

Date: 2025-11-14 Version: 2025-11-13 22:39

Exercise Sheet 5 for Algorithms of Bioinformatics (Winter 2025/26)

Hand In: Until 2025-11-21 18:00, on ILIAS.

Problem 1 40 points

In this exercise, we consider the generalized notion of alignment scores with affine gap penalties.

To simplify notation, we assume that $goal = \min$ (i. e., we think of alignment scores as minimal distance between strings) and $p(a,b) \ge 0$ for all symbols $a,b \in \Sigma$. Affine gap costs now mean that a maximal block of k consecutive inserts or k consecutive deletes contributes $g_0 + k \cdot g$ to the overall alignment score (instead of $k \cdot g$), where $g, g_0 \ge 0$.

Design an algorithm for computing optimal global alignments with affine gap costs. Running time and space complexity should stay the same (same Θ -class) as for the algorithm from class without affine gaps.

Problem 2 40 + 10 + 40 + 10 points

For a given alignment score S, denote by $sim_S : \Sigma^* \times \Sigma^* \to \mathbb{R}$ the score of an optimal alignment w.r.t. S.

Alignment scores of an optimal alignment with $goal_S = \min$ can be interpreted as a measure of distance between two strings. Mathematicians have been reasoning about minimal desirable properties that function should have to match our intuition of "distance". This is what they came up with:

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ with the following properties for all $x, y, z \in X$:

(M1)
$$d(x,y) \ge 0$$
,

(M2)
$$d(x,y) = 0$$
 iff $x = y$,

(M3)
$$d(x,y) = d(y,x),$$

(M4)
$$d(x,z) \le d(x,y) + d(y,z)$$
.

- a) Assume that we have $goal_S = \min$, a positive gap penalty g > 0 and a transition matrix p that is a metric on Σ .
 - Show that sim_S is a metric on Σ^* .
- b) Give an example for an alignment score where p is not a metric on Σ , but sim_S is still a metric on Σ^* .
- c) Consider now the generalized alignments scores S with affine gap costs $g_0 + k \cdot g$ for a deletion or insertion of k consecutive symbols. Assume again that we have $goal_S = \min$, and a transition matrix p that is a metric on Σ . Moreover, $g_0, g \geq 0$ and $g_0 \cdot g > 0$.
 - Show that sim_S is a metric on Σ^* .
- d) Show that string distance measures induced by *semiglobal* or *local* alignments *never* qualify as metric.