

Exercise Sheet 11 for Algorithms of Bioinformatics (Winter 2025/26)

Hand In: Until 2026-01-23 18:00, on ILIAS.

Problem 1

10 points

Fix any string S , and let \mathcal{T} be the suffix tree associated with S . If v is any internal node of \mathcal{T} , and $S_v[0..k)$ is the string found by traversing \mathcal{T} from the root to v , let $S'_v = S_v[1..k)$. (In other words, S'_v is S_v but without its first character.) Prove or disprove the following: if we traverse \mathcal{T} from the root following string S'_v , we stop at an internal node of the suffix tree.

Problem 2

20 points

Given a string $S[0..n)$, count the number of *distinct* nonempty substrings of S in $O(n)$ time.

Problem 3

30 points

Solve the longest common substring problem using suffix arrays. In other words, given a family of nonempty strings S_1, \dots, S_k , compute the longest substring which appears in all of S_1, \dots, S_k , in linear time with respect to $N = \sum_i |S_i|$, using suffix arrays.

For full marks, the running time should not depend on k (other than via N). Note that the solution based on generalized suffix trees from class does not achieve this.