Communicating Computer Science

Empirical Science & Statistics

14 October 2022

Sebastian Wild

COMP335 (2022-23) University of Liverpool version 2022-10-14 07:50 H

Outline

2 Empirical Science & Statistics

- 2.1 The Scientific Method
- 2.2 Concepts of Statistics
- 2.3 Pitfalls & Dangers

Goals for today

- 1. Recognize key vocabulary for empirical research
- 2. Gain intuition behind statistical tools
- 3. Be aware of common pitfalls

Background:

- ► CS is not a *natural* science
 - one half is a structural science like mathematics, with theorems and proofs
 - ▶ the other half is an engineering discipline, with toolboxes and best practices
- $\rightsquigarrow\,$ scientific method not part of standard CS curriculum
- but: many parts of CS use empirical science (and might profit from a more structured methodology ...)

Terminology

 \bigwedge We use many terms in day-to-day lingo with a different meaning.

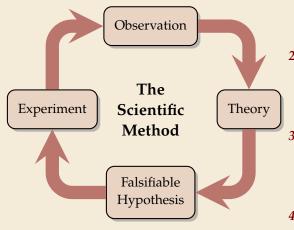
Colloquial use

- theory = unproven suspicion/opinion "Detectives are working on a theory that he knew his murderer."
- experiment = trying something out

"Artists now experiment with many media, from canvas to computers."

statistics = any systematic collection or presentation of (numerical) facts

"The statistics show that computer science is not a popular GCSE subject."


significant = important, big, impactful

Scientific meaning

- theory = set of ideas intended to explain something about life or the world Darwin's theory of evolution
- experiment = carefully designed scientific test, must be reproducible
 Gregor Mendel's inheritance experiment using pea plants
- statistics = science of collecting and analyzing numerical data, hypothesis testing and inference, sampling
- statistically significant = p-value, i. e., probability to see the data assuming the null hypothesis, is below a threshold (often 5% or 1% or 0.5%)

2.1 The Scientific Method

Cycle of Science

- From an *observation* about the real world, we formulate a *theory* (= how things work)
- To test whether a theory is true, we derive a *hypothesis* that follows from the theory. It must be possible prove this hypothesis *wrong* by factual observations (*falsifiable*).
- **3.** We design an *experiment* that will either prove the hypothesis wrong, or will *fail* to prove the hypothesis wrong. In the latter case, it *supports* the theory.
- **4.** The experiment might lead to new observations and refined theories.

Note: The scientific method <u>cannot prove a theory correct!</u> We can only collect supporting evidence (or refute it).

Falsifiable Hypotheses

- ▶ Not all hypotheses can be tested scientifically.
 - Example: *There is an almighty God.*
 - We may never find any evidence of such a God.
 But it can always be claimed to have been God's will not be discovered.
 After all, God is almighty.
 - \rightsquigarrow There is no possible evidence that would irrevocable disprove this hypothesis.
- $\rightsquigarrow\,$ Science is restricted to falsifiable hypotheses.
- ► The world is not usually black and white.
 - Evidence usually contains imperfections
 - theories are idealized (simplified) models of reality
 - measurements include inaccuracies/noise
 - Need a *fuzzy/quantitative* way of falsification:
 To what extent does given evidence support or disprove a hypothesis?
 - $\rightsquigarrow~$ That's why we need statistics

Running example

Running example for this lesson:

- Theory: Expectancy-value theory of motivation; being in control improves self-efficacy, hence expectancy, and hence (hopefully) performance
- ► **Hypothesis:** Giving students a **choice** for their assessment improves their learning outcomes.

(in the specific context of teaching X in environment Y to age group Z \ldots)

→ *How can we test this hypothesis?*

Controlled experiments

Hypothesis: *Giving students a choice for their assessment improves marks.*

Gold standard of empirical science:

🕻 The Controlled Experiment 🕻

- 1. Randomly assign half of students to *experimental group* and *control group*
- 2. Experimental group gets the *choice* which of two essay topics *A* or *B* they write about.
- 3. Control group gets essay topics *A* and *B* randomly assigned by teacher.
- 4. Both groups' essays are marked according to same marking scheme.
- 5. Analyze data: If marks in experimental group are "better" than in control, we support our hypothesis. Other we refute it.

2.2 Concepts of Statistics

Null Hypotheses

affects

Hypothesis: *Giving students a choice for their assessment improves marks.*

Apparent problem: The scientific method can convincingly *refute* hypotheses, but not *prove* them correct.

Apply it to the *negation* of our hypothesis!

 Null hypothesis H₀: μ₁ = μ₀ μ₁: Average mark for students with choice μ₀: Average mark for students without choice

 \rightsquigarrow If experiment refutes H_0 , we have evidence for the *alternative hypothesis* H_1 : $\mu_1 \neq \mu_0$.

Hypothesis testing

How to refute H_0 ?

- ▶ Idealistic way to refute *H*₀: test all humans ...
- unless that is possible (census!), must resort to (small) sample of population
 - How can we know whether our sample is large enough?
 - ▶ What if, by chance, we assigned all strong students to one group?
- $\rightsquigarrow\,$ Inherently have to deal with randomness
- \rightsquigarrow statistical tests

Statistical significance

- Statistical hypothesis tests are given
 - hypotheses H_0 and H_1
 - ▶ Observations *X_c* and *X_e* from control group and experimental group
 - Computes *p*-*value* = likelihood of data (X_c, X_e) assuming H_0 is true
 - Many different tests depending on form of hypotheses and data Z-test, *t*-test, ANOVA, χ² test, ...
 But: Basic principle always computes

test statistic = $\frac{\text{observed data} - \text{expected data assuming } H_0}{\text{average variation}}$

large test statistic \iff small *p*-value

- In our example (using a *t*-test)
 - observed data = difference in average marks between control and experimental group
 - expected data = 0 (no difference under H_0)
 - average variation = $\sqrt{\frac{\sigma_c^2}{n_c} + \frac{\sigma_e^2}{n_e}}$ standard error of the two groups

p-value can be computed from Student *t*-distribution

2.3 Pitfalls & Dangers

Correlation vs. Causation

- Controlled experiments are not always possible.
 - can be unethical
 "The Forbidden Experiment" (language deprivation experiments with children)
 - or impracticably expensive
- \rightsquigarrow resort to *observational study*
 - record data just by observing
 - → cheap, as it can be done after the fact, using available data!
 - lots of examples, e.g., POLAR data on higher education participation

Can only ever observe <u>correlations</u>, but cannot infer causal relationships.

- ► For example, might find correlation between post code average income and HE participation.
- But cannot infer from this data whether higher income *brings* children into unis or whether uni degrees *generate* higher income, or neither!

Not all correlations are meaningful!

https://tylervigen.com/spurious-correlations

My taxonomy of (CS) education articles

Articles in educational research venues have a huge range

- Personal experience report
- Experience report with feedback analysis
- Observational study
- Controlled experiment A/B testing

The analysis (was it "good"?) can likewise differ

- qualitative experiences (e.g., testimonials)
- quantitative performance metrics (e.g., test scores)

The "Replication Crisis"

- Some classic scientific results could not be *reproduced*
 - some false positives inherently expected
 - misaligned incentives in "publish or perish"
 - clickbait mentalities
 - publication bias (only positive studies published)
 - selection bias (unrepresentative survey participants)
 - conflict of interest through funding
- Some concerns less relevant for education, but be skeptical of
 - binary "statistical significance"
 - studies with unclear setup

Misunderstanding *p*-values

- ▶ Recall: p-value = likelihood of data (X_c, X_e) assuming H_0 is true
- ▶ It is **<u>NOT</u>** the likelihood that *H*⁰ is true!
- Also, a statistically significant rejection of H_0 might just say: There is *some* difference.
- ▶ But: The difference might not be "significant" (large) in value!