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8.1 Noncoding RNA



RNA
RNA (Ribonucleic acid)
» similar to DNA: polymer of nucleotides

~~ sequence of nitrogenous bases
Adenine, and Cytosine, Guanine, Uracil

> unlike DNA, typically single-stranded

> more “sticky” backbone



RNA
RNA (Ribonucleic acid)
» similar to DNA: polymer of nucleotides

~~ sequence of nitrogenous bases
Adenine, and Cytosine, Guanine, Uracil

> unlike DNA, typically single-stranded

» more “sticky” backbone

» mostly known as messenger RNA (mRNA)
» including mRNA vaccines!

» mRNA is a coding RNA
since they encode a protein

The Central Dogma of Molecular Biology
DNA makes RNA makes Protein
Protein Biosynthesis

» mechanism to produce
protein a according to
recipe stored in a gene




Noncoding RNA

But RNA serves many other roles!

& LS
D Introduction to Non-Coding RNA
https://youtu.be/KIohfQsRRdQ



Noncoding RNA

But RNA serves many other roles!

D Introduction to Non-Coding RNA
https://youtu.be/KIohfQsRRdQ

P ironically, ribosomes (protein factories) themselves are mostly made of RNA
» for noncoding RNA, structure (3D folding form) crucial for function

> indeed, sequence often highly variable between species, but structure is similar!



RNA Secondary Structure Prediction

» Unfortunately, 3D shape hard and expensive to determine experimentally (X-ray
crystallography)

» Available (diverse) data much smaller than for proteins
~» May not soon see successful machine-learning solutions similar to AlphaFold

Rhiju Das, https://youtu.be/XqFq_zYx7Vo

> To make matters worse, often not a single static structure

AN L2

O RNA folding in action
https://youtu.be/2XTi9LGINNU



RNA Secondary Structure Prediction

» Unfortunately, 3D shape hard and expensive to determine experimentally (X-ray
crystallography)

» Available (diverse) data much smaller than for proteins

~» May not soon see successful machine-learning solutions similar to AlphaFold

Rhiju Das, https://youtu.be/XqFq_zYx7Vo

> To make matters worse, often not a single static structure

% =
O RNA folding in action
https://youtu.be/2XTi9LGINNU

~~ study de-novo approaches

~+ and use simplified models of chemistry and shape to make progress



8.2 RNA Secondary Structure



Model of RNA Structure
» RNA sequence / primary structure R[0..n) € X" Y. ={A,C,G,U}
» RNA secondary structure: matching of indices
S € [0..n)? of pairs (i, j) that are
>
> disjoint: (7, ), (k, ) e SA(i=kVj=1) = (i,j)= (k)

» not too close (l, j) €S = ] —1 >4 backbone can’t bend more

min. length of hairpin loop



Model of RNA Structure

» RNA sequence / primary structure R[0..n) € X" Y. ={A,C,G,U}
» RNA secondary structure: matching of indices
S € [0..n)? of pairs (i, j) that are
>
> disjoint: (7, ), (k, ) e SA(i=kVj=1) = (i,j)= (k)
» not too close (i,j) €S = j—i>4  backbone can't bend more

min. length of hairpin loop

> secondary structure S is valid for sequence R if
(i,j)€ S = (R[] R[j]) € € = {(A,U), (U,A), (C,6), (6,0), V), (UG6)}

» C are the canonical base pairs: can form hydrogen bonds to stabilize RNA



Optimal RNA Structure — Attempt 1

» Since base pairs provide stability
Try to maximize |S| (# pairs) among all valid secondary structures for R[0..1).




Optimal RNA Structure — Attempt 1

» Since base pairs provide stability
Try to maximize |S| (# pairs) among all valid secondary structures for R[0..1).

~» maximum matching in graph of all bases

» possible in polynomial time
> actually, ignoring minimum hairpin length, trivial greedy approach is optimal:
1. form arbitrary C — G pairs (until we run out of Cs or Gs)

2. form arbitrary A — U pairs (until we run out)

3. form arbitrary G — U pairs (until we run out)



Optimal RNA Structure — Attempt 1

» Since base pairs provide stability
Try to maximize |S| (# pairs) among all valid secondary structures for R[0..1).

~» maximum matching in graph of all bases

» possible in polynomial time
» actually, ignoring minimum hairpin length, trivial greedy approach is optimal:
1. form arbitrary C — G pairs (until we run out of Cs or Gs)

2. form arbitrary A — U pairs (until we run out)

3. form arbitrary G — U pairs (until we run out)

» unfortunately, useless predictions!
» number of pairs dictated by base counts
» many equally good options exist

> many “optimal” solutions force entire molecule crowd up in one place



Let’s play a game!
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EteRNA

eternagame.org

» Eterna is a citizen scientist computer game running since 2010

lead by Rhiju Das (Stanford University School of Medicine)
> You have to design an RNA sequence that folds into a given target secondary structure.
> The game uses the best available simulation of RNA folding.

» Simulation, prediction, and RNA design algorithms are co-evolving
» RNA design crowdsourced to players
» top designs synthesized and structure determined

~ growing dataset for RNA structures



2D Approximation

> As in Eterna, RNA secondary structure often drawn as “roadkill diagrams”

Roadkill diagram of yeast Phe tRNA
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3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe_yeast lehz.png



Stacks

Key Observation: Stable structures have many adjacent pairs

» “stacked” pairs forming a stem (the “ladder” regions)
e e

» in 3D, stems form into a double helix (similar to DNA!)

= Only reverse Complement Roadkill diagram of yeast Phe tRNA
stems are stable AoH
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https://commons.wikinedia.org/wiki/File: TRNA-Phe_yeast blanco.svg

3D Structure of yeast Phe tRNA

https://conmons.wikimedia.org/wiki/File:TRNA-Phe_yeast lehz.png



Optimal RNA Structure — Attempt 2

» Recall: S c [0..n) set of indices of paired bases

» instead of maximizing |S| (# pairs), let’s maximize number of base pair stackings!

- @

BPS(S) = H(i,j)e S:(i+1,j-1)€ sH

General Secondary Structure Prediction
»> Given: Sequence R € {A,C,G,U}"

» Goal: Valid secondary structure S
4 base pair stackings with maximal BPS(S)

10



Hardness

Unfortunately, General Secondary Structure Prediction is NP-hard.

» reduction from BINPACKING

E Lyngse: Complexity of Pseudoknot Prediction in Simple Models, ICALP 2004

(a) An optimum structure for the RNA se-
quence constructed from an instance of
BIN PACKING with four items of sizes 2,
2,3, and 3, and two bins of capacity 5.

0606656 6666y

(b) An optimum structure for the RNA se-
quence constructed from an instance of
BIN PACKING with four items of sizes 2,
2,2, and 4, and two bins of capacity 5.

Fig. 3. Illustration of how the number of helices can be kept to one per item for an RNA sequence
constructed from a ‘yes’ instance of BIN PACKING, while the base pairs of at least one substring
corresponding to an item have to be split over at least two helices if the RNA sequence is constructed

from a ‘no’ instance of BIN PACKING.
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8.3 Pseudoknot-free secondary structures



Flat Structures

Recall example tRNA structure
Roadkill diagram of yeast Phe tRNA
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3D Structure of yeast Phe tRNA

https://commons.wikimedia.org/wiki/File:TRNA-Phe yeast lehz.png
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Flat Structures

Recall example tRNA structure
Roadkill diagram of yeast Phe tRNA

A-OH
C

~~ Seems reasonable to only consider G—mic
roadkill diagrams without crossings.

https://commons . wikinedia.org/wiki/File: TRNA-Phe_yeast blanco.svg

3D Structure of yeast Phe tRNA

https://conmons.wikimedia.org/wiki/File:TRNA- Phe_yeast lehz.png
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Flat Structures

Recall example tRNA structure
Roadkill diagram of yeast Phe tRNA

A-OH
C

~~ Seems reasonable to only consider G—mic

roadkill diagrams without crossings. o
GnA A

https://commons . wikinedia.org/wiki/File: TRNA-Phe_yeast blanco.svg

“Correct” formalization seems to be:

Require graph of pairs bases and backbone edges to be outerplanar.

Any other secondary structure is called a pseudoknot.

3D Structure of yeast Phe tRNA

https://conmons.wikimedia.org/wiki/File:TRNA- Phe_yeast lehz.png
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Pseudoknot-free secondary structures

» planar secondary structure (pairs) cover most of free energy of folding
> “coarse graining” of 3D structure biochemically useful

> natural intermediate step on folding pathway

> often well conserved between related species

»> computationally tractable

13



Pseudoknot-free secondary structures — Representations
\/\c‘i.rilr“"s
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Pseudoknot-free secondary structures — Representations
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Pseudoknot-free secondary structures — Representations

2
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1 5 10 15 20 25 30 35 40 45 50 55 60 62

GCCCUGAUAGCGUAGUUACUAGCGAGUCUGUAUUCUAAGAAGAUCACUGAGGGUUCGCGGGG
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Pseudoknot-free secondary structures — Representations

2
G U U A
¢ Y .y

1 5 10 15 20 25 30 35 40 45 50 55 60 62

GCCCUGAUAGCGUAGUUACUAGCGAGUCUGUAUUCUAAGAAGAUCACUGAGGGUUCGCGGGG

oo ocopppyoofocfliococoppp)poco((oo(leoccoppo)ppec) )l
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Nussinov’s Algorithm

Idea: Maximize total number of valid pairs among all pseudoknot-free structures.

O P

15



Nussinov’s Algorithm

Idea: Maximize total number of valid pairs among all pseudoknot-free structures.

» back to maximum matching, but subject to outerplanar constraint . ..
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Nussinov’s Algorithm

Idea: Maximize total number of valid pairs among all pseudoknot-free structures.

» back to maximum matching, but subject to outerplanar constraint . ..

> key insight: decomposability! see arc diagram / dot-bracket representation

1 5 10 15 2 2 30 3 40 4 50 55 60 6

GCCCUGAUAGCGUAGUUACUAGCGAGUCUGUAUUCUAAGAAGAUCACUGAGGGUUCGCGGGG

oot looonynpoofoo(itcocoppn)yoooffco((foooco Y)e))ee)))))
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Nussinov’s Algorithm
Idea: Maximize total number of valid pairs among all pseudoknot-free structures.
» back to maximum matching, but subject to outerplanar constraint . ..

> key insight: decomposability! see arc diagram / dot-bracket representation

Ve W W

1 5 10 15 2 2 30 3 40 4 50 55 60 6

~ Apply dynamic programming
on subproblems R|[i..j)

GCCCUGAUAGCGUAGUUACUAGCGAGUCUGUAUUCUAAGAAGAUCACUGAGGGUUCGCGGGG

oot looonynpoofoo(itcocoppn)yoooffco((foooco Y)e))ee)))))

D(i, j) = max valid pairs in pseudoknot-free structure for R[i..j)

15



Nussinov’s Algorithm — DP

D(i, j) = max valid pairs in any
pseudoknot-free structure for R[i..j)

5 kkel d
1,j pair i unpaired j unpaired bifurcation
Figure 10.7 from Durbin et al. 1998 (‘Z (‘)
0, ifj—i<4 K
D(i+1,j - 1)+ [(R[i],R[j-1]) € €],
~ D(,j) = D(i+1,)),
max) p; i-1) else.
max D(i, k) + D(k +1,j)
keli..j)

~  O(n®) time, O(n?) space

16



8.5 Refined Models



Back to Base Pair Stackings

» While maximum outerplanar matching is well-defined and tractable,
it doesn't usually yield natural structures.

» already know that we should count base pair stackings!

17



Back to Base Pair Stackings

» While maximum outerplanar matching is well-defined and tractable,
it doesn't usually yield natural structures.

» already know that we should count base pair stackings!

» We can extend the DP solution to count those instead!

17



Graphical notation for DP recursions

B

» dots bases; if touching, neighbors on backbone

» horizontal line RNA backbone

> wiggly arcs base pair
» dashed arcs boundary; could be paired or not
> white area no arcs here

> gray area potentially further arcs

18



Counting Base Pair Stackings

Idea: Need to remember whether outermost bases paired.

£ (Y
j il 17

i ] i

AR

it pipil o1

» In the middle case, if (i1, j1) = (i, j), count stacked base pair for (i, j)

19



Counting Base Pair Stackings

Idea: Need to remember whether outermost bases paired.

£ (Y
j il 17

i ] i

= 1

it pipil o1

» In the middle case, if (i1, j1) = (i, j), count stacked base pair for (i, j)

~~ Same O(n®) time, O(1n?) space complexity

19



Turner Energy Model
» Simply counting base pair stackings is still a very crude approximation
» Which bases are paired influences bonding strength
» Which bases are adjacent in stems influences stabilization contribution of stem
» Which bases form first unpaired base in hairpin loop influences stability

»> ... (play Eterna a bit for more #)

20



Turner Energy Model

» Simply counting base pair stackings is still a very crude approximation

» Which bases are paired influences bonding strength

\4

Which bases are adjacent in stems influences stabilization contribution of stem

v

Which bases form first unpaired base in hairpin loop influences stability

»> ... (play Eterna a bit for more #)

~> More refined models to compute free energy (= instability) of structure

Mathews, Sabina, Zuker, Turner: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary
structure, ] Molecul. Biolog. 1999

Mathews, Disney, Childs, Schroeder, Zuker, Turner: Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure, PNAS 2004

20



Turner Energy Model [2]

> structure = partition into k-loops
»> model assumptions

» total free energy = sum of loop contributions
» loop contributions are independent
» determined in lots of experiments

21



Turner Energy Model [2]

» loop contributions are independent
» determined in lots of experiments

e

2
>OO0 q»omozuomqwum 0-0-0-0-00 o»mowo@o
2 30 35 45 50 55

0

Conceptually unbounded sum

& = min{ ;Jf%\"z ) m ’ ;{g:;} ’ {i;:;‘& ) } 7toomanyvariables!
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Zuker’s Algorithm

»> Only compute exactly up to 2-loops (2 enclosed pairs)
> additive approximation for bigger multiloops

~ same mutually recursive cost as for pair stackings

22



8.6 Grammar-based Approaches



Can’t machine learning help?

> free-energy models are great ab initio methods
»> however, they remain limited in accuracy

> with growing datasets, tempting to improve structure prediction using machine
learning

23



Can’t machine learning help?

> free-energy models are great ab initio methods
»> however, they remain limited in accuracy

> with growing datasets, tempting to improve structure prediction using machine
learning

» but: available data much too few for blackbox learning

~+ statistical learning with curated probabilistic model

23



Probabilistic Context-Free Grammars

Recap from your formal languages intro course . . .

Context-free grammars (CFG) Example
G=(N,T,R,S) » N ={EIV,C,C
» nonterminals N > T:{x,y,@,...,9,+,-?r(i)3
» terminals T » E->E+E)(E-E)| I
» rulesRC NX(NUT)" I-C|V
» start symbol S € N Z:SHC’L..MC’
Applying rules to replace nonterminals C'— é\| oC’|...|9oC’
S =*w w/ng(_Q)\ = empty string
A NN
C = + (E ) (554 (5.0))
c
/N,
< C

24



Probabilistic Context-Free Grammars

Recap from your formal languages intro course . . .

Context-free grammars (CFG) Example
G=(N,T,R,S) » N ={EIV,C,C}
» nonterminals N » T ={x,y,0,...,9,+, ¢}
» terminals T » ES(E+E)|(E<E)|I
» rulesRC NX(NUT)" I-C|V
» start symbol S € N Z:SHC’I...IE)C’
Applying rules to replace nonterminals C'—eloC’|...|oC
S="w ~~ weL(G) emp't\y string
Probabilistic Context-Free Grammars (PCFG) gpsndizalion - Mackoo e,

» For each nonterminal, assign probabilities to right-hand sides.

~+ prob of a derivation in G = product of rule probabilities.

24



