\_alfalfa\$alf\_ea

# BWT – Example

$S = \text{alf\_eats\_alfalfa\$}$

1. Take all cyclic shifts of  $S$
2. Sort cyclic shifts
3. Extract last column

$B = \text{asff\$f\_e\_lllaata}$

alf\_eats\_alfalfa\$  
lf\_eats\_alfalfa\$a  
f\_eats\_alfalfa\$al  
\_eats\_alfalfa\$alf  
eats\_alfalfa\$alf\_  
ats\_alfalfa\$alf\_e  
ts\_alfalfa\$alf\_ea  
s\_alfalfa\$alf\_eat  
\_alfalfa\$alf\_eats  
alfalfa\$alf\_eats\_  
lfalfa\$alf\_eats\_a  
falfa\$alf\_eats\_alf  
alfa\$alf\_eats\_alf  
lfa\$alf\_eats\_alfa  
fa\$alf\_eats\_alfal  
a\$alf\_eats\_alfalf  
\$alf\_eats\_alfalfa

~~~  
sort

\$alf_eats_alfalfa**a**
_alfalfa\$alf_eats**s**
_eats_alfalfa\$al**f**
a\$alf_eats_alfal**f**
alf_eats_alfalfa\$
alfa\$alf_eats_alf**f**
alfalfa\$alf_eats_alf**f**
ats_alfalfa\$alf_e**e**
eats_alfalfa\$alf_e**e**
f_eats_alfalfa\$al**l**
fa\$alf_eats_alfal**l**
falfa\$alf_eats_alf**l**
lf_eats_alfalfa\$**a**
lfa\$alf_eats_alf**a**
lfalfa\$alf_eats_alf**a**
s_alfalfa\$alf_eat**t**
ts_alfalfa\$alf_ea**t**

BWT
↓

Computing the BWT

How can we compute the BWT of a text efficiently?

Computing the BWT

How can we compute the BWT of a text efficiently?

► cyclic shifts $S \hat{=} \text{suffixes of } S$

- comparing cyclic shifts stops at first \$
- for comparisons, anything after \$ irrelevant!

r	$\downarrow L[r]$
0	\$alf_eats_alfalfa
1	alfalfa\$alf_eats
2	eats_alfalfa\$alf
3	a\$alf_eats_alfalfa
4	alf_eats_alfalfa\$
5	alfa\$alf_eats_alf
6	alfalfa\$alf_eats_
7	ats_alfalfa\$alf_e
8	eats_alfalfa\$alf_e
9	f_eats_alfalfa\$al
10	fa\$alf_eats_alfal
11	falfa\$alf_eats_ala
12	lf_eats_alfalfa\$al
13	lfa\$alf_eats_alfal
14	lfalfa\$alf_eats_a
15	s_alfalfa\$alf_eat
16	ts_alfalfa\$alf_ea

Computing the BWT

How can we compute the BWT of a text efficiently?

- ▶ cyclic shifts $S \hat{=} \text{suffixes of } S$
 - ▶ comparing cyclic shifts stops at first \$
 - ▶ for comparisons, anything after \$ irrelevant!
- ▶ BWT is essentially suffix sorting!
 - ▶ $B[i] = S[L[i] - 1]$
 - ▶ where $L[i] = 0, B[i] = \$$

alf_eats_alfalfa\$	
lf_eats_alfalfa\$a	16
f_eats_alfalfa\$al	1
_eats_alfalfa\$alf	2
eats_alfalfa\$alf_	3
ats_alfalfa\$alf_e	4
ts_alfalfa\$alf_ea	5
s_alfalfa\$alf_eat	6
_alfalfa\$alf_eats	7
alfalfa\$alf_eats_	8
lfalfa\$alf_eats_a	9
falfa\$alf_eats_al	10
alfa\$alf_eats_alf	11
lfa\$alf_eats_alfa	12
fa\$alf_eats_alfal	13
a\$alf_eats_alfalf	14
\$alf_eats_alfalfa	15
	16

Computing the BWT

How can we compute the BWT of a text efficiently?

- cyclic shifts $S \hat{=} \text{suffixes of } S$
 - comparing cyclic shifts stops at first \$
 - for comparisons, anything after \$ irrelevant!
- BWT is essentially suffix sorting!
 - $B[i] = S[L[i] - 1]$
 - where $L[i] = 0, B[i] = \$$
- ~~ Can compute B in $O(n)$ time from L
- more direct methods now also available ✓

r	$\downarrow L[r]$	
0	\$alf_eats_alfalfa\$	16
1	alfalfa\$alf_eats\$	8
2	eats_alfalfa\$alf\$f	3
3	a\$alf_eats_alfalfa\$	15
4	alf_eats_alfalfa\$	0
5	alfa\$alf_eats_alf	12
6	alfalfa\$alf_eats_	9
7	ats_alfalfa\$alf_e	5
8	eats_alfalfa\$alf_	4
9	f_eats_alfalfa\$al	2
10	fa\$alf_eats_alfal	14
11	falfa\$alf_eats_alf	11
12	lf_eats_alfalfa\$a	1
13	lfa\$alf_eats_alfafa	13
14	lfalfa\$alf_eats_a	10
15	s_alfalfa\$alf_eat	7
16	ts_alfalfa\$alf_ea	6

BWT – Properties

r	$\downarrow L[r]$	
0	\$alf_eats_alfalfa a	16
1	_alfalfa\$alf_eats s	8
2	_eats_alfalfa\$al f	3
3	a\$alf_eats_alfalfa f	15
4	alf_eats_alfalfa \$	0
5	alfa\$alf_eats_al f	12
6	alfalfa\$alf_eats_	9
7	ats_alfalfa\$alf_	5
8	eats_alfalfa\$alf_	4
9	f_eats_alfalfa\$al l	2
10	fa\$alf_eats_alfal l	14
11	falfa\$alf_eats_	11
12	lf_eats_alfalfa\$ a	1
13	lfa\$alf_eats_	13
14	lfalfa\$alf_eats_	10
15	s_alfalfa\$alf_eat t	7
16	ts_alfalfa\$alf_ea	6

Why does BWT help for compression?

- sorting *groups* characters *by what follows*

BWT – Properties

r	$\downarrow L[r]$	
0	\$alf_eats_alfalfa	a 16
1	alfalfa\$alf_eats	s 8
2	_eats_alfalfa\$al	f 3
3	a\$alf_eats_alfalf	f 15
4	alf_eats_alfalfa\$	0
5	alfa\$alf_eats_alf	f 12
6	alfalfa\$alf_eats_	u 9
7	ats_alfalfa\$alf_e	5
8	eats_alfalfa\$alf_	u 4
9	f_eats_alfalfa\$al	l 2
10	fa\$alf_eats_alfal	l 14
11	falfa\$alf_eats_al	l 11
12	lf_eats_alfalfa\$a	a 1
13	lfaf\$alf_eats_alf	a 13
14	lfalfa\$alf_eats_a	a 10
15	s_alfalfa\$alf_eat	t 7
16	ts_alfalfa\$alf_ea	6

Why does BWT help for compression?

- sorting *groups* characters *by what follows*
 - Example: lf always preceded by a
 - more generally: BWT can be partitioned into letters following a given context

BWT – Properties

r	$\downarrow L[r]$	
0	\$alf_eats_alfalfa a 16	
1	_alfalfa\$alf_eats s 8	
2	_eats_alfalfa\$al f 3	
3	a\$alf_eats_alfalfa f 15	
4	alf_eats_alfalfa \$ 0	
5	alfa\$alf_eats_alf f 12	
6	alfalfa\$alf_eats u 9	
7	ats_alfalfa\$alf <u>e</u> 5	
8	eats_alfalfa\$alf <u>u</u> 4	
9	f_eats_alfalfa\$al l 2	
10	fa\$alf_eats_alfal l 14	
11	falfa\$alf_eats_alf l 11	
12	lf_eats_alfalfa\$ a 1	
13	lfa\$alf_eats_alf a 13	
14	lfalfa\$alf_eats_alf a 10	
15	s_alfalfa\$alf_eat t 7	
16	ts_alfalfa\$alf_ea a 6	

Why does BWT help for compression?

- sorting *groups* characters *by what follows*
 - Example: lf always preceded by a
 - more generally: BWT can be partitioned into letters following a given context

(formally: low higher-order empirical entropy)

~~ If S allows predicting symbols from context,
 B has locally low entropy of characters.

- that makes MTF (move-to-front) transformation effective!
- ~~ use in compression pipeline for bzip2:
BTW → MTF → RLE → Huffman

A Bigger Example

T= haveu hadu hadntu hasntu haventu hasu what\$

B = t e d t t t s h h h h h h h a a v v v v v v v w \$ _ u e d s a a a n n n a a _

Run-length BWT Compression

- ▶ amazingly, just run-length compressing the BWT is already powerful!
- ▶ r = number of runs in BWT

Run-length BWT Compression

- ▶ amazingly, just run-length compressing the BWT is already powerful!
- ▶ r = number of runs in BWT

Example:

$S = \text{alf_eats_alfalfa\$}$

$B = \text{asff\$f_e_lllaata}$

$RL(B) = \begin{bmatrix} a \\ 1 \end{bmatrix} \begin{bmatrix} s \\ 1 \end{bmatrix} \begin{bmatrix} f \\ 2 \end{bmatrix} \begin{bmatrix} \$ \\ 1 \end{bmatrix} \begin{bmatrix} f \\ 1 \end{bmatrix} \begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} e \\ 1 \end{bmatrix} \begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} a \\ 3 \end{bmatrix} \begin{bmatrix} t \\ 3 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix}$

$\rightsquigarrow r = |RL(B)| = 12; n = 17$

Run-length BWT Compression

- ▶ amazingly, just run-length compressing the BWT is already powerful!
- ▶ r = number of runs in BWT

Example:

$S = \text{alf_eats_alfalfa\$}$

$B = \text{asff\$f_e_lllaaata}$

$RL(B) = \begin{bmatrix} a \\ 1 \end{bmatrix} \begin{bmatrix} s \\ 1 \end{bmatrix} \begin{bmatrix} f \\ 2 \end{bmatrix} \begin{bmatrix} \$ \\ 1 \end{bmatrix} \begin{bmatrix} f \\ 1 \end{bmatrix} \begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} e \\ 1 \end{bmatrix} \begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} a \\ 3 \end{bmatrix} \begin{bmatrix} t \\ 3 \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix}$

↷ $r = |RL(B)| = 12; n = 17$

Larger Example:

$S = \text{have_had_hadnt_hasnt_havent_has_what\$}$

$B = \text{tedtttshhhhhhaavv_w_edsaaannnaa_}$

↷ $r = 19; n = 36$

- ▶ Indeed: $r = O(z \log^2(n))$, z number of LZ77 phrases

proven in 2019 (!)

Kempa, Kociumaka: *Resolution of the Burrows-Wheeler Transform Conjecture*, CACM 2022

7.6 Inverting the BWT

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

Inverse BWT

- ▶ Great, can compute BWT efficiently and it helps compression. *But can we get T back?*
- ▶ “Magic” solution:
 1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
 2. Sort D *stably* with respect to *first entry*.
 3. Use D as linked list with (char, next entry)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

D

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:

$$D[r] = (B[r], r).$$

2. Sort D stably with respect to *first entry*.

3. Use D as linked list with (char, next entry)

0	(a, 0)
1	(r, 1)
2	(d, 2)
3	(\$, 3)
4	(r, 4)
5	(c, 5)
6	(a, 6)
7	(a, 7)
8	(a, 8)
9	(a, 9)
10	(b, 10)
11	(b, 11)

Example:

$B = ard\$rcaaaabb$

$S =$

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.

2. Sort D stably with respect to *first entry*.

3. Use D as linked list with *(char, next entry)*

Example:

$B = \text{ard\$rcaaaabb}$

$S =$

D		sorted D	
		char	next
0	(a, 0)	0	(\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with $(\text{char}, \text{next entry})$

Example:

$B = \text{ard\$rcaaabb}$

$S = \text{a}$

D		sorted D	
		char	next
0	(a, 0)	0	(\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{ab}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abr}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

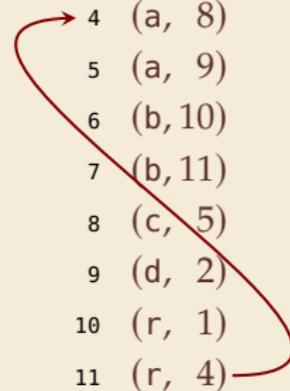
1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaabb}$

$S = \text{abra}$

D		sorted D	
		char	next
0	(a, 0)	0	(\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)



Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with $(\text{char}, \text{next entry})$

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abraC}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

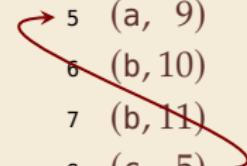
1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abrac\textcolor{red}{a}}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)



Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abracad}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

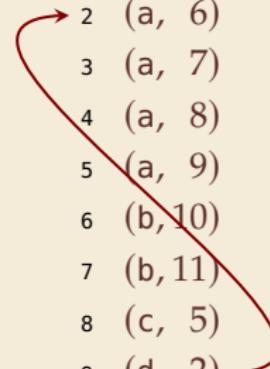
1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abracada}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)



Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

D		sorted D	
		char	next
0	(a, 0)	0	(\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abracadab}$

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{a}\text{r}\text{d}\$\text{r}\text{c}\text{a}\text{a}\text{a}\text{a}\text{b}\text{b}$

$S = \text{a}\text{b}\text{r}\text{a}\text{c}\text{a}\text{d}\text{a}\text{b}\text{r}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

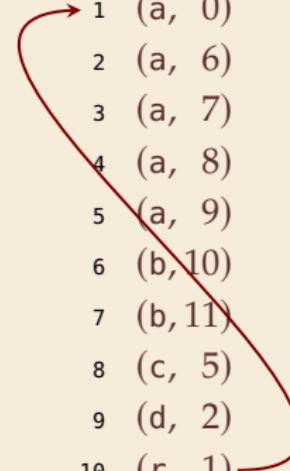
1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with (char, next entry)

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abracadabra}$

D		sorted D	
		char	next
0	(a, 0)	0	(\\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)



Inverse BWT

- Great, can compute BWT efficiently and it helps compression. *But can we get T back?*

- “Magic” solution:

1. Create array $D[0..n]$ of pairs:
 $D[r] = (B[r], r)$.
2. Sort D stably with respect to *first entry*.
3. Use D as linked list with $(\text{char}, \text{next entry})$

Example:

$B = \text{ard\$rcaaaabb}$

$S = \text{abracadabra\$}$

D		sorted D	
		char	next
0	(a, 0)	0	(\$, 3)
1	(r, 1)	1	(a, 0)
2	(d, 2)	2	(a, 6)
3	(\$, 3)	3	(a, 7)
4	(r, 4)	4	(a, 8)
5	(c, 5)	5	(a, 9)
6	(a, 6)	6	(b, 10)
7	(a, 7)	7	(b, 11)
8	(a, 8)	8	(c, 5)
9	(a, 9)	9	(d, 2)
10	(b, 10)	10	(r, 1)
11	(b, 11)	11	(r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 $\leadsto O(n)$ with counting sort
- ▶ *but why does this work!?*

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort
- ▶ *but why does this work!?*
- ▶ decode char by char
 - ▶ can find unique \$ ~~ starting row

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a\$abracadab r	(r, 1)	1: (a, 0)
abra\$abracad	(d, 2)	2: (a, 6)
@bracadabra \$ -	(\$, 3)	3: (a, 7)
acadabra\$ab r	(r, 4)	4: (a, 8)
adabra\$abra c	(c, 5)	5: (a, 9)
bra\$abracad a	(a, 6)	6: (b, 10)
bracadabra\$ a	(a, 7)	7: (b, 11)
cadabra\$abra a	(a, 8)	8: (c, 5)
dabra\$abrac a	(a, 9)	9: (d, 2)
ra\$abracada b	(b, 10)	10: (r, 1)
racadabra\$ab b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort

- ▶ *but why does this work!?*

- ▶ decode char by char
 - ▶ can find unique \$ ~~ starting row
- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
- ~~ then we can walk through and decode

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a\$abracadab r	(r, 1)	1: (a, 0)
abra\$abracad	(d, 2)	2: (a, 6)
@bracadabra \$	(\$, 3)	3: (a, 7)
acadabra\$ab r	(r, 4)	4: (a, 8)
adabra\$abra c	(c, 5)	5: (a, 9)
bra\$abracad a	(a, 6)	6: (b, 10)
bracadabra\$ a	(a, 7)	7: (b, 11)
cadabra\$abra a	(a, 8)	8: (c, 5)
dabra\$abrac a	(a, 9)	9: (d, 2)
ra\$abracada b	(b, 10)	10: (r, 1)
racadabra\$ab b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort

- ▶ *but why does this work!?*

- ▶ decode char by char
 - ▶ can find unique \$ ~~ starting row

- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
- ~~ then we can walk through and decode

- ▶ for (i): first col = chars of B in sorted order

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a\$abracadab r	(r, 1)	1: (a, 0)
abra\$abracad	(d, 2)	2: (a, 6)
abracadabra \$	(\$, 3)	3: (a, 7)
acadabra\$ab r	(r, 4)	4: (a, 8)
adabra\$abra c	(c, 5)	5: (a, 9)
bra\$abracad a	(a, 6)	6: (b, 10)
bracadabra\$ a	(a, 7)	7: (b, 11)
cadabra\$abra a	(a, 8)	8: (c, 5)
dabra\$abrac a	(a, 9)	9: (d, 2)
ra\$abracada b	(b, 10)	10: (r, 1)
racadabra\$ab b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort
- ▶ *but why does this work!?*
- ▶ decode char by char
 - ▶ can find unique \$ ~~ starting row
- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - ~~ then we can walk through and decode
- ▶ for (i): first col = chars of B in sorted order ✓
- ▶ for (ii): relative order of same character stays same:
 i th **a** in first column = i th **a** in BWT

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a\$abracadab r	(r, 1)	1: (a, 0)
abra\$abracad	(d, 2)	2: (a, 6)
abracadabra \$	(\$, 3)	3: (a, 7)
acadabra\$ab r	(r, 4)	4: (a, 8)
adabra\$abra c	(c, 5)	5: (a, 9)
bra\$abracad a	(a, 6)	6: (b, 10)
bracadabra\$ a	(a, 7)	7: (b, 11)
cadabra\$abra a	(a, 8)	8: (c, 5)
dabra\$abrac a	(a, 9)	9: (d, 2)
ra\$abracada b	(b, 10)	10: (r, 1)
racadabra\$ab b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort

- ▶ *but why does this work!?*

- ▶ decode char by char
 - ▶ can find unique \$ ~~ starting row

- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
- ~~ then we can walk through and decode

- ▶ for (i): first col = chars of B in sorted order ✓
- ▶ for (ii): relative order of same character stays same:
 i th **a** in first column = i th **a** in BWT

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a \$abracadab r	(r, 1)	1: (a, 0)
abra \$abra ca d	(d, 2)	2: (a, 6)
abracadabra \$	(\$, 3)	3: (a, 7)
acadabra \$ab r	(r, 4)	4: (a, 8)
adabra \$abra c	(c, 5)	5: (a, 9)
bra \$abracad a	(a, 6)	6: (b, 10)
bracadabra \$ a	(a, 7)	7: (b, 11)
cadabra \$abra a	(a, 8)	8: (c, 5)
dabra \$abrac a	(a, 9)	9: (d, 2)
ra \$abracada b	(b, 10)	10: (r, 1)
racadabra \$a b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

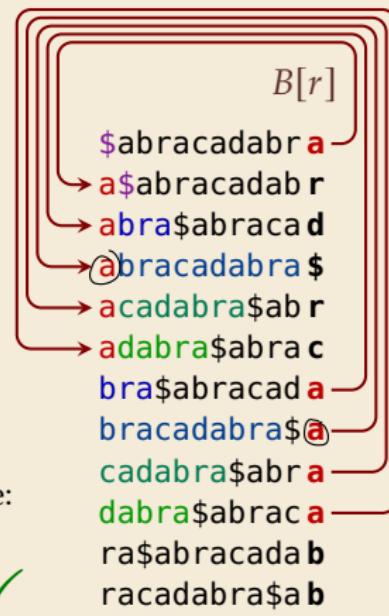
- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 - ~~ $\mathcal{O}(n)$ with counting sort
- ▶ *but why does this work!?*
- ▶ decode char by char
 - ▶ can find unique $\$$ ~~ starting row
- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - ~~ then we can walk through and decode
- ▶ for (i): first col = chars of B in sorted order ✓
- ▶ for (ii): relative order of same character stays same:
 i th **a** in first column = i th **a** in BWT
 - ~~ stably sorting $(B[r], r)$ by first entry enough

$B[r]$

\$abracadabra	(a, 0)	0: (\$, 3)
a\$abracadab r	(r, 1)	1: (a, 0)
abra\$abracad	(d, 2)	2: (a, 6)
abracadabra \$	(\$, 3)	3: (a, 7)
acadabra\$ab r	(r, 4)	4: (a, 8)
adabra\$abra c	(c, 5)	5: (a, 9)
bra\$abracad a	(a, 6)	6: (b, 10)
bracadabra\$ a	(a, 7)	7: (b, 11)
cadabra\$abra a	(a, 8)	8: (c, 5)
dabra\$abrac a	(a, 9)	9: (d, 2)
ra\$abracada b	(b, 10)	10: (r, 1)
racadabra\$ab b	(b, 11)	11: (r, 4)

Inverse BWT – The magic revealed

- ▶ Inverse BWT very easy to compute:
 - ▶ only sort individual characters in B (not suffixes)
 $\rightsquigarrow O(n)$ with counting sort
- ▶ *but why does this work!?*
- ▶ decode char by char
 - ▶ can find unique \$ \rightsquigarrow starting row
- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 \rightsquigarrow then we can walk through and decode
- ▶ for (i): first col = chars of B in sorted order ✓
- ▶ for (ii): relative order of same character stays same:
 i th a in first column = i th a in BWT
 \rightsquigarrow stably sorting $(B[r], r)$ by first entry enough ✓



Random Access Decoding

Can similarly output **any substring** $T[i..i + \ell]$ if we know inverse suffix array:

Simply do ℓ steps of the inverse BWT starting at $r = R[i - 1]$!

i	$R[i]$	T_i	r	$L[r]$	$T_{L[r]}$	$B[r]$	D	$\text{sort}(D)$
0	6 th	bananaban\$	0	9	\$bananaba n	(n, 0)	0: (\$, 6)	
1	4 th	ananaban\$b	1	5	aban\$bana n	(n, 1)	1: (a, 5)	
2	9 th	nanaban\$ba	2	7	an\$bana n a	(b, 2)	2: (a, 7)	
3	3 th	anaban\$ban	3	3	anaban\$ba n	(n, 3)	3: (a, 8)	
4	8 th	naban\$bana	4	1	ananaban\$ b	(b, 4)	4: (a, 9)	
5	1 th	<u>aban\$banan</u>	5	6	ban\$banan a	(a, 5)	5: (b, 2) \leftarrow	
6	5 th	ban\$banana	6	0	bananaban \$	(\$, 6)	6: (b, 4)	
7	2 th	an\$bananab	7	8	n\$bananab a	(a, 7)	7: (n, 0)	
8	7 th	n\$bananaba	8	4	naban\$ban a	(a, 8)	8: (n, 1)	
9	0 th	\$bananaban	9	2	nanaban\$ b a	(a, 9)	9: (n, 3)	

sort suffixes

$T[5..8)$

a b a

Random Access Decoding

Can similarly output **any substring** $T[i..i + \ell]$ if we know inverse suffix array:

Simply do ℓ steps of the inverse BWT starting at $r = R[i - 1]$!

i	$R[i]$	T_i	r	$L[r]$	$T_{L[r]}$	$B[r]$	D	$\text{sort}(D)$
0	6 th	bananaban\$	0	9	\$bananaba n	(n, 0)	0: (\$, 6)	
1	4 th	ananaban\$b	1	5	aban\$bana n	(n, 1)	1: (a, 5)	
2	9 th	nanaban\$ba	2	7	an\$banana b	(b, 2)	2: (a, 7)	
3	3 th	anaban\$ban	3	3	anaban\$ba n	(n, 3)	3: (a, 8)	
4	8 th	naban\$bana	4	1	ananaban\$ b	(b, 4)	4: (a, 9)	
5	1 th	aban\$banan	5	6	ban\$banan a	(a, 5)	5: (b, 2)	
6	5 th	ban\$banana	6	0	bananaban \$	(\$, 6)	6: (b, 4)	
7	2 th	an\$bananab	7	8	n\$bananab a	(a, 7)	7: (n, 0)	
8	7 th	n\$bananaba	8	4	naban\$ban a	(a, 8)	8: (n, 1)	
9	0 th	\$bananaban	9	2	nanaban\$b a	(a, 9)	9: (n, 3)	

sort suffixes

Decoding only needs access to

1. i th char c of $\text{sort}(T) = \text{sort}(B)$
2. **position** of (that copy of) c in B

~~ If we have that, can skip sorting / storing all of D !

7.7 Random Access in BWT

Rank & Select on Sequences

Recall: Decoding only needs access to

1. i th char c of $\text{sort}(T) = \text{sort}(B)$
2. *position* of (that copy of) c in B

Both can be supported using rank/select on sequences.

- $\text{rank}_c(T[0..n], i) = |T[0..i]|_c$ #occurrences of c
- $\text{rank}_c(T[0..n], i) = \#c \text{ in first } i \text{ characters of } T$
- $\text{select}_c(T[0..n], r) = \min\{j : |T[0..j]|_c \geq r\} \cup \{n\}$
- $\text{select}_c(T[0..n], r) = \text{index of } r\text{th } c \text{ in } T, (r = 1, 2, \dots)$

$T[0..9)$	<table border="1"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td></td></tr> <tr><td>b</td><td>a</td><td>n</td><td>a</td><td>n</td><td>a</td><td>b</td><td>a</td><td>n</td><td></td></tr> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr> </table>	0	1	2	3	4	5	6	7	8		b	a	n	a	n	a	b	a	n		0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8																							
b	a	n	a	n	a	b	a	n																							
0	1	2	3	4	5	6	7	8	9																						
$\text{rank}_a(T, i)$	<table border="1"> <tr><td>0</td><td>0</td><td>1</td><td>1</td><td>2</td><td>2</td><td>3</td><td>3</td><td>4</td><td>4</td></tr> <tr><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td><td>2</td><td>3</td></tr> </table>	0	0	1	1	2	2	3	3	4	4	0	1	1	1	1	1	1	2	2	2	0	0	0	1	1	2	2	2	2	3
0	0	1	1	2	2	3	3	4	4																						
0	1	1	1	1	1	1	2	2	2																						
0	0	0	1	1	2	2	2	2	3																						
$\text{rank}_b(T, i)$	<table border="1"> <tr><td>0</td><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td></tr> <tr><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td><td>2</td><td>3</td></tr> </table>	0	0	1	1	1	1	1	2	2	2	0	1	1	1	1	1	1	2	2	2	0	0	0	1	1	2	2	2	2	3
0	0	1	1	1	1	1	2	2	2																						
0	1	1	1	1	1	1	2	2	2																						
0	0	0	1	1	2	2	2	2	3																						
$\text{rank}_n(T, i)$	<table border="1"> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td><td>2</td><td>3</td></tr> <tr><td>0</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>2</td><td>2</td><td>2</td><td>2</td><td>3</td></tr> </table>	0	0	0	1	1	2	2	2	2	3	0	1	1	1	1	1	1	2	2	2	0	0	0	1	1	2	2	2	2	3
0	0	0	1	1	2	2	2	2	3																						
0	1	1	1	1	1	1	2	2	2																						
0	0	0	1	1	2	2	2	2	3																						

$\text{select}_a(T, r)$	<table border="1"> <tr><td>/</td><td>1</td><td>3</td><td>5</td><td>7</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>0</td><td>6</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>2</td><td>4</td><td>8</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> </table>	/	1	3	5	7	9	9	9	9	9	/	0	6	9	9	9	9	9	9	9	/	2	4	8	9	9	9	9	9	9
/	1	3	5	7	9	9	9	9	9																						
/	0	6	9	9	9	9	9	9	9																						
/	2	4	8	9	9	9	9	9	9																						
$\text{select}_b(T, r)$	<table border="1"> <tr><td>/</td><td>1</td><td>3</td><td>5</td><td>7</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>0</td><td>6</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>2</td><td>4</td><td>8</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> </table>	/	1	3	5	7	9	9	9	9	9	/	0	6	9	9	9	9	9	9	9	/	2	4	8	9	9	9	9	9	9
/	1	3	5	7	9	9	9	9	9																						
/	0	6	9	9	9	9	9	9	9																						
/	2	4	8	9	9	9	9	9	9																						
$\text{select}_n(T, r)$	<table border="1"> <tr><td>/</td><td>1</td><td>3</td><td>5</td><td>7</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>0</td><td>6</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> <tr><td>/</td><td>2</td><td>4</td><td>8</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td></tr> </table>	/	1	3	5	7	9	9	9	9	9	/	0	6	9	9	9	9	9	9	9	/	2	4	8	9	9	9	9	9	9
/	1	3	5	7	9	9	9	9	9																						
/	0	6	9	9	9	9	9	9	9																						
/	2	4	8	9	9	9	9	9	9																						

$\text{sort}(T)$	<table border="1"> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td></td></tr> <tr><td>a</td><td>a</td><td>a</td><td>a</td><td>b</td><td>b</td><td>b</td><td>n</td><td>n</td><td>n</td></tr> <tr><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td></td></tr> </table>	0	1	2	3	4	5	6	7	8		a	a	a	a	b	b	b	n	n	n	0	1	2	3	4	5	6	7	8	
0	1	2	3	4	5	6	7	8																							
a	a	a	a	b	b	b	n	n	n																						
0	1	2	3	4	5	6	7	8																							
$O[0..9] = [0, 4, 6, 9]$																															

Random Access in BWT

- store offsets $O[c] = \sum_{c'=0}^{c-1} |B|_{c'}$ for $c \in \Sigma$
- i th char of $\text{sort}(B)$ = unique c for which $O[c] \leq i < O[c + 1]$
- position of r th c in B = $\text{select}_c(B, r)$

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $O(\log \sigma)$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space.

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $O(\log \sigma)$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space.

(Further compression possible!) ↗ Advanced Data Structures

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $O(\log \sigma)$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space. *(Further compression possible!)* \rightsquigarrow Advanced Data Structures
- ▶ The generalized σ -rank $\text{rank}_c(T, i) = \text{rank}_c(T, i) + \sum_{c' < c} |T|_{c'}$ is also supported in $O(\log \sigma)$ time

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $\boxed{O(\log \sigma)}$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space. *(Further compression possible!)* \rightsquigarrow Advanced Data Structures
- ▶ The generalized σ -rank $\text{rank}_c(T, i) = \text{rank}_c(T, i) + \sum_{c' < c} |T|_{c'}$ is also supported in $O(\log \sigma)$ time

Storing $B[0..n]$ as a wavelet tree \rightsquigarrow reconstruct ℓ chars from T in $O(\ell \log \sigma)$ time

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $O(\log \sigma)$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space. *(Further compression possible!)* \rightsquigarrow Advanced Data Structures
- ▶ The generalized σ -rank $\text{rank}_c(T, i) = \text{rank}_c(T, i) + \sum_{c' < c} |T|_{c'}$ is also supported in $O(\log \sigma)$ time

Storing $B[0..n]$ as a wavelet tree \rightsquigarrow reconstruct ℓ chars from T in $O(\ell \log \sigma)$ time

e.g., $t = \lg n$

if starting position known

Storing **every t th entry** of $R[0..n]$ \rightsquigarrow may need to go back t characters for access
 $\rightsquigarrow O((\ell + t) \log \sigma)$ time for decode
using $\sim n \lg n/t$ extra bits of space

Wavelet Trees

The **Wavelet Trees** for a $T \in [0..n]$ over $\Sigma = [0..\sigma]$

- ▶ supports access to $T[i]$ in $O(\log \sigma)$ time,
- ▶ $\text{rank}_c(T, i)$ and $\text{select}_c(T, r)$ in $O(\log \sigma)$ time, and
- ▶ occupies $\sim n \lg \sigma$ bits of space. *(Further compression possible!)* \rightsquigarrow Advanced Data Structures
- ▶ The generalized σ -rank $\text{rank}_c(T, i) = \text{rank}_c(T, i) + \sum_{c' < c} |T|_{c'}$ is also supported in $O(\log \sigma)$ time

Storing $B[0..n]$ as a wavelet tree \rightsquigarrow reconstruct ℓ chars from T in $O(\ell \log \sigma)$ time
e.g., $t = \lg n$ *if starting position known*

Storing **every t th entry** of $R[0..n]$ \rightsquigarrow may need to go back t characters for access
 $\rightsquigarrow O((\ell + t) \log \sigma)$ time for decode
using $\sim n \lg n/t$ extra bits of space

Locally decodable BWT

- ▶ no longer need to store $T[0..n]$!
- ▶ compressible (e.g., Wavelet trees with compressed bitvectors)

7.8 Searching in the BWT

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m)$ in L !
 - ~~ all occurrences must form interval

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~> all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~> all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~> all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ↝ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m)$ in L !
 ↵ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

<i>i</i>	$R[i]$	T_i
0	6 th	bananaban\$
1	4 th	ananaban\$b
2	9 th	nanaban\$ba
3	3 th	anaban\$ban
4	8 th	naban\$bana
5	1 th	aban\$banan
6	5 th	ban\$banana
7	2 th	an\$bananab
8	7 th	n\$bananaba
9	0 th	\$bananaban

$$P = a\mathbf{n}\mathbf{a}$$

$L[r]$	r	$T_{L[r]}$	$B[r]$	sort(D)
9	0	\$banana	a	0: (\$, 6)
5	1	aban\$banana	n	1: (a, 5)
7	2	an\$banana	b	2: (a, 7)
3	3	anaban\$ba	n	3: (a, 8)
1	4	ananaban\$	b	4: (a, 9)
6	5	ban\$banan	a	5: (b, 2)
0	6	bananaban\$		6: (b, 4)
8	7	n\$bananab	a	7: (n, 0)
4	8	naban\$ban	a	8: (n, 1)
2	9	nanaban\$ba		9: (n, 3)

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ↝ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~~ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	← anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	← ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~~ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$b a		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~~ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	ananaban\$b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$b a		9: (n, 3)

$P = \text{ana}$

Backwards Search

Recall how the sorted suffixes in a suffix array $L[0..n]$ made string matching very easy.

- ▶ Simply binary search the pattern $P[0..m]$ in L !
 - ~~~ all occurrences must form interval

With wavelet tree BWT, we can replace binary search by **backwards radix search**!

- ▶ use $\text{sort}(B)$ to locate interval for **last** character $P[m - 1]$
- ▶ use one step of inverse BWT to narrow down on $P[m - 2..m]$, repeat.

i	$R[i]$	T_i	$L[r]$	r	$T_{L[r]}$	$B[r]$	$\text{sort}(D)$
0	6 th	bananaban\$	9	0	\$bananaba n		0: (\$, 6)
1	4 th	ananaban\$b	5	1	aban\$bana n		1: (a, 5)
2	9 th	nanaban\$ba	7	2	an\$banana b		2: (a, 7)
3	3 th	anaban\$ban	3	3	anaban\$ba n		3: (a, 8)
4	8 th	naban\$bana	1	4	anaanaban\$ b		4: (a, 9)
5	1 th	aban\$banan	6	5	ban\$banan a		5: (b, 2)
6	5 th	ban\$banana	0	6	bananaban \$		6: (b, 4)
7	2 th	an\$bananab	8	7	n\$bananab a		7: (n, 0)
8	7 th	n\$bananaba	4	8	naban\$ban a		8: (n, 1)
9	0 th	\$bananaban	2	9	nanaban\$ba		9: (n, 3)

$P = \text{ana}$

Backwards Search – Code

Recall total rank operation supported by wavelet trees

$$\sigma\text{-rank}_c(B, i) = |B[0..i)|_c + \sum_{c' < c} |B|_{c'}$$

```
1 procedure backwardSearch( $B[0..n]$ ,  $P[0..m]$ )
2   //  $B[0..n]$  given as wavelet tree
3   // returns range  $[s..e)$  of ranks for suffixes starting with  $P$ 
4    $c := P[m - 1]$ 
5    $s := \sigma\text{-rank}_c(B, 0)$ 
6    $e := \sigma\text{-rank}_c(B, n)$ 
7   for  $j := m - 2, m - 3, \dots, 0$ 
8     if  $s \geq e$  break // no matches
9      $c := P[j]$ 
10     $s := \sigma\text{-rank}_c(B, s)$ 
11     $e := \sigma\text{-rank}_c(B, e)$ 
12  return  $[s..e)$ 
```

Locating Matches

- ▶ Backwards Search finds interval $[s..e)$ such that

$$P[0..m) = T[L[r] .. L[r]+m) \text{ iff } r \in [s..e)$$

~~ still need suffix array $L[0..n]$ to locate matches!

- ▶ but can detect and count occurrences even without L

Locating Matches

- ▶ Backwards Search finds interval $[s..e)$ such that
$$P[0..m) = T[L[r] .. L[r]+m) \text{ iff } r \in [s..e)$$
- ~~ still need suffix array $L[0..n]$ to locate matches!
- ▶ but can detect and count occurrences even without L

Sampled Suffix Array

- ▶ As for inverse suffix array, can store $L[r]$ only for every t th starting index i in T , i.e., only store entries for ranks r with $L[r] \equiv 0 \pmod{t}$
- ~~ $O(n \log n/t)$ bits of extra space
- ~~ Need to continue backwards search for at most t extra characters to locate match
- ~~ String matching in $O(m \log \sigma + \underset{t}{\text{occ}} \cdot t \log \sigma)$ time

$\frac{1}{t}$ occurrences

Locating Matches

- ▶ Backwards Search finds interval $[s..e)$ such that
$$P[0..m) = T[L[r] .. L[r]+m) \text{ iff } r \in [s..e)$$
- ~~ still need suffix array $L[0..n]$ to locate matches!
- ▶ but can detect and count occurrences even without L

Sampled Suffix Array

- ▶ As for inverse suffix array, can store $L[r]$ only for every t th starting index i in T , i. e., only store entries for ranks r with $L[r] \equiv 0 \pmod{t}$
- ~~ $O(n \log n/t)$ bits of extra space
- ~~ Need to continue backwards search for at most t extra characters to locate match
- ~~ String matching in $O(m \log \sigma + occ \cdot t \log \sigma)$ time

Wavelet-tree BWT + Sampled Suffix Array = FM Index

Ferragina, Manzini: *Indexing compressed text*, JACM 2005

FM-Index Discussion

- ▶ FM-Index is one of first *compressed self-indexes*
- ▶ can represent text using $\sim \mathcal{H}_k(T)n$ bits of space
 $\mathcal{H}_k(T) = k$ th order empirical entropy
- ▶ still widely used, e. g., as basis of *bowtie2* read alignment tool

Langmead, Salzberg: *Fast gapped-read alignment with Bowtie 2*, Nature Methods 2012

Ongoing research

- ▶ Reduce space for very repetitive strings (collection of genomes)
e. g., *r*-index Navarro: *Indexing Highly Repetitive String Collections, Part II: Compressed Indexes*, ACM Comp. Surv. 2021
- ▶ full support of suffix tree functionality with little extra space?