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Recall Unit 6

Application 4: Longest Common Extensions
» We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:
> Given: String T[0..n)
> Goal: Answer LCE queries, i.e.,
given positions i, jin T,
how far can we read the same text from there?
formally: LCE(i, j) = max{¢: T[i..i+¥€) =T[j..j + {)}

~+ use suffix tree of T! (length of) longest common prefix
of ith and jth suffix
> InT: LCE(i,j) = LCP(T;, T]) ~+ same thing, different name!
= string depth of
lowest common ancester (LCA) of

leaves | i |and

LCE(, j) = LCP(T,, T;) = stringDepth (LCA(T] [7]) ’

T = bananaban$

» in short:
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Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

» Could walk up the tree to find LCA ~» ©(n) worst case E(;

» Could store all LCAs in big table ~» ©(n?) space and preprocessing l@

i

6@ Amazing result: Can compute data structure in ©(7) time and space
I\LJ that finds any LCA in constant(!) time.

» abit tricky to understand

> but a theoretical breakthrough

» and useful in practice
l

and suffix tree construction inside . ..

=

~ for now, use O(1) LCA as black box. =

~ | After linear preprocessing (time & space), we can find LCEs in O(1) time.
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7.1 Range-Minimum Queries



Range-minimum queries (RMQ)
array /numbers don’t change

> Given: Static array A[0..n) of numbers

» Goal: Find minimum in a range;
A known in advance and can be preprocessed
RMQ(7, 15) = 10

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

Il|4|6|4|7|10|5|6|3|11|2|2|3|6|10|9|13|4|6|16|10|

» Nitpicks:
» Report index of minimum, not its value

» Report leftmost position in case of ties



Finally: Longest common extensions

» In Unit 6: Left question open how to compute LCA in suffix trees

» But: Enhanced Suffix Array makes life easier!

‘LCE(i, j) = LCP[RMQicp(min{R[i], R[j]} + 1, max{R[i], R[j]})]

Inverse suffix array: going left & right

> to understand the fastest algorithm, it is helpful to define the inverse suffix array:
» Rlil=r = Llr]=i L = leaf array
= there are r suffixes that come before T; in sorted order
& T has (0-based) rankr ~ call R[0..n] the rank array

i R[] T; right r Llrl T
o 6" bananabans RfOI =G 0 [9] s
14 ananaban$ 1 aban$
2 9 nanaban$ 2 ans
3 anaban$ 3 anaban$
4 8 naban$ 4 ananaban$.
5 1 aban$ 5 [6] bans
6 5 ban$ 6 [0] bananaban$
7 2 ans ALBI=4 7 [8] ns
s 7 n$ leff & [4] nabans
9 0 $ 9 nanaban$

sort suffixes

LCP array and internal nodes

s o]

Nabns

~ Leaf array L[0..11] plus LCP array LCP[1..1] encode full tree!




Rules of the Game

» For the following, consider RMQ on arbitrary arrays

» comparison-based ~» values don’t matter, only relative order

» Two main quantities of interest:
~ space usage < P(n)
1. Preprocessing time: Running time P(n) of the preprocessing step

2. Query time: Running time Q(1) of one query (using precomputed data)

» Write (P(n), Q(n)) time solution for short



Rules of the Game

» For the following, consider RMQ on arbitrary arrays

» comparison-based ~» values don’t matter, only relative order

» Two main quantities of interest:
~ space usage < P(n)

1. Preprocessing time: Running time P(n) of the preprocessing step

2. Query time: Running time Q(1) of one query (using precomputed data)
» Write (P(n), Q(n)) time solution for short

RMQ Implications for LCE

> Recall: Can compute (inverse) suffix array and LCP array in O(n) time

~> (P(n), Q(n)) time RMQ data structure implies
(P(n)+ O(n), Q(n)) time LCE data structure



Trivial Solutions

RMQ(7,15) = 10

8 9 10 11 12 13 14 15 16 17 18 19 20
Il|4|6|4|7|10|5|6|3|11|2|2|3|6|10|9|13|4|6|16|10I

» Two easy solutions show extreme ends of scale:
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Trivial Solutions

RMQ(7,15) = 10

8 9 10 11 12 13 14 15 18 19 20
Il|4|6|4|7|10|5|6|3|11|2|2|3|6|10|9|13|4|6|16|10I

» Two easy solutions show extreme ends of scale:
1. Scan on demand
» no preprocessing at all
> answer RMQ(i, j) by scanning through A[i..j], keeping track of min
~ (0(1), 0(n))
2. Precompute all
» Precompute all answers in a big 2D array M|[0..1)[0..1)
» queries simple: RMQ(7, j) = M[i][]]
~ (0(n),0(1))

» Preprocessing can reuse partial results ~~ (0(n?),0(1))



7.2 RMQ - Sparse Table Solution



Sparse Table

» Idea: Like “precompute-all”, but keep only some entries

» store M[i][j] iff ¢=j—i+1is2k.
~+ < n-lgn entries
~» Can be stored as M'[i][k]
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Sparse Table

» Idea: Like “precompute-all”, but keep only some entries

» store M[i][j] iff ¢=j—i+1is2k.
~+ < n-lgn entries
~» Can be stored as M'[i][k]

» How to answer queries?

RMQ(10,18) = 17

0 i 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

[1|4|6|4|7|10|5|6|3|11|2|2|3|6|10|9|13|1|6|16|10]

RMQ(7,13) = 10

. Find k with £/2 < 2F < ¢

. Cover range [i..j] by

2k positions right from i and
2k positions left from j

. RMQ(, j) =

argmin{A[rmqy], Alrmg,]}

with rmg; = RMQ(i, i +25 - 1)
rmg, = RMQ(j —2% +1, j)



Sparse Table

» Idea: Like “precompute-all”, but keep only some entries
» store M[i][j] iff ¢=j—i+1is2k.

~» < n-lgn entries A

~» Can be stored as M'[i][k]

» How to answer queries?

RMQ(10,18) = 17

0 i 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

[1|4|6|4|7|10|5|6|3|11|2|2|3|6|10|9|13|1|6|16|10]

RMQ(7,13) = 10

» Preprocessing can be done in O(n log 1) times

~> (O(nlogn), O(1)) time solution!

. Find k with £/2 < 2F < ¢

. Cover range [i..j] by

2k positions right from i and
2k positions left from j

3. RMQ(,j) =

argmin{A[rmqy], Alrmg,]}

with rmg; = RMQ(i, i +25 - 1)
rmg, = RMQ(j —2% +1, j)



Bootstrapping
» We know a (O(n logn), O(1)) time solution

» If we use that for m = ©(n/log n) elements, O(m logm) = O(n)!



Bootstrapping
» We know a (O(n logn), O(1)) time solution

» If we use that for m = ©(n/logn) elements, O(m logm) = O(n)!

» Break A into blocks of b = O(log n) numbers

» Create array of block minima B[0..m) for m = [n/b] = O(n /log 1)

012 o b-1b 3b (m=1)b mb-1

OH)[H\HH][H\H/H]IHH NN AN HHH\I[H\HH]\EHHHI

01)345r7()1)i4 r701/&4‘)67ﬂl/id‘)ﬁ7Bl/idb(7@l/f-‘567ﬂ]i§4bh7

B[0..m) [z]a]e]3]7]5]2 B[i] = index of minimum inside block i

01 2 oo p=ll



Bootstrapping
» We know a (O(n logn), O(1)) time solution

» If we use that for m = ©(n/log n) elements, O(m logm) = O(n)!

» Break A into blocks of b = O(log n) numbers

» Create array of block minima B[0..m) for m = [n/b] = O(n/log n)

012 o b-1b (m=1)b mb—

071)[\\\H\\][\\\H\\][\\\\H\][\\\\\H][\\\HH][HHH\][HHH\]

01)345F7()1}{4‘1(701/i45r701/id‘>f7Bl/idh(7@l/f-‘567ﬂ1iﬁ4§h7

B[0..m) [z]a]e]3]7]5]2 B[i] = index of minimum inside block i

01 2 m=1
~~ Use sparse table solution for B.

~» Can solve RMQs in B[0..m) in (O(n), O(1)) time



Query decomposition

» Query RMQ,(i, j) covers
» suffix of block ¢ = | i/m]

> prefix of block r = | j/m| . query
» blocks ¢ +1,...,r—1 ? .
entirely

ZIUSRE NENNERENEN NN NENANEEONN NNNE ANNNEEN GNNEN ERE NENEER

MI0..m)
B[0..m) [alalel3]7]5]1
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Query decomposition

» Query RMQ,(i, j) covers
» suffix of block £ = | i/m ]

> prefix of block r = | j/m]| . query .
» blocks ¢ +1,...,r—1 ? . X
entirely interblock query

MI[0..m) \ intrablock queries —/
B[0..m) [alalel3]7]5]2
RMleocké’(i - é}b/ (€ + 1)b - 1)/
o , _ b-RMQy (¢ +1,7—1)+
» RMOQAa(i,j) = argminA[k] with K =
B[RMQy (¢ +1,7-1)],

keK
~ only 3 possible values to check RMQyjock (1B, j = 7b)

if intrablock and interblock fueries known
O( ngvx') M 4 OCV\) ( O(I&O)V‘)D 9



7.3 RMQ - Cartesian Trees



RMQ & LCA

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]0]5]6]a]ufaf2]s]6]i0]o]ss]4]6]16]10]
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RMOQ & LCA

Il

1

ﬂ

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
[4]6]a]7]w0]5]e]a]ufuaf2]s]6]10]o]13]4]6]16]0]

10



RMQ & LCA

rmq(6, 14) rqu(i,j) = arg max A[k]

M i<k<j
) = index of max

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]

— » Range-max queries on array A:
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RMQ & LCA
[
]

— »> Ran 5@ ueries on array A:
rmq(6, 14) = 9 rqu(i, =arg max A[k]

SR S R PR i<k<j

) = index of max

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]
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RMQ & LCA

rmq(6,14) =9

rmq (i, j) = arg max A[k]

SR S R PR i<k<j

) = index of max

M) » Task: Preprocess A,
then answer RMQs fast

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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10



RMQ & LCA

rmq(6,14) =9

rmq (i, j) = arg max A[k]

SR S R PR i<k<j

) = index of max

M) » Task: Preprocess A,
then answer RMQs fast
ideally constant time!

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]

— » Range-max queries on array A:
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RMQ & LCA
e

&

] rmq (i, j) = arg max A[k]

T s s s i<k<j

) = index of max

rmq(6, T3) =9
d

M s » Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]

(®) — » Range-max queries on array A:
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RMQ & LCA

rmq(6,14) =9 “‘
/ﬁ/ﬁ i, ____Q‘/_

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]

» Range-max queries on array A:

rmq (i, j) = arg max A[k]
i<k<j
= index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down
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RMQ & LCA

rmq(6,14) =9

O
(
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RMQ & LCA

rmq(6,14) =9

B
8
N
4 =y 19
N
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RMQ & LCA

rmq(6,14) =9

19

] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[4]6]a]7]w0]5]6]a]u]1a[2]3]6[10fo]ss]4]6]16]10]

» Range-max queries on array A:

rmq 4 (i, j) = arg max A[k]
i<k<j
= index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down
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RMQ & LCA

rmq(6,14) =9

=y 19

ﬂ/(< < O

] 1 2 3 4 8 10 11 12 13 14 15 16 17 18 19

I4|6|4|7|10|5|6|3|11|14|2|3|6|10| [13] 4 [ 6]16]10]

Range-max queries on array A:

rmq (i, j) = arg max A[k]
i<k<j
= index of max

Task: Preprocess A,
then answer RMQs fast
ideally constant time!

Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

rmq(i, j) =
lowest common ancestor (LCA)
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RMQ & LCA

» Range-max queries on array A:
rmq (i, j) = arg max A[k]

i<k<j
= index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

» rmq(i,j) =
lowest common ancestor (LCA)
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RMQ & LCA

» Range-max queries on array A:
rmq (i, j) = arg max A[k]

i<k<j
= index of max

» Task: Preprocess A,
then answer RMQs fast
ideally constant time!

» Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

» rmq(i,j) = inorder of
lowest common ancestor (LCA)

of ith and jth node in inorder

11



Clicker Question

/
O tuerds braod
Given the (max-oriented) Cartesian tree
for A on the left, what is RMQ,(1, 5)?
o

D |~ sli.do/cs594




Clicker Question

/

9

i

3

) 1 2 ) 4 5 6 7
lef2]7]e]r]s]s]

Given the (max-oriented) Cartesian tree
for A on the left, what is RMQ,(1, 5)?

g ‘ -» sli.do/cs594




Clicker Question

/

|

RMQ(1,5) = 3
p

) 1 2 ) 4 5 6 7
lef2]7]e]r]s]s]

Given the (max-oriented) Cartesian tree
for A on the left, what is RMQ,(1, 5)?

D |~ sli.do/cs594




Counting binary trees

» Given the Cartesian tree,
all RMQ answers are determined

and vice versa!
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Counting binary trees

» Given the Cartesian tree,
all RMQ answers are determined

and vice versa!

» How many different Cartesian trees are there for arrays of length 7?
2n =3 P 0 T
n o 20 AN D/
2l s °

\ 6 6/ €5~
~> many arrays will give rise to the same Cartesian tree L{r : ( 7 )1 R - ; 5

» known result: Catalan numbers 1

> easy tosee: < 2%

Can we exploit that?
fmcaéf‘ﬁ—s b:uwc/ Q*\uj . i pfvoré'\r Liaversad

e bowon (Las L, b oyl
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Intrablock queries

~~ It remains to solve the intrablock queries!

» Want (O(n), O(1)) time overall

must include preprocessing for all m =

b

:@(

o
logn

) blocks!

13



Intrablock queries

~+ It remains to solve the intrablock queries!
» Want (O(n), O(1)) time overall
n

) blocks!
logn

must include preprocessing for all m = % = G)(

» Choose b = |1lgn
» many blocks, but just b numbers long
~+ Cartesian tree of b elements can be encoded using 2b = % lg n bits
1/2
~~ # different Cartesian treesis < 22/ = 2%lgn (ZIg ”) =n

~ many equivalent blocks!
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Intrablock queries

~+ It remains to solve the intrablock queries!
» Want (O(n), O(1)) time overall
n

locks!
logn)boc S

must include preprocessing for all m = % = G)(

» Choose b = |1lgn

» many blocks, but just b numbers long

~+ Cartesian tree of b elements can be encoded using 2b = % lg n bits

2% _ o1l 'y
~ # different Cartesian treesis < 27 = 226" = (Zg") =n

~ many equivalent blocks!

~ Recall: Exhaustive-Tabulation Technique:
1. represent each subproblem by storing its type (here: encoding of Cartesian tree)
2. enumerate all possible subproblem types and their solutions
3. use type as index in a large lookup table

13



Exhaustive Tabulation

1. For each block, compute 2b bit representation of Cartesian tree

» can be done in linear time
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Exhaustive Tabulation

1. For each block, compute 2b bit representation of Cartesian tree

» can be done in linear time

2. Compute large lookup table

Block type i i RMQ(, j)
O\G
o/ o) [ O
ol o do o 2 O
{ 2 2
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Exhaustive Tabulation

1. For each block, compute 2b bit representation of Cartesian tree

» can be done in linear time

2. Compute large lookup table

Block type i j RMOQ(i, j)

> < +/n block types

» < b? combinations for i and j

~ O(vn - log? 1) rows

» each row can be computed in
O(logn) time

~» overall preprocessing: O(n) time!

14



RMQ Discussion

» (O(n), O(1)) time solution for RMQ

~> (O(n), O(1)) time solution for LCE in strings!
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RMQ Discussion

» (O(n), O(1)) time solution for RMQ

~> (O(n), O(1)) time solution for LCE in strings!

[ﬁ) optimal preprocessing and query time!
[@ a bit complicated

15



7.4 String Matching in Enhanced Suffix Array



Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching P[0..m) in L[0..1]

> worst-case cost: ( Ign + 2)string comparisons of string of length m

~> O(log(n) - m) character comparisons

16



Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching P[0..m) in L[0..1]

> worst-case cost: lgn + 2 string comparisons of string of length m

~> O(log(n) - m) character comparisons

» suffix tree could do O(l’l’l) total time (assuming constant ¢ or hashing for child links)

» surely, enhanced suffix arrays can do better than O(m log 1) =
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Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching P[0..m) in L[0..1]

> worst-case cost: lgn + 2 string comparisons of string of length m

~> O(log(n) - m) character comparisons

» suffix tree could do O(l’l’l) total time (assuming constant ¢ or hashing for child links)

» surely, enhanced suffix arrays can do better than O(m log 1) =

Idea: use LCP information to save character comparisons

> concretely: maintain LCP between lower /upper bound suffixes and P
Tla..n] <jex P <jex T[b..1] n —>
2 = LCP(T[a..n], P) and ¢, = LCP(T[b..n], P)
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Binary searching the suffix array

Recall: Can solve the string matching problem by binary searching P[0..m) in L[0..1]

> worst-case cost: lgn + 2 string comparisons of string of length m

~> O(log(n) - m) character comparisons

» suffix tree could do O(l’l’l) total time (assuming constant ¢ or hashing for child links)

» surely, enhanced suffix arrays can do better than O(m log 1) =

Idea: use LCP information to save character comparisons

> concretely: maintain LCP between lower /upper bound suffixes and P
Tla..n] <jex P <jex T[b..1] —)
2 = LCP(T[a..n], P) and ¢, = LCP(T[b..n], P)

» avoid comparing same characters again

» Note: with RMQ on LCP array can determine LCP(T;, Tj) for any i, j € [0..1)
— =V —_ v
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LCP Binary Search

0: Txo $
> Input: {; = LCP(T;, P) T ahbansbananasman$
7 ZLCP(TbrP) a —>2 Tig an$
~s = LCP(Tyy, P) > min{4s, &} 3 T ananasman$
4: T3 anasman$
5. Th annahbansbananasman$
6: Ty ansbananasman$
W — — 7 Ii5 asman$
8: Ty bananasman$
9: Tg bansbananasman$
10: Tp hannahbansbananasman$
11: T5 hbansbananasman$
12: Ty man$
L —13: Tig n$
14: T3 nahbansbananasman$
15: Tin nanasman$
16: Tha nasman$
17: T nnahbansbananasman$
18: Tg nsbananasman$
19: To sbananasman$
20: Tig sman$

17



LCP Binary Search
» Input: {, = LCP(T;, P)
¢ =LCP(T,, P)

~ Uy = LCP(Ty, P) = min{¥¢,, &}

» Casel: (, =1,
Compare P and T, starting at ¢,

P R T <

Tzo
1y
Tig
T
T3
Ti
17
Tis
Tio
Tg
To

: I5

Ti7
Tig
I3
Tiz
Tia
i)
Tg
To

: The

a —>

$
ahbansbananasman$ Case 1
an$
ananasman$
anasman$ P = anna
annahbansbananasman$
ansbananasman$
asman$
bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$

17



LCP Binary Search

» Input: {, = LCP(T;, P)
&, =LCP(Ty, P)

~ Uy = LCP(Ty, P) = min{¥¢,, &}

» Casel: (, =1,
Compare P and T, starting at ¢,

4 (o]

> Case2: {;, # {;;wlo.g.
» Case2a: LCP(T,,T,) > ¢,
P >jex T,y w/o0 cmps!

P e T < T

Tz
1y
Tig

T3
Ti
17
Ti5
Tio
Tg
To

: Is

Tz
Trg
T3
Tip
Tia
T
Tg
To

: Tie

m — ansbananasman$

$
ahbansbananasman$
an$
ananasman$
a — anasman$ Case 2a
annahbansbananasman$
P = asterix
asman$
b — bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$
17



LCP Binary Search

» Input: {, = LCP(T;, P)
&, =LCP(Ty, P)

~ Uy = LCP(Ty, P) = min{¥¢,, &}

» Casel: (, =1,

Compare P and T, starting at ¢,
L

> Case2: {;, # {;;wlo.g.

» Case2a: LCP(T,,T,) > ¢,

P >jex T,y w/0 cmps!

» Case 2b: LCP(T,,Ty,) < ¢,

P <jex T W/ 0 cmps!

P e T < T

Tz
1y
Tig
T
T3
Ti
I7
Tis
Tio
Tg
To

: Is

Tz
Trg
T3
Tip
Tia
T
Tg
To

: Tie

a —>

m —

$
ahbansbananasman$
an$
‘ananasman$ Case 2b
anasman$ P = ananasmen
annahbansbananasman$
ansbananasman$
asman$
bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$
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LCP Binary Search

» Input: {, = LCP(T;, P)
&, =LCP(Ty, P)

~ Uy = LCP(Ty, P) = min{¥¢,, &}

» Casel: (, =1,

Compare P and T, starting at ¢,
3 2

> Case2: {;, # {;;wlo.g.

» Case2a: LCP(T,,T,) > ¢,
P >jex T,y w/0 cmps!

» Case 2b: LCP(T,,Ty,) < ¢,
P <jex T W/ 0 cmps!

» Case2c: LCP(T,, T;y) = ¢,
Compare P and T, from ¢,

P e e < T

Tz
1y
Tig
T
T3
Ti
I7
Tis
Tio
Tg
To

- Is

Tz
Trg
T3
Tip
Tia
T
Tg
To

: Tie

m — anasman$

$
ahbansbananasman$
an$
a — ananasman$ Case 2¢
P = anarchy
annahbansbananasman$
b — ansbananasman$
asman$
bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$
17



LCP Binary Search

» Input: {, = LCP(T;, P)
&, =LCP(Ty, P)

~ Uy = LCP(Ty, P) = min{¥¢,, &}

» Casel: (, =1,
Compare P and T, starting at ¢,

> Case2: {;, # {;;wlo.g.

» Case2a: LCP(T,,T,) > ¢,
P >jex T,y w/0 cmps!

» Case 2b: LCP(T,,Ty,) < ¢,
P <jex T W/ 0 cmps!

» Case2c: LCP(T,, T;y) = ¢,

Compare P and T, from ¢,
» in each case, learn /,, ~~ invariant

» no redundant ‘="-comparisons

P e e T

Tzo
1y
Tig
T
T3
Ti
I7
Tis
Tio
Tg
To

: Is

Tz
Trg
T3
Tip
Tia
T
Tg
To

: Tis

a —>

m —

$
ahbansbananasman$
an$
ananasman$ Case 2c
anasman$ P = anarchy
annahbansbananasman$
ansbananasman$
asman$
bananasman$
bansbananasman$
hannahbansbananasman$
hbansbananasman$
man$
n$
nahbansbananasman$
nanasman$
nasman$
nnahbansbananasman$
nsbananasman$
sbananasman$
sman$

17



Enhanced Suffix Arrays — Update

» Enhanced suffix array: L, R and LCP array with RMQ support
> Goal: simulate any suffix tree operations

» string matching in O(m +logn) time

» string depth of internal nodes = LCP values

P internal suffix tree node = LCP interval \/

~+ storing information per node
»> bottom-up traversal via enclosing LCP intervals \/

> longest common extension queries \/

» suffix links \/

18



Enhanced Suffix Arrays — Update

» Enhanced suffix array: L, R and LCP array with RMQ support
> Goal: simulate any suffix tree operations

» string matching in O(m +logn) time

» string depth of internal nodes = LCP values

P internal suffix tree node = LCP interval \/

~+ storing information per node
»> bottom-up traversal via enclosing LCP intervals \/

> longest common extension queries \/
» suffix links \/

Outlook:

» enhanced suffix arrays still need original text T to work
» a self-index avoids that

» can store T in compressed form and support operations like string matching

18



7.5 The Burrows-Wheeler Transform



Towards Self-Indexes

» For large genomes or multiple-genome datasets, can’t hold T[0..n7) in fast memory.
» An enhanced suffix array needs additional @(r) words of space.

~> When reference genomes first became available, a major show stopper!
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Towards Self-Indexes

» For large genomes or multiple-genome datasets, can’t hold T[0..n7) in fast memory.
» An enhanced suffix array needs additional @(r) words of space.

~> When reference genomes first became available, a major show stopper!

» But since string matching can reconstruct T, can’t avoid storing T somehow!

> A self-index is a data structure that answers operations without access to T at query time

»> We get to decide how to store T ~» might compress T (if compressible)

» Known as “encoding model” in space-efficient data structures genomes highly repetitive!
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Towards Self-Indexes

» For large genomes or multiple-genome datasets, can’t hold T[0..n7) in fast memory.
» An enhanced suffix array needs additional @(r) words of space.

~> When reference genomes first became available, a major show stopper!

» But since string matching can reconstruct T, can’t avoid storing T somehow!

> A self-index is a data structure that answers operations without access to T at query time

»> We get to decide how to store T ~» might compress T (if compressible)

» Known as “encoding model” in space-efficient data structures genomes highly repetitive!

~ Key question: How to compress T while supporting random access and read mapping?
“Computing over compressed data”

19



BWT - Definitions

» cyclic shift of a string:

co

T = time_ flies quickly,, flies quickly, time,
12 uve ~ cyclic shift 1fiue
i m i m
e i e i
t s
q y q y
1 1
= i-c-k u i-c-k
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BWT - Definitions

» cyclic shift of a string:
» with end-of-word
character $

~+ can recover
original string

T = time_ flies quickly,,

1fu=e ~» cyclic shift
q m
e 1
S t
q y
1
c i-c-k

flies quickly time,

1flese

m

20



BWT - Definitions

T = time_ flies quickly,, flies quickly, time,
» cyclic shift of a string:

. 1 fru e > CyCliC Shlft . 1 flu e
» with end-of-word 1 m, 1 m,.
h " $ e 1 e 1
character . [ .
. cag Fecovelj ”q yu “q y"'
original string u_ . 1 u_ . 1
i~c-k i=c=k

» The Burrows-Wheeler Transform proceeds in three steps:
1. Consider all cyclic shifts of S
2. Sort these strings lexicographically

3. Bis the list of trailing characters (last column, top-down) of each string

20



BWT - Example

S = alf_eats alfalfa$

1. Take all cyclic shifts of S

alf_eats_alfalfa$
1f_eats_ alfalfasa
feats alfalfasal
peats alfalfasalf
eats alfalfasalf,
ats alfalfasalf e
ts,alfalfasalf ea
s,alfalfasalf eat
palfalfasalf eats
alfalfa$alf _eats,
lfalfasalf eats a
falfas$alf eats al
alfagsalf_eats_alf
lfasalf eats alfa
fagalf_eats alfal
as$alf _eats alfalf
$alf _eats alfalfa

sort

21



BWT - Example

S = alf_eats_alfalfas

1. Take all cyclic shifts of S

2. Sort cyclic shifts

alf_eats alfalfa$
1f_eats, alfalfasa
f eats alfalfasal
.eats alfalfasalf
eats alfalfas$alf,
ats alfalfagsalf_e
ts alfalfasalf _ea
s, alfalfasalf eat
palfalfasalf eats
alfalfas$alf _eats,
lfalfasalf eats a
falfas$alf eats al
alfasalf_eats alf
1fasalf eats alfa
fasalf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

~

sort

$alf _eats alfalfa
palfalfagalf eats
eats alfalfasalf
a$alf eats alfalf
alf_eats_alfalfa$
alfa$alf_eats alf
alfalfas$alf eats,
ats alfalfa$alf_e
eats alfalfasalf,
f_eats_ alfalfasal
fasalf eats alfal
falfasalf eats al
1f_eats_alfalfasa
Lfasalf eats alfa
lfalfasalf _eats,a
s alfalfasalf eat
ts alfalfasalf _ea

21



BWT - Example

S = alf_eats_alfalfas
1. Take all cyclic shifts of S
2. Sort cyclic shifts

3. Extract last column

B = asff$f_e, 1llaaata

alf_eats alfalfa$
1f_eats, alfalfasa
f eats alfalfasal
.eats alfalfasalf
eats alfalfas$alf,
ats alfalfagsalf_e
ts_ alfalfasalf ea
s, alfalfasalf eat
palfalfasalf eats
alfalfas$alf _eats,
lfalfasalf eats,a
falfa$alf eats al
alfasalf_eats alf
1fasalf eats alfa
fag$alf eats alfal
a$alf_eats alfalf
$alf eats alfalfa

D

sort

BWT
l

$alf _eats alfalfa
palfalfasalf eats
eats alfalfasalf
ag$alf _eats alfalf
alf_eats_alfalfa$
alfa$alf_eats alf
alfalfasalf_eats,
ats alfalfa$alf_e
eats alfalfagsalf,
f_eats alfalfasal
fasalf_eats alfal
falfasalf eats al
1f_eats_alfalfasa
lfasalf eats alfa
lfalfasalf_eats_a
s,alfalfasalf eat
ts alfalfasalf _ea

21



Computing the BWT

How can we compute the BWT of a text efficiently?

22



Computing the BWT

How can we compute the BWT of a text efficiently?

» cyclic shifts S

» comparing cyclic shifts stops at first $

» for comparisons, anything after $ irrelevant!

suffixes of S

alf_eats alfalfa$
1f_eats_ alfalfas$a
f_eats alfalfasal
.eats alfalfasalf
eats alfalfas$alf,
ats alfalfagsalf e
ts, alfalfasalf ea
s,alfalfasalf eat
palfalfagsalf eats
alfalfa$alf eats,
lfalfas$alf eats, a
falfagalf eats al
alfasalf_eats alf
1fagalf_eats alfa
fag$alf_eats alfal
a$alf _eats alfalf
$alf_eats alfalfa

OO UTT = WP, O =

L L[r]
$alf_eats alfalfa 16
Lalfalfagsalf eats 8
.eats alfalfasalf 3
a$alf eats alfalf 15
alf_eats alfalfa$ o
alfagalf eats alf 12
alfalfagalf eats, 9
ats alfalfasalf_e 5
eats alfalfasalf, 4
f_eats alfalfasal 2
fasalf_eats_alfal 14
falfagalf eats al 11
1f_eats alfalfagsa 1
1fagalf eatsalfa 13
lfalfa$alf eats,a 10
spalfalfagalf eat 7
ts,alfalfagalf ea 6
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Computing the BWT

How can we compute the BWT of a text efficiently?

» cyclic shifts S

» comparing cyclic shifts stops at first $

» for comparisons, anything after $ irrelevant!

» BWT is essentially suffix sorting!

suffixes of S

» B[i] = S[L[i] - 1]
» where L[i] =0, B[i] = $

alf_eats alfalfa$
1f_eats_ alfalfas$a
f_eats alfalfasal
.eats alfalfasalf
eats alfalfas$alf,
ats alfalfagsalf e
ts, alfalfasalf ea
s,alfalfasalf eat
palfalfagsalf eats
alfalfa$alf eats,
lfalfas$alf eats, a
falfagalf eats al
alfasalf_eats alf
1fagalf_eats alfa
fag$alf_eats alfal
a$alf _eats alfalf
$alf_eats alfalfa

(etmpep

>$alf eats alfalf 16

O 0N ONUT s WN =

Lalfalfagsalf eats
peats alfalfasalf
a$alf eats alfalf
alf_eats alfalfa$
alfasalf eats alf
alfalfa$alf eats,
ats alfalfagsalf e
eats alfalfa$alf,
f_eats alfalfasal
fasalf_eats alfal
falfagalf eats al
1f eats alfalfas$a
1fagalf_eats alfa
lfalfa$alf eats a
s,alfalfagalf eat
ts,alfalfa$alf ea

[r]

8
3
15
0
12
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Computing the BWT

How can we compute the BWT of a text efficiently?

» cyclic shifts S

» comparing cyclic shifts stops at first $

» for comparisons, anything after $ irrelevant!

» BWT is essentially suffix sorting!

suffixes of S

» B[i] = S[L[i] - 1]
» where L[i] =0, B[i] = $

~~ Can compute B in O(n) time from L

» more direct methods now also availably

alf_eats alfalfa$
1f_eats_ alfalfas$a
f_eats alfalfasal
.eats alfalfasalf
eats alfalfas$alf,
ats alfalfagsalf e
ts, alfalfasalf ea
s,alfalfasalf eat
palfalfagsalf eats
alfalfa$alf eats,
lfalfas$alf eats, a
falfagalf eats al
alfasalf_eats alf
1fagalf_eats alfa
fag$alf_eats alfal
a$alf _eats alfalf
$alf_eats alfalfa

OO UTT = WP, O =

L L[r]
$alf_eats alfalfa 16
Lalfalfagsalf eats 8
.eats alfalfasalf 3
a$alf eats alfalf 15
alf_eats alfalfa$ o
alfagalf eats alf 12
alfalfagalf eats, 9
ats alfalfasalf_e 5
eats alfalfasalf, 4
f_eats alfalfasal 2
fasalf_eats_alfal 14
falfagalf eats al 11
1f_eats alfalfagsa 1
1fagalf eatsalfa 13
lfalfa$alf eats,a 10
spalfalfagalf eat 7
ts,alfalfagalf ea 6
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BWT - Properties

OO UTk W~ O

el el el
U W= O

L L[r]
$alf_eats alfalfa 16
palfalfasalf eats 8
.eats alfalfasalf 3
a$alf eats alfalf 15
alf_eats alfalfa$ o
alfagsalf eats alf 12
alfalfasalf_eats, 9
ats_alfalfasalf e 5
eats alfalfagsalf, 4
f_eats alfalfagsal 2
fag$alf eats alfal 14
falfagalf eatsal 11
1f_eats_alfalfasa 1
1fa$alf_eats alfa 13
lfalfasalf_eats,a 10
s,alfalfasalf eat 7
ts,alfalfasalf _eca 6

Why does BWT help for compression?

> sorting groups characters by what follows
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BWT - Properties

OO UTk W~ O

L L[r]
$alf_eats alfalfa 16
palfalfasalf eats 8
.eats alfalfasalf 3
asalf eats alfalf] 15
alf_eats alfalfa$| o
alfagsalf eats alf| 12
alfalfasalf_eats,{ 9
ats_alfalfasalf el 5
eats alfalfagsalf, 4
f_eats alfalfagsal 2
fag$alf eats alfal 14
falfagalf eatsal 11
1f_eats_alfalfasa 1
1fa$alf_eats alfa 13
lfalfasalf eats,a 10
s,alfalfagsalf eat 7
ts,alfalfasalf _eca 6

Why does BWT help for compression?
> sorting groups characters by what follows

> Example: 1f always preceded by a

» more generally: BWT can be partitioned
into letters following a given context
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BWT - Properties

OO UTk W~ O

el el el
U W= O

L L[r]
$alf _eats,alfalfa 16
palfalfasalf eats 8
.eats alfalfasalf 3
a$alf eats alfalf 15
alf_eats alfalfa$ o
alfa$alf eats alf 12
alfalfasalf_eats, 9
ats_alfalfasalf e 5
eats alfalfagsalf, 4
f_eats alfalfagsal 2
fag$alf eats alfal 14
falfagalf eatsal 11
1f_eats_alfalfasa 1
1fa$alf_eats alfa 13
lfalfa$alf eats,a 10
s,alfalfasalf eat 7
ts,alfalfasalf _eca 6

Why does BWT help for compression?
> sorting groups characters by what follows

> Example: 1f always preceded by a

» more generally: BWT can be partitioned
into letters following a given context

(formally: low higher-order empirical entropy)

~ If S allows predicting symbols from context,
B has locally low entropy of characters.

» that makes MTF (move-to-front)
transformation effective!

~+ use in compression pipeline for bzip2:
BTW — MTF — RLE — Huffman
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A Bigger Example

have had, hadnt hasnt havent has what$
ave,had, hadnt hasnt, havent has what$h
ve had _hadnt_hasnt _havent has what$ha
e, had hadnt hasnt havent has what$hav
ohad_hadnt hasnt_havent, has what$have
had,hadnt _hasnt havent has what$have ,
ad,_hadnt hasnt _havent has what$have_h
d_hadnt hasnt _havent has_what$have ha
ohadnt _hasnt_havent, has_what$have had
hadnt _hasnt, havent has what$have had,,
adnt, hasnt _havent _has what$have had h
dnt, hasnt havent has what$have had ha
nt hasnt havent, has what$have had had
t,hasnt_havent _has _what$have had hadn
ouhasnt havent has what$have had hadnt
hasnt_havent _has what$have had hadnt,,
asnt, havent has what$have had_hadnt h
snt_havent _has what$have_had hadnt_ha
nt_havent, has_what$have_had hadnt_has
t,havent _has what$have had_hadnt hasn
ohavent _has what$have had_hadnt_hasnt
havent has whats$have had hadnt hasnt,,
avent,has what$have, had hadnt hasnt h
vent has what$have had_hadnt hasnt_ha
ent_has_what$have had hadnt hasnt hav
nt has_what$have _had _hadnt hasnt_have
t,has what$have had hadnt hasnt haven
has _what$have had_hadnt_hasnt havent
has what$have _had hadnt_hasnt havent,,
as what$have had hadnt hasnt_havent h
s whatghave had_hadnt hasnt havent _ha
whatghave, had_hadnt hasnt_havent has
whats$have had, hadnt _hasnt, havent, has,,
hatshave had, hadnt hasnt havent has w
atshave had_hadnt hasnt_havent has_wh
t$have _had _hadnt hasnt_havent _has wha
$have _had_hadnt hasnt_havent _has what

$have had hadnt hasnt_havent has what
ohad_hadnt, hasnt,havent has what$have
ohadnt hasnt_havent has what$have had
ohas _what$have had hadnt_hasnt havent
ohasnt havent has what$have had hadnt
uhavent, has what$have had hadnt _hasnt
.what$have had hadnt _hasnt havent has
ad_hadnt hasnt_havent has_what$have h
adnt hasnt havent has what$have had, h
as what$have had_hadnt hasnt havent_ h
asnt, havent has what$have had_hadnt, h
at$have had hadnt hasnt havent has wh
ave,had, hadnt hasnt, havent has _what$h
avent,has, what$have had,hadnt_hasnt,h
d,hadnt _hasnt, havent has_what$have_ha
dnt_hasnt havent has what$have had_ha
e, had hadnt _hasnt havent has_what$hav
ent_has whatshave _had_hadnt hasnt_hav
had_hadnt hasnt_havent has _what$have,
hadnt_hasnt havent has _what$have had,
has what$have had hadnt_hasnt havent,
hasnt,havent, has, what$have had, hadnt
hatshave had, hadnt hasnt havent has, w
have _had _hadnt hasnt_havent _has what$
havent has what$have _had_hadnt hasnt,
nt, has_what$have had_hadnt hasnt_have
nt_ hasnt _havent has what$have had had
nt_havent, has_what$have had hadnt_has
s what$have had hadnt hasnt havent_ha
snt_havent, has_whats$have _had, hadnt_ha
t$have had_hadnt hasnt havent has wha
t,has what$have had_hadnt hasnt haven
t, hasnt havent, has what$have had hadn
t, havent has what$have had, hadnt hasn
ve had _hadnt_hasnt _havent, has what$ha
vent has what$have had_hadnt hasnt_ha
whats$have had_hadnt hasnt_havent has,,

have_,had_ hadnt_ hasnt_ havent_ has_ jwhats$

B= tedtttshhhhhhhaavv, ,,ow$, ,edsaaannnaa,

24



Run-length BWT Compression

> amazingly, just run-length compressing the BWT is already powerful!

» r = number of runs in BWT
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Run-length BWT Compression

> amazingly, just run-length compressing the BWT is already powerful!

» r = number of runs in BWT

Example:
S = alf_eatsalfalfa$
B = asff$f e lllaaata
RLB) = [ IR G RIS

~ 7=|RL(B)| =12; n=17
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Run-length BWT Compression

> amazingly, just run-length compressing the BWT is already powerful!

» r = number of runs in BWT

Example:
S = alf_eatsalfalfa$
B = asff$f e lllaaata
RLB) = [ IR G RIS

~ 7=|RL(B)| =12; n=17

Larger Example:

S = have had hadnt_hasnt havent has what$
B = tedtttshhhhhhhaavv w$,edsaaannnaa,,

~ r=19;, n =236

» Indeed: r = O(z logz(n)), z number of LZ77 phrases

proven in 2019 (') E Kempa, Kociumaka: Resolution of the Burrows-Wheeler Transform Conjecture, CACM 2022
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7.6 Inverting the BWT



Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?
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Inverse BWT

» Great, can compute BWT efficiently and it helps compression.

»> “Magic” solution:
1. Create array D[0..n] of pairs:
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

But can we get T back?
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs: 1
D[r] = (B[r], 7).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb 8
S = 2

10

11

D

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

26



Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

D sorted D

char next
> “Magic” solution: o (a, 0) o (5, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)
D[V] = (B[}’], 7’). 2 (d, 2) 2 (a, 6)
2. Sort D stably with 3 (3, 3) s (@, 7)
respect to first entry. . (r, 4) s (a 8)
3. Use D as linked list with s (c, 5) ; (a/ 9)

(char, next entry) 4 g

s (a, 6) s (b,10)
Example: 7 (a, 7) 7 (b, 11)
B = ard$rcaaaabb s (a, 8) g (c, 5)
S = s (a, 9) s (d, 2)
10 (b,10) 10 (r, 1)

11 (b, 11) 1 (r, 4)



Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs:
D[r] = (B[r], ).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S=a

10

11

D

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

10

11

sorted D

char next
($, 3)
(a,
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> Great, can compute BWT efficiently and it helps compression. But can we get T back?

D sorted D
char next
> “Magic” solution: o (a, 0) o ($, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)
DIr] = (BIr], 7). 2 (d 2) : (a, 6)
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respect to first entry. s (r, 4) (a
3. Use D as linked list with 5 (c, 5) /
(char, next entry) ’
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs:
D[r] = (B[r], ).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abr

10

11

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

sorted D
char next
($, 3)
(a, 0)
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs: 1
D[r] = (B[r], ).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb 8
S = abra 2
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11

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5
(a, 6)
(a, 7)
(a, 8)
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(a, 8)
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

D sorted D

char next
»> “Magic” solution: s (a, 0) o (5, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)
D[r] = (B[r], 7). 2 (d, 2) 2 (a, 6)
2. Sort D stably with 3 (5, 3) s (@, 7)
respect to first entry. s (r, 4) s (a 8)

3. Use D as linked list with (c, 5)
(char, next entry) !

(a,

6 (a, 6)

Example: 7 (@ 7)

B = ard$rcaaaabb s (a, 8) (c, 5)

S = abrac 9 (a, 9) 9 (d, 2)
10 (b, 10) 10 (r, 1)
1 (b, 11) u (r, 4)
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2. Sort D stably with 3 (3, 3) 3 (a, 7)
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3. Use D as linked list with 5 (c, 5) /
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10 (b, 10)
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> Great, can compute BWT efficiently and it helps compression. But can we get T back?

D sorted D
char next
»> “Magic” solution: o (a, 0) o (5, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)
D[r] = (B[r], 7). 2 (d, 2) (a, 6)
2. Sort D stably with 3 (5, 3)
respect to first entry. s (r, 4)
3. Use D as linked list with s (c, 5)
(char, next entry) ] (a: 6)
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs:
D[r] = (B[r], ).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abracadab

10

11

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

sorted D

char next
o (3, 3)
1 (a, 0)
2 (a, 6)
3 (a,

6 (b,10)
7 (b, 11)
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1 (r, 1)
u (r, 4)
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char next
> “Magic” solution: o (a, 0) o ($, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)
DIr] = (Blr], 7). 2 (d 2) 2 (a, 6)
2. Sort D stably with 3 (5, 3)
respect to first entry. s (r, 4)
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

D sorted D

char next
> “Magic” solution: o (a, 0) o ($, 3)
1. Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0)

D[r] = (B[r], 7).

2 (d, 2) (a, 6)
2. Sort D stably with 3 (5, 3)
respect to first entry. s (r, 4)
3. Use D as linked list with 5 (c, 5)
(char, next entry) . (a: 6)
Example: 1 (@ 7)
B = ard$rcaaaabb e &y &)
S = abracadabra o (3, 9)

10 (b, 10) © (r, 1)

11 (b, 11) u (r, 4
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Inverse BWT

> Great, can compute BWT efficiently and it helps compression. But can we get T back?

»> “Magic” solution:
1. Create array D[0..n] of pairs:
D[r] = (B[r], ).
2. Sort D stably with
respect to first entry.

3. Use D as linked list with
(char, next entry)

Example:
B = ard$rcaaaabb
S = abracadabra$

10

11

D

(a, 0)
(r, 1
(d, 2)
($, 3)
(r, 4)
(c, 5)
(a, 6)
(a, 7)
(a, 8)
(a, 9)
(b, 10)
(b, 11)

sorted D

char next
e (3, 3)
2 (a, 6)
3 (a, 7)
4 (a, 8)
5 (a, 9)
6 (b,10)
7 (b, 11)
8 (c, 5)
9 (d, 2)
1 (r, 1)
u (r, 4)
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Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?
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Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B

~» O(n) with counting sort

» but why does this work!?

» decode char by char

» can find unique $ ~~ starting row

(not suffixes)

B[r]

bracadabra
abracadabr
ra$abracad
racadabra$ -
adabra$abr
abra$abrac
birasabracada
biracadabra$a
cadabra$abra
dabra$abraca
ra$abracadab
racadabra$ab

a

=

d

s

Q 9 o o

a

gl

(
(
(
(
(
(c,
(
(
(
(
(
(

’
’
’
’
’
’
’

0)
D
2)
3)
4)
5)

)

7)
8)
9)

b, 10)
b,11)

0:($, 3)
1:(a, 0)
2:(3, 6)
3:Q 7)
4:(a, 8)
s:(a, 9)
6: (b, 10)
7:(b,11)
8:(c, 5)
9:(d, 2)
10: (r, 1)
11:(r, 4)

27



Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?

» decode char by char B[]

» can find unique $ ~~ starting row

$abracadabra a, 0) o:($, 3)

> to get next char, we need asabracadabr r, 1) 1, 0
. . abra$abracad d, 2) 2:(a, 6)

(i) char in first column of current row T 5. 3) @ 7)

(ii) find row with that char’s copy in BWT acadabra$abr r, 4) a:(a, 8)

brasabracada a, 6) 6:(b,10)
bracadabra$a a, 7) 7:(b,11)
cadabras$abra a, 8 s:(c, 5)
dabra$abraca a, 9) o9:(d, 2)
ra$abracadab b,10) 10:(r, 1)

(
(
(
(
(
~~ then we can walk through and decode adabrasabrac (c, 5 si(a, 9)
(
(
(
(
(
racadabra$ab (b,11) 11:(r, 4)
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~» O(n) with counting sort
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» can find unique $ ~~ starting row e
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Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

dabra$abraca
ra$abracadab
racadabra$ab

a, 9) o9:(d, 2)
b,10) 10:(r, 1)
b,11) 11:(r, 4)

ith a in first column = ith ain BWT

» but why does this work!?
» decode char by char B[]
4 1 i ~ i
can find unique $ starting row e @ 0) o (s 3)
> to get next char, we need asabracadabr (r, ) 1:(a 0
. . abra$abracad (d, 2) 2:(a, 6)
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(
(



Inverse BWT — The magic revealed
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Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!?
» decode char by char B[]
4 1 i ~ i
can find unique $ starting row e @ 0) o (s 3)
> to get next char, we need asabracadabr (r, D 1:(a, 0)
. . abra$abracad (d, 2) 2:(a, 6)
(@) char in first column of current row A ey s 3) G 7)
(ii) find row with that char’s copy in BWT acadabra$abr (r, 4 4:(a, 8)
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Inverse BWT — The magic revealed

» Inverse BWT very easy to compute:
» only sort individual characters in B (not suffixes)

~» O(n) with counting sort

» but why does this work!? - =)
» decode char by char B [V]J
> 1 i ~s i
can find unique $ starting row e @ 0) o (s 3)
> to get next char, we need asabracadabr (r, D 1:(a, 0)
. . abra$abracad (d, 2) 2:(a, 6)
(@) char in first column of current row e s s 3) G 7)
(ii) find row with that char’s copy in BWT > acadabrasabr (r, 4 4:(a, 8)
~~ then we can walk through and decode —>adabrasabrac (c, 5 si(a, 9)
bras$abracada— (a, 6) 6:(b,10)
» for (i): first col = chars of B in sorted order\/ bracadabras@—’|| @, 7) 7:(b,11)
. . cadabragsabra—/| (a, 8) s:(c, 5)
» for (ii): relative order of same character stays same: dabrasabraca (@ 9) o:(d, 2)
ith a in first column = ith ain BWT rasabracadab (b,lo) 19;(r/ 1)
~ stably sorting (B[r], r) by first entry enough\/ racadabra$ab (b,11) 11:(r, 4)



Random Access Decoding

Can similarly output any substring T[i..i + {) if we know inverse suffix array:
Simply do ¢ steps of the inverse BWT starting at » = R[i — 1]!

~.

O 0 N Uk W N~ O

=

O NNUI— WO O

T;

bananaban$
ananaban$b
nanabans$ba
anaban$ban
naban$bana
abans$banan
ban$banana
an$bananab
n$bananaba
$bananaban

T(s..

r

0

{

O N O Ul W N

~
—

<
—

[N[a[e]e]o]=]w[~]]o]

B[r]

$bananaban
aban$bana®@
an$bananab
anaban$ban
ananaban$b
ban$banana
bananaban $
n$bananaba
naban$bana
nanaban$b a

Trin

aloa

D

(n, 0)
(n,1)
(b,2)
(n,3)
(b, 4)
(a,5)
(s,6)
(a,7)
(a,8)
(a,9)

sort(D)
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Random Access Decoding

Can similarly output any substring T[i..i + {) if we know inverse suffix array:
Simply do ¢ steps of the inverse BWT starting at r = R[i — 1]!

i R[i] 1 r L[r] Trin B[r] D sort(D)
0o 6 bananaban$ 0 [9] $bananaban (n,0) e:($,6)
1 4 ananaban$b 1 |5 aban$banan (n,1) 1:(a,5)
2 9 nanaban$ba 2 | 7] an$bananab (b,2) 2:(a,?7)
3 3 anaban$ban 3 |3 anaban$ban (n,3)  3:(a,8)
4 8 naban$bana 4 [1] ananaban$b (b,4) 2:(a,9)
5 1 aban$banan 5 [6] ban$banana (a,5) s:(b,2)
6 5 ban$banana 6 |0] bananaban $ ($,6) 6:(b,4)
7 2 an$bananab 7 |8 n$bananaba (@7) 7:(n,0)
8 7 n$bananaba 8 [4] naban$bana (a,8) s:(n,1)
9 0 $bananaban 9 2] nanaban$b a (@9) 9:(n,3)

Decoding only needs access to

1. ith char ¢ of sort(T) = sort(B)

If we have that kip sorti toring all of D!
D N If we have that, can skip sorting / storing all of



7.7 Random Access in BWT



Rank & Select on Sequences

Recall: Decoding only needs access to

1. ith char ¢ of sort(T) = sort(B)
2. position of (that copy of) ¢ in B

Both can be supported using
rank/select on sequences.  4occurrences of ¢

> rank.(T[0..n),i) = |T[0..7)|]
= #cin first i characters of T

» select (T[0..n), )
= min{;j : |T[0..j]lc > r} U {n}
= indexof rthcinT,(r=1,2,...)

Random Access in BWT

> store offsets O[c] = 35 |B|o forc € ©

01234567
T[O..9)aban

(9) & 5 7 8 9

rank,(T,7) |0/ 0/1/1 2/2/3 3 4
ranky(T,7) 0 1 2
rank,(T,i) o 1|12 3

select,(T,r) / 1(35 7
selecty,(T,7) / 0 6
select,(T,r) / 2 4 8

0 1 2 3 45 6 7 8
sort(T) |alalala/b|b|n|n|n

0[0..5] = [0,4,6,9]

» ith char of sort(B) = unique c for which O[c] < i < O[c + 1]

» position of rth cin B = select.(B, r)
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Wavelet Trees
The Wavelet Trees for a T € [0..n) over & = [0..0)
> supports access to T[i] in O(log o) time,
» rank.(T, i) and select.(T, r) in O(log o) time, and

» occupies ~ 1 lg o bits of space.

30



Wavelet Trees _<>

)
The Wavelet Trees fora T € [0..n) over X = [0..0) f\l I/:
> supports access to T[i] in O(log o) time, |\|,J

» rank.(T, i) and select.(T, r) in O(log o) time, and

> occupies ~ 1 1g o bits of space. (Further compression possible!) ~» Advanced Data Structures
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Wavelet Trees _<>

)
The Wavelet Trees fora T € [0..n) over X = [0..0) f\l I/:
» supports access to T[] in O(log o) time, |\|,J o

» rank.(T, i) and select.(T, r) in O(log o) time, and

> occupies ~ 1 1g o bits of space. (Further compression possible!) ~» Advanced Data Structures

» The generalized o-rank.(T, i) = rank.(T, i) + Z |T|. is also supported in O(log o) time

c’'<c
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Wavelet Trees _<>

The Wavelet Trees for a T € [0..n) over & = [0..0) gl/@
> supports access to T[i] in O(log o) time, |\|,J
» rank (T, i) and select (T, r) inRO(log G)Ltime, and
» occupies ~ 1 lg o bits of space. (Further compression possible!) ~» Advanced Data Structures

» The generalized o-rank.(T, i) = rank.(T, i) + Z |T|. is also supported in O(log o) time

c’'<c

Storing B[0..n1] as a wavelet tree ~» reconstruct ¢ chars from T in O(¢log o) time
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Wavelet Trees _<>

)
The Wavelet Trees fora T € [0..n) over X = [0..0) f\l I/:
> supports access to T[i] in O(log o) time, |\|,J

» rank.(T, i) and select.(T, r) in O(log o) time, and
> occupies ~ 1 1g o bits of space. (Further compression possible!) ~» Advanced Data Structures
» The generalized o-rank.(T, i) = rank.(T, i) + Z |T|. is also supported in O(log o) time
c’<c
Storing B[0..n1] as a wavelet tree ~» reconstruct ¢ chars from T in O(¢log o) time
eg, t=lgn if starting position known

Storing every tth entry of R[0..n] ~» may need to go back ¢ characters for access
~» O((¢ + t)log o) time for decode
using ~ nlgn/t extra bits of space
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Wavelet Trees _<>

)
The Wavelet Trees fora T € [0..n) over X = [0..0) f\l I/:
> supports access to T[i] in O(log o) time, |\|,J

» rank.(T, i) and select.(T, r) in O(log o) time, and
> occupies ~ 1 1g o bits of space. (Further compression possible!) ~» Advanced Data Structures
» The generalized o-rank.(T, i) = rank.(T, i) + Z |T|. is also supported in O(log o) time
c’<c
Storing B[0..n1] as a wavelet tree ~» reconstruct ¢ chars from T in O(¢log o) time
eg, t=lgn if starting position known

Storing every tth entry of R[0..n] ~» may need to go back ¢ characters for access
~» O((¢ + t)log o) time for decode
using ~ nlgn/t extra bits of space

Locally decodable BWT
» no longer need to store T[0..1)!
> compressible (e.g., Wavelet trees with compressed bitvectors)
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7.8 Searching in the BWT



Backwards Search

Recall how the sorted suffixes in a suffix array L[0..n] made string matching very easy.

» Simply binary search the pattern P[0../n) in L!
~ all occurrences must form interval

31



Backwards Search

Recall how the sorted suffixes in a suffix array L[0..n] made string matching very easy.
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With wavelet tree BWT, we can replace binary search by backwards radix search!

» use sort(B) to locate interval for last character P[m — 1]
> use one step of inverse BWT to narrow down on P[m — 2..m), repeat.
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Backwards Search — Code
Recall total rank operation supported by wavelet trees

o-rank(B,i) = |B[0..0)|, + Z|B|C,

c’'<c

1 procedure backwardSearch(B[0..1], P[0..1m))

2 // B[0..n] given as wavelet tree

3 // returns range [s..e) of ranks for suffixes starting with P
4 ¢ :=Plm-1]

5 s := g-rank(B, 0)

6 e := o-rank.(B, n)

7 forj =m-2,m-3,...,0

8 if s > e break // no matches
9 ¢ := P[j]

10 s := o-rank.(B, s)

11 e := g-rank.(B, e)

12 return [s..e)
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Locating Matches

» Backwards Search finds interval [s..e) such that
P[0..m) = T[L[r] .. L[r]+m) iff r € [s..e)
~ still need suffix array L[0..7] to locate matches!

» but can detect and count occurrences even without L
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Locating Matches
» Backwards Search finds interval [s..e) such that
P[0..m) = T[L[r] .. L[r]+m) iff r € [s..e)
~ still need suffix array L[0..7] to locate matches!
» but can detect and count occurrences even without L

Sampled Suffix Array

> As for inverse suffix array, can store L[7] only for every fth starting indexiin T, i.e.,
only store entries for ranks  with L[r] = 0 (mod ¢)

~> O(nlogn/t) bits of extra space
~ Need to continue backwards search for at most t extra characters to locate match
~+ String matching in O(m logo + occ - tlog o) time

(
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Locating Matches
» Backwards Search finds interval [s..e) such that
P[0..m) = T[L[r] .. L[r]+m) iff r € [s..e)
~ still need suffix array L[0..7] to locate matches!
» but can detect and count occurrences even without L

Sampled Suffix Array

> As for inverse suffix array, can store L[7] only for every fth starting indexiin T, i.e.,
only store entries for ranks  with L[r] = 0 (mod ¢)

~> O(nlogn/t) bits of extra space
~+ Need to continue backwards search for at most ¢ extra characters to locate match
~+ String matching in O(m logo + occ - tlog o) time

Wavelet-tree BWT + Sampled Suffix Array = FM Index

Ferragina, Manzini: Indexing compressed text, JACM 2005
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FM-Index Discussion

» FM-Index is one of first compressed self-indexes

» can represent text using ~ H(T)n bits of space
Hy(T) = kth order empirical entropy

> still widely used, e. g., as basis of bowtie2 read alignment tool

Langmead, Salzberg: Fast gapped-read alignment with Bowtie 2, Nature Methods 2012

Ongoing research
» Reduce space for very repetitive strings (collection of genomes)

e.g., r-index Navarro: Indexing Highly Repetitive String Collections, Part II: Compressed Indexes, ACM Comp. Surv. 2021

» full support of suffix tree functionality with little extra space?
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