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8.1 Noncoding RNA



RNA
RNA (Ribonucleic acid)

▶ similar to DNA: polymer of nucleotides

⇝ sequence of nitrogenous bases
Adenine, and Cytosine, Guanine, Uracil

▶ unlike DNA, typically single-stranded

▶ more “sticky” backbone

▶ mostly known as messenger RNA (mRNA)
▶ including mRNA vaccines!
▶ mRNA is a coding RNA

since they encode a protein

The Central Dogma of Molecular Biology
DNA makes RNA makes Protein

https://commons.wikimedia.org/wiki/File:Summary_of_the_protein_biosynthesis_process.png

Protein Biosynthesis

▶ mechanism to produce
protein a according to
recipe stored in a gene

� From DNA to protein - 3D
https://youtu.be/gG7uCskUOrA
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Noncoding RNA

But RNA serves many other roles!

� Introduction to Non-Coding RNA
https://youtu.be/KIohfQsRRdQ

▶ ironically, ribosomes (protein factories) themselves are mostly made of RNA

▶ for noncoding RNA, structure (3D folding form) crucial for function

▶ indeed, sequence often highly variable between species, but structure is similar!
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RNA Secondary Structure Prediction
▶ Unfortunately, 3D shape hard and expensive to determine experimentally (X-ray

crystallography)

▶ Available (diverse) data much smaller than for proteins
⇝ May not soon see successful machine-learning solutions similar to AlphaFold

Rhĳu Das, https://youtu.be/XqFq_zYx7Vo

▶ To make matters worse, often not a single static structure

� RNA folding in action
https://youtu.be/2XTi9LG9NnU

⇝ study de-novo approaches

⇝ and use simplified models of chemistry and shape to make progress
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8.2 RNA Secondary Structure



Model of RNA Structure
▶ RNA sequence / primary structure 𝑅[0..𝑛) ∈ Σ𝑛 Σ = {A, C, G, U}
▶ RNA secondary structure: matching of indices

𝑆 ⊂ [0..𝑛)2 of pairs (𝑖 , 𝑗) that are
▶ ordered 𝑖 ≤ 𝑗

▶ disjoint: (𝑖 , 𝑗), (𝑘, 𝑙) ∈ 𝑆 ∧ (𝑖 = 𝑘 ∨ 𝑗 = 𝑙) =⇒ (𝑖 , 𝑗) = (𝑘, 𝑙)
▶ not too close (𝑖 , 𝑗) ∈ 𝑆 =⇒ 𝑗 − 𝑖 ≥ 4

min. length of hairpin loop

backbone can’t bend more

▶ secondary structure 𝑆 is valid for sequence 𝑅 if

(𝑖 , 𝑗) ∈ 𝑆 =⇒ (𝑅[𝑖], 𝑅[𝑗]) ∈ C =
{(A, U), (U, A), (C, G), (G, C), (G, U), (U, G)}

▶ C are the canonical base pairs: can form hydrogen bonds to stabilize RNA
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Optimal RNA Structure – Attempt 1
▶ Since base pairs provide stability

Try to maximize |𝑆| (# pairs) among all valid secondary structures for 𝑅[0..𝑛).

⇝ maximum matching in graph of all bases

▶ possible in polynomial time
▶ actually, ignoring minimum hairpin length, trivial greedy approach is optimal:

1. form arbitrary C − G pairs (until we run out of Cs or Gs)
2. form arbitrary A − U pairs (until we run out)
3. form arbitrary G − U pairs (until we run out)

▶ unfortunately, useless predictions!
▶ number of pairs dictated by base counts
▶ many equally good options exist
▶ many “optimal” solutions force entire molecule crowd up in one place
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Let’s play a game!

phenylalanine transfer RNA from Saccharomyces
https://rnacentral.org/rna/URS000011107D/4930
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EteRNA
eternagame.org

▶ Eterna is a citizen scientist computer game running since 2010
lead by Rhĳu Das (Stanford University School of Medicine)

▶ You have to design an RNA sequence that folds into a given target secondary structure.

▶ The game uses the best available simulation of RNA folding.

▶ Simulation, prediction, and RNA design algorithms are co-evolving
▶ RNA design crowdsourced to players
▶ top designs synthesized and structure determined
⇝ growing dataset for RNA structures
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2D Approximation
▶ As in Eterna, RNA secondary structure often drawn as “roadkill diagrams”

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png
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Stacks
Key Observation: Stable structures have many adjacent pairs

▶ “stacked” pairs forming a stem (the “ladder” regions)

▶ in 3D, stems form into a double helix (similar to DNA!)

▶ only reverse complement
stems are stable

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png
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Optimal RNA Structure – Attempt 2
▶ Recall: 𝑆 ⊂ [0..𝑛)2 set of indices of paired bases

▶ instead of maximizing |𝑆| (# pairs), let’s maximize number of base pair stackings!

BPS(𝑆) =
���{(𝑖 , 𝑗) ∈ 𝑆 : (𝑖 + 1, 𝑗 − 1) ∈ 𝑆

}���

4 base pair stackings

General Secondary Structure Prediction
▶ Given: Sequence 𝑅 ∈ {A, C, G, U}𝑛
▶ Goal: Valid secondary structure 𝑆

with maximal BPS(𝑆)

10



Hardness
Unfortunately, General Secondary Structure Prediction is NP-hard.

▶ reduction from BinPacking

� Lyngsø: Complexity of Pseudoknot Prediction in Simple Models, ICALP 2004
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8.3 Pseudoknot-free secondary structures



Flat Structures
Recall example tRNA structure

Roadkill diagram of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_blanco.svg

3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast_1ehz.png

⇝ Seems reasonable to only consider
roadkill diagrams without crossings.

“Correct” formalization seems to be:
Require graph of pairs bases and backbone edges to be outerplanar.

Any other secondary structure is called a pseudoknot.
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Pseudoknot-free secondary structures
▶ planar secondary structure (pairs) cover most of free energy of folding

▶ “coarse graining” of 3D structure biochemically useful

▶ natural intermediate step on folding pathway

▶ often well conserved between related species

▶ computationally tractable

13



Pseudoknot-free secondary structures – Representations

G
C

C
C

U
G

A

U

A

G

C

G

U
A

G

U

U

A
C U A

G

C
G

A G U
C

U

G

UAUU
C

U

A

A

G

A

A
G

A

U

C

A

C
UG

A

G

G

G

U

UCG
C

G
G

G
G

1

5

10

15

20

25

30

35

40

45

50

55
60

62

ML

IL

B
HL HL

HL

1

5

10

15
20

25

30

35

40

45
50

55

60

62

G
C
C
C
U
G
A
U

A
G

C
G U A G U U A C U A

G
C

G
A
G
U
C
U
G
U
A
U
U
C
U

A
A

G
A

A
G

A
UCACUGAGGG

U
U

C
G

C
G

G
G
G

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G

14



Pseudoknot-free secondary structures – Representations

G
C

C
C

U
G

A

U

A

G

C

G

U
A

G

U

U

A
C U A

G

C
G

A G U
C

U

G

UAUU
C

U

A

A

G

A

A
G

A

U

C

A

C
UG

A

G

G

G

U

UCG
C

G
G

G
G

1

5

10

15

20

25

30

35

40

45

50

55
60

62

ML

IL

B
HL HL

HL

1

5

10

15
20

25

30

35

40

45
50

55

60

62

G
C
C
C
U
G
A
U

A
G

C
G U A G U U A C U A

G
C

G
A
G
U
C
U
G
U
A
U
U
C
U

A
A

G
A

A
G

A
UCACUGAGGG

U
U

C
G

C
G

G
G
G

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G

14



Pseudoknot-free secondary structures – Representations

G
C

C
C

U
G

A

U

A

G

C

G

U
A

G

U

U

A
C U A

G

C
G

A G U
C

U

G

UAUU
C

U

A

A

G

A

A
G

A

U

C

A

C
UG

A

G

G

G

U

UCG
C

G
G

G
G

1

5

10

15

20

25

30

35

40

45

50

55
60

62

ML

IL

B
HL HL

HL

1

5

10

15
20

25

30

35

40

45
50

55

60

62

G
C
C
C
U
G
A
U

A
G

C
G U A G U U A C U A

G
C

G
A
G
U
C
U
G
U
A
U
U
C
U

A
A

G
A

A
G

A
UCACUGAGGG

U
U

C
G

C
G

G
G
G

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G

14
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Nussinov’s Algorithm
Idea: Maximize total number of valid pairs among all pseudoknot-free structures.

▶ back to maximum matching, but subject to outerplanar constraint . . .

▶ key insight: decomposability! see arc diagram / dot-bracket representation

( )( )( )( )( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )• • • • • • • •• • • • • • • • • • • • • • • • • • •

1 5 10 15 20 25 30 35 40 45 50 55 60 62

G C C C U G A U A G C G U A G U U A C U A G C G A G U C U G U A U U C U A A G A A G A U C A C U G A G G G U U C G C G G G G

⇝ Apply dynamic programming
on subproblems 𝑅[𝑖.. 𝑗)

𝐷(𝑖 , 𝑗) = max valid pairs in pseudoknot-free structure for 𝑅[𝑖.. 𝑗)
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Nussinov’s Algorithm – DP

𝐷(𝑖 , 𝑗) = max valid pairs in any
pseudoknot-free structure for 𝑅[𝑖.. 𝑗)

Figure 10.7 from Durbin et al. 1998

⇝ 𝐷(𝑖 , 𝑗) =




0, if 𝑗 − 𝑖 ≤ 4;

max




𝐷(𝑖 + 1, 𝑗 − 1) + [(𝑅[𝑖], 𝑅[𝑗−1]) ∈ C
]
,

𝐷(𝑖 + 1, 𝑗),
𝐷(𝑖 , 𝑗 − 1),
max
𝑘∈[𝑖.. 𝑗)

𝐷(𝑖 , 𝑘) + 𝐷(𝑘 + 1, 𝑗)
else.

⇝ 𝑂(𝑛3) time, 𝑂(𝑛2) space

16



8.5 Refined Models



Back to Base Pair Stackings
▶ While maximum outerplanar matching is well-defined and tractable,

it doesn’t usually yield natural structures.

▶ already know that we should count base pair stackings!

▶ We can extend the DP solution to count those instead!

17
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Graphical notation for DP recursions

= min

{
, ,

}

Key

▶ dots bases; if touching, neighbors on backbone

▶ horizontal line RNA backbone

▶ wiggly arcs base pair

▶ dashed arcs boundary; could be paired or not

▶ white area no arcs here

▶ gray area potentially further arcs

18



Counting Base Pair Stackings
Idea: Need to remember whether outermost bases paired.

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖 𝑗𝑖1 𝑗1

,
𝑖 𝑗𝑝𝑖+1 𝑗−1𝑝+1

}

▶ In the middle case, if (𝑖1 , 𝑗1) = (𝑖 , 𝑗), count stacked base pair for (𝑖 , 𝑗)

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖

𝑗
𝑖+1

,
𝑖

𝑗𝑗−1

,
𝑖 𝑗𝑝 𝑝+1

}

⇝ Same 𝑂(𝑛3) time, 𝑂(𝑛2) space complexity
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Turner Energy Model
▶ Simply counting base pair stackings is still a very crude approximation

▶ Which bases are paired influences bonding strength

▶ Which bases are adjacent in stems influences stabilization contribution of stem

▶ Which bases form first unpaired base in hairpin loop influences stability

▶ . . . (play Eterna a bit for more )

⇝ More refined models to compute free energy (≈ instability) of structure

�
Mathews, Sabina, Zuker, Turner: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary
structure, J Molecul. Biolog. 1999

�
Mathews, Disney, Childs, Schroeder, Zuker, Turner: Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure, PNAS 2004
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Turner Energy Model [2]

𝐺 𝐶 𝐶 𝐶 𝑈 𝐺 𝐴 𝑈 𝐴 𝐺 𝐶 𝐺 𝑈 𝐴 𝐺 𝑈 𝐶 𝐴 𝐶 𝑈 𝐴 𝐺 𝐶 𝐺 𝐴 𝐺 𝑈 𝐶 𝑈 𝐺 𝑈 𝐴 𝑈 𝑈 𝐶 𝑈 𝐴 𝐴 𝐺 𝐴 𝐴 𝐺 𝐴 𝑈 𝐶 𝐴 𝐶 𝑈 𝐺 𝐴 𝐺 𝐺 𝐺 𝑈 𝑈 𝐶 𝐺 𝐶 𝐺 𝐺 𝐺 𝐺

1 5 10 15 20 25 30 35 40 45 50 55 60 62

▶ structure = partition into 𝑘-loops
▶ model assumptions

▶ total free energy = sum of loop contributions
▶ loop contributions are independent
▶ determined in lots of experiments

Conceptually unbounded sum

𝑖 𝑗

= min

{
𝑖 𝑗

,
𝑖 𝑗𝑖1 𝑗1

, , , . . .

}
� too many variables!
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Zuker’s Algorithm
▶ Only compute exactly up to 2-loops (2 enclosed pairs)

▶ additive approximation for bigger multiloops

⇝ same mutually recursive cost as for pair stackings

22



8.6 Grammar-based Approaches



Can’t machine learning help?
▶ free-energy models are great ab initio methods

▶ however, they remain limited in accuracy

▶ with growing datasets, tempting to improve structure prediction using machine
learning

▶ but: available data much too few for blackbox learning

⇝ statistical learning with curated probabilistic model
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Probabilistic Context-Free Grammars
Recap from your formal languages intro course . . .

Context-free grammars (CFG)
𝐺 = (𝑁,𝑇, 𝑅, 𝑆)
▶ nonterminals 𝑁

▶ terminals 𝑇
▶ rules 𝑅 ⊆ 𝑁 × (𝑁 ∪ 𝑇)∗
▶ start symbol 𝑆 ∈ 𝑁

Applying rules to replace nonterminals
𝑆 ⇒∗ 𝑤 ⇝ 𝑤 ∈ L(𝐺)

Example
▶ 𝑁 = {𝐸, 𝐼, 𝑉, 𝐶, 𝐶′}
▶ 𝑇 = {x, y, 0, . . . , 9, +, •}
▶ 𝐸 → (𝐸 + 𝐸) | (𝐸 • 𝐸) | 𝐼

𝐼 → 𝐶 | 𝑉
𝑉 → x | y
𝐶 → 0 | 1𝐶′ | . . . | 9𝐶′

𝐶′ → 𝜀

empty string

| 0𝐶′ | . . . | 9𝐶′

Probabilistic Context-Free Grammars (PCFG)

▶ For each nonterminal, assign probabilities to right-hand sides.
⇝ prob of a derivation in 𝐺 = product of rule probabilities.
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